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implementation

R.G. Novikov, V.N. Sivkin, G.V. Sabinin

March 31, 2023

Abstract

We present the first numerical study of multipoint formulas for finding leading coefficients in asymptotic ex-
pansions arising in potential and scattering theories. In particular, we implement different formulas for finding the
Fourier transform of potential from the scattering amplitude at several high energies. We show that the aforemen-
tioned approach can be used for essential numerical improvements of classical results including the slowly convergent
Born-Faddeev formula for inverse scattering at high energies. The approach of multipoint formulas can be also used
for recovering the X-ray transform of potential from boundary values of the scattering wave functions at several
high energies. Determination of total charge (electric or gravitational) from several exterior measurements is also
considered. In addition, we show that the aforementioned multipoint formulas admit an efficient regularization for
the case of random noise. In particular, we proceed from theoretical works [Novikov, 2020, 2021].

Keywords: inverse scattering, charge recovery, multipoint formulas, numerical implementation
AMS subject classification: 35J10, 35P25, 35R30, 65N21, 78A46, 81U40

1 Introduction

Many functions of potential theory, scattering theory, and other fields admit asymptotic expansions of the form

z(s) =

N∑
j=1

aj
sj−1

+O(s−N ), as s→ +∞, (1.1)

where s ∈ (σ,+∞), for some σ > 0, and aj are complex numbers; see, for example, [1], [21], [22], [27], [28], [32], [38].
In addition, in some cases, the most important information is contained in a1 (and/or some next leading coefficients),
whereas z(s) is measured in several points s ∈ (σ, +∞). In the present work we continue studies of [27], [28] on finding
a1 from z(s), given at several sufficiently large s, with applications to inverse scattering at high energies. We also
consider determination of total charge (electrical or gravitational) from measurements at several remote points. For
other applications of such studies to phased and phaseless inverse scattering, see [27], [32].

One of the most essential results of the present work consists in an efficient regularization of the formulas of [27] for
finding a1 from z at several points in the presence of random noise; see Sections 2, 5, 6, 7. This regularization opens
perspectives for practical applications where data are always noisy.

In particular, we consider the stationary Schrödinger equation

−∆ψ + v(x)ψ = Eψ, x ∈ Rd, E > 0, (1.2)

where
v is compactly supported and sufficiently regular on Rd. (1.3)

For equation (1.2), we consider the scattering solutions ψ+ = ψ+(x, k), k ∈ Rd, k2 = E, specified by

ψ+(x, k) = eikx +
ei|k||x|

|x|(d−1)/2
f1

(
k, |k| x

|x|

)
+O

(
1

|x|(d+1)/2

)
as |x| → +∞, (1.4)

uniformly on x/|x|. The coefficient f1 arising in (1.4) is the scattering amplitude for equation (1.2). The function f1
at a fixed energy E is defined on

ME = {k, l ∈ Rd : k2 = l2 = E} = Sd−1√
E

× Sd−1√
E
. (1.5)

For more information on direct scattering for equation (1.2), see, for example, [5].
We consider, in particular, polychromatic inverse scattering at high energies for equation (1.2), formulated as

follows:
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Problem 1. Find v (or some information about v) from f1 at several sufficiently large energies E.

Let

v̂(p) = (2π)−d

∫
Rd

eipxv(x)dx, p ∈ Rd. (1.6)

For some formulas, it is convenient to write f1 as

f1(k, l) = c(d, |k|)f(k, l),

c(d, |k|) := −πi(−2πi)(d−1)/2|k|(d−3)/2, for
√
−2πi =

√
2πe−iπ/4.

(1.7)

In particular, we have that

f(k, l) = v̂(p) +O(E−1/2), p = k − l, (k, l) ∈ ME , E → +∞. (1.8)

Formula (1.8) goes back to [4], [9] and is known as the Born-Faddeev formula at high energies; see also, for example,
[26]. This formula gives the simplest method for inverse scattering at high energies for d ≥ 2. In addition, formula
(1.8) admits much more detailed versions, at least, for smooth v.

Let, for example, v ∈ C∞
c (Rd), where C∞

c denotes compactly supported infinitely smooth functions. Then (see
Proposition 3.4 of [22]):

f(k(s), l(s)) =
N∑
j=1

aj(p, ω)

sj−1
+O(s−N ) as s→ +∞, (1.9)

where

k(s) = p+ (E − p2)1/2ω, l(s) = E1/2ω, E = E(s) = s2,

p ∈ Rd, p · ω = 0, ω ∈ Sd−1,
(1.10)

and

a1(p, ω) = v̂(p), (1.11)

where v̂ is defined by (1.6). One can see that expansion (1.9) is of the form (1.1), and the most important information
(in the framework of inverse scattering) is contained in a1.

In particular, due to (1.9), (1.11), we have that

v̂(p) = f(k(s), l(s)) +O(s−1), as s→ +∞. (1.12)

Formula (1.12) is a variation of formula (1.8). In a similar way with (1.8), formulas (1.12), (1.10) give a method
for inverse scattering at high energies for d ≥ 2 (for d = 1 these formulas can be used only for p = 0).

In inverse scattering, the main disadvantage of Born-Faddeev formulas like (1.8), (1.12) consists in their slow
convergence for large energies. This convergence corresponds to O(s−1) in (1.12). In this connection, recently, the
article [28] suggested

formulas for finding v̂(p) up to O(s−n) as s→ +∞
from f(k, l) given at n points (k, l) = (k1(s), l1(s)), ..., (kn(s), ln(s)),

(1.13)

where, for example,

kj(s) = k(sj) = k(s+ τj), lj(s) = l(sj) = l(s+ τj),

s > 0, 0 = τ1 < τ2 < ... < τn,
(1.14)

where (k(s), l(s)) are defined as in (1.10) and (1.12). Formulas (1.13) are recalled in details in Subsection 3.1.
The results of the present work include the first numerical implementation of the multipoint formulas of [27], [28]

for finding a1 in (1.1) from z(s) given at several points s, with applications to inverse scattering at high energies via
formulas (1.13). The results of the present work also include extension of formulas (1.13) to phaseless inverse scattering
at high energies.

The results of the present work also include a variation of formulas (1.9)–(1.11) which is considerably more con-
venient for applications to inverse scattering at high energies. And we implement these more convenient formulas on
inverse scattering numerically. See Subsections 4.1 and 7.2.
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Note that the asymptotic of the scattering functions ψ+ at high energies also reduces to an asymptotic of the form
(1.1). In the present work we also explain in which way the multipoint approach can be applied to recovering the X-ray
transform of the potential v from boundary values ψ+ at several high energies. See Subsection 4.2.

For other important results given in the literature on inverse scattering problems, see, for example, [2], [6], [8], [10],
[11], [12], [13], [16], [19], [20], [28], [30], [31], [33], [34], [35], [36], and references therein. In particular, we expect that
the multipoint approach can be also applied to inverse scattering for the Newton equation; see [18], [25] for known
results on this inverse scattering. We also expect that the multipoint approach can be applied to finding the Fourier
transform of potential from the Faddeev scattering data h in complex domain at a fixed energy with applications to
inverse boundary value problems; see [13], [24].

Natural directions for further research also include possible generalizations of asymptotics like (1.9), (4.1) for
potentials v with discontinuities. Our preliminary numerical tests of reconstruction formulas of Subsection 4.1 and
Section 5 give encouraging results in this connection.

We also consider an electrical or gravitational field with potential

U(x) =

∫
D

ρ(x′)dx′

|x− x′|
, x ∈ R3, (1.15)

where D is a bounded domain in R3. It is well-known that sU(sθ) admits multipole expansion of the form (1.1) with

a1 =

∫
D

ρ(x)dx; (1.16)

see, for example, [21].
We consider, in particular, the question of finding a1 from measurements of sU(sθ) at several sufficiently large s.

This question is of independent interest, but we consider this issue also for numerical testing multipoint formulas of
[27] with their regularizations developed in the present work. In these numerical tests we assume for simplicity that

ρ(x) =

J∑
j=1

qjδ(x− xj), qj ∈ R, xj ∈ D. (1.17)

The further structure of the present article is as follows. In Section 2 we recall the formulas of [27] for finding
a1 in (1.1) from z at several points, and describe related numerical algorithms. In Section 3 we recall the multipont
formulas of [28] for inverse scattering at several high energies, and give analogs of these formulas for phaseless inverse
scattering. In Section 4 we give further theoretical results on inverse scattering at several high energies. This includes
new formulas for the reconstruction from the scattering amplitude and from boundary values of the wave functions.
In Section 5, for data with random noise, we give an efficient regularization of multipoint formulas recalled in Section
2, and describe related numerical algorithm. In Section 6 we present numerical tests of the aforementioned multipoint
formulas for the case of finding a1 in (1.16)–(1.17) from z(s) = sU(sθ) given at several points s. In Section 7 we
present numerical tests of the aforementioned multipoint formulas in their application to inverse scattering at several
high energies. Some conclusions are summarized in Section 8.

Numerical simulations of the present work were fulfilled using Matlab.

2 Reconstruction of the leading coefficient in expansion (1.1)

In this section we recall multipoint formulas of [27] for finding a1 in (1.1) from z given at several sufficiently large s;
see formulas (2.4)–(2.7). In addition, we also describe algorithms for their numerical implementation; see Algorithms
1 and 2.

Let z = z(s) be an abstract function of the form (1.1). We consider points sj ∈ (r,+∞) such that

sj = s+ τj , j = 1, ..., n,

0 = τ1 < τ2 < ... < τn are fixed,

τ⃗ := (τ1, ..., τn), 2n+ 1 < N,

(2.1)

or

sj = sλj , j = 1, ..., n,

1 = λ1 < λ2 < ... < λn are fixed,

λ⃗ := (λ1, ..., λn), n = N.

(2.2)
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Let

αj(ξ⃗) :=

j−1∏
i=1

(ξj − ξi) for 1 < j ≤ n, α1(ξ⃗) = 1,

βn,j(ξ⃗) :=

n∏
i=j+1

(ξi − ξj) for 1 ≤ j < n, βn,n(ξ⃗) = 1,

(2.3)

where ξ⃗ = (ξ1, . . . , ξn).
Then the following formulas for finding a1 from z(s) at the points sj hold (see [27]):

a1 = a1,n(s, τ⃗) +O(s−n), as s→ +∞, (2.4)

a1,n(s, τ⃗) =

n∑
j=1

yj(s, τ⃗)z(s+ τj),

yj(s, τ⃗) =
(−1)n−j(s+ τj)

n−1

αj(τ⃗)βn,j(τ⃗)
, 1 ≤ j ≤ n,

(2.5)

where sj are defined by (2.1);

a1 = a1,n(s, λ⃗) +O(s−n), as s→ +∞, (2.6)

a1,n(s, λ⃗) =

n∑
j=1

yj(s, λ⃗)z(λjs),

yj(s, λ⃗) =
(−1)n−jλn−1

j

αj(λ⃗)βn,j(λ⃗)
, 1 ≤ j ≤ n,

(2.7)

where sj are defined by (2.2).

Algorithm 1: function a1 = z reco(s, n, τ, z)
// reconstruction procedure proposed in [27]

Input:
s: minimal point
n: number of points
τ : vector of point steps (τ1, ..., τn)
z: function of the form (1.1) defined in points {s+ τ1, ..., s+ τn}
Output:
a1: approximation of the first term of function z

1 a1 := 0
for j = 1..n do

2 c = (−1)n−j/(alpha(j, τ)× beta(n, j, τ))
// alpha, beta are defined in (2.3)

3 a1 = a1 + c× z(j)× (s+ τ(j))n−1

end
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Algorithm 2: function a1 = z reco multi(s, n, λ, z)
// reconstruction procedure proposed in [27]

Input:
s: minimal point
n: number of points
λ : vector of point factors (λ1, ..., λn)
z: function of the form (1.1) defined in points {sλ1, ..., sλn}
Output:
a1: approximation of the first term of function z

1 a1 := 0
for j = 1..n do

2 c = (−1)n−j/(alpha(j, λ)× beta(n, j, λ))
// alpha, beta are defined in (2.3)

3 a1 = a1 + c× z(j)× λn−1
j

end

In connection with formulas (2.5), (2.7), note that if ξj+1 − ξj = δ, j = 1, ..., n− 1, then

αj(ξ⃗)βn,j(ξ⃗) = δn−1(j − 1)!(n− j)!, j = 1, ..., n. (2.8)

Numerical examples of implementation of formula (2.4) are given in Section 6.

Remark 2.1. For fixed s, we have that

a1,n(s, τ⃗) = a1,n(s, λ⃗), if τj = (λj − 1)s, j = 1, ..., n. (2.9)

We recall also that:
y = (y1, ..., yn) in (2.5) arises as the solution of the system

(γi, y) =

n∑
j=1

yj
(s+ τj)i−1

=

{
1 for i = 1,

0 for 1 < i ≤ n;
(2.10)

y = (y1, ..., yn) in (2.7) arises as the solution of the system

(γi, y) =

n∑
j=1

yj
(λjs)i−1

=

{
1 for i = 1,

0 for 1 < i ≤ n.
(2.11)

Here, (γi, y) are the scalar products of y with vectors {γi}ni=1.

3 Application to inverse scattering at high energies

In this section we recall the result of [28] consisting in application of asymptotic formulas (1.9)-(1.11) and multipoint
formulas (2.4)–(2.7) to finding the Fourier transform v̂ from the scattering amplitude f at several sufficiently large
energies; see Subsection 3.1. In addition, we also extend this result to finding |v̂|2 from the differential scattering cross
section |f |2 at several sufficiently large energies; see Subsection 3.2.

3.1 Reconstruction of the Fourier transform in expansion (1.9)-(1.11)

Applying the abstract formulas (2.4), (2.6) to the scattering expansion (1.9)-(1.11), we have (see [28]):

v̂(p) = v̂n(p, s, τ⃗) +O(s−n), as s→ +∞,

v̂n(p, s, τ⃗) =

n∑
j=1

(−1)n−j(s+ τj)
n−1f(kj(s), lj(s))

αj(τ⃗)βn,j(τ⃗)
,

|kj(s)|2 = |lj(s)|2 = Ej(s) = (s+ τj)
2, s > 0,

τ⃗ = (τ1, . . . , τn), τ1 = 0, τj1 < τj2 for j1 < j2,

(3.1)
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and

v̂(p) = v̂n(p, s, λ⃗) +O(s−n) as s→ +∞,

v̂n(p, s, λ⃗) =

n∑
j=1

(−1)n−jλn−1
j f(kj(s), lj(s))

αj(λ⃗)βn,j(λ⃗)
,

|kj(s)|2 = |lj(s)|2 = Ej(s) = (λjs)
2, s > 0,

λ⃗ = (λ1, . . . , λn), λ1 = 1, λj1 < λj2 for j1 < j2,

(3.2)

where

kj(s) = p+ (Ej(s)− p2)1/2ω, lj(s) = (Ej(s))
1/2ω, (3.3)

p ∈ Rd, p · ω = 0, ω ∈ Sd−1 (and ω, p are fixed), and αj(τ⃗), βn,j(τ⃗) are defined in (2.3).
For n = 1, formulas (3.1), (3.2) reduce to (1.12). In formulas (1.12), (3.1)–(3.3) we have that

kj(s)− lj(s) ̸= p, if p ̸= 0,

kj(s)− lj(s) = p+
(
(Ej(s)− p2)1/2 − E

1/2
j (s)

)
ω,

kj(s)− lj(s) = p− p2

2
√
Ej(s)

ω +O(s−2), as s→ +∞.

(3.4)

The property that k − l = p is an advantage of the Born-Faddeev formulas (1.8) with respect to (1.12), (3.1), (3.2).
The Born-Faddeev formula (1.8) for fixed E = s2 is considered for |p| ≤ 2s. Formula (1.12) for fixed s =

√
E is

considered for |p| ≤ s. For arbitrary n, formulas (3.1), (3.2) for fixed s =
√
E are also considered for |p| ≤ s. A larger

domain for p is an advantage of (1.8) in comparison with (1.12) and (3.1), (3.2) for fixed s > 0.
However, a rapid convergence described byO(s−n), is the principle advantage of (3.1), (3.2), for n ≥ 2, in comparison

with (1.8), when s→ +∞.
A version of formulas (3.1), (3.2) without the aforementioned disadvantage is given in Subsection 4.1.

3.2 Applications to phaseless inverse scattering

Formulas (3.1), (3.2) also have their phaseless analogs. The results can be summarized as follows:

Theorem 3.1. Let v ∈ C∞
c (Rd). Then

|v̂(p)|2 = |v̂|2,n(p, s, τ⃗) +O(s−n), as s→ +∞,

|v̂|2,n(p, s, τ⃗) =
n∑

j=1

(−1)n−j(s+ τj)
n−1|f(kj(s), lj(s))|2

αj(τ⃗)βn,j(τ⃗)
,

|kj(s)|2 = |lj(s)|2 = Ej(s) = (s+ τj)
2, s > 0,

τ⃗ = (τ1, . . . , τn), τ1 = 0, τj1 < τj2 for j1 < j2,

(3.5)

and

|v̂(p)|2,n = |v̂|2,n(p, s, λ⃗) +O(s−n) as s→ +∞,

|v̂|2,n(p, s, λ⃗) =
n∑

j=1

(−1)n−jλn−1
j |f(kj(s), lj(s))|2

αj(λ⃗)βn,j(λ⃗)
,

|kj(s)|2 = |lj(s)|2 = Ej(s) = (λjs)
2, s > 0,

λ⃗ = (λ1, . . . , λn), λ1 = 1, λj1 < λj2 for j1 < j2,

(3.6)

where kj(s), lj(s) are defined by (3.3), and p ∈ Rd, p · ω = 0, ω ∈ Sd−1 (and ω, p are fixed), and αj(τ⃗), βn,j(τ⃗) are
defined in (2.3).

Proof. Using (1.9) we obtain that

|f(k(s), l(s))|2 = f(k(s), l(s))f(k(s), l(s)) =

 N∑
j=1

aj(p, ω)

sj−1
+O(s−N )

 N∑
j=1

aj(p, ω)

sj−1
+O(s−N )

 =

=

N∑
j=1

bj(p, ω)

sj−1
+O(s−N ), as s→ +∞,

(3.7)
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where

b1(p, ω) = |a1(p, ω)|2, (3.8)

and

bj(p, ω) =

j∑
k=1

ak(p, ω)aj−k+1(p, ω). (3.9)

Formulas (3.5), (3.6) follow from (3.7) and (2.4)–(2.7).

4 Further theoretical results on inverse scattering at high energies

The results of this section include a variation of formulas (3.1), (3.2), (3.5), (3.6) which is considerably more convenient
for numerical applications to inverse scattering at high energies. The results of this section also include formulas for
inverse scattering from boundary values of the scattering wave functions ψ+ at several large energies.

4.1 Further formulas for inverse scattering from the scattering amplitude f

Note that formulas (1.12), (3.1), (3.2), (3.5), (3.6) are not very convenient for numerical inverse scattering. The reason
is that the parametrisation of k and l given by (1.10) is not very convenient. This point was already explained at the
end of Subsection 3.1. However, for v ∈ C∞

c (Rd), the following formula also holds:

f(k(s), l(s)) =

N∑
j=1

aj(p, ω)

sj−1
+O(s−N ) as s→ +∞, (4.1)

where

k(s) = p/2 + (E − p2/4)1/2ω, l(s) = −p/2 + (E − p2/4)1/2ω, E = E(s) = s2,

p ∈ Rd, p · ω = 0, ω ∈ Sd−1,
(4.2)

and

a1(p, ω) = v̂(p), (4.3)

where v̂ is defined by (1.6). In particular, due to (4.1)-(4.3), we have that

v̂(p) = f(k(s), l(s)) +O(s−1), as s→ +∞, (4.4)

which follows also from (1.8).
Formulas (4.1)-(4.4) (as well as formulas (1.9)-(1.12)) follow from formula (1.5) and Propositions 2.4, 2.7 of [38]

(see also, [15], [7] and other references in [38]). Note that aj in (4.1) are different from aj in (1.9) (in general).

In contrast with formulas (1.9)-(1.12), formulas (4.1)-(4.4) for fixed s =
√
E, d ≥ 2, are considered for |p| ≤ 2

√
E

in place of |p| ≤
√
E, and k(s) − l(s) = p in (4.2). This is the advantage of formulas (4.1)-(4.4) in comparison with

(1.9)-(1.12).
As a corollary of formulas (2.4)–(2.7) and formulas (4.1)–(4.3), we obtain the following result.

Theorem 4.1. Let v ∈ C∞
c (Rd). Then formulas (3.1), (3.2), (3.5), (3.6) are valid, where

kj(s) = p/2 + (Ej − p2/4)1/2ω, lj(s) = −p/2 + (Ej − p2/4)1/2ω, Ej = E(sj) = s2j ,

p ∈ Rd, p · ω = 0, ω ∈ Sd−1,
(4.5)

in place of (3.3).

The formulas of Theorem 4.1 (as well as formulas (3.1), (3.2), (3.5), (3.6)) and inversion formulas for the Fourier
transform give a method for inverse scattering from the scattering amplitude f at several large energies.

In particular, in connection with reconstruction from the Fourier transform on a ball, see [17] and references therein.
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4.2 Multipoint formulas for inverse scattering from boundary values of ψ+

Consider the scattering solutions ψ+ satisfying (1.2), (1.3). For v ∈ C∞
c (Rd), we have that

ψ+(x, k) = eikx

1 +

N−1∑
j=1

bj(x, θ)

sj
+O(s−N )

 , as s→ +∞, (4.6)

b1(x, θ) =
1

2i
Dv(x,−θ), Dv(x, θ) :=

∫ +∞

0

v(x+ τθ)dτ, (4.7)

where x ∈ Rd, s = |k|, θ = k/|k| (x and θ are fixed). Formulas (4.6), (4.7) are well-known; see [38] and references
therein. Note that Dv is known as the divergent beam transform of v; see, for example, [23].

Suppose that supp v ⊂ Ω, where Ω is an open bounded convex domain in Rd with smooth boundary ∂Ω. Let

Σ = {(x, θ) : x ∈ ∂Ω, θ ∈ Sd−1, νxθ > 0}, (4.8)

where νx denotes the outward normal to ∂Ω at point x. Then 2ib1(x, θ) = Dv(x,−θ), (x, θ) ∈ Σ, can be considered as
the X-ray transform of v.

The methods for reconstructing v from its X-ray transform are developed in very details; see, for example, [23].
As a corollary of formulas (2.4)–(2.7) and (4.6), (4.7), we obtain the following result.

Theorem 4.2. Let v ∈ C∞
c (Rd). Let

z(x, k) = 2i(e−ikxψ+(x, k)− 1). (4.9)

Then

Dv(x,−θ) = a1,n(x, θ, s, τ⃗) +O(s−n), as s→ +∞, (4.10)

a1,n(x, θ, s, τ⃗) =

n∑
j=1

yj(s, τ⃗)z(x, sj(s)θ), (4.11)

where sj are defined by (2.1), yj are defined by (2.5);

Dv(x,−θ) = a1,n(x, θ, s, λ⃗) +O(s−n), as s→ +∞, (4.12)

a1,n(x, θ, s, λ⃗) =

n∑
j=1

yj(s, λ⃗)z(x, sj(s)θ), (4.13)

where sj are defined by (2.2), yj are defined by (2.7).

Formulas (4.9)-(4.13) are new for n ≥ 2.
Formulas (4.9)-(4.13) and inversion formulas for the X-ray transform (see, e.g., [23]) give a method for inverse

scattering from the boundary values ψ+(x, sθ), (x, θ) ∈ Σ at several large s (that is, at several large energies).

5 Regularisation of multipoint formulas for the noisy case

Note that formulas (2.4), (2.5) and related formulas of Sections 3 and 4 are unstable with respect to random noise in
z, in f and |f |2, and in ψ+, if n ≥ 2 and s increases; see Sections 6 and 7. Formulas (2.6), (2.7) are considerably more
stable in this respect. The reasons are that the coefficients yj(s, τ⃗) behave as

yj(s, τ⃗) = O(sn−1), s→ +∞, (5.1)

in formulas (2.5), and as

yj(s, λ⃗) = O(1), s→ +∞, (5.2)

in formulas (2.7). Therefore, the approximation a1,n in formulas (2.4) lose stability for large n, and also lose stability,
when τj+1 − τj are small.

Suppose, for example, that the data z are given as ζ = znoisy:

ζ(s) = znoisy(s) = z(s) + εN(s), N(s) ∼ N (0, 1), (5.3)
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where the random variables N(s) are independent for different s, and N (0, 1) is the normal distribution.
Below we suggest an efficient regularisation of formulas (2.4), (2.5) and also (2.6), (2.7) for the noisy case, including

the model given by (5.3). In this connection, in place of a1,n and yj we consider their regularised versions ar1,n and yrj ,
where

ar1,n =

n∑
j=1

yrj ζ(sj), (5.4)

where sj = sj(s) is defined by (2.1) for the case of formulas (2.4), (2.5), and sj = sj(s) is defined by (2.2) for the case
of formulas (2.6), (2.7). Note that if ε = 0 in (5.3), then ar1,n reduces to regularized reconstruction from noiseless data.
Our construction of yr is as follows.

Let πk denote the orthogonal projection of Rn on the span(γ1, ..., γk), where γj are the vectors arising in (2.10) or
in (2.11), and k = 1, ..., n.

Lemma 5.1. Let y solve (2.10) or (2.11). Then:

(γi, πky) =

{
1 for i = 1,

0 for 1 < i ≤ k;
(5.5)

π1y =
γ1
n
, πny = y, (5.6)

1√
n
= |π1y| ≤ |π2y| ≤ ... ≤ |πny| = |y|. (5.7)

Proof of Lemma 5.1. Let y⊥k := y − πky. From the definition of πk, we have that (y⊥k , γj) = 0, for j = 1, ..., k.
Therefore, from formulas (2.10) or (2.11) we have that

(γi, πky) = (γi, y − y⊥k ) = (γi, y)− (γi, y
⊥
k ) = δ1i , (5.8)

where δji is the Kronecker delta. Thus, (5.5) is proved.
Next, using the definition of π1, formula (5.5) for k = 1, and the fact that γ1 = (1, 1, ..., 1), we have that π1y = γ1/n.
In addition, πn is an identity operator, since γ1, ..., γn are linearly independent in Rn. Thus, (5.6) is proved.
Formula (5.7) follows from (5.6) and the definition of πk.
Lemma 5.1 is proved. □

We consider a regularisation parameter r ∈ [n−1/2,+∞), where r = +∞ corresponds to no regularization, and
r = n−1/2 corresponds to the strongest regularisation. Let

Sn−1
r := {x ∈ Rn : |x| = r}. (5.9)

Let L denote the broken line defined by

L := ∪n−1
k=1 [πky, πk+1y], (5.10)

where y solves (2.10) or (2.11).
Our regularised yr = (yr1, ..., y

r
n) mentioned in (5.4) is defined by

yr :=

{
y, if |y| ≤ r,

L ∩ Sn−1
r , if |y| > r,

(5.11)

where y solves (2.10) or (2.11). This definition takes into account formula (5.7).
Computation of yr is described in Algorithm 3 for the case of y solving (2.10). The case of y solving (2.11) is

similar.

Proposition 5.2. Suppose that assumptions (5.3), (5.4), (5.11) are fulfilled. Let

m = m(y, r) = max{k : |πky| ≤ r}. (5.12)

Then:

D(ar1,n) ≤ r2ε2, (5.13)

Ear1,n = a1 +

n∑
j=1

yrj zm(sj), (5.14)
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where

zm(s) = z(s)−
m∑

k=1

ak
sk−1

. (5.15)

Due to formula (5.13), using parameter r, we control the dispersion D(ar1,n). The point is that without regularization
(i.e., for r = +∞) the dispersion D(a1,n(s)) rapidly increases when n ≥ 2 and s increases for the case (2.5), (2.10).

In addition, for the case (2.7), (2.11), the number m = m(y, r) in (5.12) is independent of s. Therefore, for this
case, the error

E(ar1,n)− a1 = O(s−m), s→ +∞, (5.16)

where m may be considerably greater than 1 for large n and not too small r.
In turn, for the case (2.5), (2.10), a proper theoretical analysis of advantages of E(ar1,n) in comparison with E(ar1,1)

is more complicated and will be given elsewhere. However, we clearly see these advantages in our numerical examples.
Proof of Proposition 5.2. Using (5.3), (5.4), (5.11), we obtain that

D(ar1,n) = D

 n∑
j=1

yrj ζ(sj(s))

 =

 n∑
j=1

(yrj )
2

 ε2 ≤ r2ε2. (5.17)

From (5.3), (5.4), (5.5), (5.15) we have

Ear1,n = E
n∑

j=1

yrj ζ(sj(s)) =

n∑
j=1

yrj z(sj(s)) =

n∑
j=1

yrj

(
m∑

k=1

ak

sk−1
j

+ zm(sj)

)
=

=

m∑
k=1

ak

n∑
j=1

yrj

sk−1
j

+

n∑
j=1

yrj zm(sj) =

n∑
k=1

ak(γj , y
r) +

n∑
j=1

yrj zm(sj) = a1 +

n∑
j=1

yrj zm(sj).

(5.18)

Proposition 5.2 is proved. □

The approach based on formulas (5.4), (5.11), (5.13), (5.14) for regularising formulas (2.4)-(2.7) can be also used
for the case when

ζ(s) = znoise(s) = z(s) + ξ(s),

Eξ = 0, and ξ(s) are independent for different s.
(5.19)

In this connection, the simplest possibility consists in replacing the dispersion ε2 in (5.13) by

D = max
j=1...n

(Dξ(sj)). (5.20)
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Algorithm 3: function a1 = z reco stable(s, n, τ, z, r)
// regularized reconstruction Algorithm proposed in Section 5.

Input:
s > 0: minimal point
n: number of points
τ = (τ1, ..., τn) : vector of point steps, s.t. 0 = τ1 < ... < τn
z: function of the form (1.1) given in points {s+ τ1, ..., s+ τn}
r ≥ n−1/2: regularization parameter
Output:
ar1,n: stable approximation of the first term of function z

1 ar1,n = 0

// Compute initial vector y⃗ defined in (2.5)
for j = 1..n do

2 y(j) = (−1)n−j/(alpha(j, τ)× beta(n, j, τ))
// alpha, beta are defined in (2.3)

3 y(j) = y(j)× (s+ τ(j))n−1

end
// Define vectors gamma{j} arising in Lemma 5.1

for j = 1..n do
for k = 1..n do

4 gamma{j}(k) = 1/(s+ τ(k))j−1

end

end
// Compute Gram matrix for vectors gamma{j}.
for j = 1..n do

for k = 1..n do
5 G(j, k) = dot(gamma{j}, gamma{k})

// dot(·, ·) is scalar product of vectors

end

end
// Find scalar products of y and space vectors gamma{k}
for k = 1..n do

6 Ay(k) = dot(y, gamma{k})
end
// Find orthogonal projections P{k} of vector y⃗ to subspaces < gamma{1}, .., gamma{k} >
for k = 1..n do

// Solve system of linear equations with matrix G(1:k, 1:k) and right-hand side Ay(1:k)
7 Projection = Solve(G(1:k, 1:k), Ay(1:k))

// G(1:k, 1:k) is k-submatrix of Gram matrix, Ay(1:k) is k-subvector of vector Ay
8 P{k} =

∑
j=1..k Projection(j) · gamma{j}

end
9 Find k, s.t. |P{k}| ≤ r < |P{k + 1}|.

10 Find t ∈ [0, 1), s.t. |P{k}(1− t) + P{k + 1}t| = r.
11 ar1,n = dot(P{k}(1− t) + P{k + 1}t, z)

6 Numerical examples of total charge recovering

We consider

z(s) = s

J∑
j=1

qj
|sθ − xj |

, a1 =

J∑
j=1

qj , θ ∈ S2, xj ∈ R3. (6.1)

Such functions z are of the form (1.1). In addition, z in (6.1) can be written as z(s) = sU(sθ), where U is defined by
(1.15), (1.17).

For such functions z we consider the n-point reconstructions a1,n of a1 defined by (2.5). We also consider the
regularized reconstructions ar1,n defined using formulas (5.4), (5.11). In addition, we model the noisy date using (5.3)
and some other particular cases of (5.19).
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Note that in order to compare n-point reconstructions a1,n properly for different n, we compare ã1,n(s) = a1,n(s−
τn, τ⃗). The reason is that ã1,n(s) are constructed from {z(s− τn), ..., z(s− τ1)} with the same maximal point s− τ1 = s
for different n. Similarly, for the regularized case, we compare ãr1,n(s) = ar1,n(s− τn, τ⃗) for different n.

Note also that numerical examples given below in Subsections 6.1 and 6.2 can be also considered as preliminary
tests of n-points reconstructions a1,n and ar1,n before much more complicated numerical problem studied in Section 7.

6.1 Simplest test

Let

z(s) =
s

s+ 1
, s > 0. (6.2)

Then a1 = 1 in expansion (1.1).
Note that z(s) in (6.2) arise as z(s) in (6.1), where J = 1, q1 = 1, x1 = (−1, 0, 0), θ = (1, 0, 0).

Fig. 1(a) shows the n-point reconstructions ã1,n(s) = a1,n(s − τn, τ⃗) from noiseless data {z(s − τn), ..., z(s − τ1)},
where z is defined by (6.2), n = 1, 2, 3, and τj = (j − 1). Fig. 1(b) shows related reconstructions ã1,n(s) from noisy
data {ζ(s− τn), ..., ζ(s− τ1)}, where n = 1, 2, 3, and

ζ(s) := z(s) + 0.01 ·N(s), where N(s) ∼ N (0, 1) are i.i.d. for different s. (6.3)

Fig. 1(a) confirms that the precision of n-point reconstructions ã1,n from the exact data increases when n increases;
see Section 2 for related theoretical results. Fig. 1(b) confirms that the reconstructions ã1,n(s) from noisy data become
very unstable when n ≥ 2, and s increases; see Section 5 for related theoretical discussion.

Fig. 2(a) shows the regularized n-point reconstructions ãr1,n(s) = ar1,n(s − τn, τ⃗) from noiseless data {z(s −
τn), ..., z(s − τ1)}, where z is defined by (6.2), n = 1, 2, 3, and τj = (j − 1). Fig. 2(b) shows the related regular-
ized n-point reconstructions ãr1,n(s) from noisy data {ζ(s − τn), ..., ζ(s − τ1)}, where ζ(s) is defined by formula (6.3).

These regularized reconstructions are defined using formulas (5.4), (5.11), with r =
√
5.

Fig. 1(a) and Fig. 2(a) show that ãr1,n(s) converges more slowly to a1, than ã1,n(s), for n = 2, 3. However, the
principle advantage of ãr1,n(s) in comparison with ã1,n(s) consists in much stronger stability with respect to noise; see
Fig. 1(b) and Fig. 2(b). Note that the relationship between stability and precision of ãr1,n(s) depends on r.

Note that the reconstructions ã1,n and ãr1,n shown in Fig. 1(a) and Fig. 2(a) are the mathematical expectations of
the reconstructions from noisy data shown in Fig. 1(b) and Fig. 2(b), respectively.

(a) Exact data. No regularization. (b) Noisy data. No regularization.

Figure 1: n-point reconstructions ã1,n(s) = a1,n(s− τn, τ⃗) of a1 = 1 for the case of z defined by (6.2) with τj = j − 1,
j = 1, ..., n.
(a) The case of exact data.
(b) The case of noisy data simulated using formula (6.3).
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(a) Exact data. Regularization. (b) Noisy data. Regularization.

Figure 2: n-point regularized reconstructions ãr1,n(s) = ar1,n(s− τn, τ⃗) of a1 = 1 for the case of z defined by (6.2) with

τj = j − 1, j = 1, ..., n. Regularization parameter r =
√
5.

(a) The case of exact data.
(b) The case of noisy data simulated using formula (6.3).

6.2 Two point charge

Let z be of form (6.1), where

J = 2, θ = (1, 0, 0),

q1 = −1, x1 = (0.3669, 0.2505,−0.0518),

q2 = 2, x2 = (0.1067, 0.2002,−0.2665).

(6.4)

Then the total charge a1 = 1 in expansion (1.1). This configuration can be considered as ’a dipole’ with non-zero total
charge.

Fig. 3(a) shows the n-point reconstructions ã1,n(s) = a1,n(s − τn, τ⃗) from noiseless data {z(s − τn), ..., z(s − τ1)},
where z is defined by (6.1), (6.4), n = 1, 2, 3, and τj = (j − 1). Fig. 3(b) shows related reconstructions ã1,n(s) from
noisy data {ζ(s− τn), ..., ζ(s− τ1)}, where n = 1, 2, 3, and

ζ(s) := z(s) + 0.01s ·N(s), where N(s) ∼ N (0, 1) are i.i.d. for different s. (6.5)

Note that the noise model (6.5) is slightly different from the noise model (6.3), but is also a partucaler case of
(5.19).

Fig. 3(a) confirms that the precision of n-point reconstructions ã1,n from the exact data increases when n increases
(analogously to Fig. 1(a)). Fig. 3(b) confirms that the reconstructions ã1,n(s) from noisy data become very unstable
when n ≥ 2 and s increases; this instability is even stronger than for Fig. 1(b) because of different noise model.

Fig. 4(a) shows the regularized n-point reconstructions ãr1,n(s) = ar1,n(s − τn, τ⃗) from noiseless data {z(s −
τn), ..., z(s − τ1)}, where z is defined by (6.1), (6.4), n = 1, 2, 3, and τj = (j − 1). Fig. 4(b) shows the related
regularized n-point reconstructions ãr1,n(s) from noisy data {ζ(s− τn), ..., ζ(s− τ1)}, where ζ(s) is defined by formula

(6.5). These regularized reconstructions are defined using formulas (5.4), (5.11), with r =
√
2.

Fig. 3(a) and Fig. 4(a) show that ãr1,n(s) converges more slowly to a1, than ã1,n(s), for n = 2, 3 (analogously to
Fig. 1(a) and Fig. 2(a)). However, the principle advantage of ãr1,n(s) in comparison with ã1,n(s) consists in much
stronger stability with respect to noise; see Fig. 3(b) and Fig. 4(b). This point is similar to the case of Fig. 1(b) and
Fig. 2(b).

Note that the reconstructions ã1,n and ãr1,n shown in Fig. 3(a) and Fig. 4(a) are the mathematical expectations of
the reconstructions from noisy data shown in Fig. 3(b) and Fig. 4(b), respectively.
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(a) Exact data. No regularization. (b) Noisy data. No regularization.

Figure 3: n-point reconstructions ã1,n(s) = a1,n(s − τn, τ⃗) of a1 = 1 for the case of z defined by (6.1), (6.4) with
τj = j − 1, j = 1, ..., n.
(a) The case of exact data.
(b) The case of noisy data simulated using formula (6.5).

(a) Exact data. Regularization. (b) Noisy data. Regularization.

Figure 4: n-point regularized reconstructions ãr1,n(s) = ar1,n(s− τn, τ⃗) of a1 = 1 for the case of z defined by (6.1), (6.4)

with τj = j − 1, j = 1, ..., n. Regularization parameter r =
√
2.

(a) The case of exact data.
(b) The case of noisy data simulated using formula (6.5).

7 Numerical examples for inverse scattering

In this section we implement numerically formulas (1.13) and their phaseless analogues presented in Introduction, in
Section 3, and with regularization of Section 5. More precisely, we illustrate numerically the n-point approximate
reconstructions v̂n and |v̂|2,n defined in (3.1) and (3.5) and we illustrate numerically their regularized versions defined
according to formulas (5.4), (5.11) and (5.19). We also present similar numerical results proceeding from Theorem 4.1.

In Subsection 7.1 we present some numerical preliminaries on direct scattering. In Subsection 7.2 we give numerical
examples on finding the phased and phaseless Fourier transforms v̂ and |v̂|2 from the phased and phaseless scattering
amplitudes f and |f |2 via the aforementioned v̂n and |v̂|2,n. In particular, we show that this inverse scattering works
better numerically when proceeding from its theoretical version given in Subsection 4.1.

7.1 Finding the scattering amplitude f

Given potential v, for finding the scattering amplitude f = f(k, l) defined in (1.4), (1.10), we use the same codes as in
[3, 14]. This numerical approach goes back to [37]. As in [3, 14], we consider the same Poisson noise model for |f |2,
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and, for simplicity, we consider the case d = 2.
As in [3, 14], we represent v by v defined on the space-variable grid

XN := {x =
4

N
(n1, n2) : n1, n2 ∈ ZN}, (7.1)

where

ZN :=

{
−N

2
,−N

2
+ 1, ...,

N

2
− 1

}
, N ∈ 2N. (7.2)

It is also assumed that N ≥ 2
√
E/π, where E is the energy in (1.2).

The main difference with [3, 14] consists in somewhat different choice of (k, l), at least, in connection with formulas
(1.13), where we choose (k, l) following formula (1.10) with fixed p and ω. For the version of formulas (1.13) given in
Subsection 4.1, the aforementioned difference in choice of (k, l) is considerably smaller. In any case, for simplicity, in
the present work we deal with

Pint
N = {p = π

2
(n1, n2), p

2 < E : n1, n2 ∈ ZN}. (7.3)

For p ∈ Pint
N , we deal with (k, l) defined by (1.10) or (4.2), where ω = (−p2, p1)/|p|, for p ̸= 0, and ω = (−1, 0), for

p = 0. The implementation of this choice of (k, l) is described in Algorithm 4.
Our numerical implementation of v̂n(p, s, τ⃗) in formulas (3.1) and in their version given in Subsection 4.1 is based

on Algorithms 1 and 3 in Sections 2 and 5. In this implementation, p ∈ Pint
N . Our studies include comparisons of v̂(p)

and v̂n(p, s, τ⃗).
In particular, we show that v̂n, for n = 2 and n = 3, (for the case of formulas (3.1) with exact data without

regularization) improves the well-known approximation v̂1, when s is not too large, τj+1 − τj are not too small, and p
is not too far from zero.

Our studies also include similar numerical implementations of |v̂|2,n(p, s, τ) via formulas (3.5).
We also show that formulas (3.1), (3.5) in their version given in Subsection 4.1 lead to better numerical results.

7.2 Numerical examples

We test the n-point reconstructions v̂n and |v̂|2,n defined in (3.1), (3.5) and their version of Subsection 4.1 for smooth
potential v shown in Figure 5(a) and Figure 5(b), where Figure 5(a) shows v itself, whereas Figure 5(b) shows |v̂|2.

(a) (b)

Figure 5: (a) Scattering potential v. (b) Exact |Fv|2.

For testing v̂n and |v̂|2,n defined in (3.1), (3.5) and their version of Subsection 4.1, we consider n = 1, 2, 3, E1 = 252,
E2 = 302, E3 = 352, and N = 572, where N is the grid parameter mentioned in Subsection 7.1. In particular, we have
that τj+1 − τj = 5, for n = 2, 3.

In a similar way with Section 6, we compare v̂n(p, s, τ⃗) and |v̂(p, s, τ⃗)|2,n with different s for different n, and with
the same maximal energy (E = 352) involved into reconstructions.

In addition, we consider Pint
N defined by (7.3), where E = E1, N ≥ 2

√
E3/π.

To measure the quality of numerical reconstructions v̂n and |v̂|2,n, we use the relative error

E(u, u0, G) =
∥u− u0∥ℓ2(G)

∥u0∥ℓ2(G)
, (7.4)
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Algorithm 4: function [k directions, l directions] = directions(s,N, type)
// the choice of proper incident and scattered directions for formula (1.10) or (4.2)

Input:
s: current energy level E = s2

N : number in Pint
N

type : type of the grid:
type ==Melrose corresponds to formula (1.10), type == Faddeev corresponds to formula (4.2)
Output:
[k directions, l directions]: set of pairs of directions (k, l)/s

// list of x coordinates

1 p1 = (π ∗N/2) ∗ ((0 : 1 : N − 1)/N − 0.5)
// list of y coordinates

2 p2 = (π ∗N/2) ∗ ((0 : 1 : N − 1)/N − 0.5)
// define the grid of nodes with all possible coordinates

3 [P1, P2] =Meshgrid(p1, p2)
// find small nodes indeces

4 nodes index = find index(P 2
1 + P 2

2 < (s/2)2)
// int nodes corresponds to Pint

N of (7.3) and p of (1.10) or (4.2)
5 int nodes = [P1(nodes index), P2(nodes index)]
// list int nodes ort of vectors which are orthogonal to int nodes;
// int nodes ort corresponds to ω of (1.10) or (4.2)
for k=1:length(nodes index) do

if P1(nodes index(k))
2 + P2(nodes index(k))

2 = 0 then
int nodes ort(k) = [−1, 0]

else
6 int nodes ort(k) = [−P2(nodes index(k)), P1(nodes index(k))]/

(P1(nodes index(k))
2 + P2(nodes index(k))

2)1/2

end

end
// construction of k directions and l directions starting from int nodes and int nodes ort
if type == Melrose then

7 k directions = (int nodes+ (s2 − int nodes(1, :)2 − int nodes(2, :)2)(1/2) ∗ int nodes ort)/s
8 l directions = int nodes ort

else
9 k directions = (int nodes/2 + (s2 − int nodes(1, :)2/4− int nodes(2, :)2/4)(1/2) ∗ int nodes ort)/s

10 l directions = (−int nodes/2 + (s2 − int nodes(1, :)2/4− int nodes(2, :)2/4)(1/2) ∗ int nodes ort)/s
end

where u, u0 are functions on some grid G ⊆ Pint
N . In particular, we consider G = Psmall

N , where

Psmall
N = {p = π

2
(n1, n2), p

2 < E/4 : n1, n2 ∈ ZN}. (7.5)

The consideration of the relative error E on G which is smaller than Pint
N is motivated by the fact that we cannot

expect good quality of the reconstructions v̂n, |v̂|2,n in (3.1), (3.5) near the boundary of Pint
N in view of formulas (3.4)

for |p| ≈
√
E/2. In contrast, the approach of Subsection 4.1 overcomes this difficulty.

Note that, for simplicity, we show only |v̂n|2 for reconstructions v̂n from the scattering amplitude f at n energies
E1, ..., En, where n = 1, 2, 3.

Figure 6 shows reconstructions based on formulas (3.1). Recall that this involves an input data grid based on (1.10).
Figure 6(a) shows |v̂1(p, s, τ⃗)|2 and |v̂|2,1(p, s, τ⃗) for s = 35 (since |v̂n(p, s, τ⃗)|2 = |v̂|2,n(p, s, τ⃗), for n = 1), which is

reconstructed from f at E = 352.
Figure 6(b) shows |v̂n(p, s, τ⃗)|2, n = 2, s = 30, which is reconstructed from f at E = 302 and E = 352.
Figure 6(c) shows |v̂n(p, s, τ⃗)|2, n = 3, s = 25, which is reconstructed from f at E = 252, E = 302 and E = 352.
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(a) (b) (c)

Figure 6: Reconstructions |v̂n|2 of |v̂(p)|2 from exact phased data, where (k, l) are defined using (1.10); see Subsections
3.1, 3.2.
(a) Reconstruction |v̂1|2 = |v̂|2,1 from f at E = 352.
(b) Reconstruction |v̂2|2 from f at E = 302, 352.
(c) Reconstruction |v̂3|2 from f at E = 252, 302, 352.

Figure 7 shows reconstructions based on formulas (3.1) in their version of Subsection 4.1. Recall that this involves
an input data grid based on (4.2).

Figure 7(a) shows |v̂1(p, s, τ⃗)|2 and |v̂|2,1(p, s, τ⃗) for s = 35 (since |v̂n(p, s, τ⃗)|2 = |v̂|2,n(p, s, τ⃗), for n = 1), which is
reconstructed from f at E = 352.

Figure 7(b) shows |v̂n(p, s, τ⃗)|2, n = 2, s = 30, which is reconstructed from f at E = 302 and E = 352.
Figure 7(c) shows |v̂n(p, s, τ⃗)|2, n = 3, s = 25, which is reconstructed from f at E = 252, E = 302 and E = 352.

(a) (b) (c)

Figure 7: Reconstructions |v̂n|2 of |v̂(p)|2 from exact phased data, where (k, l) are defined using (4.2); see Subsection
4.1.
(a) Reconstruction |v̂1|2 = |v̂|2,1 from f at E = 352.
(b) Reconstruction |v̂2|2 from f at E = 302, 352.
(c) Reconstruction |v̂3|2 from f at E = 252, 302, 352.

For reconstructions shown in Figures 6(a), (b), (c) we have the following table of relative errors E on Psmall
N :

j 1 2 3
E(v̂j , v̂) 0.3444 0.1570 0.0822

E(|v̂j |2, |v̂|2) 0.3244 0.1979 0.0524

Table 1: Relative L2 errors E(v̂j , v̂) and E(|v̂j |2, |v̂|2) on Psmall
N for different reconstructions v̂j of v̂ presented in

Figure 6, where data grid parameters (k, l) are defined using (1.10).

For reconstructions shown in Figures 7(a), (b), (c) we have the following table of relative errors E on Psmall
N :
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j 1 2 3
E(v̂j , v̂) 0.2607 0.0840 0.0316

E(|v̂j |2, |v̂|2) 0.2908 0.1396 0.0242

Table 2: Relative L2 errors E(v̂j , v̂) and E(|v̂j |2, |v̂|2) on Psmall
N for different reconstructions v̂j of v̂ on standard grid

presented in Figure 7, where data grid parameters (k, l) are defined using (4.2).

Figures 6 and 7 and the relative errors of Tables 1 and 2 show, in particular, that in our example the use of
scattering amplitude f at two and three energies improves the reconstruction of v̂ on Psmall

N : v̂2 is better than v̂1,
and v̂3 is better than v̂2. In addition, these reconstruction results show that the multipoint formulas in their version of
Subsection 4.1 work considerably better even on small grid Psmall

N than in their initial version recalled in Subsection
3.1.

Note that the reconstructions shown in Figures 6, 7 (and in Figures 8(a), (b) below) are obtained from the scattering
amplitude computed numerically as described in Subsection 7.1, but without additional random noise. We consider
such data as noiseless data in spite of inevitable computational errors.

Figure 8 shows reconstructions based on formulas (3.5). Recall that this involves an input data grid based on (1.10).
Figure 8(a) shows |v̂(p, s, τ⃗)|2,n for n = 2, s = 30, which is reconstructed from |f |2 at E = 302 and E = 355.
Figure 8(b) shows |v̂(p, s, τ⃗)|2,n for n = 3, s = 20, which is reconstructed from |f |2 at E = 252, E = 302 and

E = 355.
Figures 8(c) and 8(d) show the same reconstructions as in Figures 8(a), 8(b), but from |f |2 with Poisson noise. In

these examples we used Np = 107 Poisson particles per energy level.
Figures 8(e) and 8(f) show the regularized versions |v̂(p, s, τ⃗)|2,n,r of reconstructions shown in Figures 8(c), 8(d)

from the same noisy data and with r =
√
10.

Note that |y|2 ≈ 2000 in formula (2.5), n = 3, s = 25, used for reconstructions of Figures 8(b), 8(d). Roughly
speaking, this increases the initial dispersion in noisy values of |f |2 in 2000 times. This leads to very bad reconstruction
shown in Figure 8(d). In contrast, |yr|2 = 10, which is much smaller than 2000, and leads to proper result shown in
Figure 8(f).
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(a) Exact data. Two-point
reconstruction.

(b) Exact data. Three-point
reconstruction.

(c) Noisy data. Two-point
reconstruction.

(d) Noisy data. Three-point
reconstruction.

(e) Noisy data. Two-point
reconstruction with regularization.

(f) Noisy data. Three-point
reconstruction with regularization.

Figure 8: Reconstructions |v̂|2,n from exact data, |v̂|2,nnoisy from noisy data, and regularized reconstructions |v̂|2,n,rnoisy from

noisy data; see Subsection 3.2, Section 5 and Subsection 7.1. Noise level: Np = 107 per energy level. Regularized
parameter r =

√
10.

(a) Reconstruction |v̂|2,2 from |f |2 at E = 302, 352. (b) Reconstruction |v̂|2,3 from |f |2 at E = 252, 302, 352.
(c) Reconstruction |v̂|2,2noisy from noisy |f |2 at E = 302, 352. (d) Reconstruction |v̂|2,3noisy from noisy |f |2 at E = 252,

302, 352.
(e) Regularizated reconstruction |v̂|2,2,rnoisy from noisy |f |2 at E = 302, 352. (f) Regularizated reconstruction |v̂|2,3,rnoisy from

noisy |f |2 at E = 252, 302, 352.

For reconstructions shown in Figures 8(a)–(f) we have the following table of relative errors E on Psmall
N :
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j 1 2 3
E(|v̂|2,j , |v̂|2) 0.3244 0.1691 0.0921

E(|v̂|2,jnoisy, |v̂|2) 0.3226 0.2590 0.6219

E(|v̂|2,j,rnoisy, |v̂|2) 0.3226 0.2468 0.1953

Table 3: Relative L2 errors E(|v̂|2,j , |v̂|2) on Psmall
N for different non-regularized reconstructions |v̂|2,j of |v̂|2 from exact

phaseless data, noisy phaseless data, and regularized reconstructions from noisy phaseless data, presented in Figure 8.
Data grid parameters (k, l) are defined using (1.10).

For shortness of the presentation, we do not show Figures 8 in their version corresponding to results of Subsection
4.1. However, the related version of Table 3 corresponding to results of Subsection 4.1 is as follows:

j 1 2 3
E(|v̂|2,j , |v̂|2) 0.2908 0.1269 0.0475

E(|v̂|2,jnoisy, |v̂|2) 0.2895 0.1736 0.6552

E(|v̂|2,j,rnoisy, |v̂|2) 0.2895 0.2186 0.1536

Table 4: Relative L2 errors E(|v̂|2,j , |v̂|2) on Psmall
N for different non-regularized reconstructions |v̂|2,j of |v̂|2 from exact

phaseless data, noisy phaseless data, and regularized reconstructions from noisy phaseless data. This table is a version
of Table 3, corresponding to Subsection 4.1. Data grid parameters (k, l) are defined using (4.2).

Figure 6(a), Figures 8(a), (b) and the relative errors of the first lines of Tables 3 and 4 show, in particular, that in
our examples the use of differential scattering cross section |f |2 at two and three energies improves the reconstruction
of |v̂|2 on Psmall

N : |v̂|2,2 is better than |v̂|2,1, and |v̂|2,3 is better than |v̂|2,2.
Figures 8(c), (d) and the relative errors of the second lines of Tables 3 and 4 show that the instability of recon-

structions |v̂(p, s, τ⃗)|2,nnoisy increases very rapidly when n increases. Note that in our example |v̂|2,1noisy is very close to

|v̂|2,1, and, therefore, is not shown in a separated figure.
Figures 8(e), (f) and the relative errors of the third lines of Table 3 and 4 for the regularized reconstructions

|v̂(p, s, τ⃗)|2,n,rnoisy show very good possibilities of our regularization method of Section 5 in its application to inverse
scattering at high energies.

Tables 3 and 4 show that the approach of Subsection 4.1 works considerably better even on small grid Psmall
N .

8 Conclusion

Many functions arising in direct and inverse problems admit the asymptotic expansion of the form (1.1). In many cases,
the most important information is contained in the leading coefficient a1, which can be approximately reconstructed
from z at a sufficiently large point s using the standard one-point formula

a1 = z(s) +O(s−1), as s→ +∞. (8.1)

In this work we continued studies on reconstruction of the leading coefficient a1 in expansion (1.1) from measure-
ments of z at several sufficiently large points s (multipont reconstruction approach). In particular, we presented the
first numerical implementation of the recent theoretical formulas of [27] on this reconstruction. Our results include an
efficient regularization of these multipoint formulas for the case of random noise.

We tested our general studies for the case of total electrical charge recovering from measurements at several remote
points and for the case of inverse scattering at several high energies. In the second case, we proceed from the theoretical
work [28]. We demonstrated that our numerical implementation of the aforementioned multipoint formulas essentially
improves the reconstruction based on formula (8.1). We also improved and developed considerably theoretical formulas
of [28] on inverse scattering at several large energies; see Section 4.

Important advantages of the aforementioned multipoint approach consist in explicit reconstruction formulas, easy
and fast numerical implementation, considerable increasing in precision in comparison with (8.1) already for the two-
point case, small or moderate number of measurements required for reconstruction.

In our opinion, the results of the present work open perspectives of numerical applications of the aforementioned
multipoint studies to different inverse and direct problems. These issues include, in particular, further studies on:

(i) phased or phaseless inverse scattering at several high energies,
including the case of potentials v with discontinuities mentioned in Introduction;

(ii) determination of total electrical or gravitational charge from several exterior measurements;
(iii) reconstuction of far-field (scattering amplitude) from several near-field measurements;

20



(iv) reconstruction of phaseless far-field (scattering amplitude) from several phaseless near-field measurements;
In this respect, issues (i) and (ii) are already discussed in this work, whereas theoretical formulas for issues (iii)

and (iv) are given in [27] and [32].
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Vladimir N. Sivkin, CMAP, CNRS, École polytechnique, Institut polytechnique de Paris, 91128 Palaiseau, France
& Department of Mechanics and Mathematics, Lomonosov MSU & Center of Fundamental and Applied Mathe-

matics, Lomonosov MSU, Moscow, 119991, Russia
E-mail: sivkin96@yandex.ru

Grigory V. Sabinin, Department of Mechanics and Mathematics, Lomonosov MSU, Moscow, 119991, Russia
E-mail: gvsabinin@gmail.com

22


	Introduction
	Reconstruction of the leading coefficient in expansion (1.1) 
	Application to inverse scattering at high energies
	Reconstruction of the Fourier transform in expansion (1.9)-(1.11)
	Applications to phaseless inverse scattering

	Further theoretical results on inverse scattering at high energies
	Further formulas for inverse scattering from the scattering amplitude f
	Multipoint formulas for inverse scattering from boundary values of +

	Regularisation of multipoint formulas for the noisy case
	Numerical examples of total charge recovering
	Simplest test
	Two point charge 

	Numerical examples for inverse scattering
	Finding the scattering amplitude f
	Numerical examples

	Conclusion
	Acknowledgements

