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Abstract .  Fuzzy sets and possibility theory offer a unified framework where both 
preferences and uncertainty can be modelled. Indeed fuzzy sets can be used for describing 
weakly ordered sets of more or less acceptable/preferred situations, and possibility 
distributions represent states of information pervaded with imprecision and uncertainty. 
This framework relies on purely ordinal scales both for preferences and for uncertainty, due 
to the use of max and rain operations and of an order-reversing operation for manipulating 
the levels of these two scales. 

Recently, a qualitative counterpart to von Neumann and Morgenstern' expected utility 
theory has been proposed, and it has been shown that the qualitative utility function, 
agreeing with a set of axioms describing decision-maker's behavior in face of uncertainty, 
is nothing but the necessity measure of a fuzzy event. 

This result is first recalled and its interpretation is discussed in the framework of 
possibility theory. It is related to previous proposals made by different authors in the fuzzy 
set literature. The necessity measure which is a pessimistic estimate is contrasted with the 
dual measure of possibility. This latter estimate is optimistic and deals in a symmetric way 
with the expression of preferences and the expression of what is known of the plausible 
states of the world. The intuition underlying the necessity measure is that the qualitative 
"expected" utility is all the greater as there is no situations with a high plausibility and low 
utility value. A refinement of the utility ordering is suggested in case several decisions 
receive the same evaluation. Then an illustrative example is provided. Lastly, applications 
to multistage decision making and to matrix games are briefly pointed out. 

1 - Qualitative Utility Theory 

Von Neumann and Morgenstern (1944)' expected utility theory relies on the principle 
that the decision maker's behavior in face of  uncertainty is entirely determined by 
his/her preferences on the uncertainty distributions about the consequences of  his/her 
actions. In von Neumann and Morgenstern' model these distributions are probability 
distributions and are called "lotteries". Preferences about lotteries should fulfil a set of  
axioms describing the attitude of  a "rational" decision maker in the face of  uncertainty. 
The expected utility, in von Neumann and Morgenstern' approach, provides a simple 
criterion to rank-order the lotteries, and thus the actions, since each lottery is 
associated with an action (of which the associated distribution represents the 
uncertainty attached to its possible consequences). The decision-maker is then 
"rational" if the choice of  his/her actions is in agreement with his/her preferences on 
the lotteries. 

Let X be a finite set o f  situations (states of  the world). An action in situation x 
results in a consequence with which the decision-maker is concerned. The set of  
consequences of  a decision, obtained by varying the state of  the world, can be ordered 
in terms of  preference. This induces a preference ordering over X, reflecting back the 
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expected pay-o f f  of  the action (the benefit  o f  being in a precise situation). This 
preference relation between precisely-known situations for a given decision should be 
extended to incompletely described situations pervaded with uncertainty. 

As already said, we use only two qualitative scales, denoted respectively by U and 
V, for assessing preferences on the one hand and uncertainty on the other hand. A 
belief state about which situation in X is the actual one, is supposed to be represented 
by a possibility distribution ~ from X to V. V is assumed to be bounded, and we take 
supV = 1, infV = 0. rffx) ~ V estimates the plausibility level of  being in situation x. 
The possibility distributions we consider are normalized, i.e., 3x, ~(x) = 1, which 
expresses that at least one situation in X is completely possible (there may be several 
completely  possible situations however).  A possibility distribution representing a 
belief  state involves a set of  mutually exclusive alternatives, where each element can 
be ranked according to its level of  plausibility to be the true situation. Let  x and y be 
two elements  of  X, the possibility distribution ~ defined by ~(x) = L, r~(y) = Ix, 
re(z) = 0 for z ~ x, z ~ y with max(L,kt) = 1 (in order to have rc normalized), will be 
called a qualitative binary lottery and will be denoted by (L/x, ~/y), which means that 
we are either in situation x or in situation y with the respective levels of  possibility L 
and IX. More generally, any possibility distribution rt can be viewed as a multiple- 
consequence lottery (L1/x 1 . . . . .  Lm/xm) where X = {x 1 . . . . .  Xm} and L i = r~(xi). We 
will also use the notation (L/~ 1, ~t/rc2) (with max(L,~t) = 1) for denoting the 
compound  possibil i ty distribution rt = max(min(n  1,L), min(rt2,~t)). This can be 
viewed as a lottery over multiple-consequence lotteries corresponding to rt 1 and 7~ 2. 
The lottery (L/x, g/y) can be viewed as a particular case of  it when rt 1 and rc 2 are 

possibility distributions focusing on singletons. The resulting possibility distribution 
It = max(min(Tt l ,L) ,  min(lt2,kt)), with max(L,~t) = 1, is here the quali tat ive 
counterpart of  probabilistic mixtures Lpl + (1-L)p2; see (Dubois and Prade, 1990a; 

Dubois et al., 1993). 
Let  _~ denote the preference  relation between possibi l i ty  dis t r ibut ions 

("possibilistic lotteries") given by the decision-maker, which extends the preference 
ordering over  X to normalized possibility distributions in V X. A singleton {x0} 

corresponds to the possibility distribution which is zero everywhere  except in x 0 

where n(x0) = 1. When compared through the ordering relation ~ ,  a singleton, as a 
particular case of  a possibility distribution, will be either denoted by {x0} or more 

simply by x 0 since the ordering is extended from X to V X. ~_ is supposed to satisfy 

the following axioms, where rc ~ ~' means that both rt ~ r~' and re' ~ 7~ hold. 

A x i o m  1: • is a complete partial ordering. 

Axiom 2 (certainty equivalence): 
I f  the belief state is a crisp set A c_ X, 

then there is xEA such that {x}NA. 

Ax iom 3 (risk aversion, or "precision is safer"): 
~ ' ~  ~ ~'. 
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Axiom 4 ("independence"): 

I f n  I ~ n 2 then (~,/n 1, ~ n ' )  ~ (~,/n 2, ~n ' ) .  

Axiom 5 (reduction of lotteries): 
(?Jx, Ix / (a/x, ~/y)) ~ (max(~,,min(~t,ct)) / x, min(~t,13 ) / y). 

See Figure 1 for visualizing the tree reduction expressed by this axiom. 

x y 

max(~, m i n ( B , / ~ x ~ n ( l . t , 1 3 )  

x y 

Figure 1 

Axiom 6 (continuity): 
If  r : •  n' then 3 9~ ~ V, n' ~ (I/u, ~,/X). 

Some of these axioms are similar to von Neumann and Morgenstern' axioms like the 
Axiom 1 that they use, or the Axioms 4, 5 and 6 which are qualitative counterparts of 
their axioms. Axiom 2 comes down to rejecting the notion of mean value. It is based 
on the idea that when the decision is made and put to work, then the state will be 
some x ~ A, and the benefit of the decision will indeed be the one in state x. The 
scope of such a decision theory is thus the next decision, and not an indeterminate 
sequences of  decision, as with expected utility. Axiom 3 expresses a form of risk 
aversion and more precisely, an aversion for the lack of information. Axiom 4 is self- 
explanatory. Axiom 5 is motivated by the particular form of mixtures in possibility 
theory. Axiom 6 expresses that it is possible to pass continuously from a given state 
of  belief n to total ignorance by attaching a degree of uncertainty to n and moving it 
from 0 (re is sure) to one (total ignorance). By Axiom 3, x _~ A, V x e A, and since 

by Axiom 2, if x A ~ A, then V x ~ A, x ~ x A, so that A is equivalent to the worst 
state in A. It indicates that the proposed decision theory is cautious in essence. 

Then the following theorem can be established (Dubois and Prade, 1995). 

Theorem: Given a preference relation • on the normalized possibility distributions 
of  V X verifying Axioms 1 to 6, there exists a fuzzy set F on X (an element of U X, 
for a totally ordered set U) and a utility function u from V X to U representing the 
preference ordering ~ such that for each normalized possibility distribution n, we have 

u(n) = minx~ X max(n(n(x)), ~tF(X) ) (1) 

where n is an order reversing function from the possibility scale V to the preference 
scale U such that n(0) = 1 and n(1) = 0 where 1 denotes the top elements of U and V 
and 0 their bottom elements. 

Note that (1) yields u(x) -- ktF(X). 
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2 - Interpretat ion and Relat ions to Other  Works  

Interestingly enough, the qualitative utility introduced in the previous section, 

u(n) =minxexmax(n(n(x)),u(x)) 

is the necessity of a fuzzy event (Dubois and Prade, 1980) in the sense of possibility 
theory, namely u(n) -- Nn(F) where F is the fuzzy set of preferred situations (~tF(X) = 
u(x), k/x e X) and N x is the necessity measure based on the possibility distribution 
n. Usually, when V = U = [0,1], n(t) = 1 - t in the above expression. Nn(F) can be 
viewed as a degree of inclusion of the fuzzy set of more or less possible situations in 
the fuzzy set F of preferred outcomes, i.e., it estimates the certainty that the belief 
state n corresponds to the preferred situations described by F. It means that there is a 
commensurability assumption made between the uncertainty scale and the preference 
scale, since possibility degrees and utility degrees are aggregated in the expression of 
u(n). Note that 

�9 Nn(F ) = u ( n ) = l i f f { x e  X , n ( x ) > 0 l c { x e  X , u ( x ) = l }  
i.e., the utility of n is maximal if all the more or less possible situations 
encompassed by n are among the most preferred ones. In this case, whatever the 
precise situation, its utility is maximal. 

�9 N n ( F ) = u ( n ) = 0 i f f { x e  X , n ( x ) = l } n { x e  X , u ( x ) = 0 } ~ O  
i.e., the utility of n is minimal if there is one of the most plausible situations whose 
pay-off is minimum (we recognize the risk-aversion of the approach). 

Thus, Nn(F) = u(n) is all the greater as there is no situations with a high 
plausibility and low utility value. 

When n is the characteristic function of an ordinary subset A of X, i.e., when all 
the situations encompassed by the belief state are equally plausible, the utility u(n) 
simplifies into u(n) = minxe A u(x) where we recognize Wald (1950)'s pessimistic 

criterion which leads to decisions maximizing the minimal pay-off. In the general 
case, u(n) takes into account the fact that all the situations are not equally plausible in 
the set {x e X, n(x) > 0}. 

Several fuzzy set authors have proposed definitions of utility functions in the 
presence of possibilistic uncertainty, including the form described in the theorem. 
Indeed, the possibilistic counterpart of Wald maximin criterion of the form proposed 
here, has been introduced without any axiomatic justification by Whalen (1984), in 
terms of a "disutility" function D(n) = n-l(u(n)) where u(n) is given by (1). DUO 
takes the form of the degree of possibility of the fuzzy set F, i.e., ~t~ = n -1 o ~t F (the 
fuzzy complement of F when V = U = [0,1 ]) of less preferred situations, namely 

D(n) = maxxe X min(n(x), ~t~x)). (2) 

Previously, Yager (1979) has introduced the possibilistic extension of the optimistic 
maximax criterion E(~) of the form dual to (1), i.e., 
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E(n) = maXxe X min(rc(x),~tF(X)) (3) 

which is the degree ofposs ib i l i tyofafuzzy set(Zadeh, 1978). This optimistic utility 
has beenalsoadvocated by Mathieu-Nicot(1985).However, observe thatwe always 
have 

u(n) ~ E(g) (4) 

and that choosing an action which maximizes E(n) rather than u(r0 can be 
overoptimistic. Indeed consider the case where F is the crisp subset of the acceptable 
states of the worlds, and rc represents an incomplete state of information 
corresponding to an ordinary subset P of X. Thus u(rc) as well as E(n) can take only 
the values 0 or 1. Maximizing u0r) is equivalent to selecting the actions such that 
their (possibly ill-known) consequences, whatever they are, ensure that one stays in an 
acceptable state of the world, since P c F r u(n) = 1. Maximizing E(r0 leads to 
select the larger set of actions such that P n F # 0.  It includes actions which may 
have consequences which are unacceptable if P n F # 0.  It amounts to assuming that 
the state of the world lies in P n F, i.e., to take one's wishes (i.e., F) for the 
reality!... 

However, we may have u(~) = 0 for all the actions under consideration; in that 
case E(Ic) may be useful to make a choice; namely when all actions are equally risky 
it is better to select the one offering the best opportunity. 

The estimates u(n) and E(rc) are the basis for fuzzy pattern matching evaluations 
(Cayrol et al., 1982) where a fuzzy pattern expressing preferences about the values of 
some attribute(s) used for describing the required items, is matched againt what is 
known about the attribute values of the items stored in a database, rc then represents 
what is known about a given item and u(n) (resp. E(n))estimates to what extent it is 
certain (resp. possible) that the item satisfies the requirement expressed by the pattern, 
i.e., to what extent the item has to be selected. 

Besides, as already pointed out (e.g., (Inuiguchi et al., 1989)), the expression of 
the necessity of a fuzzy event is a particular case of a fuzzy integral in the sense of 
Sugeno (1974). Namely N~(F) can be shown to be equal to (for V = U = [0,1]) 

Nn(F) = supct~ (0,1] min(tx, Nn(Ftx)) (5) 

with Fct = {x E X, ~tF(X) > tx}, which is a particular case of Sugeno integral 

~ x h ( x )  o g(.) = sup~(0,1]  min(c~, g(Ha)) (6) 

with Htx = {x ~ X, h(x) > tx} and g is a set function monotonic with respect to set 

inclusion, such that g(O) = 0 and g(X) = 1. Sugeno integrals can be regarded as 

qualitative counterparts to Choquet integrals of the form J'0 g(Hct)dt~" See Dubois 

and Prade (1990b) for instance. 
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3 - R e f i n i n g  the  Ut i l i ty  O r d e r i n g  

As already said an action, associated with a possibility distribution n, is evaluated on 
the basis o f  the worst  resulting situation with respect  to this action, namely,  a 
situation which has a rather high plausibility degree and a low utility value, since 

u(r0 = minx~ X max(n(r~(x), IxF(X)). 

Formally speaking, each possible situation x behaves as a criterion according to 
which each action is evaluated. Good actions, f rom the point of  view of  situation x, 
are the ones that are such that if  x has a low utility value, x is not plausible for these 
actions. Indeed max(n0z(x)), IXF(X)) = max(n(ix~(x), n(n(x))) = Ix ~(x) --~ n(rffx)) in the 
sense of  Dienes'  implication (a ---> b = max(n(a),  b)), where t.tp(x) estimates how 
much x has a low utility value. 

Thus u(rc) can be formally viewed as a min-conjunct ive  mult iple  cri teria 
evaluation. This type of  evaluation may lead to actions having the same estimate, 
i.e., the same level for the "worst" case, but which still might be compared according 
to the other situations. Refinements of  the min ordering have been recently discussed 
in the f ramework of  the fuzzy set approach to multiple criteria decision-making; see 
(Dubois,  Fargier  and Prade, 1995b). Two refinements of  the min-order ing are 
noticeable. Consider two vectors of  grades ~ = (u I . . . . .  urn) and v = v 1 . . . . .  Vm) 

according to m criteria. Assume that the vectors are increasingly rearranged into 3 "  = 
. . . . . .  <.. .  < and Vjl < < Then (Uil, Uim ) and 7 "  = (Vjl, ., Vjm ) where Uil Uim . . . . .  Vjm. 

so-called leximin and least satisfied discriminating criterion orderings can be defined: 

- leximin: 
u" >leximin ~ r 3 k ~ { 1 . . . . .  m } s.t. i) V ~, < k, ui~ " = vj~, 

ii) Uik > Vjk 

- least satisfied discriminating criterion (discrimin) 
u > L S D C V C : ~ V k ~  {1 . . . . .  m}s . t ,  i ) ~ ' ) ~ < k , i ~ = j x a n d u i ~ = v j x  

ii) Uik > Vjk. 

Clearly, the leximin ordering refines the discrimin ordering which itself refines the 

min ordering ( u  >min ~ ~ ui 1 > Vjl)" 

These two refinements can be applied so as to distinguish between best actions 
which are considered equal in the sense of  u(~). In particular, consider the particular 
case where all the actions are such that u(r0 = 0; it means that any action have totally 
plausible consequences which are completely undesirable (i.e., s.t. 3x, re(x) = 1 and 
[tF(X) = 0). Then, for instance, it is natural to prefer an action such that u(rc) = 0 due 
to only one possible bad situation x, to an action such that there exist two or more x 
such that max(n(n(x)),  IXF(X)) = 0. In other words, preference is given to the action(s) 

such that there exist almost no situation with high plausibility and low utility. 
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4 - I l l u s t r a t i v e  E x a m p l e  

A slightly simpler version of  the following example is briefly commented in (Dubois 
and Prade, 1995). It is discussed here in somewhat greater details. Assume you have to 
leave home so as to take the subway or your car in order to arrive on time at some 
meeting. In such a problem there are several criteria: i) you do not want to leave home 
too early (let M be the fuzzy set of  departure times which are acceptable; M has a non- 
decreasing membership function since the later you leave, the better it is), ii) you do 
not want to arrive too late at the meeting (let N be the fuzzy set of  arrival t imes 
which are acceptable; N has a non-increasing membership  function), iii) you may  
have some preference between taking the subway or taking your car; let l.tT(SUbway) 
and ~tT(car ) being respectively the level of  acceptability of  each transportation system 

(we assume normalization: max(~tT(SUbway ), JaT(car)) = 1). Besides, there is some 
uncertainty about the duration of  the trip between your home and the meeting. I f  you 
take the subway, you may have to walt for it at that time of  the day, and if you take 
your car there may be a traffic jam. Let n(z,t) be the possibility that the duration is z 
when the chosen transportation mode is t. Then the decision (choice of  a departure 
t ime s, and of  the type t o f  transportation) is obtained by finding s and t which 
maximizes the multiple criteria evaluation 

min(~tT(t ), ~tM(S ), inf z max(1 - z(z,t), IXN(S + z)) (7) 

using n(a) = 1 - a and U = V = [0,1]. This expression can be understood as a multiple- 
valued logic evaluation of the sentence 

3t, t e  T a n d 3 s ,  s ~  M a n d V z ,  i f z ~  D(t) t h e n s + z ~  N 

where ktD(t)(z ) =/ t (z , t )  is the membership function of  the fuzzy set of  the possible 
values of  the duration of  the trip for the transportation mode  t. Indeed, the 
maximization and the minimization are multiple-valued counterparts of  the existential 
and universal  quantifiers respect ively and max(1 - a, b) is a mult iple-valued 
implication. The term inf  z max(1 - rc(z,t), ~tN(S + z)) is the qualitative "expected" 
utility of  choosing s as a starting time decision, when t is chosen as transportation 
mode, where ktN(S + z) is the preference degree in situation z for decision s (evaluating 
to what extent the arrival t ime constraint is satisfied) while rc(.,t) represents the 
incomplete knowledge about the situation. Note that z and t are variables of  a different 
nature; z refers to the duration whose precise value is not under decision-maker 's  
control, while t is a decision variable, thus under his/her control. The expression (7) 
thus reflects the conjunctive aggregation of  the criteria, taking into account the 
uncertainty. See (Dubois, Fargier and Prade, 1995a) for a numerical treatment of  the 
example  and for the application of  this approach to job-shop scheduling; it is also 
shown in this reference why the supremum on s and t of  (7) is still equal to 

SUPa,t min(~tT(t ), inf z max(1 - r~(z,t), I.tM(a - z)), l.tN(a)) 

since we can also see the problem as finding out an acceptable arrival time a such that 
the corresponding departure time a - z is acceptable whatever the possible value of  z, 
when the transportation mode is t. However,  expression (7) is more natural since, in 
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practice, we are interested in the departure time. It is also shown in (Dubois et al., 
1995a) that when dealing with continuous membersh ip  functions and possibil i ty 
distributions, the 'inf z max'  subpart of  (7) can be rewritten as a 'SUpz min' expression, 

which facilitates the computation. 

5 - M u l t i p l e s t a g e  D e c i s i o n  

In their seminal paper  on fuzzy set-based approach to multiple criteria decision, 
Bellman and Zadeh (1970) have applied their approach to multistage decision-making 
in order to illustrate the concepts of  fuzzy goal, fuzzy constraint and fuzzy decision. 
See also Fung and Fu (1977). Then the decision-viewed as a decomposable fuzzy set 
was expressed as 

where 

/.tD(U 0 . . . . .  UN_ 1 ) = min(l.tc0(u 0) . . . . .  /-tCN_ 1 (UN-1), [.tGN(XN)) 

- CO, ..., CN_ 1 are the fuzzy constraints at stages 0 . . . . .  t . . . . .  N-1  on the 

applicable inputs u t 

- G N is the fuzzy goal describing the desired state x N of the system at stage N 

- x N is expressible as a function of x 0 and u 0 . . . . .  UN_ 1 through the iteration of  the 
state equation 

xt+ 1 = f(xt,ut), t = 0, 1, 2 . . . .  

Although they mentioned the idea of also dealing with a fuzzy system described by a 
membersh ip  function of the form kt(xt+ 1 I x t, ut), Bellman and Zadeh (1970) only 
considered the case of  a deterministic system governed by the above state equation and 
of  a stochastic sys tem whose state at t ime t + 1 is a probabil i ty distribution 
p(xt+ 1 I x t, u t) and they applied dynamic programming for finding u 0 . . . . .  UN_ 1 
max imiz ing  I.tD as defined above and the probabil i ty of  the fuzzy event  G N, 

~XN p(x N I XN_ 1, UN_l) �9 I.tGN(XN) respectively. Kacprzyk (1983) has studied the case 

of  a fuzzy system, described by a fuzzy relation linking u t, x t and xt+ 1. Since the 
precise values of  the states of  the system are no longer accessible, the extent to which 
the state of  stage N satisfies the goal is only estimated in terms of  the possibility of  
the fuzzy event GN, namely 

SUPx N min(~tXN(XN), I-tGN(XN)) 

in this approach where dynamic programming and branch-and-bound solutions are 
provided. 

As already said such an estimate of  the satisfaction of  the goal is too optimistic 
and we should rather use the necessity of  the fuzzy event 

infxN max(1 -/.tXN(XN), [.tGN(XN)) 
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as first suggested in (Dubois and Prade, 1982). 
Dean (1994) has recently strongly advocated Markov decision processes as a basic 

representation for planning under uncertainty. A Markov decision process is made of a 
Markov chain together with a set of actions available to the control system and a time 
separable expected value function (which enables us to reduce an n-dimensional 
problem to n-l-dimensional problems using dynamic programming). Examples of 
works in planning under uncertainty along this line are (Draper et al., 1994; 
Kushmerick et al., 1994; Thiebaux et al., 1995). 

The recent introduction of possibilistic Markov chains (Dubois et al., 1994; see 
also Friedman and Sandier, 1994) and the foundations of a qualitative possibilistic 
decision theory opens the road to applications to planning under uncertainty when 
preferences and uncertainty are naturally assessed on ordinal scales. 

6 - P o s s i b i l i s t i c  M a t r i x  G a m e s  

A matrix game is a simple two-person zero-sum game in which the players have a 
finite numbe~of alternatives among which they have to choose. There are two players 
P1 and P2 and a m x n matrix A = (aij). For P1 the strategies (possible choices) 
correspond to the m rows of A and for P2 the strategies are the n columns of A. When 

P1 chooses the i th row and P2 the jth column, then aij is the outcome of the game 
with the convention that P1 has to pay to P2 this amount. Thus P1 tries to minimize 
the outcome and P2 to maximize it. This leads to the well-known inequality 

maxj min i aij < min i maxj aij (8) 

which expresses that the optimal outcome in the case when P2 plays the first 
(securing his gains), is less or equal to the optimal outcome when P1 plays the first 
(securing his losses against any behaviour of P2)' When (8) holds as an equality, the 
game is said to have (a) saddle point(s) in pure strategies. Mixed strategies have been 
proposed where a probability distribution is attached to the strategies of each player 
(which may be thought as reflecting the frequency with which each strategy is applied 
by the player). Then a statistical equilibrium can be reached (when the game is 
sufficiently repeated) under the form 

maxq minp ptAq = minp maxq ptAq (9) 

where p = (Pi)i=l,m and q = (qj)j=l,n are probability distributions over the strategies 
of P1 and P2 respectively. It is then always possible to get an equilibrium; see (Basar 
and Olsder, 1982). However Nicolas and Grabisch (1995) have pointed out that the 
statistical view underlying the mixed strategies is not always realistic in case the 
game is not repeated and some values in A strongly (and may be definitively) penalize 
a player. They propose to replace (8) by 

maxj Tiaij < min i .Lj aij (10) 
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where T i and _Lj are t-norm and t-conorm operations respectively (where the aij's are 
assumed to belong to [0,1]), since decision-makers do not always obey min imax 
strategies under situations of  risk, according to these authors. Note that (10) is a 
consequence of  (8), since Tiaij < min i aij and .l.jaij > maxj aij. 

Observe that the minimax strategies which appear in (8) are in the spirit of  
Wald's  criterion, i.e., maximizing the minimal pay-off.  Thus, it is natural to propose 
a possibilistic generalization of  (8). Let  (re 1 . . . . .  rtm) (resp. (~'1 . . . . .  ten)) be a 
normalized possibility distribution over the possible strategies of  player P1 (resp. 
P2). Then, the min and max operations in (8) can be replaced by weighted max and 
min operations (see Dubois and Prade (1986) for a presentation of  these weighted 
operations in a possibility theory perspective). A weighted min is of  the form 

min i max(a  i, 1 - wi) (11) 

where the weights w i are normalized (max i w i = 1). Note that when Vi, w i = 1, it 

reduces to min i a i as expected, while a i is not taken into account when w i = 0. The 
express ion (11) was first proposed in Yager  (1981) with a mult iple  cri teria 
interpretation, w i being the level of importance of criterion i, a i the rate of  the object 
under consideration according to i; max(a i, 1 - wi) was introduced by Yager (1981) as 
a particular case of  a multiple-valued implication connective w i ---) a i (a criterion 

should be taken into account all the more as it is important). Dually, the weighted 
max is of  the form 

max i min(ai,wi). (12) 

Again, we recover max i a i when Vi, w i = 1 and a i is ignored if w i = 0. Then the 
possibilistic generalization of (8) writes 

maxj  min(n'j ,  min i max(aij, 1 - hi)) < min i max( l  - n i, maxj min(aij,n'j)) (13) 

where aij e [0,1], Vi, Vj. (13) can be easily checked. Indeed, it is equivalent to 

maxj  min i min(rCj, max(aij, 1 - rti)) < min i maxj max(1 - rt i, min(aij,rt'j)) 

and we have min(rc'j, max(aij ,  1 -7~i) ) = max(min(~ ' j ,a i j  ), min(rt'j, 1 - r c i )  ) < 
max(1 - rt i, min(aij,~'j)). Thus (13) is formally a consequence of (8). (13) can be also 
rewritten in terms of the previously introduced expected utility function u(~) and of  its 
optimistic counterpart E(rt), as 

E(rc'; u(~;A)) < u(~; E(rc';A)). (14) 

The interpretation of  the possibilistic weights  could be the fol lowing.  A not 
completely possible action for P2(~'j < 1) may decrease his gain and the loss of  PI ,  
while a not completely possible action for Pl(7~i < 1) may increase the gain of  P2 
(and the loss P1)- In other words, the choice of  a not completely possible action 
penalizes the player and benefits to his adversary.  Thus, choosing a somewhat  
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impossible action results in a kind of penalty. Here, the possibility degrees refer to 
feasibility rather than to uncertainty, strictly speaking. The introduction of new 
strategies based on weighted versions of min and max might be the basis for an 
improved handling of tactical subjective aspects. This is a topic for further research. 

7 - C o n c l u d i n g  R e m a r k s  

Possibility theory and fuzzy sets together provides a framework for dealing in a 
qualitative way with uncertainty and preferences. Solid basis for decision theory can be 
offered in this framework, which provides a more qualitative and non-probabilistic 
view of decision processes - - a  view that Shackle (1961, 1985) had for a long time 
advocated by proposing an approach to decision based on potential degrees of surprise 
(corresponding to degrees of impossibility in possibility theory), much before Zadeh 
(1978) introduced possibility theory. 
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