
HAL Id: hal-04053497
https://hal.science/hal-04053497v1

Submitted on 31 Mar 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Generating UML Models with Inferred Types from
Pharo Code

Jan Blizničenko, Robert Pergl

To cite this version:
Jan Blizničenko, Robert Pergl. Generating UML Models with Inferred Types from Pharo Code.
International Workshop on Smalltalk Technologies, Aug 2019, Koln, Germany. �hal-04053497�

https://hal.science/hal-04053497v1
https://hal.archives-ouvertes.fr


1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55

56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110

Generating UML Models with Inferred Types from
Pharo Code

Jan Blizničenko
Dept. of Software Engineering

Faculty of Information Technology,
Czech Technical University in Prague

Prague, Czech republic
jan.bliznicenko@fit.cvut.cz

Robert Pergl
Dept. of Software Engineering

Faculty of Information Technology,
Czech Technical University in Prague

Prague, Czech republic
robert.pergl@fit.cvut.cz

Abstract
Generating structural UML models from Pharo code poses
several problems that need to be addressed. A structure of
classes with variables and methods has to be gathered, types
of instance variables have to be found for associations and
the model has to be importable into common modeling tools.
This paper brings a review of current solutions to these and
similar problems and it presents our ongoing effort towards
this goal – our current solution we developed so far.

CCS Concepts • Software and its engineering → Soft-
ware reverse engineering;

Keywords type inference, metalinks, uml, model generat-
ing
ACM Reference Format:
Jan Blizničenko and Robert Pergl. 2019. Generating UML Models
with Inferred Types from Pharo Code. In Proceedings of Interna-
tional Workshop on Smalltalk Technologies 2019 (IWST ’19), Cologne,
Germany, 9 pages.

1 Introduction & Motivation
Pharo, being a modern implementation of the Smalltalk pro-
gramming language follows the traditional style of coding
using class browsers and various inspection tools. While this
brings an excellent focus and navigability during the pro-
gramming, seeing the “big picture” and exploring big code
bases may be challenging.
UML [17] is considered today’s industrial standard no-

tation for software systems modeling and it offers multi-
ple types of diagrams depicting various aspects of a soft-
ware system. Software engineering best practices advise to

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than the author(s) must
be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.
IWST ’19, August 27–29, 2019, Cologne, Germany
© 2019 Copyright held by the owner/author(s). Publication rights licensed
to ACM.

model the system and then implement it [1]. Model-driven
approaches [20, 29] go even further and bring a rigorous and
often automated or semi-automated way of transforming
conceptual models into implementation models and code.
However, without providing concrete statistics, we may

state that their adoption in practice is not excitingly high and
software artifacts often come with missing documentation
and models, or the models get outdated in the course of time.
This is why it becomes interesting to look into the possi-

bility to (at least partially) reconstruct UML diagrams from
existing code bases. Such approach obviously cannot deliver
conceptual-level diagrams any more, but seeing the code
visualized in a diagrammatic way can help understand a
system at hand.
Indeed, there are tools available for Java, C++, C# and

other languages that provide UML reverse-engineering func-
tionality, typically to reconstruct UML Class Diagrams. To
reconstruct types of attributes, methods signatures and to re-
construct associations between classes, these tools use type
information of instance variables which is available in these
statically-typed languages. In dynamically typed languages
– such as Pharo – there is no such information present in the
code.

1.1 Type Inference Techniques
To reconstruct data types in code without explicit type def-
initions, type inference may be used [14]. There are two
main kinds of type inference: the most usual one is the static
type inference and the other one is the run-time (also called
dynamic) type inference. Type inference might result in false
positives (a class is marked as a possible type, although it is
not) or false negatives (a class is ruled out although it is one
of possible types).
Static inference uses information provided in the code

itself and these are several examples of typical principles
used, which illustrate the pitfalls:

• Wherever new instance of a class is created, then
assigned to an instance variable, we know that the
class of which instance has been created is one of
possible types of the variable. If there is a line with
aVariable := MyClass new, the algorithm can guess

1



111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165

IWST ’19, August 27–29, 2019, Cologne, Germany Jan Blizničenko and Robert Pergl

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

that aVariable is of type MyClass or any of its super-
classes. However, even if the class was SmallInteger,
the proper type of variable does not have to be the
SmallInteger. It might also be any of its superclasses
– it might be Integer, or generally any Number. In case
of classes with no common superclass, Object as the
only general superclass is used.

• A variable might only contain instances of classes that
understand methods sent to the variable (unless reflec-
tion is used). A chance of eliminating false positives
rises with the amount of messages being sent to the
variable (otherwise there might be many unrelated
classes implementing same messages too). Once we
have code
aVariable addSomething; addThat; build, we
know that aVariable can only be instance of classes
implementing all of such named methods – probably
some builder in this case. The only downside to this
rule is a case where object might understand a message
without having such methods implemented – usually
because doesNotUnderstand: is implemented.

• Wherever an instance variable is returned in method,
its type is used as a return type of the method. Once
we find ^aVariable, the return type of the method
has to be the same one as the type of the variable.

If a static analysis of a variable, method parameter or
return type identifies a single class, it is usually the one that
should act as type in Java and UML.Whenever several classes
are marked as possible, we might either use their common
superclass as the single type (sometimes, it might be Object).
It means that in a statically typed language, such as Java,
the identified class or any of its superclasses will become
the type of the variable and the return type. The problem of
static analysis is that it contains many false positives which
need to be sorted out by a human analyzer.

The second way of type inference is the runtime one. The
runtime type inference is based on recording every type
that was actually contained in a variable (or in a method
parameter or the returned value) once the code has been
executed. It means the class of an object actually assigned/-
passed/returned. This is, however, not always possible [10].
It requires a thoroughly tested code or a code that can be
manually executed, including lots of possible use cases. The
reason is that we can record a data type only for variables
actually used during runtime. We need to record the class
of the object assigned to the variable. If just an Integer is
passed as an argument during the execution, we might miss
that a Float or a Fraction might be passed as well, so we
get false negatives.
Regardless of the problem of finding the single correct

datatype in case one exists, there are cases where finding just
a single class (data type) is not possible at all. For example,
enumeration methods in collections, such as do:, collect:,

select:, etc. accept blocks and symbols as an argument,
which have no other common superclass than Object, so
there is no other option in UML than to offer Object as the
data type – we cannot provide a list of possible types. If there
were interfaces in Smalltalk, Block and Symbol would have
the same interface, but there is no explicit interface concept
as is in Java.

In this paper aims to present our ongoing work on gener-
ating structural UML models from Smalltalk code.

2 Problem Description
The long term goal of our work is generating UML Class
Diagrams from Smalltalk code, now focusing specifically
on generating structural UML models from Pharo code. It
is important to distinguish between UML models and UML
Class Diagrams. UML Class Diagram is a visual representa-
tion based on structural parts of UML model. In this paper,
by UML model, we mean the structural part of the model
that provides base for Class Diagrams. The resulting model
should be importable into commercial modeling tools such
as Enterprise Architect [22]. To achieve that, the following
questions need to be addressed:

• How to represent UML models in Pharo?
• How to generate a UML model with class structure,
operations (methods), properties (variables) etc. from
a Pharo code?

• How to find types of instance variables, method pa-
rameters and return types?

• How to transfer/import the generated model to Enter-
prise Architect?

• How could be such model used for creation of UML
Class Diagrams with as many automation as possible?

2.1 Existing Solutions & Related Work
Our work consists of multiple problems and problem of link-
ing everything together from the Pharo code to UML Class
Diagram in a tool similar to Enterprise Architect. Here we
present the overview of relevant related work.

2.2 Existing UML Generators
For Pharo and also other dynamically typed languages, there
are already tools for generating UML Class Diagrams or
diagrams similar to UML.

2.2.1 Python
In Python, there are multiple tools for generating UML, like
Pyreverse [12],
PyNSource [5] or Lumpy [8], although some are not actively
developed or supported anymore.
These tools create a UML model with Class Diagrams,

or diagrams very similar to UML Class Diagrams. Lumpy
does not generate method arguments nor data types, but

2



221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275

Generating UML Models from Pharo Code IWST ’19, August 27–29, 2019, Cologne, Germany

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

Pyreverse, as the most advanced of all, does, however be-
cause of type inferring limitations, only some basic or easily-
inferred types of instance variables are extracted, while the
rest are marked as NoneType (Python’s equivalent of null
used where Pyreverse does not know what type the variable
has). An example of an output of Pyreverse can be seen in
figure 1. Also, no method argument types are inferred at all.

PyNSource does not show any data types at all, as seen in
figure 2.

Figure 1. Example of output from Pyreverse [12]

2.2.2 Ruby
Ruby has a smaller community then Python and the amount
of tools for UML is smaller, too. One of such tools is Um-
lify [21], which is able to generate UML diagrams without
providing any datatypes or any information about method
arguments (just names are generated, as seen in figure 3),
similarly to, for example, Lumpy. There are also multiple
UML generators for Ruby’s most popular web application
framework – Ruby on Rails – for which most of the tools
offer to generate data types of variables. It is possible because
Ruby on Rails has strict naming rules where a name of a vari-
able always has to be derivative of the class of its content,
including information about multiplicity. That is not the case
of non-Rails Ruby applicationa, just as is it not the case of
Pharo or most of Smalltalk implementations, although some
naming conventions are in place.

Figure 2. Example of output from PyNSource [4]

Figure 3. Example of output from Umlify [27]

3



331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385

IWST ’19, August 27–29, 2019, Cologne, Germany Jan Blizničenko and Robert Pergl

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

2.3 Moose
Moose is the closest example of a tool aligned to our goals. It
does not generate a UML model, but a FAMIX model, which
is quite similar to UML and even has multiple advantages
over UML [7, 13]. However, FAMIX is not a solution in our
case, as general knowledge of the modeling notation and
commercial tools support is important for us.
Moose leverages the Roassal visualisation library [2, 3]

to show parts of the model as diagrams similar to UML. To
create associations, it uses a static type inferrer RoelTyper.
However, RoelTyper is not able to find any method argument
types and return types. Also, most instance variable types
cannot be found just by static type inference, therefore there
are just very few associations between classes created.

2.4 Type Inference in Pharo
Lots of work has been already done in the field of static typ-
ing inference in Pharo, too. There are 3 major tools for static
type inference in Pharo - RoelTyper, RBRefactoryTyper and
J2Inferer – and few experiments on run-time type inference.

These tools are mainly being used to augment other tools
in Pharo, such as refactoring tools [28]

2.4.1 RoelTyper
RoelTyper is a tool and a set of algorithms by Roel Wuyts. It
uses several heuristics algorithms and it aims to be as fast
as possible, claiming to process all code in the whole default
VisualWorks image in less than 1 minute and a half.

Since the focus is on speed, it does not find as many types
as other tools and it also does not try to find types of content
in a collection. For example, if there is an Array of instances
of String, RoelTyper correctly finds that the variable con-
tains an instance of Array, but it does not find what is inside
the array, which is crucial for real usage in UML generating.

Also, it can find only types of instance variables, no types
of arguments of methods, nor returned values.

2.4.2 RBRefactoryTyper
RBRefactoryTyper, as the name suggests, is used for refac-
toring. A user may pick a method and variable(s) used in
the method, ask to move the method and RBRefactoryTyper
offers possible classes to which the method may be moved to.
It offers those classes, whose instances can be in the variable,
because it might mean that the method working with an
instance of that class could be, in some cases, moved to that
class itself to improve encapsulation.

RBRefactoryTyper analyses AST (abstract syntax tree) and
it is usually slower than RoelTyper’s heuristics, but offers
more features than RoelTyper. Based on testing on several
real packages, RBRefactoryTyper guessed more types with a
better precision1.

1By precision is meant how many possible classes the tool offered – if they
both offer the correct class, the less other classes offered, the better.

Despite these achievements, RBRefactoryTyper cannot
infer types of method arguments, nor returned values of
methods.

2.4.3 J2Inferer
J2Inferer is a prototype tool in Pharo by Pablo Tesone that
aims to infer types not just of instance (or class-side in-
stance) variables, but also of method arguments and return
types [24]. As such, it represents a promising approach, how-
ever the tool was unfinished in time of concluding our re-
search and could not yet infer method arguments and return
types, although multiple issues of J2Inferer had been fixed.

2.5 More Work on Type Inference
Improving static type inference results in Pharo has been
a goal of several works [6, 11, 15, 19, 23] that propose new
algorithms and improvements of current ones.

2.5.1 Runtime Type Inference
Run-type type inference has been researched both generally
and for several specific languages [6, 9, 18]. These languages
include Pharo, as described in [16, 26], both proposing use of
AST modifications, or specifically Metalinks, to record data
types.

Metalinks allow to enhance AST in a way that before, after
or instead any node in AST something else happens. It can
be used to find values assigned to variables, returned values
and many more usages.

2.5.2 Creating UML Models in Pharo
In Pharo, there is a possiblity to use Graphviz – an open-
source graph visualization software – to render UML Class
Diagrams. These are not UML models that may be exported,
just drawn diagrams.
There is also the OpenPonk modeling tool [25] – a meta-

modeling platform and a modeling workbench that offers
UML Class Diagram modeling and provides a full UML meta-
model generated from UML specifications. The metamodel
is designed to be usable for creating custom UML models
even without the OpenPonk tool itself.

3 Our Solution
Our solution is based on existing solutions and toold and it
consists of separate parts addressing each problem and then
linking all parts together. The following subsections are each
dedicated to a single question presented in section 2.

3.1 Representing a UML Model in Pharo
For representing a UML model in Pharo, the UML meta-
model for OpenPonk offers exactly what we need. It allows
to create any UML model which can be either opened in
OpenPonk itself directly in Pharo, or there is an exporter
into a XMI-format file. More on exporting will be discussed

4



441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495

Generating UML Models from Pharo Code IWST ’19, August 27–29, 2019, Cologne, Germany

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

in the subsection dedicated to transfering model from Pharo
to Enterprise Architect. The UML metamodel is independent
on OpenPonk tool itself, which means we can use it alone
without OpenPonk and even loading the tool into the image
is not required.

3.2 Generating the Main UML Model Structure
UMLmodels for class diagrams share lots of similarities with
the FAMIX model, and Moose has its Smalltalk importer into
FAMIX. It creates all the packages, classes, methods, instance
variables and it offers an option to use RoelTyper for finding
some types of instance variables to create associations be-
tween classes. We created a custom implementation of UML
generator loosely inspired by Moose importer.

First of all, a collection of packages that should be imported
and analysed is defined. We call these packages focused pack-
ages, because these are the packages we are interested in.
Once the collection of focus packages is provided, UML pack-
ages are created from them and separated into inner pack-
ages by tags. Then classes are created without any content,
followed by creating generalizations for all the classes.

Next, instance variables (and class-side instance variables
and shared class variables) are added. During adding the
instance variable, provided instance of class we call
TypesManager is asked for type of the variable. Detail about
TypesManager are discussed in subsection 3.3, for now let’s
treat it as a black box that gives us either a class representing
the correct data type or just class Object if none was found.
Adding the class first before adding variables to it effectively
prevents deadlock in case of circular dependency between
classes (through their variables).
Whenever TypesManager returns a class from any pack-

age that is not focused (other package than one of those
initially given as input), such a class has not yet been added
to the UML model before. In that case, the class is added
and then used as the data type (and will not be added again
once TypesManager returns it next time). The classes from
not-focused packages, that are being used just for types, do
not have any variables or methods added by default (can be
redefined by subclasses of the generator). However, in many
cases, we do not want to add variable just as a UML property,
but instead we prefer creating an association between those
two classes. In case we know the type of the variable (it is
not Object) and the class is a part of our focused packages,
an association is created between the class that contains the
variable and the class that should be type of that variable. If
we do not know the type or the type class is not from focused
packages, we just add the variable as a UML property.
As the last step, methods are added along with their pa-

rameters and their types are being requested one by one
whenever needed first time, along with return types.

These steps result in a complete UML model of the class
structure of the focused Pharo packages. The following sec-
tion describes options we use for finding data types.

3.3 Finding Types
The UML generator has its TypesManager that may be asked
for type of an item (variable, parameter or return type).
TypesManager remembers the already found types and asks
type inferrers for types not yet asked for.

3.3.1 Type Inferrer Adaptors
As described in previous chapters, there are multiple existing
solutions and tools for type inference, along with several
research results that could potentially improve existing tools.
During our main work on the project, J2Inferer was not

functional at the time, so we used the other two static type
inference tools during our preliminary experiments - Roel-
Typer and RBRefactoryTyper – where both had their advan-
tages which varied over each analyzed package. There were
variables found by RoelTyper and not by RBRefactoryTyper
and other variables found by the RBRefactoryTyper but not
by RoelTyper. In addition to static type inference, our goal
is to use realtime (dynamic) type inference, as well.

For that, we created abstract class TyperAdaptor, designed
to be subclassed, where each subclass is class of adaptor for
some type inference tool, being static or dynamic.
Since each tool (represented now by the adaptor) may

provide type for some variables that no other tools are able
to find, and therefore complement each other, we use several
adaptors (several inference tools/techniques) over a single
package. For that goal, we created adaptor combiners with
same interface as adaptors that contain several adaptors in
an ordered collection, where in case one did not find any
type (i.e. the type is Object), the next one is asked for the
type of the same item (variable, parameter or return type).

3.3.2 Types Manager
A common case is that the type inferrer offers several possi-
ble classes as types, either because all are truly possible, or
because some are false positives.

Whenever this situation happens, a choice has to be made,
which single type do we want to use and that is the task
of Types Manager. Types manager that asks its adaptor or
adaptor combiner for collection of possible types is an in-
stance of class TypesManager or its subclass. Each subclass
may redefine what kind of solution will be used in situations
where several possible types are provided.

The most trivial one would just return Object in such a
case, because we do not know which of the given possible
types is the correct one. We did not create such implementa-
tion of TypesManager, because its only advantage is minor
performance boost over the other possibilities and the preci-
sion of results is more important than negligible performance
increase.

Just a little more advanced, yet a lot more useful, is the one
that attempts to find common superclass of all possible types
(classes). This one we implemented as the default one and it

5



551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605

IWST ’19, August 27–29, 2019, Cologne, Germany Jan Blizničenko and Robert Pergl

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

is used in almost all cases where type inference has to be fully
automatic. It takes the first possible type (class) provided as
an initial resulting type and than finds common superclass
with each other possible type and stores it as the current
resulting type. In case SmallInteger and LargeInteger
are possible types, Integer is the resulting type. In case it is
SmallInteger, LargeInteger and Fraction, the resulting
type is Number. In case it could be also Character in addition
to those 3 numeric types, Object is the answer, because it is
the closest common superclass.
Finally, for cases where the amount of found types and

their precision is more important than full automation, we
created TypesManager implementation with graphical user
interface that displays

• all the possible types from which the user may choose,
• in case of finding a type of a variable it shows all
references of the variable (same as when we ask for
references of the variable in the Browser),

• once the users picks a type from the list, it displays a
list of all superclasses of it (in case we do not want the
type to be e.g. Integer, but any Number),

• a text field with hints where the user may type any
class present in the system

3.3.3 Types of Elements Inside Collections
For the case of collections, RBRefactoryTyper provides us
possible types of both the collection and the content. Roel-
Typer, on the other hand, does not offer types of items inside
the collection, so we just know that type is set, but we do not
know set of what items, which is usually more important
than the type of the collection.

In case we use RBRefactoryTyper and find that the variable
is being assigned, for example, a set of strings, there are three
main possibilities to represent that in UML:

• simply just as a Set, ignoring the inner type,
• denoting the type as Set<String>, however, this is
an unofficial notation that is not explicitly supported
by the UML standard and meaning of such notation is
not specified and therefore is not understood by most
tools, or

• marking the type as String with multiplicity (0..*)
and defining its elements as unique and unordered
(which can be considered as definition of a set).

Note that even String is a subclass of Collection, as
well as Matrix any many others, but in many such cases,
we never wish to display it as Character(0..*){ordered},
but simply as String. Therefore, we have a constant set of
collection subclasses that are displayed directly instead of as
a collection. Also there is a collection of subclasses which
should never be used directly, such as SmallInteger, in
which case Integer – SmallInteger’s superclass – should
be used.

3.3.4 Real-time Type Inference
Our implementation of real-time type inference has been
inspired by existing solutions [16, 26] and uses Metalinks for
enhancing AST by types recording.

We created a RealTimeTyper with API that allows to
• start recording of a package (or another package in
addition to previous ones),

• stop recording of packages,
• clear recorded types and
• get all possible types of an item (instance variable,
method parameter or return type).

The important part is to actually run the code for which
we record types, otherwise nothing will be recorded. When-
ever method is executed, all relevant information is saved.
A single assignment to variable or a single execution of a
method results in a single recorded type. If several types
could be there, all possible types have to be actually used
during the execution to be recorded – this is the main down-
side of real-time type inference. We can run the code by
trying to use application manually (possibly with several
use-cases), executing examples or running tests. Whenever
a class from recorded package is used by some other (a not
recorded) package, even running that not recorded package
may improve results of our package in focus (because its
code gets executed). After the code is executed, the record-
ing can be stopped (and should be, because recording types
reduces performance of the code).
To actually start recording types, Metalinks get attached

to the following nodes of all methods of all defined classes
and their classes (for class-side methods and variables) inside
the package:

• before the AST root of the method itself to record
method arguments,

• after each variable assignment node for instance vari-
ables to record assignments to record contents of in-
stance variables,

• before each return node to record returned types and
• after the AST root of the method itself in case there
is not explicit return as last node to record implicitly
returned self (note that this could be found even stati-
cally).

The type inferrer remembers all its installed links to be
able to remove them. Otherwise, the links could be removed
only by recompiling all methods of all classes in the package.
Simply saving the class of the object is not enough, be-

cause we want to be able to record classes of elements inside
collections. Therefore the type inferrer checks whether the
object is a collection and if it is, it records both the collection
type and the elements type.

3.3.5 Comparison of Type Inference Techniques
To evaluate characteristics of static vs real-time (dynamic)
type inference, we introduce results of applied type inferrers

6



661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715

Generating UML Models from Pharo Code IWST ’19, August 27–29, 2019, Cologne, Germany

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

RoelTyper, RBRefactoryTyper and our RealTimeTyper, along
with combination of all these using serial combiner described
with adaptors that uses one type inferrer as a backup for
another whenever the previous one did not find any type.
In case of static type inferrers, we simply applied each

on whole package. In case of the run-time type inferrer,
we started logging of types, executed all related tests and
examples, then stopped logging.
Given the focus on amount of found types, we did not

measure amount of time or memory consumption of each
approach.
Table 1 contains the total amount of instance variables,

class-side instance variables, methods (possible return types),
and method parameters in the package and amount of those
with at least partially guessed type. By partially guessed is
meant any more information than Object, which usually
means unknown type, including found types of collection
without found types of elements in the collection. The table
contains packages where most of them include tests, some do
not offer tests, but provide us with executable with examples,
OSWindow-Core has no examples and very low amount of
tests compared to size of the package and Tool-Diff and
Traits have no tests or examples at all in both cases.

As we can see in the table, the real-time type inference
provides much more types than static type inference in most
of the cases. Package OSWindow-Core contains only few tests,
therefore real-time type inference provides only marginally
better results than static type inferrers. Package Tool-Diff
has no tests or examples at all, thus no types have been found
by real-time type inference. Package Tests has no tests or
examples either, yet it is being constantly used in the system,
even during the type inferrence process itself, giving real-
time type inferrer better results than static type inferrers by
small amount.

Using both the static type inference and the real-time one
combined provides the best results – even in worst case it
has results equal to best type infererrer out of the three.

3.4 Transferring the Model to Enterprise Architect
For transferring the model to Enterprise Architect and other
tools, we use the XMI format. XMI is a standardized way
for transferring UML models that is supported by major
UML modeling tools. Each tool has some minor deviations
to the standard, such as handling of structure of packages, or
requiring certain format of IDs of model elements (Enterprise
Architect), especially the return types. Subclasses of UML
generator for each target modeling tool can handle these
differences.
To export the UML model into a XMI file, there is a XMI

exporter for these models available for OpenPonk’s UML
package that we use without any modification. After that,
we use the Enterprise Architect’s integrated XMI importer
to import the whole model into Enterprise Architect.

3.4.1 Enterprise Architect and Return Types
There are two ways to model the return type of a method in
UML.
The first option is to use simple type property of the

method itself, which cannot hold information about both a
collection (whether it even is a collection) and the type of
elements inside the collection – just a single type without
any additional info. We consider this a major issue, therefore
use the second option.

The second option is to add a return parameter, which can
have the same type information as any variable or method ar-
gument, including multiplicities. However, in class diagrams,
Enterprise Architect displays such return arguments along
with all other arguments of a method instead of being the
return type of the method.

3.5 Creating UML Class Diagrams
As automatic generating diagrams from models presents sev-
eral challenges, it is out of scope of our current research.
Instead, an empty diagram has to be created by the user, all
related classes have to be selected and dragged onto the dia-
gram. Enterprise Architect offers automatic layouting which
is of great help compared to the need of manual layouting
in some other tools.

4 Discussion and Conclusions
A lot of work has been done in the Pharo community, as
well as other communities on types inference. As there is no
single method and tool that provides satisfactory results, we
based our solution on integrating the best possible pieces
and trying to get near the right balance between automation
of the process and precision of results.

4.1 Limitations of Our Solution and Future Work
In spite of proving itself very usable for us already, there are
limitations in our solution that represent opportunities for
future work.

4.1.1 Automatic Generation of Diagrams
Diagrams provide various views on a model, which becomes
very important in case of big models of several hundereds or
thousands of classes. As explained, right now we generate
a model and a corresponding diagram is layouted by Enter-
prise Architect. As a future work, a technique of generating
diagram views (semi)-automatically is an interesting (and
supposedly very hard) topic.

4.1.2 UML Representation of Traits
Although UML directly supports interfaces, it does not sup-
port traits. Designing a solution how to represent traits in
UML would make it possible to further enrich the models.
Currently, we ignore traits in our solution.

7



771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825

IWST ’19, August 27–29, 2019, Cologne, Germany Jan Blizničenko and Robert Pergl

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

871

872

873

874

875

876

877

878

879

880

Package name Total RoelTyper RBRefactoryT. Real-time Combined
Zinc-HTTP 2369 76 (3.2 %) 88 (3.7 %) 1565 (66.1 %) 1584 (66.9 %)
Athens-Cairo 1146 34 (3.0 %) 31 (2.7 %) 498 (43.5 %) 513 (44.8 %)
GT-Playground 264 3 (1.1 %) 5 (1.9 %) 58 (22.0 %) 60 (22.7 %)
Ombu 430 21 (4.9 %) 26 (6.0 %) 255 (59.3 %) 263 (61.2 %)
OSWindow-Core 1675 57 (3.4 %) 50 (3.0 %) 64 (3.8 %) 125 (7.5 %)
Tool-Diff 559 34 (6.1 %) 29 (5.2 %) 0 (0.0 %) 34 (6.1 %)
Traits 1823 14 (0.8 %) 13 (0.7 %) 17 (0.9 %) 30 (1.6 %)

Table 1. Comparison of amount of inferred types by each type inferrer

4.1.3 Metaclasses and Class-side Methods and
Variables

Another topic, we have not fully addressed, is how to treat
metaclasses and how to represent a situationwhere a variable
contains a class. First of all, UML has a support for marking
methods and variables as static. However, there is effectively
nothing static about class-side methods and variables in
Pharo thanks to its full object-orientation (classes are full-
blown objects). For example, class Integer is an instance of
the Integer class, which is an instance of Metaclass, etc.

So, the question is, should we represent class-side methods
and variables as static ones in the class itself? Or should we
have not only Integer, but also Integer class as separate
UML classes and put those methods and variables there? This
problem needs further research and debate and probably
would depend on use of the resulting UML diagram and
expected knowledge of Smalltalk-based languages of the
person reading the diagram.

Another problem is that, unlike in Java, any variable may
contain a class and a class may be passed as a parameter
of a method or being returned. The question in such situ-
ation is, which data type should it be represented by. Our
current solution uses Class as the data type in this case.
This, however, may not be completely precise, because usu-
ally it is not an arbitraty class, but a specific class or its
subclasses. E.g. marking the type as Class is not precise
whenever a variable can contain class Announcement or any
of its subclass – it should be Announcement class instead.
The downside of such representation of type is that when we
add Announcement class as a UML class, it becomes sepa-
rate to class Announcement, so we have to pick whether:

• Announcement will have only instance-side variables
and methods and Announcement class will contain
class-side variables and methods,

• Announcement will have both instance-side and class-
side ones marked as static and Announcement class
will not have methods and variables, or

• class-side methods and variables will be duplicate in
both Announcement and Announcement class.

Furthermore, in Pharo, there are instance variables, class-
side instance variables and shared class variables. As stated

in the previous section, UML distinguishes instance vari-
ables and static instance variables and we can possibly split
a class and a metaclass, such as the shown Announcement
and Announcement class. For now, we stick to having all
variables in a single class, such as Announcement, where
both class-side instance variables and shared class variables
are treated as the same thing – marked as static variables,
although neither is exactly static and we would like to im-
prove representation of such variables, if that is even fully
possible in UML.

4.1.4 Collection Types in UML
As stated in the previous section, for representing collections
as data types, our solution uses multiplicities along with
ordered/unordered and unique properties. For example, Set
is unordered unique and OrderedCollection is ordered not-
unique. The problem is that many collections share these
properties, such as OrderedCollection and Array, or Set
and IdentitySet and such way of modeling collections is
insufficient for Dictionary, where types of both keys and
values might be important. We have not attended to this
problem so far and it will be focus of our future work.

4.1.5 GUI Limitations
Our GUI is now rather prototypal and a way too simplistic for
use on large projects. Currently, it works only for instance
variables and it needs to be modified for method arguments
and return values, as well.
Also for instance variables, there are several ways to im-

prove it. Instead of two lists – one of all classes from type
inferrer(s) and the second of all superclasses of the selected
class in first list, we would like to explore possiblity to show
these classes as a tree combining information from both lists.

Next, there is currently no way to select type of collection
in case variable contains collection of some elements. We
can just mark it is a collection, not knowing whether it is
Set, OrderedCollection or Dictionary.

Apart from these, there are some user-experience improve-
ments that would be nice, such as remembering the position
for windows opening.
Currently, we have no GUI for settings such as picking

what packages to pick, which type inferrers to use with
8



881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935

Generating UML Models from Pharo Code IWST ’19, August 27–29, 2019, Cologne, Germany

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

987

988

989

990

which adaptors, to which modeling tools to generate, what
should be the name of the XMI output file etc. As of now,
the user has to configure these by code.
We would also like to provide GUI for our run-time type

inferrer.

4.1.6 Displaying Return Types in EA
As stated in description of solution of transferring model
to Enterprise Architect, there are two ways to represent
the return type of a method – using the type property of
the method itself, or using a separate return parameter, each
with its downsides – the first lacks the important information
about collections, the second displays itself incorrectly in
Enterprise Architect as another argument instead of just
return type.

4.1.7 Selecting Final Type from Options Offered by
Type Inferrers

We also plan to improve the way of selecting the final type
from options offered by each type inferrer. For example,
in some cases, we can assume that a class from the same
package has a greatly higher chance of being the correct type
than from a completely unrelated package. This assumption,
however, may be wrong in other cases.

4.1.8 Improving Type Inference Tools
Our type inference results are only as good as the undelying
type inference tools such as RoelTyper and RBRefactory-
Typer. Therefore, if these tools further improve, our results
will, too. Also, another tools may be integrated to further
improve the results, such as the most current version of
J2Inferer, which did not work at the time we did most of the
work presented in this paper, but may do a good job now.

Acknowledgments
The presented researchwas sponsored by Tomcat® computer
GmbH.

References
[1] Scott W Ambler. 1998. Process patterns: building large-scale systems

using object technology. Cambridge university press.
[2] Vanessa Pena Araya, Alexandre Bergel, Damien Cassou, Stéphane

Ducasse, and Jannik Laval. 2013. Agile visualization with Roassal.
Deep Into Pharo (2013), 209–239.

[3] Alexandre Bergel. 2016. Agile Visualization. Lulu. com.
[4] Andy Bulka. 2019. Pynsource Screenshots. Online. http://www.

andypatterns.com/index.php/products/pynsource/screenshots
[5] Andy Bulka. 2019. PyNSource [software]. Online. https://github.com/

abulka/pynsource
[6] Ravi Chugh, Ranjit Jhala, and Sorin Lerner. [n. d.]. Type Inference

with Run-time Logs (Work in Progress).
[7] Serge Demeyer, Stéphane Ducasse, and Sander Tichelaar. 1999. Why

FAMIX and not UML. In Proceedings of UML’99, Vol. 1723.
[8] Allen Downey. 2007. Lumpy: UML in Python [software]. Online.

http://www.greenteapress.com/thinkpython/swampy/lumpy.html

[9] Michael Furr, Jong-hoon David An, Jeffrey S Foster, and Michael Hicks.
2009. Static type inference for Ruby. In Proceedings of the 2009 ACM
symposium on Applied Computing. ACM, 1859–1866.

[10] Henricus Johannes Maria Meijer and Oludare Victor Obasanjo. 2011.
Efficient data access via runtime type inference. US Patent 7,970,730.

[11] Nevena Milojkovic, Mohammad Ghafari, and Oscar Nierstrasz. 2017.
Exploiting type hints in method argument names to improve light-
weight type inference. In 2017 IEEE/ACM 25th International Conference
on Program Comprehension (ICPC). IEEE, 77–87.

[12] Nussel Nakamura. 2014. Exploring Pyreverse. Online.
https://pythonhosted.org/theape/documentation/developer/
explorations/explore_graphs/explore_pyreverse.html

[13] Oscar Nierstrasz. 2012. Agile software assessment with Moose. ACM
SIGSOFT Software engineering notes 37, 3 (2012), 1–5.

[14] John Plevyak and Andrew A Chien. 1994. Precise concrete type in-
ference for object-oriented languages. ACM SIGPLAN Notices 29, 10
(1994), 324–340.

[15] Frédéric Pluquet, Antoine Marot, and Roel Wuyts. 2009. Fast type
reconstruction for dynamically typed programming languages. InACM
Sigplan Notices, Vol. 44. ACM, 69–78.

[16] Pascal Rapicault, Mireille Blay-Fornarino, Stéphane Ducasse, and
Anne-Marie Dery. 1998. Dynamic type inference to support object-
oriented reengineering in Smalltalk. In ECOOP Workshops. 76–77.

[17] James Rumbaugh, Ivar Jacobson, and Grady Booch. 2004. Unified
modeling language reference manual, the. Pearson Higher Education.

[18] Michael Salib. 2004. Starkiller: A static type inferencer and compiler for
Python. Ph.D. Dissertation. Massachusetts Institute of Technology.

[19] Daniel Schweizer. 2000. Exporting MOOSE Models to Rational Rose
UML. (2000).

[20] Shane Sendall and Wojtek Kozaczynski. 2003. Model transformation:
The heart and soul of model-driven software development. IEEE soft-
ware 20, 5 (2003), 42–45.

[21] Michael Sokol. 2011. Umlify [software]. Online. https://github.com/
mikaa123/umlify

[22] Geoffrey Sparks. 2009. Enterprise architect user guide. (2009).
[23] Boris Spasojević, Mircea Lungu, and Oscar Nierstrasz. 2014. Mining the

ecosystem to improve type inference for dynamically typed languages.
In Proceedings of the 2014 ACM International Symposium on New Ideas,
New Paradigms, and Reflections on Programming & Software. ACM,
133–142.

[24] Pablo Tesone. 2015. Type inference in Pharo. Online. https://github.
com/tesonep/j2Inferer/blob/master/presentation/main.pdf

[25] Peter Uhnák and Robert Pergl. 2016. The OpenPonk modeling plat-
form.. In IWST. 14.

[26] Peter Uhnák and Robert Pergl. 2017. Ad-hoc Runtime Object Structure
Visualizations with MetaLinks. In Proceedings of the 12th edition of the
International Workshop on Smalltalk Technologies. ACM, 7.

[27] unknown author. 2011. Ruby: umlify - generate UML model out of
the source code. Online. http://krystianekb.blogspot.com/2011/06/
ruby-umlify-generate-uml-model-out-of.html

[28] Martin Unterholzner. 2014. Improving refactoring tools in Smalltalk
using static type inference. Science of Computer Programming 96 (2014),
70–83.

[29] François Vernadat. 2002. UEML: towards a unified enterprise modelling
language. International Journal of Production Research 40, 17 (2002),
4309–4321.

9

http://www.andypatterns.com/index.php/products/pynsource/screenshots
http://www.andypatterns.com/index.php/products/pynsource/screenshots
https://github.com/abulka/pynsource
https://github.com/abulka/pynsource
http://www.greenteapress.com/thinkpython/swampy/lumpy.html
https://pythonhosted.org/theape/documentation/developer/explorations/explore_graphs/explore_pyreverse.html
https://pythonhosted.org/theape/documentation/developer/explorations/explore_graphs/explore_pyreverse.html
https://github.com/mikaa123/umlify
https://github.com/mikaa123/umlify
https://github.com/tesonep/j2Inferer/blob/master/presentation/main.pdf
https://github.com/tesonep/j2Inferer/blob/master/presentation/main.pdf
http://krystianekb.blogspot.com/2011/06/ruby-umlify-generate-uml-model-out-of.html
http://krystianekb.blogspot.com/2011/06/ruby-umlify-generate-uml-model-out-of.html

	Abstract
	1 Introduction & Motivation
	1.1 Type Inference Techniques

	2 Problem Description
	2.1 Existing Solutions & Related Work
	2.2 Existing UML Generators
	2.3 Moose
	2.4 Type Inference in Pharo
	2.5 More Work on Type Inference

	3 Our Solution
	3.1 Representing a UML Model in Pharo
	3.2 Generating the Main UML Model Structure
	3.3 Finding Types
	3.4 Transferring the Model to Enterprise Architect
	3.5 Creating UML Class Diagrams

	4 Discussion and Conclusions
	4.1 Limitations of Our Solution and Future Work

	Acknowledgments
	References

