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HYPOTHETICAL REASONING IN POSSIBILISTIC LOGIC:
BASIC NOTIONS, APPLICATIONS AND IMPLEMENTATION

ISSUES

SALEM BENFERHAT, DIDIER DUBOIS, JÉRÔME LANG
and HENRI PRADE(*)

Institut de Recherche en Informatique de Toulouse – CNRS
Université Paul Sabatier, 118 route de Narbonne, 31062 Toulouse Cedex, France

Possibilistic ATMS are truth maintenance systems oriented towards hypothetical reasoning where
both assumptions and justifications can bear an uncertainty weight. Uncertainty is represented in the
framework of possibility theory. In possibilistic logic uncertain clauses are handled as such and then
in possibilistic ATMS the management of uncertainty is not separated from the other classical
capabilities of the ATMS. The main interest of a possibilistic ATMS is to take advantage of the
uncertainty pervading the available knowledge so as to rank-order environments in which a given
statement is true. The approach is illustrated on a fault diagnosis problem. Basic algorithms
associated with possibilistic ATMS are given.

1. Introduction

Assumption-based truth-maintenance systems (ATMS) ([9, 10, 11]; see also [30]) are
automated reasoning systems oriented towards hypothetical reasoning since they are able
to determine under which set of assumption(s) a given proposition is true. This set is
called the "label" of the proposition. In this paper we present an extension of the ATMS,
called "possibilistic ATMS" (or !-ATMS for short), where the management of
uncertainty is integrated inside the basic capabilities of the ATMS. Uncertainty pervading
justifications or grading assumptions is represented in the framework of possibility and
necessity measures ([32], [16]); these measures agree with the ordinal nature of what we
wish to represent (it enables us to distinguish between what is plausible and what is less
plausible). The certainty of each granule in the knowledge base (represented by a clause in
possibilistic logic [15]) is evaluated under the form of a lower bound of a necessity
measure. This uncertainty in the deduction process is propagated by means of an extended
resolution principle. Uncertainty degrees are then naturally attached to the configurations
of assumptions in which a given proposition is true; one can also evaluate to what degree
a given configuration of assumptions is inconsistent or compute the more or less certain
consequences of a configuration of assumptions. This approach enables us to handle

(*) A preliminary and short version of this paper was presented at the 1st Maghrebin Symposium
Programming and Systems, Algiers, Oct. 21-23, 1991. See the Proceedings pp. 153-173 (available from
Institute of Computer Science, UST HB, Algiers).



disjunctions and negations of assumptions without particular problem. Moreover, by
rank-ordering configurations according to the degrees attached to them, !-ATMS provides
a way of limiting combinatorial explosion when using ATMS in practice.

We present the basic definitions and results of possibilistic logic first. In Section 4
we give the basic definitions and functionalities of the !-ATMS, illustrated by a fault
diagnosis problem previously introduced in Section 3. Section 5 presents an algorithm for
the computation of labels and contradictory environments ("nogoods") based on an
extension of the so-called CAT-correct resolution, initially developed by Cayrol and
Tayrac [6, 7]. In Section 6, we will show how the !-ATMS can be used to revising
inconsistent knowledge bases. An example of a data fusion problem will be described in
this section. Lastly in Section 7 the proposed approach is briefly compared with existing
uncertainty-handling ATMS's.

2. Possibilistic Logic

2.1. Modeling Uncertainty with Possibility and Necessity Measures

Possibilistic logic [18, 21, 24] is an extension of classical logic where one manipulates
propositional or first-order calculus closed formulas weighted by lower bounds of
possibility or necessity degrees which belong to [0,1]. In this paper we restrict ourselves
to a fragment of possibilistic logic, the "clausal possibilistic propositional logic", where
the considered formulas are exclusively conjunctions of possibilistic propositional clauses
weighted by necessity degrees [15, 17].

A possibility measure ! satisfies the following axioms [32, 16]:

(i) !(") = 0; !(T) = 1
(ii) #p, #q, !(p $ q) = max(!(p),!(q))

where " and T denote respectively contradiction and tautology. We emphasize that we
only have !(p % q) & min(!(p),!(q)) in the general case. A necessity measure is
associated by duality with a possibility measure by #p, N(p) = 1 – !(¬p). Axiom (ii) is
then equivalent to #p, #q, N(p % q) = min(N(p),N(q)) and, as a consequence, N(p) > 0 '
!(p) = 1. We adopt the following conventions:

• N(p) = 1 means that, given the available knowledge, p is certainly true; conversely, if p
is said to be true we can consider p as certain.

• 1 > N(p) > 0 that p is somewhat certain and ¬p not certain at all (since the axioms
imply that #p, min (N(p),N(¬p)) = 0).

• N(p) = N(¬p) = 0 (equivalent to !(p) = !(¬p) = 1) corresponds to the case of total
ignorance; it expresses that, from the available knowledge, nothing enables us to say if
p is rather true or rather false.



• 0 < !(p) < 1 (equivalent to 1 > N(¬p) > 0) that ¬p is somewhat certain and p not
certain at all.

• !(p) = 0, that p is certainly false.

Possibilistic logic is well-adapted to the representation of states of incomplete knowledge,
since we can distinguish between the complete lack of certainty in the falsity of a
proposition p (N(¬p) = 0) and the total certainty that p is true (N(p) = 1). N(p) = 1 entails
N(¬p) = 0 but the converse is false. It contrasts with probability measures where
Prob(p) = 1 is equivalent to Prob(¬p) = 0. Possibilistic logic contrasts also with usual
multiple-valued logics which are fully truth-functional and deal with fuzzy propositions,
while possibility degrees apply to standard propositions and are truth-functional only with
respect to disjunction (see [15] on this point) .

2.2. Possibilistic Clauses and Possibilistic Resolution

An uncertain clause will be a first-order logic clause c to which a valuation is attached,
taken as a lower bound of its necessity measure.Thus, in the following we shall write
(c () as soon as the inequality N(c) ) ( is taken for granted.

Resolution has been extended to possibilistic logic [15, 18]. The classical rule for
propositional clauses are generalized by

(c ()
(c' *)

——————
(c" min((,*))

where c" is a classical resolvent of the classical clauses c and c'.
The refutation method can be generalized to possibilistic logic [14, 15]. Indeed if we

are interested in proving that a formula f is true, necessarily to some degree, we add to the
knowledge base + the assumption N(¬f) = 1, i.e. that f is false (with total certainty). Let

' be the new knowledge base obtained by adding to + the clauses issued from ¬f, with
the weight 1. Then it can be proved that any valuation attached to the empty clause
produced by the extended resolution pattern from ' is a lower bound ( of the necessity
measure of the conclusion f. It entails the existence of "optimal refutations", i.e.
derivations of an empty clause with a maximal valuation.

2.3. Semantics and Partial Inconsistencies

A semantics has been defined for clausal possibilistic logic [17, 21, 24]. Here we only
consider the case of necessity-valued propositional clauses. If c is a clause, M(c) the set of
the models of c, then the models of (c () will be defined by a fuzzy set M (c () with a
membership function



                        µM(c ()(I) = 1 if I , M(c)
= 1 – ( if I , M(¬c),

where I is a (classical) interpretation.
Then the fuzzy set of models of a set of weighted clauses + = {C1, C2, …, Cn},

where Ci stands for (ci (i), is the intersection of the fuzzy sets M(Ci), i.e.

µM(+)(I) = mini=1,…,n µM(Ci)(I).

The consistency degree of + will be defined by cons(+) = maxI µM(+)(I); it estimates the
degree to which the set of models of + is not empty. The quantity Inc (+) = 1 – cons(+)
will be called degree of inconsistency of +.

Finally we say that  is a logical consequence of + if and only if #I ,
µM( )(I) ) µM(+)(I), which will be written + . Let us note that all these

definitions recover those of classical logic and are in accordance with Zadeh's theory of
approximate reasoning [33]. We take the notation + (c *) if and only if there exists a
*'-refutation with *' ) *, i.e. a deduction of (" *'), from the set of weighted clauses +'
obtained by adding N(¬c) = 1 to +. Then we have the following completeness theorem
([17, 21, 24]): let + be a set of weighted clauses; then + (c *) if and only if + (c *).

2.4. Hypothetical Reasoning

As it was pointed out in [19], the weighted clause (¬p $ q  () is semantically equivalent
to the weighted clause (q min((, v(p))) where v(p) is the truth value of p, i.e. v(p) = 1 if
p is true and v(p) = 0 if p is false. Indeed, for any uncertain proposition (p () we can write
µM(p ()(I) under the form v(p () = max(v(p), 1 – (), where v(p) is assigned by
interpretation I. Then obviously:

v(¬p $ q  () = max(v(¬p $ q), 1 – () = max(1 – v(p), v(q), 1 – ()
= max(v(q), 1 – min(v(p), ()) = v(q min(v(p), ())

The equivalence between the weighted clauses (¬p $ ¬s $ q  () and (¬p $ q min((, v(s))
expresses that the rule "if p and s are true then q is certain to the degree (" means that "in
an environment where s is true, if p is true then q is certain to the degree (", when we
decide to consider s as an assumption. This equivalence leads to the following modified
presentation of the resolution rule



(¬p $ q  min((, v(s)) (p $ r min(*, v(t)))
—————————————————

(q $ r  min((, v(s), *, v(t)))

This enables us to express that if the clause ¬p $ q is certain to the degree ( in an
environment where s is true and if the clause p $ r is certain to the degree * in an
environment where t is true, then the resolvent clause q $ r is certain to the degree
min ((,*) in an environment where s and t are true (since v(s % t) = min (v(s),v(t))). It
turns out that when ( = * = 1, the above resolution rule is very close to the CAT-correct
resolution rule [5, 6, 7], which separates the assumptions from the other literals by
sorting them, and where resolution is restricted so as to get rid of the non-assumption
literals. Hence possibilistic logic can capture not only the propagation of uncertainty, but
at the same time the propagation of the reasons for uncertainty.

It has been shown that if, adding to the knowledge base the clauses corresponding to
N(¬p) = 1, we obtain by resolution the empty clause with a strictly positive weight, then
this weight is a lower bound of the necessity degree of p. The exploration of all proof
paths leading to the empty clause will thus help determine the set of environments in
which p is somewhat certain if all assumptions are carried over to the weight side, before
running the refutation. This enables us to define a possibilistic ATMS in Section 4 and
to develop the associated basic procedures.

3. An Example

This example, inspired from Siegel [29], relates to the functioning of an engine. This
example may appear somewhat fancy, for it is not easy to satisfy the triple requirement of
a short, realistic and pedagogical example in order to show the different capabilities of
possibilistic ATMS. The clauses describing how the system works contain three kinds of
atoms:

– the assumptions, associated with each component which may be faulty: by convention,
assumptions will be understood as "absence of fault", assumption A being true if
component A works, false if it is faulty. These atoms are

OIL (there is still some oil)
BELT (the engine belt is not broken)
RECTIFIER (the rectifier is not cut off)
BATTERY (the battery is not faulty)
FUSE (the fuse is not melt)

– the "sensors" atoms, which describe observable facts whose truth value may be known
by the user, but with a possibly non total certainty:

indicator (the temperature indicator is red)
ammeter (the charge ammeter is positive)
engine (the engine is running)



headlights (the headlights are working)
horn (the horn is working)

– two intermediary atoms
coil (the coil is supplied)
secondary-circuits (the secondary circuits are supplied)

Uncertainty is involved at three different levels:

– on clauses describing how the system works: for instance, "if the secondary circuits are
supplied then it is moderately certain (0.7) that headlights are working";

– on "sensors" atoms (we might be unsure of a result given by a sensor)
– on assumptions: by default, components are not faulty (but some faults are more

plausible than others); it leads to the clauses (Ai (i) expressing that we are certain to
the degree (i that Ai will not be faulty.

The system is described by the following statements:

(1) if the temperature indicator is red then there is no oil left or the belt is broken
(certainty: 0.9)

(2) if the temperature indicator is red then secondary circuits are supplied (certainty: 1)
(3) if there is no oil left and if secondary circuits are supplied then the temperature

indicator is red (certainty: 0.7)
(4) if secondary circuits are supplied then the headlights are working (certainty: 0.7)
(5) if the battery is not faulty then the headlights are working (certainty: 0.9)
(6) if the engine is running then the coil is supplied (certainty: 1)
(7) if the battery is not faulty then secondary circuits are supplied (certainty: 0.7)
(8) if the engine is running, the belt is not broken and the rectifier is not cut off then

the charge ammeter is positive (certainty: 0.8)
(9) if the engine is running and the rectifier is not cut off then the charge ammeter is

positive (certainty: 0.3)
(10) if the coil is supplied and the fuse is not blown then the charge ammeter is positive

(certainty: 0.6)
(11) if the fuse is not blown and the battery is working then the horn is working

(certainty: 0.9)

Then we write that by default, the components are not faulty:

(12) the fuse is not melt (certainty: 0.2)
(13) the belt is not broken (certainty: 0.4)
(14) the battery is not faulty (certainty: 0.3)
(15) the rectifier is not cut off (certainty: 0.1)
(16) there is some oil left (certainty: 0.3)



It leads to the following clauses:

C1 ¬indicator $ ¬OIL $ ¬BELT  (0.9)
C2 ¬indicator $ secondary-circuits  (1)
C3 OIL $ ¬secondary-circuits $ indicator  (0.8)
C4 ¬secondary-circuits $ headlights  (0.7)
C5 ¬BATTERY $ headlights  (0.9)
C6 ¬engine $ coil  (1)
C7 ¬BATTERY $ secondary-circuits  (0.7)
C8 ¬engine $ ¬RECTIFIER $ ¬BELT $ ammeter  (0.8)
C9 ¬engine $ ¬RECTIFIER $ ammeter  (0.3)
C10 ¬coil $ ammeter $ ¬FUSE  (0.6)
C11 ¬FUSE $ ¬BATTERY $ horn  (0.9)
C12 FUSE  (0.2)
C13 BELT  (0.4)
C14 BATTERY  (0.3)
C15 RECTIFIER  (0.1)
C16 OIL  (0.3)

Let us point that clause C3 is not a Horn clause and cannot by represented by a
production rule.

4. Basic Principles and Definitions of a Possibilistic A.T.M.S.

Classical ATMS require that the clauses contained inside the knowledge base
(justifications and disjunctions of assumptions) are certain; we may wish to handle more
or less uncertain information without losing the capacities of the ATMS. The basic
principle of the !-ATMS introduced in [19] is to associate to each clause a weight (
which is a lower bound of its necessity degree1. Assumptions may also be weighted, i.e.
the user or the inference engine may decide at any time to believe an assumption with a
given certainty degree. A !-ATMS is able to answer the following questions:

(i) Under what configuration of the assumptions is a fact d certain to some degree?
(i.e., what assumptions shall we consider as true, and with what certainty degrees in order
to have d certain to degree (?) 

(ii) What is the inconsistency degree of a given configuration of assumptions ?
(iii) In a given configuration of assumptions, to what degree is each observed fact

certain ?

1 It is not difficult to define possibilistic ATMS with both lower bounds of necessity degrees and possibility
degrees; however, for the sake of clarity, we restrict ourselves in this paper to necessity-valued possibilistic
ATMS.



The kind of classical ATMS extended here is Cayrol and Tayrac's [5, 6, 7] generalized
ATMS, where each piece of information is represented by a (general) propositional clause.
It make it possible to have:

– a uniform representation for all pieces of knowledge (no differentiated storage and
treatment between justifications and disjunctions of assumptions).

– the capability of handling negated assumptions as assumptions, i.e. environments and
nogoods may contain negations of assumptions (they are called generalized
environments and nogoods by Cayrol and Tayrac); this approach differs from DeKleer
"NATMS" [12] where negated assumptions do not appear inside the environments.

– a simple and uniform algorithm for the computation of labels, based on a restricted
form of resolution (see Section 5).

Environments
First, the basic notions attached to the classical ATMS can be generalized. Let + be a

set of necessity-valued clauses. Let E be a set of valued assumptions; the following
definitions are useful:

-) [E (] is an environment of the fact d if and only if N(d) ) ( is a logical consequence
of E - +, where the assumptions of E are considered as certainly true (the certainty
degree of the associated clauses is 1);

-) [E (] is an (-environment of d if and only if [E (] is an environment of d and if
#('>(, [E ('] is not an environment of d (( is maximal);

-) [E (] is an (-contradictory environment, or (-nogood if and only if E -  + is
(-inconsistent (i.e. E - +  (" ()), with ( maximal. The notation nogood(E is
used. The (-nogood [E (] is said to be minimal if there is no *-nogood [E' *] such
that E . E' and ( & *.

Labels
In order to define the label of a fact d, we consider only non-weighted assumptions

(i.e. they will have the implicit weight 1). It can be shown that it is useless to weight the
assumptions inside the labels (this remark holds also for the base of no-goods). The label
of the fact d, L(d) = {[Ei (i], i,I} is the unique fuzzy subset of the set of environments
for which the four following properties hold:

– (weak) consistency: #[Ei (i] , L(d), Ei U  + is *-inconsistent,with * < (i (i.e.
Inc(Ei - +)< (i in the sense of Section 2, the certainty degree associated to the Ei's
being 1); it guarantees that either Ei is consistent (i.e. * = 0), or its inconsistency
degree is anyway strictly less than the certainty with which d can be deduced from
Ei -+ (i.e. we are sure to use a consistent sub-base of Ei - + to deduce d, see [17,
21]).



– soundness: L(d) is sound if and only if # [Ei (i] , L we have Ei U + (d (i) where
has been defined in Section 2; i.e., L(d) contains only environments of d.

– completeness: L(d) is complete if and only if for every environment E' such that
E' -  +  (d ( ') then / i , I such that Ei 0  E' and (i ) ( '. I.e., all minimal (-
environments of d are present in L(d).

– minimality: L(d) is minimal if and only if it does not contain two environments
(E1 (1) and (E2 (2) such that E1 0  E2 and (1 ) (2. It means that L(d) only
contains the most specific (-environments of d (i.e. all their assumptions are useful).

Ranking environments according to their weight in the label of each fact provides a
way for limiting the consequences of combinatorial explosion (the problem was already
pointed out by Provan [27] and Raiman [28]): indeed when a label contains too many
environments, the !-ATMS can help the user by giving the environments with the
greatest weight(s) only.

These notions are now illustrated on the example introduced in Section 3. The only
nogoods existing in the system are negations of all "non-fault" assumptions, i.e.
nogood0.4{¬BELT}, nogood0.3{¬BATTERY}, etc. A nogood containing only a positive
"non-fault" atom would mean that it is somewhat certain that a given component has to
be faulty whatever the results given by the sensors, which would not be too realistic; a
nogood containing several "non-fault" atoms (positive or negative) would mean that some
faults are not independent (it is not the case in our example). Once the system has been
described, let us introduce information given by the sensors. Let us first introduce "the
engine is running (certainty: 1)".

C17 engine (1)

The label of the statement "the charge ammeter is positive" is:

{ {}0.2, {RECTIFIER}0.3, {RECTIFIER, BELT}0.8, {FUSE}0.6}, meaning that the
charge ammeter is positive with a high certainty degree (0.8) if the rectifier is not cut off
and is the belt is not broken, with a moderate certainty degree (0.6) if the fuse is not
blown, and with a low certainty degree (0.3) if rectifier is not cut off (and no extra
assumption). Moreover, the presence in the label of the empty environment weighted by
0.2 means that if no extra information is given by the sensors, it is already certain to the
degree 0.2 that the charge ammeter is positive.

{ {}0.2, {RECTIFIER}0.3, {RECTIFIER, BELT}0.9, {FUSE}0.6} would not be a
correct label for the same fact since adding to the clauses already present in the system the
two clauses (RECTIFIER 1) and (BELT 1) does not enable to deduce (ammeter 0.9).

{ {}0.2, {RECTIFIER}0.3, {RECTIFIER, BELT}0.8, {FUSE}0.6, {FUSE, BELT}0.5}
would not be minimal since {FUSE,BELT }0.5 is a redundant environment, being
subsumed by {FUSE}0.6. Contrarily, having in the label the (-environnements



{RECTIFIER}0.3 and {RECTIFIER, BELT}0.8 keeps the label minimal, since none of
these two (-environments is redundant.

{ {RECTIFIER}0.3, {RECTIFIER, BELT}0.8, {FUSE}0.5} would not be complete since
(FUSE 1) enables to deduce that N(ammeter) ) 0.6, which is not expressed in the above
set of environments since the highest certainty degree with which the fact can be deduced
is only 0.5.

{ {}0.2, {RECTIFIER}0.3, {RECTIFIER, BELT}0.8, {FUSE}0.6, {¬BATTERY}0.2}
would not be weakly consistent since {¬BATTERY} is a 0.3-nogood.

Besides, the label of "indicator" is { {¬ OIL, BATTERY}0.7 }, meaning that the
temperature indicator is red with a high certainty degree if there is no oil left and if the
battery is working.

Contexts
To extend the ATMS notion of context, we now consider weighted assumptions. A

weighted assumption is a couple (H () where H is an assumption and ( , [0,1] is the a
priori certainty degree assigned to H.

The context associated with the set of weighted assumptions  is the set of all
couples (d, val (d)), where d is a fact or an assumption, and val (d) =
sup{(,  - + (d ()}. Let us now give the following theorem:
Let  be a set of valued assumptions. Let d be a fact; it can be shown that  -  +   
(d () in possibilistic logic if and only if / [Ei (i] , Label(d), Ei = {Hi,1, Hi,2, …,
Hi,n} such that

(i) * . Ei where * is the classical set of assumptions obtained from  by
ignoring the weights.

(ii) ( & min((i, *1, *2, …, *n) where *1, *2, …, *n are the weights attached to
Hi,1, Hi,2, ..., Hi,n in .

(iii) ( > Inc(E - +).

The proof of the theorem is obvious using the results of classical ATMS. This theorem
gives an immediate algorithm to compute contexts, given the label of every fact:

(_max 1 0;
For every [Ei (i] , Label(d) do

if * . Ei
then (_max 1 max((_max, min((i, *1, *2, …, *n)) where
*1, …, *n are the weights attached to Hi,1, …, Hi,n in .

end



Intuitively, for each environment of the label of d included in *, the algorithm computes
the degree of certainty with which this environment entails d; this degree depends upon
the justifications used in deriving d (via (i) and the weights of the assumptions in this
environment.

Example (continued):

Let us consider the system {C1, …, C17} and let E be the environment E =
{RECTIFIER, BELT, BATTERY}. The context associated with E is:

{ RECTIFIER (1), BELT (1), BATTERY (1), FUSE (0.4), OIL (0.1), engine (1), coil
(1), horn (0.4), secondary-circuits (0.7), headlights (0.9), ammeter (0.8) } (the non-
underlined atoms were already deducible before adding the three assumptions), which
means that in the configuration of assumptions where it is certain that the rectifier, the
belt and the battery are working, then it is certain to the degree 0.7 that the secondary
circuits are supplied, etc.

Let now the environment contain weighted assumptions ' = {(RECTIFIER 0.5), BELT
(0.4), BATTERY (0.6)}. The context associated with ' is { RECTIFIER (0.5), BELT
(0.4), BATTERY (0.6), FUSE (0.4), OIL (0.1), engine (1), coil (1), horn (0.4),
secondary-circuits (0.6), headlights (0.6), ammeter (0.4) }.

Fault diagnosis
Let us now add to the system, not only that the engine is running, but also the two

pieces of information:

C18 indicator (1)
C19 ¬ ammeter (0.9)

The system is now 0.3-inconsistent: indeed, from the clauses C1, C13, C16 et C18, a
contradiction of degree 0.3 can be deduced. It was somewhat certain at the beginning that
the belt was not broken (C13) and that there was some oil left (C16). The extra
information (C18) enables us to deduce that these two "non-fault" assumptions are
mutually exclusive, and with a greater certainty (0.9). The new minimal nogoods are
nogood0.6{FUSE}, nogood0.8{RECTIFIER, BELT} and nogood0.9{OIL, BELT},
nogood0.4{RECTIFIER}, nogood0.9{OIL} expressing that:

– it is certain to the degree 0.6 that the fuse is blown;
– it is certain to the degree 0.8 that the rectifier is cut off or that the belt is broken;
– it is certain to the degree 0.9 that there is no oil left or that the belt is broken.

Moreover we have, like in the initial system, nogood0.4{¬BELT}; contrarily, {¬FUSE},
{¬RECTIFIER}, {¬BATTERY} and {¬OIL} are not minimal nogoods anymore since



their membership degree to the nogood base is now less than the inconsistency degree of
the knowledge base, which can be translated by nogood0.3{}.

In classical logic, in order to provide the user with an answer under the form of a set
of alternative fault configurations, the nogoods

¬FUSE % (¬RECTIFIER $ ¬BELT) % (¬OIL $ ¬BELT)

are expressed in the equivalent disjunctive form:

(¬FUSE % ¬RECTIFIER % ¬OIL) $ (¬FUSE % ¬BELT).

In possibilistic logic, the transformation is trickier since, if from (¬FUSE 0.6) %
(¬RECTIFIER $ ¬BELT 0.8) % (¬OIL $ ¬BELT 0.9) it can be deduced that N(¬FUSE %
(¬RECTIFIER $ ¬BELT) % (¬OIL $ ¬BELT)) ) 0.6, and then that N((¬FUSE %
¬RECTIFIER % ¬OIL) $ (¬FUSE %  ¬BELT)) ) 0.6, however nothing can be
immediately concluded on N(¬FUSE % ¬RECTIFIER % ¬OIL) and N(¬FUSE %
¬BELT), which does not enable us to rank the fault configurations. On the contrary, one
can try to find a lower bound of the certainty of these configurations of faults, by
refutation, by adding their negation (weighted by 1) to the system. Thus we obtain that
N(¬FUSE % ¬RECTIFIER % ¬OIL) ) 0.4 (but no non-trivial lower bound can be found
for N(¬FUSE % ¬BELT)), which suggests to the user that the configuration (fuse blown,
rectifier cut off, no oil left) is more plausible than (fuse blown, belt broken).

Interpretations in possibilistic logic
As said above an environment in the classical ATMS is a set of assumptions, and

every set of assumptions characterizes a context. An environment E is said to be an
interpretation (in the classical ATMS) if it is consistent and if adding any assumption to
it make it inconsistent, namely E satisfies the two following conditions;

1. E is consistent (with +)
2. # H 2 E (H is an assumption), E - {H} is inconsistent.

Interpretations are complete descriptions of a given situation in terms of assumptions.
One approach for computing interpretations consists in building a lattice of environments
(2T,3) where T is the set of all assumptions, and nodes in the lattice represent subsets of
assumptions. This lattice is obtained by drawing an edge from each environment E to
every subset of this environment. The top of the lattice is the set of all assumptions and
the bottom is the empty set. Figure 1 gives an example of such a lattice for the set of
assumptions T = {A,B,C,D}.

Notice that if a given environment E is a nogood then all of its supersets are
contradictory environments as well. So, once nogoods are computed, we remove their
elements (and hence their supersets) from the lattice, and therefore only the consistent
environments remain and hence any maximal set of assumptions (relatively to the



inclusion relation 3) represents an interpretation. For example, in Figure 1, where the set
of nogoods is {{A,B}, {C,D}}, the set of interpretations is {{A,C}, {A,D}, {B,C},
{B,D}}.

Figure 1
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In possibilistic logic, an interpretation E may be partially inconsistent, namely it may
contains a nogood which does not however violate weak consistency. For the need of the
application, we say that an interpretation E is totally consistent if it satisfies the two
following requirements:

1. Incons(+ - E) = 0
2. # H 2 4 (H is an assumption), Incons(+ - E - {H}) > 0.

where Incons(X) is the degree of the inconsistency of X.
We now give another approach for computing totally consistent interpretations using

the notions of candidates which are environments containing at least one assumption in
every nogood. A candidate C is said to be minimal if it does not exist a candidate C such
that C' 0 C. The following proposition holds:

Proposition: the complement of a minimal candidate is a totally consistent interpretation.

Proof
Let C be a minimal candidate, and I its complement.



Assume that I is inconsistent (partially or totally), then there exists a nogood 
which is included in I. By definition, a candidate C contains at least one element of
every nogood, and particularly it contains an element of , so it contains also an
element of I which contradicts our assumption that I is the complement of C.
Let us show now that I is maximal; suppose that I - {H} is consistent, then it
does not contain any nogood and therefore for every nogood  there exist an
element which belongs to C – {H}, which means that C – {H} is a candidate and
contradict therefore our assumption that C is minimal.

The following algorithm computes minimal candidates from the set of nogoods:

Procedure   Computing-minimal-candidates
begin

/* let C      :   the set of minimal candidates initialized to {{}}
                    Nog   :   the set of nogoods. */

- loop while Nog 5 6:
- let  an element of Nog;
- remove  from Nog
- C := {ci - Hj / ci , C and Hj , }
- remove from C all not minimal candidates.

  end

and therefore totally consistent Interpretations can be computed from the following
relation:

I = {T – c / T is the set of all assumptions, and c is a minimal candidate}.

Example (continued)

Let us consider the system {C1, …, C16} where the nogoods are:

Nogoods = {[{¬FUSE} 0.2], [{¬BELT} 0.4], [{¬BATTERY} 0.3], [{¬OIL} 0.3],
[{¬RECTIFIER} 0.1] }

The algorithm described below computes the following minimal candidates:

Candidates = {{¬FUSE, ¬BELT, ¬BATTERY, ¬OIL, ¬RECTIFIER} }

and therefore by complementation, we find only one totally consistent interpretation:

I = { {FUSE, BELT, BATTERY, OIL, RECTIFIER} }



Remark:
In this section we have seen that the degrees associated to nogoods are not used to
build minimal candidates. We will see in Section 6. that the use of the valuations
is very important for revising inconsistent possibilistic knowledge bases and
reducing the complexity of the revision process by selecting a smaller number of
maximal consistent sub-bases.

5. Basic Algorithms of a Possibilistic ATMS

The type of ATMS that we extend to possibilistic logic is the one proposed by Cayrol
and Tayrac [5, 6, 7]. Contrary to De Kleer's [9, 10] classical ATMS, this system, called
7-RCO (Oriented CAT-correct Possibilistic Resolution) (CAT: Clause whose Antecedent
is Typed) uses possibilistic resolution in order to deduce a specific type of clauses of
interest for the ATMS, called 7-CATI (Possibilistic Clause whose Antecedent is Typed
and Interesting).

As in the classical ATMS, the set of data (called also "literals" or "atomic
propositions") is divided into two groups: T and NT containing respectively the
assumption data and the non-assumption ones.

The computation of labels and nogoods requires some further definitions.

5 . 1 . Definition of a 7-CATI

A clause is of the form A 8 B where A is a conjunction of positive literals and B is a
disjunction of positive literals. Each propositional formula has a unique clausal
representation. A is called antecedent and B consequent. A weighted clause (C () is a 7-
CATI, if and only if:

1. every literal in the antecedent side of C is an assumption, and,
2. it contains at most one non-assumption literal in the consequent side of C.

If (C () satisfies only the first condition, call it a 7-CAT (Possibilistic Clause with
Typed Antecedent).

Example:
Let T = {A,B}, and NT = {a,b,c,d}

The weighted clause (A 8 aB  (1) is a 7-CATI, because A belongs to T and it contains
exactly one non-assumption literal (a) in his consequent side, in contrast with the
following clauses (a 8 b  (2) and (A 8 cd  (3) which are not 7-CATI because the first
one contains a literal in his antecedent side which is not an assumption (a), and the latter
has two non-assumption data in its consequent side (c and d).



5.2. 7-RCO Possibilistic Resolution

The basic idea of the 7-RCO (Oriented CAT-correct Possibilistic Resolution) is to use
the possibilistic resolution rule in order to deduce every 7-CATI which is logically
entailed from the initial set of clauses.

In order to minimize the number of applications of possibilistic resolution, an
arbitrary but complete ordering O is introduced on the set of non-assumption data NT.

The 7-RCO consists in applying possibilistic resolution between two weighted
clauses C1 and C2 of the form:

C1: A1 8  {x} - B1 (1
C2: A2 - {x} 8  B2 (2
——————————————————————
9(C1,C2): A1 - A2 8  B1 - B2 min((1,(2)

where 9(C1,C2) denotes the resolvent of C1 and C2, under one of the two following
conditions:

1. C1 and C2 are 7-CATI such that the consequent side of 9(C1,C2) contains at most
one non-assumption literal.

2. the three following conditions are satisfied:
2.1. C1 is a 7-CAT,
2.2. x is the smallest (relatively to O) non-assumption datum in the antecedent side

of C2.
2.3. x is one of the two smallest non-assumption data in the consequent side of C1.

Example:
Let T = {A,B}, NT = {a,b,c}, O: a < b < c

 and the initial set of clauses is:
(A 8 c (1)
(B 8 abc (2)
(c 8 a (3)

The resolution between the clauses (B 8  abc  (2) and (c 8  a  (3) is not a 7-RCO
resolution because c does not belong to the two smallest non-assumption data in the
consequent side of the clause (B 8  abc  (2). Thus, only the resolution between the
clauses (A 8 c (1) and (c 8 a (3) is a 7-RCO resolution.

It can be proved that the use of 7-RCO is complete for deduction of all possible 7-
CATI. A proof of 7-RCO completeness in the classical case can be found in (Tayrac [7]).



5.3. The Algorithm

As in the classical ATMS, the truth maintenance system 7-RCO is incremental, provided
that the set of clauses + is saturated, which means that before the introduction or the
deduction of a new clause, all possible possibilistic resolutions 7-RCO are executed, thus
only the possibilistic resolutions which are enabled by the newly introduced clause are
processed.

On the other hand, after the introduction or the inference of the new clause, the set of
clauses + must be minimized by removing every tautology and every subsumed clause.

We recall that a clause (A 8 B   (1) is a tautology, if and only if, the intersection of
the sets of literals A and B is not empty. The clause (A1 8 B1  (1) subsumes the clause
(A2 8 B2  (2), if and only if, A2 : A1, B2 : B1 and (1 ) (2.

Each time a new clause is introduced in the system, it is checked if it is a tautology or
a subsumed clause; then, if none of these holds, all clauses which are subsumed by the
newly introduced clause are removed, and lastly all possible 7-RCO resolutions are
triggered with this new clause.

This cycle is repeated for every deduced clause, and we give below an algorithm
summarizing these operations:

procedure introduce (cl)
begin

; cl is the newly introduced clause, + represents the knowledge base.
J:={cl}; J contains all deduced or introduced clauses.
while (J56) do

.choose a weighted clause c of J.

.remove c from J.

.if c is not subsumed and c is not a tautology then
.remove all clauses from + which are subsumed by c.
.add c to +.
.K:=all-7-RCO(c)
; K contains all possible clauses which allow us to apply 7-RCO

     ; resolution with c.
while (K56) do

.remove a weighted clause c1 from K

.add to J the 7-RCO resolvent 9(c1,c)
end introduce

5.4. Using 7-RCO in a Possibilistic ATMS

We show in this section how possibilistic resolution 7-RCO can be used to compute
every minimal nogood and the label of each datum.



5.4.1. Computing labels

We recall that the label of a literal d, L(d) = {[Ei (i] / i , I}, is the only fuzzy subset of
the set of environments which is weakly consistent, sound, complete and minimal, where
Ei denotes a set of assumptions and negated assumptions.

By definition, [4 (] is an environment of a literal d, relatively to the set of clauses +,
if and only if, E - +  (d (); this is equivalent to +  (E 8  d  () [21, 24]. Thus an
environment of a literal d is characterized by a clause containing exactly the literal d in his
consequent side, and only assumptions or negated assumptions in his antecedent side.
Obviously, this clause is a 7-CATI. Thus, the label of a non-assumption literal d is:

L(d) = {(P - {¬x / x , Q} (] / (P 8 {d} - Q  () , + is a 7-CATI}.

5.4.2. Computing nogoods

An environment [4 (] is a nogood if and only if (" () is a logical consequence of
E - +, i.e + (E 8 "  (). Thus a nogood is denoted by a clause containing only
assumptions in their antecedent part; these clauses are also 7-CATI. Therefore, the
nogoods are computed as below:

Nogood = {[P - {¬x / x , Q} (] / (P 8 Q  () , + is a 7-CATI and T : Q}.

6. Revising Knowledge Bases

In classical logic, when the inconsistency appears in a given knowledge base, then any
formula is a logical consequence of this base, and therefore we can infer from this base
that both p and its denial ¬p are simultaneously true. In possibilistic logic, the situation
is less trivial since it is possible to use such bases considering as valid all formulas
having valuations strictly higher than the degree of inconsistency of the knowledge base
(the others being inhibited). This strategy verifies the revision rationality postulates of
Alchourron, Gärdenfors and Makinson [23]. However, at the syntactic level it is not
entirely satisfactory because some of the inhibited clauses have nothing to do with the
inconsistency. For instance the knowledge base + = {(a .5), (b .6), (c .4), (¬a $ ¬b  1)}
has a level of inconsistency equal to .5 due to the contradictory clauses (a. 5), (b. 6) and
(¬a $ b  1). Hence (c. 4) will be inhibited. However it seems more satisfactory to delete
(a. 5) from + in order to restore consistency rather than deleting both (a. 5) and (c. 4).
Indeed a more parsimonious revision is obtained by deleting only the least certain
formulas involved in a contradiction. It suggests to choose the revised knowledge base
among the largest ones which preserve consistency.



6.1. Preferred consistent sub-bases

Definition 6.1: A sub-base +i of + is said to be maximal consistent if it is consistent
and if adding any formula ; of (+ – +i) to +i produces an inconsistent knowledge base.

In practice, the number of maximal consistent sub-bases of an inconsistent knowledge
base increases proportionally with the size of the base and in general, it is not possible to
take into account all the maximal consistent sub-bases. The idea is then to take advantage
of the weights to rank-order the maximal consistent sub-bases and keep only the best
ones.

The wish to delete only the least certain formulas which cause an inconsistency leads
to consider maximal consistent sub-bases that obey the following definition:

Definition 6.2: A sub-base +i is said to be strongly maximal consistent sub-base if
and only if:

(i) +i is totally consistent; i.e. // ( > 0, +  (" ()
(ii) #(< () , + – +i, Incons(+i - {(< ()}) = ( > 0.

There is another way of considering a strongly maximal consistent sub-base. Namely,
+ can be viewed as a layered knowledge base, i.e. + = B1 - B2 -… - Bn where Bj
contains only clauses of necessity weight (j, and (1 = 1 > (2 >… > (n. Then +i is a
strongly maximal consistent sub-base of + if and only if it can be constructed as follows

+i = E1 - E2 -… - En where # j = 1,n, E1 - E2 -… - Ej

is a maximal consistent sub-base of B1 - B2 -… - Bj. The proof of this equivalence is
in the annex. Such maximal consistent sub-bases are exactly what Brewka [35] calls
"preferred sub-theories" (see also Testemale [31]). An algorithm for computing the
strongly maximal consistent sub-bases can be found in [24].

We can also introduce an ordering among the maximal consistent sub-bases of an
incoherent knowledge base +. A maximal consistent sub-base +i is said to be
lexicographically preferred to +j, denoted by +i & + j if and only if (+ – +i) &

(+ – +j) where (X) = {(i / (;i (i),X} is a multiset of valuations of formulas and
"&" is defined as:

 (+ – +i) & (+ – +j)
= (i) (+ – +i) = 6

  or (ii) Max( (+ – +i)) < Max( (+ – +j))
  or (iii) Max( (+ – +i)) = Max( (+ – +j))

and (+ – +i) – Max( (+ – +i)) & (+ – +j) – Max( (+ – +j)).



It has be shown [20] that the minimal element of +'s sub-bases of an inconsistent
knowledge base + relatively to the ordering "& " are strongly maximal consistent sub-
bases.

It is important to distinguish between strongly maximal consistent sub-bases and
lexicographically maximal consistent sub-bases. Although each lexicographically
maximal consistent sub-base is a strongly maximal consistent sub-base, the contrary is
not true. Indeed, consider an example where our knowledge base contains the following
set of incertain clauses: + = {C1 : (a 0.8), C2 : (a 8  b  0.7), C3 : (¬a 0.8),
C4: (¬a 8 ¬b  0.6), C5: (¬b 0.6)}. It is easy to check that + is partially inconsistent and
admits two strongly maximal consistent sub-bases +1 = {C1, C2, C4} and +2 =
{C2, C3, C4, C5} but only +2 is lexicographically maximal consistent since

(+ – +1) = {0.8, 0.6}, (+ – +2) = {0.8} then +2 is preferred then +1.
The next section shows how the 7-ATMS can be used to compute the maximal

consistent sub-bases of an inconsistent knowledge base.

6.2. Using the !-ATMS

The computation of maximal consistent sub-bases of an inconsistent knowledge base can
easily be done using the functionalities of the !-ATMS. We first point out the close
relationship between totally consistent interpretations and maximal consistent sub-bases.

Let + = {(Ci (i)} be an inconsistent uncertain knowledge base to be revised. Let +'
be a new knowledge base built from + by adding to the antecedent side of every clause Ci
an assumption Hi, we obtain then: +' = {(C'i (i)}, where C'i = Hi 8 Ci, we will say
that the assumption Hi controls the clause Ci. We assume that only the set of data {Hi}
are assumptions in +'. The !-ATMS will work on +', and we can show besides what the
different notions known in the !-ATMS represent for +. Notice first that an environment
E = {H1, …, Hn} represents the set of clauses = {C1, …, Cn} in +. The following
property is easy to check: #  = {(C1 (1), …, (Cn (n)} 3 +,  is inconsistent iff
/ 3 = {H1 ,…, Hn} such that belongs to the nogood set of +'.

The nogoods of +' then represents the set of clauses of + which allows us to deduce
the contradiction when we substitute every assumption Hi by the clause Ci it controls.
Since the nogood has the completeness property, then all possible sets of clauses which
are responsible for an inconsistency of + are computed by the !-ATMS. An immediate
application is to check the consistency of the knowledge base +. Indeed if the nogood
base of +' is empty then + is consistent .

It is possible to relate the notion of totally consistent interpretations with the notion
of the maximal consistent sub-bases, since, as it can be easily seen, # 3 +,  is a
maximal consistent sub-base of + iff = {H1, …, Hn} is a totally consistent
interpretation of +'.

An immediate result of this fact is that the candidates in +' represent the smallest set
of clauses such that if we remove their elements from +, then the knowledge base +
becomes inconsistent.



The algorithm presented in Section 4 computes the set of totally consistent
interpretations. And we have seen that each totally consistent interpretation represents a
maximal consistent sub-base. Then the problem of selecting the lexicographically
maximal consistent sub-bases require only to sort the set  = { (+ – +i)} using the
ordering "< " defined above where +i is a maximal consistent sub-base and (+ – +i)
is a set of the weights of clauses which are in + – +i.

Example
Assume that our knowledge base contains the following set of uncertain clauses:

+ = {C1: (a 0,8), C2: (a 8 b  0.7), C3: (¬a 0.8), C4: (¬a 8 ¬b  0.6),
C5: (¬b 0.6)}.

Let +' the possibilistic knowledge base be constructed from + by associating to
each formula Ci in + a specific assumption Hi, then we obtain :

+' = {(H1 8 a  0.8), ((H2 % a) 8 b  0.7), (H3 8 ¬a  0.8), (H4 % ¬a 8 ¬b  0.6),
(H5 8 ¬b  0.6}.

The 7-ATMS computes the base of nogoods which is equal to:

Nogood(+') = {(H1 H2 H5}, {H1 H3}}.

Then applying the algorithm presented in Section 4 we find three totally
consistent interpretations I1 = {{H2 H3 H4 H5}, I2 = {H1 H4 H5} and I3 = {H1
H2 H4} which correspond to the maximal consistent sub-bases +1 = {C2 C3 C4
C5}, +2 = {C1 C4 C5} and +3 = {C1 C2 C4}.
Deciding which sub-base is lexicographically maximal consistent requires to sort
the set  = { (+ – +i)} = {{0.8}, {0.7 0.8}, {0.8 0.6}} using the ordering
"< ". Then we only find +1 as a lexicographically consistent maximal sub-base.

6.3. Application to data fusion

An application to data fusion problems has been carried out (Monai et al. [34]). It
consists in finding a structure for a particular object from observations of elementary
objects by aggregating the partial observations in a coherent manner.

Objects handled in the system are layered in different levels. Each level contains
different kinds of objects. Every object of level i is either observed (then is said to be
elementary) or constructed only from objects of level i – 1 (it is then said to be
composite). We assume that objects of level 0 are all elementary objects. The
construction of a complex object must satisfy the following constraint:



"Two objects of level i containing a common object of level
(i – 1) must not be aggregated together"

The knowledge base of the system is organised into n independent parts. Each part of the
knowledge base gives the conditions for aggregating objects of level i to objects of higher
levels.

Figure 2

Xn

Zn-1 Yn-1 An-1

K1

S0 K0 S0 B0 S0 S0 S0

B1 C1

The hierarchy shown in Figure 2 summarizes the way objects are aggregated. Here is an
example of a rule of level 0:

#x1, #x2, S0(x1) % B0(x2) 8 B1(t)  ((t).

This rule means that if we observed two objects x1 and x2 of level 0 belonging
respectively to classes S0 and B0, then these two objects can be aggregated to give an
object of level 1, which belongs to the class B1. ((t) is a real number between 0 and 1
which estimates the compatibility of aggregating the objects S0(x1) and S0(x2). For
instance ((t) may be all the greater as the locations of x1 and x2 are close to each other.
If ((t) = 0 then S0(x1) and S0(x2) cannot be aggregated together (and in this case the rule
will not be instanciated).

In a similar manner, a base of facts is organised into n independent parts. Each part i
brings together all observed objects of level i.

Processing data
Processing data consists in aggregating observed objects, starting from the lower level

in order to deduce the structure of objects of higher levels. The system executes, in a
recursive manner (for every level i), the two following steps:

1 – Triggering rules (the rules produce potential objects)
2 – Computing maximal consistent sub-bases (the best objects are selected).



The first step consists in triggering rules relating facts of level (i – 1) to objects of level
i. Two objects Ai(t1) and Ai(t2) are said to be contradictory if they contain at least one
common sub-object (of level i – 1). This constraint will be expressed by the following
clause:

Ai(t1)  Ai(t2) 8 "  1

A clause of this type is added each time two rules having a common instanciated variable
have been triggered to form composite objects t1 and t2. The knowledge base resulting
from step 1 is composed of facts Fi+1 (objects newly constructed from observed or
constructed objects of level i) and constraints Gi+1 on these objects. This knowledge base
is generally inconsistent (except if the set of constraints is empty).

Figure 3
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The second step is added in order to limit the computational complexity due to the
number of possible combinations of aggregating objects of level i. Its main role is then
to only select the best sub-bases F'i+1 of the base Fi+1 of potential composite objects.
The elements of F'i+1 will be added to the base of facts of level i+1. The system will
start again by applying the two steps described above to part i+1 of the knowledge base.
The schema of Figure 3 sums up the two steps and their iteration.

Example
Assume our knowledge base contains only rules for aggregating objects of level 0
to level 1 (for the sake of simplicity, we restrict ourselves to the lowest level of
hierarchy shown in Figure 2).
Let suppose that initially the set of facts F0 contains only the following
elementary (observed) objects x1, x2, x3, x4 and x5 which belong respectively to
classes S0, S0, S0, S0 and B0. The set of constraints G0 is empty since all the
objects in F0 are elementary and they do not share the same sub-object. Let the
numbers (0.9, 0.8, 0.8, 0.7, 0, 0.8, 0.7, 0) be the estimates of the compatibility
between objects respectively in the aggregations (x1 x2 x3), (x1 x2 x4), (x1 x3
x4), (x2 x3 x4), (x1 x5), (x2 x5), (x3 x5), (x4 x5).



Let us show now how the algorithm presented above proceeds in aggregating the
elementary objects. The first step of the algorithm (triggering step) allows us to
deduce six complex objects C1(t1), C1(t2), C1(t3), C1(t4), B1(t1) and B1(t2) of
level 1, constructed respectively from (x1 x2 x3), (x1 x2 x4), (x1 x3 x4),
(x2 x3 x4), (x2 x5), (x3 x5). In the six complex objects constructed in the first
step, there are objects which share the same elementary object(s); therefore the
system generates the following set of constraints G1:

C 1(t1) C1(t2) 8  "   1; C1(t1) C1(t3) 8 "  1; C1(t1) C1(t4) 8 "  1;
C 1(t2) C1(t3) 8 "  1; C1(t2) C1(t4) 8 "  1; C1(t3) C1(t4) 8 "  1;
B 1(t1) C1(t1) 8 "  1; B1(t1) C1(t2) 8 "  1; B1(t1) C1(t4) 8 "  1;
B 1(t1) B1(t2) 8 "  1; B1(t2) C1(t1) 8 "  1; B1(t2) C1(t3) 8 "  1;
B1(t2) C1(t4) 8 "  1.

Note that the knowledge base + composed of the set of facts F1 = {(C1(t1) 0.9),
(C1(t2) 0.8), (C1(t3) 0.8), (C1(t4) 0.7), (B1(t1) 0.8), (B1(t2) 0.7)} and the
previous set of constraints G1 is partially inconsistent. The inconsistency of the
knowledge means that not all of the aggregated objects can be formed.
As it was shown in the last section, the aim of the second step of the algorithm
(computing maximal consistent sub-bases) is to select the best set of objects
which will be added to the base of facts of level 1. This task corresponds to
compute the best maximal sub-base of the inconsistent knowledge base +. Using
the 7-ATMS, we can obtain four possibilities

+1 = {C1(t1)} ; +2 = {C1(t2), B1(t2)} ; +3 = {C1(t3), B1(t1)} ; +4 = {C1(t4)}.

Each sub-base represents a maximal set of complex objects which are made of
distinct sub-objects.
Finally from the ordering "< " defined above, only the object C1(t1) is remained,
and will be added to the base of facts of level 1. See [2] and Monai et al. [34] for a
complete example.

This abstract example suggests the application of this technique to the reconstruction of
scenarii from partial information.

7 . Possibilistic A.T.M.S. vs. Other Existing "Uncertainty-Handling"
A . T . M . S .

De Kleer and Williams [11], in a multiple faults diagnosis problem, compute the
probability of a candidate (i.e. a configuration of faults) given the outcomes of the system
and assuming that faults are mutually independent. Falkenhainer [22] has incorporated
Dempster-Shafer theory into Doyle's T.M.S. [13]. Provan [27], D'Ambrosio [8], Laskey



and Lehner [25] have independently incorporated belief functions into the ATMS; their
approaches are somewhat different but share the same basic features: first, a mass function
is associated with each assumption; then, for each datum x we compute the belief Bel(x)
of x by first computing the label of x symbolically (which can be done in the classical
way), then we compute Bel(x) from Label (x); Provan computes Bel(x) by expressing
logically Label(x) under the form of a formula containing only independent sub-formulas,
assuming mutual independence of assumptions. D'Ambrosio's approach is based on
Baldwin's Support Logic Programming method [1] and does not use the full Dempster-
Shafer theory; besides, his way of propagating uncertainty is closer to a rule-based system
than to a pure logical system (as he uses conditional beliefs and not beliefs of logical
implications). Laskey-Lehner's and Provan's approaches both incorporate the full
Dempster-Shafer theory into the ATMS, and differ essentially by their algorithm for the
computation of Bel(x). See also Pearl [26] whose proposal is close to Provan's (without
normalizing Dempster rule). Bigham [4] incorporates Dempster-Shafer theory into the
ATMS in order to compute belief functions. Lastly, Bernasconi et al. [3] have outlined
the definition of an ATMS based on fuzzy logic in Lee and Mukaidono's style.

Our approach differs from the preceding ones on several points:
First, the ATMS with embedded belief functions enable us to rank interpretations (i.e.

maximal consistent environments), as they intend to do, but they cannot handle the
uncertainty pervading the knowledge base if any, i.e. the justifications. They hold the
justifications as classical knowledge (i.e. certain) and, putting weights on the
assumptions, they deduce the weights attached to the other data. Our approach does not
attach any a priori weight to each datum (assumptions or non-assumptions) but assigns a
certainty degree to the clauses contained in the knowledge base (not only justifications,
but also disjunctions of assumptions and nogoods specified by the user); then, taking into
account this uncertain knowledge, we establish a mapping from certainty degrees assigned
to assumptions to the certainty degrees of the data (i.e. the consequences of the
assignment).

Secondly, in the other approaches, truth maintenance and uncertainty management are
completely separated, i.e. the label of a datum x is first computed, then Bel (x) is
computed (of course, taking into account Label(x)). Our approach completely integrates
the uncertainty management into the truth maintenance system, by assigning a weight to
each environment of a datum. Besides, the handling of weights will be done during the
computation of labels, since certainty weights are present inside the label.

Thirdly, the main purpose of introducing uncertainty into A.T.M.S. is the capability
of ranking solutions (i.e. interpretations) and eliminating solutions which are too
uncertain. Hence the precise values of certainty degrees are not as important as their
ordering. Possibility theory offers a framework where the ordering of the uncertainty
degrees is more important than their precise values, and which requires easier
computations (only min and max operations are used) than the general Dempster-Shafer
approach. Furthermore, the weights assigned to nogoods are always available and no extra
computations are required in order to renormalize results.



Fourthly, in Provan's model, the belief of the datum x is first computed formally by
rewriting the label of x into an "independent form" and then computed numerically; if we
decide to change the weight of an assumption, the formal expression of the label of x
remains unchanged and the re-computation of Bel(x) is immediate; however this is not the
case if the label of x changes (which may happen each time we add a new justification):
then we have to transform again the expression of the label of x; in the possibilistic
model, both changes of weights or labels lead to almost no more computations than in
De Kleer's original model.

Lastly, the other models cannot handle disjunctions of assumptions; besides, Provan's
model needs to consider the assumptions as independent as long as they are not mutually
exclusive (i.e. not containing any nogood). Possibilistic ATMS do not require this
assumption, and can handle disjunctions of assumptions, as well as negated assumptions.

8. Conclusion

Possibilistic ATMS enable a joint handling of assumptions and uncertainty relative to a
knowledge base, in the framework of possibilistic logic. The fact that possibilistic logic
remains on many points close to classical logic facilitates the extension of efficient
procedures, such as those based on Oriented CAT-correct resolution for the computation
of labels, nogoods and contexts, by ordering the environments of a datum according to the
certainty with which it can be deduced from each of them.

The truth maintenance system based on the 7-RCO resolution seems to have a
number of advantages over the classical ATMS. Firstly, it allows the use of general
clauses without requiring the creation of new data, justifications and disjunctions of
assumptions as in [10]. The second advantage is that all justifications of the knowledge
base are stored under the form of general weighted clauses, while in the classical ATMS,
the justifications are stored in four different areas depending on the clause type: Horn
clauses, disjunctions of assumptions, nogoods and environments. Finally, we have seen
that negated assumptions are naturally taken in account, which is not possible in the
classical ATMS, and they may appear in environments, nogoods and labels.

Possibilistic ATMS can be applied to truth maintenance problems in presence of
uncertainty, to default reasoning, to fault diagnosis, or to the generation of (the most
plausible) explanations.
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Annex

Let + = B1 - B2 -… - Bn be a possibilistic knowledge base where Bj contains clauses
of the form (aji, ( j), and (1 > (2 >… > ( j. Then +' 3  + is a strongly maximal
consistent sub-base of + if and only if +' = E1 -  E2 -… -  En where #  j = 1,n,
E1 - E2 -… - Ej is a maximal consistent sub-base of B1 - B2 -… - Bj.

Proof
Assume +' is not strongly maximal consistent. Then there is an (j and a clause
(aij, (j) such that the level of inconsistency of +' - {(aij, (j)} is smaller than (j,
say Inc(+' -  {(aij, (j)}) = (k < (j. This implies that E1 -  E2 -… -  Ej -
{(aij, (j)} is consistent. Indeed the inconsistency of +' - {(aij, (j)} can disappear
by taking away clauses in Ek - Ek+1 -… - En. Hence E1 - E2 -… - Ej is
not maximal consistent. Conversely if +' is maximal consistent but E1 -… - Ej
is not maximal consistent in B1 -… -  Bj, then there is (aij, (j) such that
E1 -  E2 -… -  Ej -  {(aij, ( j)} is consistent; then +' -  {(aij, ( j)} is
inconsistent with a level of inconsistency that is smaller than (j, since it involves
some clause in Ej+1 -… - En. Q.E.D.
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