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Towards Possibilistic Decision Theory

Fuzzy sets and possibility theory offer a unified framework where both preferences and uncertainty can be modelled. Indeed fuzzy sets can be used for describing weakly ordered sets of more or less acceptable/preferred situations, and possibility distributions represent states of information pervaded with imprecision and uncertainty. This framework relies on purely ordinal scales both for preferences and for uncertainty, due to the use of max and rain operations and of an order-reversing operation for manipulating the levels of these two scales.

Recently, a qualitative counterpart to von Neumann and Morgenstern' expected utility theory has been proposed, and it has been shown that the qualitative utility function, agreeing with a set of axioms describing decision-maker's behavior in face of uncertainty, is nothing but the necessity measure of a fuzzy event.

This result is first recalled and its interpretation is discussed in the framework of possibility theory. It is related to previous proposals made by different authors in the fuzzy set literature. The necessity measure which is a pessimistic estimate is contrasted with the dual measure of possibility. This latter estimate is optimistic and deals in a symmetric way with the expression of preferences and the expression of what is known of the plausible states of the world. The intuition underlying the necessity measure is that the qualitative "expected" utility is all the greater as there is no situations with a high plausibility and low utility value. A refinement of the utility ordering is suggested in case several decisions receive the same evaluation. Then an illustrative example is provided. Lastly, applications to multistage decision making and to matrix games are briefly pointed out.

-Qualitative Utility Theory

Von [START_REF] Von Neumann | Theory of Games and Economic Behavior[END_REF]' expected utility theory relies on the principle that the decision maker's behavior in face of uncertainty is entirely determined by his/her preferences on the uncertainty distributions about the consequences of his/her actions. In von Neumann and Morgenstern' model these distributions are probability distributions and are called "lotteries". Preferences about lotteries should fulfil a set of axioms describing the attitude of a "rational" decision maker in the face of uncertainty. The expected utility, in von Neumann and Morgenstern' approach, provides a simple criterion to rank-order the lotteries, and thus the actions, since each lottery is associated with an action (of which the associated distribution represents the uncertainty attached to its possible consequences). The decision-maker is then "rational" if the choice of his/her actions is in agreement with his/her preferences on the lotteries.

Let X be a finite set of situations (states of the world). An action in situation x results in a consequence with which the decision-maker is concerned. The set of consequences of a decision, obtained by varying the state of the world, can be ordered in terms of preference. This induces a preference ordering over X, reflecting back the expected pay-off of the action (the benefit of being in a precise situation). This preference relation between precisely-known situations for a given decision should be extended to incompletely described situations pervaded with uncertainty.

As already said, we use only two qualitative scales, denoted respectively by U and V, for assessing preferences on the one hand and uncertainty on the other hand. A belief state about which situation in X is the actual one, is supposed to be represented by a possibility distribution ~ from X to V. V is assumed to be bounded, and we take supV = 1, infV = 0. rffx) ~ V estimates the plausibility level of being in situation x. The possibility distributions we consider are normalized, i.e., 3x, ~(x) = 1, which expresses that at least one situation in X is completely possible (there may be several completely possible situations however). A possibility distribution representing a belief state involves a set of mutually exclusive alternatives, where each element can be ranked according to its level of plausibility to be the true situation. Let x and y be two elements of X, the possibility distribution ~ defined by ~(x) = L, r~(y) = Ix, re(z) = 0 for z ~ x, z ~ y with max(L,kt) = 1 (in order to have rc normalized), will be called a qualitative binary lottery and will be denoted by (L/x, ~/y), which means that we are either in situation x or in situation y with the respective levels of possibility L and IX. More generally, any possibility distribution rt can be viewed as a multipleconsequence lottery (L1/x 1 ..... Lm/xm) where X = {x 1 ..... Xm} and L i = r~(xi). We will also use the notation (L/~ 1, ~t/rc2) (with max(L,~t) = 1) for denoting the compound possibility distribution rt = max(min(n 1,L), min(rt2,~t)). This can be viewed as a lottery over multiple-consequence lotteries corresponding to rt 1 and 7~ 2. The lottery (L/x, g/y) can be viewed as a particular case of it when rt 1 and rc 2 are possibility distributions focusing on singletons. The resulting possibility distribution It = max(min(Ttl,L), min(lt2,kt)), with max(L,~t) = 1, is here the qualitative counterpart of probabilistic mixtures Lpl + (1-L)p2; see (Dubois and Prade, 1990a;[START_REF] Dubois | Aggregation of decomposable measures with application to utility theory[END_REF].

Let _~ denote the preference relation between possibility distributions ("possibilistic lotteries") given by the decision-maker, which extends the preference ordering over X to normalized possibility distributions in V X. A singleton {x0} corresponds to the possibility distribution which is zero everywhere except in x 0 where n(x0) = 1. When compared through the ordering relation ~, a singleton, as a particular case of a possibility distribution, will be either denoted by {x0} or more simply by x 0 since the ordering is extended from X to V X. ~_ is supposed to satisfy the following axioms, where rc ~ ~' means that both rt ~ r~' and re' ~ 7~ hold.

Axiom 1: • is a complete partial ordering.

Axiom 2 (certainty equivalence):

If the belief state is a crisp set A c_ X, then there is xEA such that {x}NA.

Axiom 3 (risk aversion, or "precision is safer"):

~'~ ~ ~'.
Axiom 4 ("independence"):

Ifn I ~ n 2 then (~,/n 1, ~n') ~ (~,/n 2, ~n').

Axiom 5 (reduction of lotteries):

(?Jx, Ix / (a/x, ~/y)) ~ (max(~,,min(~t,ct)) / x, min(~t,13 ) / y). See Figure 1 for visualizing the tree reduction expressed by this axiom.
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Axiom 6 (continuity): If r:• n' then 3 9~ ~ V, n' ~ (I/u, ~,/X).

Some of these axioms are similar to von Neumann and Morgenstern' axioms like the Axiom 1 that they use, or the Axioms 4, 5 and 6 which are qualitative counterparts of their axioms. Axiom 2 comes down to rejecting the notion of mean value. It is based on the idea that when the decision is made and put to work, then the state will be some x ~ A, and the benefit of the decision will indeed be the one in state x. The scope of such a decision theory is thus the next decision, and not an indeterminate sequences of decision, as with expected utility. Axiom 3 expresses a form of risk aversion and more precisely, an aversion for the lack of information. Axiom 4 is selfexplanatory. Axiom 5 is motivated by the particular form of mixtures in possibility theory. Axiom 6 expresses that it is possible to pass continuously from a given state of belief n to total ignorance by attaching a degree of uncertainty to n and moving it from 0 (re is sure) to one (total ignorance). By Axiom 3, x _~ A, V x e A, and since by Axiom 2, if x A ~ A, then V x ~ A, x ~ x A, so that A is equivalent to the worst state in A. It indicates that the proposed decision theory is cautious in essence.

Then the following theorem can be established (Dubois and Prade, 1995).

Theorem: Given a preference relation • on the normalized possibility distributions of V X verifying Axioms 1 to 6, there exists a fuzzy set F on X (an element of U X, for a totally ordered set U) and a utility function u from V X to U representing the preference ordering ~ such that for each normalized possibility distribution n, we have

u(n) = minx~ X max(n(n(x)), ~tF(X) ) (1)
where n is an order reversing function from the possibility scale V to the preference scale U such that n(0) = 1 and n(1) = 0 where 1 denotes the top elements of U and V and 0 their bottom elements.

Note that (1) yields u(x) --ktF(X).

-Interpretation and Relations to Other Works

Interestingly enough, the qualitative utility introduced in the previous section,

u(n) =minxexmax(n(n(x)),u(x))
is the necessity of a fuzzy event [START_REF] Dubois | Fuzzy Sets and Systems: Theory and Applications[END_REF] in the sense of possibility theory, namely u(n) --Nn(F) where F is the fuzzy set of preferred situations (~tF(X) = u(x), k/x e X) and N x is the necessity measure based on the possibility distribution n. Usually, when V = U = [0,1], n(t) = 1 -t in the above expression. Nn(F) can be viewed as a degree of inclusion of the fuzzy set of more or less possible situations in the fuzzy set F of preferred outcomes, i.e., it estimates the certainty that the belief state n corresponds to the preferred situations described by F. It means that there is a commensurability assumption made between the uncertainty scale and the preference scale, since possibility degrees and utility degrees are aggregated in the expression of u(n). Note that 9 Nn(F )=u(n)=liff{xe X,n(x)>0lc{xe X,u(x)=l} i.e., the utility of n is maximal if all the more or less possible situations encompassed by n are among the most preferred ones. In this case, whatever the precise situation, its utility is maximal. 9 Nn(F)=u(n)=0iff{xe X,n(x)=l}n{xe X,u(x)=0}~O i.e., the utility of n is minimal if there is one of the most plausible situations whose pay-off is minimum (we recognize the risk-aversion of the approach). Thus, Nn(F) = u(n) is all the greater as there is no situations with a high plausibility and low utility value.

When n is the characteristic function of an ordinary subset A of X, i.e., when all the situations encompassed by the belief state are equally plausible, the utility u(n) simplifies into u(n) = minxe A u(x) where we recognize Wald (1950)'s pessimistic criterion which leads to decisions maximizing the minimal pay-off. In the general case, u(n) takes into account the fact that all the situations are not equally plausible in the set {x e X, n(x) > 0}.

Several fuzzy set authors have proposed definitions of utility functions in the presence of possibilistic uncertainty, including the form described in the theorem. Indeed, the possibilistic counterpart of Wald maximin criterion of the form proposed here, has been introduced without any axiomatic justification by [START_REF] Whalen | Decision making under uncertainty with various assumptions about available information[END_REF], in terms of a "disutility" function D(n) = n-l(u(n)) where u(n) is given by (1). DUO takes the form of the degree of possibility of the fuzzy set F, i.e., ~t~ = n -1 o ~t F (the fuzzy complement of F when V = U = [0,1 ]) of less preferred situations, namely D(n) = maxxe X min(n(x), ~t~x)).

(2)

Previously, [START_REF] Yager | Possibilistic decision making[END_REF] has introduced the possibilistic extension of the optimistic maximax criterion E(~) of the form dual to (1), i.e., E(n) = maXxe X min(rc(x),~tF(X))

(3) which is the degree ofpossibilityofafuzzy set [START_REF] Zadeh | Fuzzy sets as a basis for a theory of possibility[END_REF]. This optimistic utility has beenalsoadvocated by [START_REF] Mathieu-Nicot | Esp6rance Math6matique de l'Utilit6 Floue[END_REF].However, observe thatwe always have u(n) ~ E(g) ( 4) and that choosing an action which maximizes E(n) rather than u(r0 can be overoptimistic. Indeed consider the case where F is the crisp subset of the acceptable states of the worlds, and rc represents an incomplete state of information corresponding to an ordinary subset P of X. Thus u(rc) as well as E(n) can take only the values 0 or 1. Maximizing u0r) is equivalent to selecting the actions such that their (possibly ill-known) consequences, whatever they are, ensure that one stays in an acceptable state of the world, since P c F r u(n) = 1. Maximizing E(r0 leads to select the larger set of actions such that P n F # 0. It includes actions which may have consequences which are unacceptable if P n F # 0. It amounts to assuming that the state of the world lies in P n F, i.e., to take one's wishes (i.e., F) for the reality!... However, we may have u(~) = 0 for all the actions under consideration; in that case E(Ic) may be useful to make a choice; namely when all actions are equally risky it is better to select the one offering the best opportunity.

The estimates u(n) and E(rc) are the basis for fuzzy pattern matching evaluations [START_REF] Cayrol | Fuzzy pattern matching[END_REF] where a fuzzy pattern expressing preferences about the values of some attribute(s) used for describing the required items, is matched againt what is known about the attribute values of the items stored in a database, rc then represents what is known about a given item and u(n) (resp. E(n))estimates to what extent it is certain (resp. possible) that the item satisfies the requirement expressed by the pattern, i.e., to what extent the item has to be selected.

Besides, as already pointed out (e.g., [START_REF] Inuiguchi | Possibilistic linear programming with measurable multiattribute value functions[END_REF]), the expression of the necessity of a fuzzy event is a particular case of a fuzzy integral in the sense of [START_REF] Sugeno | Theory of fuzzy integrals and its applications[END_REF]. Namely N~(F) can be shown to be equal to (for V = U = [0,1]) Nn(F) = supct~ (0,1] min(tx, Nn(Ftx)) (5) with Fct = {x E X, ~tF(X) > tx}, which is a particular case of Sugeno integral ~xh(x) o g(.) = sup~(0,1] min(c~, g(Ha)) ( 6)

with Htx = {x ~ X, h(x) > tx} and g is a set function monotonic with respect to set inclusion, such that g(O) = 0 and g(X) = 1. Sugeno integrals can be regarded as qualitative counterparts to Choquet integrals of the form J'0 g(Hct)dt~" See Dubois and Prade (1990b) for instance.

-Refining the Utility Ordering

As already said an action, associated with a possibility distribution n, is evaluated on the basis of the worst resulting situation with respect to this action, namely, a situation which has a rather high plausibility degree and a low utility value, since u(r0 = minx~ X max(n(r~(x), IxF(X)).

Formally speaking, each possible situation x behaves as a criterion according to which each action is evaluated. Good actions, from the point of view of situation x, are the ones that are such that if x has a low utility value, x is not plausible for these actions. Indeed max(n0z(x)), IXF(X)) = max(n(ix~(x), n(n(x))) = Ix ~(x) --~ n(rffx)) in the sense of Dienes' implication (a ---> b = max(n(a), b)), where t.tp(x) estimates how much x has a low utility value. Thus u(rc) can be formally viewed as a min-conjunctive multiple criteria evaluation. This type of evaluation may lead to actions having the same estimate, i.e., the same level for the "worst" case, but which still might be compared according to the other situations. Refinements of the min ordering have been recently discussed in the framework of the fuzzy set approach to multiple criteria decision-making; see [START_REF] Dubois | Refinements to the maximin approach to decisionmaking in fuzzy environment[END_REF]. Two refinements of the min-ordering are noticeable. Consider two vectors of grades ~ = (u I ..... urn) and v = v 1 ..... Vm) according to m criteria. Assume that the vectors are increasingly rearranged into 3" = ...... <... < and Vjl < < Then (Uil, Uim ) and 7" = (Vjl, ., Vjm ) where Uil Uim ..... Vjm. so-called leximin and least satisfied discriminating criterion orderings can be defined:

-leximin: u" >leximin ~ r 3 k ~ { 1 ..... m } s.t. i) V ~, < k, ui~ " = vj~, ii) Uik > Vjk -least satisfied discriminating criterion (discrimin) u>LSDCVC:~Vk~ {1 ..... m}s.t, i)~')~<k,i~=jxandui~=vjx ii) Uik > Vjk.
Clearly, the leximin ordering refines the discrimin ordering which itself refines the min ordering (u >min ~ ~ ui 1 > Vjl)"

These two refinements can be applied so as to distinguish between best actions which are considered equal in the sense of u(~). In particular, consider the particular case where all the actions are such that u(r0 = 0; it means that any action have totally plausible consequences which are completely undesirable (i.e., s.t. 3x, re(x) = 1 and [tF(X) = 0). Then, for instance, it is natural to prefer an action such that u(rc) = 0 due to only one possible bad situation x, to an action such that there exist two or more x such that max(n(n(x)), IXF(X)) = 0. In other words, preference is given to the action(s) such that there exist almost no situation with high plausibility and low utility.

-Illustrative Example

A slightly simpler version of the following example is briefly commented in (Dubois and Prade, 1995). It is discussed here in somewhat greater details. Assume you have to leave home so as to take the subway or your car in order to arrive on time at some meeting. In such a problem there are several criteria: i) you do not want to leave home too early (let M be the fuzzy set of departure times which are acceptable; M has a nondecreasing membership function since the later you leave, the better it is), ii) you do not want to arrive too late at the meeting (let N be the fuzzy set of arrival times which are acceptable; N has a non-increasing membership function), iii) you may have some preference between taking the subway or taking your car; let l.tT(SUbway) and ~tT(car ) being respectively the level of acceptability of each transportation system (we assume normalization: max(~tT(SUbway ), JaT(car)) = 1). Besides, there is some uncertainty about the duration of the trip between your home and the meeting. If you take the subway, you may have to walt for it at that time of the day, and if you take your car there may be a traffic jam. Let n(z,t) be the possibility that the duration is z when the chosen transportation mode is t. Then the decision (choice of a departure time s, and of the type t of transportation) is obtained by finding s and t which maximizes the multiple criteria evaluation min(~tT(t ), ~tM(S ), inf z max(1 -z(z,t), IXN(S + z)) ( 7)

using n(a) = 1 -a and U = V = [0,1]. This expression can be understood as a multiplevalued logic evaluation of the sentence 3t, te Tand3s, s~ MandVz, ifz~ D(t) thens+z~ N

where ktD(t)(z ) =/t(z,t) is the membership function of the fuzzy set of the possible values of the duration of the trip for the transportation mode t. Indeed, the maximization and the minimization are multiple-valued counterparts of the existential and universal quantifiers respectively and max(1 -a, b) is a multiple-valued implication. The term inf z max(1 -rc(z,t), ~tN(S + z)) is the qualitative "expected" utility of choosing s as a starting time decision, when t is chosen as transportation mode, where ktN(S + z) is the preference degree in situation z for decision s (evaluating to what extent the arrival time constraint is satisfied) while rc(.,t) represents the incomplete knowledge about the situation. Note that z and t are variables of a different nature; z refers to the duration whose precise value is not under decision-maker's control, while t is a decision variable, thus under his/her control. The expression (7) thus reflects the conjunctive aggregation of the criteria, taking into account the uncertainty. See (Dubois, Fargier and Prade, 1995a) for a numerical treatment of the example and for the application of this approach to job-shop scheduling; it is also shown in this reference why the supremum on s and t of ( 7) is still equal to SUPa,t min(~tT(t ), inf z max(1 -r~(z,t), I.tM(a -z)), l.tN(a))

since we can also see the problem as finding out an acceptable arrival time a such that the corresponding departure time a -z is acceptable whatever the possible value of z, when the transportation mode is t. However, expression ( 7) is more natural since, in practice, we are interested in the departure time. It is also shown in (Dubois et al., 1995a) that when dealing with continuous membership functions and possibility distributions, the 'inf z max' subpart of ( 7) can be rewritten as a 'SUpz min' expression, which facilitates the computation.

-Multiplestage Decision

In their seminal paper on fuzzy set-based approach to multiple criteria decision, [START_REF] Bellman | Decision-making in a fuzzy environment[END_REF] have applied their approach to multistage decision-making in order to illustrate the concepts of fuzzy goal, fuzzy constraint and fuzzy decision. See also [START_REF] Fung | Characterization of a class of fuzzy optimal control problems[END_REF]. Then the decision-viewed as a decomposable fuzzy set was expressed as where /.tD(U 0 ..... UN_ 1 ) = min(l.tc0(u 0) ..... /-tCN_ 1 (UN-1), [.tGN(XN)) -CO, ..., CN_ 1 are the fuzzy constraints at stages 0 ..... t ..... N-1 on the applicable inputs u t -G N is the fuzzy goal describing the desired state x N of the system at stage N -x N is expressible as a function of x 0 and u 0 ..... UN_ 1 through the iteration of the state equation xt+ 1 = f(xt,ut), t = 0, 1, 2 ....

Although they mentioned the idea of also dealing with a fuzzy system described by a membership function of the form kt(xt+ 1 I x t, ut), [START_REF] Bellman | Decision-making in a fuzzy environment[END_REF] only considered the case of a deterministic system governed by the above state equation and of a stochastic system whose state at time t + 1 is a probability distribution p(xt+ 1 I x t, u t) and they applied dynamic programming for finding u 0 ..... UN_ 1 maximizing I.tD as defined above and the probability of the fuzzy event G N, ~XN p(x N I XN_ 1, UN_l) 9 I.tGN(XN) respectively. [START_REF] Kacprzyk | Multistage Decision-Making under Fuzziness[END_REF] has studied the case of a fuzzy system, described by a fuzzy relation linking u t, x t and xt+ 1. Since the precise values of the states of the system are no longer accessible, the extent to which the state of stage N satisfies the goal is only estimated in terms of the possibility of the fuzzy event GN, namely SUPx N min(~tXN(XN), I-tGN(XN))

in this approach where dynamic programming and branch-and-bound solutions are provided.

As already said such an estimate of the satisfaction of the goal is too optimistic and we should rather use the necessity of the fuzzy event infxN max(1 -/.tXN(XN), [.tGN(XN)) as first suggested in [START_REF] Dubois | What does 'convergence' mean for fuzzy numbers?[END_REF]. [START_REF] Dean | Decision-theoretic planning and Markov decision processes[END_REF] has recently strongly advocated Markov decision processes as a basic representation for planning under uncertainty. A Markov decision process is made of a Markov chain together with a set of actions available to the control system and a time separable expected value function (which enables us to reduce an n-dimensional problem to n-l-dimensional problems using dynamic programming). Examples of works in planning under uncertainty along this line are [START_REF] Draper | A probabilistic model of action for least-commitment planning with information gathering[END_REF]Kushmerick et al., 1994;Thiebaux et al., 1995).

The recent introduction of possibilistic Markov chains [START_REF] Dubois | Updating, transition constraints and possibilistic Markov chains[END_REF]; see also [START_REF] Friedman | Evolution of systems under fuzzy dynamic laws[END_REF] and the foundations of a qualitative possibilistic decision theory opens the road to applications to planning under uncertainty when preferences and uncertainty are naturally assessed on ordinal scales.

-Possibilistic Matrix Games

A matrix game is a simple two-person zero-sum game in which the players have a finite numbe~of alternatives among which they have to choose. There are two players P1 and P2 and a m x n matrix A = (aij). For P1 the strategies (possible choices) correspond to the m rows of A and for P2 the strategies are the n columns of A. When P1 chooses the i th row and P2 the jth column, then aij is the outcome of the game with the convention that P1 has to pay to P2 this amount. Thus P1 tries to minimize the outcome and P2 to maximize it. This leads to the well-known inequality maxj min i aij < min i maxj aij (8)

which expresses that the optimal outcome in the case when P2 plays the first (securing his gains), is less or equal to the optimal outcome when P1 plays the first (securing his losses against any behaviour of P2)' When (8) holds as an equality, the game is said to have (a) saddle point(s) in pure strategies. Mixed strategies have been proposed where a probability distribution is attached to the strategies of each player (which may be thought as reflecting the frequency with which each strategy is applied by the player). Then a statistical equilibrium can be reached (when the game is sufficiently repeated) under the form maxq minp ptAq = minp maxq ptAq (9) where p = (Pi)i=l,m and q = (qj)j=l,n are probability distributions over the strategies of P1 and P2 respectively. It is then always possible to get an equilibrium; see [START_REF] Basar | Dynamic Noncooperative Game Theory[END_REF]. However [START_REF] Nicolas | Matrix games: A fuzzy approach[END_REF] have pointed out that the statistical view underlying the mixed strategies is not always realistic in case the game is not repeated and some values in A strongly (and may be definitively) penalize a player. They propose to replace (8) by maxj Tiaij < min i .Lj aij (10)

where T i and _Lj are t-norm and t-conorm operations respectively (where the aij's are assumed to belong to [0,1]), since decision-makers do not always obey minimax strategies under situations of risk, according to these authors. Note that ( 10) is a consequence of (8), since Tiaij < min i aij and .l.jaij > maxj aij. Observe that the minimax strategies which appear in (8) are in the spirit of Wald's criterion, i.e., maximizing the minimal pay-off. Thus, it is natural to propose a possibilistic generalization of (8). Let (re 1 ..... rtm) (resp. (~'1 ..... ten)) be a normalized possibility distribution over the possible strategies of player P1 (resp. P2). Then, the min and max operations in (8) can be replaced by weighted max and min operations (see [START_REF] Dubois | Weighted minimum and maximum operations in fuzzy set theory[END_REF] for a presentation of these weighted operations in a possibility theory perspective). A weighted min is of the form min i max(a i, 1 -wi) (11) where the weights w i are normalized (max i w i = 1). Note that when Vi, w i = 1, it reduces to min i a i as expected, while a i is not taken into account when w i = 0. The expression (11) was first proposed in [START_REF] Yager | A new methodology for ordinal multiobjective decisions based on fuzzy sets[END_REF] with a multiple criteria interpretation, w i being the level of importance of criterion i, a i the rate of the object under consideration according to i; max(a i, 1 -wi) was introduced by Yager (1981) as a particular case of a multiple-valued implication connective w i ---) a i (a criterion should be taken into account all the more as it is important). Dually, the weighted max is of the form max i min(ai,wi). ( 12) Again, we recover max i a i when Vi, w i = 1 and a i is ignored if w i = 0. Then the possibilistic generalization of (8) writes maxj min(n'j, min i max(aij, 1 -hi)) < min i max(l -n i, maxj min(aij,n'j)) ( 13)

where aij e [0,1], Vi, Vj. ( 13) can be easily checked. Indeed, it is equivalent to maxj min i min(rCj, max(aij, 1 -rti)) < min i maxj max(1 -rt i, min(aij,rt'j))

and we have min(rc'j, max(aij, 1 -7~i) ) = max(min(~'j,aij ), min(rt'j, 1 -rci) ) < max(1 -rt i, min(aij,~'j)). Thus ( 13) is formally a consequence of ( 8). ( 13) can be also rewritten in terms of the previously introduced expected utility function u(~) and of its optimistic counterpart E(rt), as E(rc'; u(~;A)) < u(~; E(rc';A)).

(

) 14 
The interpretation of the possibilistic weights could be the following. A not completely possible action for P2(~'j < 1) may decrease his gain and the loss of PI, while a not completely possible action for Pl(7~i < 1) may increase the gain of P2 (and the loss P1)-In other words, the choice of a not completely possible action penalizes the player and benefits to his adversary. Thus, choosing a somewhat impossible action results in a kind of penalty. Here, the possibility degrees refer to feasibility rather than to uncertainty, strictly speaking. The introduction of new strategies based on weighted versions of min and max might be the basis for an improved handling of tactical subjective aspects. This is a topic for further research.

-Concluding Remarks

Possibility theory and fuzzy sets together provides a framework for dealing in a qualitative way with uncertainty and preferences. Solid basis for decision theory can be offered in this framework, which provides a more qualitative and non-probabilistic view of decision processes --a view that [START_REF] Shackle | Decision, Order and Time in Human Affairs[END_REF][START_REF] Shackle | Foreword to "Esp6rance Math6matique de l'Utilit6 Floue[END_REF] had for a long time advocated by proposing an approach to decision based on potential degrees of surprise (corresponding to degrees of impossibility in possibility theory), much before [START_REF] Zadeh | Fuzzy sets as a basis for a theory of possibility[END_REF] introduced possibility theory.
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