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Tail call elimination is a common optimization, particularly for functional languages, where it is a semantic requirement. The value is less obvious in an Object-Oriented language such as Smalltalk. In this paper we show that it has a significant execution-time improvement for typical workloads. It also has significant memory savings for certain programs, and enables novel (to Smalltalk) programming styles.

Motivation and State of the Art

The term "tail call" comes originally from the functional programming world. It refers to a function call that is the last thing that another function does before returning the result of that call.

In object-oriented language terms it is a message send where the result of the send is returned as the result of the sending method. This call or send is said to be in "tail position".

In pure functional languages, the recognition of tail calls is critical, since the looping idiom is manifested by tail-recursive calls. If the tail calls were not to be removed, the stack would quickly grow to unacceptable size.

Tail call elimination has not previously been recognized as an important optimization for object-oriented languages, since they invariably have a natural iterative structure available to the programmer. However, space is not the only saving of tail call elimination. If creation of new activation records can be avoided, the instructions required to create them can be avoided, and the [Copyright notice will appear here once 'preprint' option is removed.] stack will become more localized -improving cache performance.

Tail calls are actually quite common in objectoriented programming. They are heavily used in any double-dispatch methods, in particular the visitor pattern. Figure 1 arithmetic operations, is a message send in Smalltalk, tail calls only account for just over 6% of total static message sends. However they are more common in the Squeak compiler, where the visitor pattern is common. 1 While this may not seem particularly hopeful as a source of optimization, those tail-calls are often in high-frequency code. Figure 2 shows that during image startup 2 or recompile-all, the dynamic frequency is in the range of 1/6 to 1/5 of all calls. With these fre- quencies, even a 30% improvement in execution time for tail-calls would produce valuable speed-ups, which we describe in §4.

Contributions and outline

We performed a series of experiments on Squeak 6 which, like Pharo and Cuis, runs on the OpenSmalltalk Virtual Machine -an open source virtual machine for Smalltalk. 3 OpenSmalltalk uses features such as context-to-stack mapping, inline message caching, and JIT compilation for efficient message sending. We implemented tail-call elimination for the Stack Interpreter and Cog Just-In-Time (JIT) native code generator. We observed significant improvement in most of our experiments when we eliminated tail calls.

In the remainder of this paper, we first discuss tail calls in greater depth ( §2). Then we look at our implementations for the stack interpreter and the Cog JIT ( §3). Then we show preliminary results of the optimization ( §4). Then we discuss some of the related work on tail-call elimination ( §5). Lastly we conclude the paper and sketch some future work ( §6).

Tail Calls

For discussion purposes, we will consider the three methods in figure 3.

The first method is methodA:, which simply takes an argument, and sends the message methodB: with that argument to itself. The result is not explicitly returned; in Smalltalk syntax, a reference to self is returned implicity in this case. This means that methodA: does not contain a "tail call'. methodC: also does not contain a "tail call" because there is an assignment between the send and the return. 4 methodB: does contain a "tail call" since the result of the send is immediately returned from the method.

This becomes very clear when looking at the bytecodes produced by the compiler for these methods, in figure 4. Here a tail call is recognizable by a send followed immediately by a returnTop. It is clear that methodA: is not a tail call -this method is just for producing side effects. The return result of the send to methodB: is discarded before returning self.

The next method is methodB:, which takes one argument, and sends a message to methodC: with its own argument, and then returns the result. Looking at the bytecode, it is obvious that methodB: has a 3 tail call, as it performs a send of methodC; and then returns the top of the stack.

Finally, in methodC:, a temporary variable is created and assigned the value of the argument + 1. Then the temporary variable is returned. Looking at the bytecode, it's clear that methodC: does not perform a tail call. The result of the send to + is used after the send for other operations before returning the top of the stack. Clearly the pop followed by the push could be removed, which would make this a tail call (and would be a worthwhile optimization regardless), but as the code is show, this is not a tail call.

Let's now look at the call stack and the execution variables. Since the point of interest here ultimately is the tail call in methodB:, the activation of methodA: will be skipped and the details of methodA:'s frame will be ignored. Figure 5 shows the state of the stack just before the return from methodC: for the normal stack interpreter.

When preforming tail call elimination, the stack frame for methodB: gets reused by the call and execution of methoC:. Figure 6 shows the state of the stack just before the return from methodC: for the stack interpreter with tail call elimination.

Implementations

The essential approach to tail call elimination is that the current context/stack-frame will be re-used by the 1. adjusting the frame to the appropriate size -removing local variables;

2. putting the parameters in the right place -the called method may have more, fewer, or the same number of parameters;

3. jumping to the target method -rather than calling.

The complexity for Smalltalk is in that 3 rd item: finding the right target method. Because of dynamic dispatch, the method needs to be looked up in the methodDictionary of the class of the target object.

A return from a method that was invoked by a tail call is no different from any other. Because of the way the call was set up, the return bypasses the caller and goes directly to its caller.

Stack Interpreter

We explored many clever approaches to recognizing tail calls for the Stack Interpreter, including creating new bytecodes for tail calls. However in the end, nothing worked better than the simplest approach of:

• for each message send type, look at the next instruction;

• if it is a returnTop, jump to the target method

• otherwise, handle the send normally.

Cog JIT

The first time a method send is executed, the target method is cached and the send and target method are interpreted. The second time the send will be turned into machine code. The machine code loads the class of the target option into a register and calls the expected target method. The method checks for a match of the register with the class known to be associated with associated with the method. If they match, this is a monomorphic call, and the method is executed. It they don't then a couple different approaches are used to look up the correct target -either polymorphic (for less than, e.g., 6 possible classes) or megamophic (for an unbounded number of possible classes).

Our current implementation only handles the monomorphic case. If the class doesn't match, we fall back to the non-tail-call code and let it handle the polymophic or megamorphic cases.

Because "tail-call"-ness is a property of the sender of a message, rather than the receiver, when we jump to the target, we use an alternate entry-point of the method, bypassing some of the code.

The pre-existing code to handle the polymorphic and megamorphic dispatch depends on a pointer back to the call site (stored on the stack by the call instruction. There are two ways to do this:

1. We could have either left the call in, but called an alternative entry point for tail calls which would discard the return address if not needed. This could get the space-saving of tail-call, but would have limited speed-up potential.

2. We could put the checking code for the matching class at the call site, and if that fails, fall back to the pre-existing code. We chose this approach.

The JITed code goes into a fixed buffer so that generated code doesn't get moved. Tail-call elimination puts generates longer code, which puts pressure on this buffer. Unfortunately simply enlarging this buffer doesn't completely resolve this pressure.

Debugging

The only possible downside to tail-call elimination is that stack frames may not exist, so that when a debugger window is opened, the complete set of methods that was traversed to get to the execution point may not be available. Once in the debugger, there is no issue, as stepping through the debugger does not recognize tail call elimination. In the other cases, a simple flag could be set that caused the interpreter or JIT to simply bypass checking for tail calls. SInce, excluding infinite or near-infinite loops, the semantics of a program don't change with tail-call elimination, debugging should not be an issue.

Results

We ran a sequence of tail recursive tests (microbenchmarks), and a couple of real world tests. For each we show Stack Interpreter results and Cog JIT results. Each test result section will be broken down into execution time and memory, and will be followed with a discussion of the results. All memory results reflect total image memory -for the micro-benchmarks at the deepest recursive level; for the real world tests periodic samples.

In the descriptions of the tests, iterations refers to the number of times an individual calculation is run before collecting a measurement, and runs refers to the number of times a test is run, with each run corresponding to a measurement. Mean results of the measurements are presented in graphical form. In addition, the mean, standard deviation, and median for each test are presented in a table. Percentage improvement for tail call eliminating implementations is also included, with the column headers %Imp for the mean improvement, and %SD for the percentage of uncertainty in the improvement. The formulas to calculate the percentage improvement and the uncertainty in the improvement are:

imp ab = mean b -mean a mean b * 100 (1)
unc ab = σ 2 a + σ 2 b mean b * 100 (2) 
where: 

σ a =

Memory Usage

For this test, memory usage was measured in the base case when calculating the Fibonacci sequence for 1000. Measurements were taken for 1000 runs -see figure 8 for the results. Memory usage across all implementations is very similar across the different runs, with a slight increase in usage for the tail call eliminating implementation of the Stack Interpreter.

Fibonacci 10000 Tests

The Fibonacci 10000 tests use the calculation of the Fibonacci sequence for 10000.

Execution Time

For execution time, each test consists of 100 iterations of calculating the Fibonacci sequence for 10000. The milliseconds to run each test was collected for 25 runs. See figure 9 for the results. Execution time shows a significant difference, with large reductions in execution time indicated for both implementations of tail call elimination.

Memory Usage

For this test, memory usage was again measured in the base case when calculating the Fibonacci sequence for 10000. Measurements were taken for 250 runs -see figure 10 for the results. Memory usage also shows a significant difference between implementations with tail call elimination and implementations without tail call elimination. This demonstrates a significant decrease in memory usage for both tail call eliminating implementations.

WhileTrue 10000 Tests

The WhileTrue 10000 test again uses the tail recursive implementation of whileTrue: to repeatedly execute a block 10000 times.

Execution Time

In the final tail recursive test, execution time for this test is measured by running the whiletrue loop with a value of 10000, and measuring execution time for 1000 iterations. This test is repeated for 25 runs and results are presented in figure 11.

The execution results for this test is also interestingboth implementations show a large reduction in execution time when using tail call elimination, particularly for the Cog implementation. They are not as fast as the normal, in-lined, version of whileTrue: because it is still forced to send value to the blocks, however it may be fast enough to encourage developers to create their own looping strutures that provide better semantics for their application.

Memory usage has similar characteristics to that shown for the other recursive examples, so we have omitted the data here.

Compile All Test

The compile all test calls the recompileAll method on the Compiler object and recompiles every method in the Smalltalk image.

Compiler>>recompileAll

Smalltalk allClassesAndTraits do:

[: classOrTrait | classOrTrait compileAll] displayingProgress: [: classOrTrait | 'Recompiling ', classOrTrait]

Execution Time

To determine execution time, the method is run 10 times and the time in milliseconds collected for each run. The results are displayed in figure 12.

Both implementations show an improvement in overall execution time when using tail call elimination. The Stack Interpreter implementation's execution time shows a 5.0±1.7% improvement. The Cog VM implementation shows less of an improvement -a 3.4±0.9% improvement to mean execution time. While this improvement is small, the results are tightly clustered enough that this improvement is still several standard deviations away from the non-tail-call-eliminating version of Cog.

Memory Usage

For the memory usage tests for the Compiler tests, a measurement of memory usage is taken after compiling each class. See figure 13 for the results. In general, the results seen are not particularly different from one another, or even particularly different between the Stack Interpreter and the Cog Interpreter, with minor increases in memory usage being registered that fall well below one standard deviation. 

Execution Time

For the execution time for the windows test, the method is run 10 times and the time in milliseconds collected for each run. The results are displayed in figure 14 

Memory Usage

The next results to show are the memory usage tests for the Windows tests. A measurement of memory usage is taken after opening all windows, and again after closing all windows. See figure 15 for the results. The results here are not particularly interesting, with tests indicating decreases in memory usage for both tail call eliminating versions.

State of the Art

Tail Call Semantics

Most of the work with tail calls has been to support tail recursion for semantic reasons, without any reference to performance improvement. In pure functional languages like Haskell and Erlang/Elixir looping constructs make little sense -since there is no mutation and limited side effecting code. For these languagues, and other mostly-functional languages like Scheme [START_REF]The Revised6 Report on the Algorithmic Language Scheme[END_REF], tail-call elimination is part of the definition. Without this, idiomatic tail-recursion would consume excessive memory. Where the language system is an interpreter, or compiles to machine code or C-(see below), this is not particularly difficult to achieve -simply rearrange the parameters (whether stack or registers) and jump to the target..

Survey of Tail calls in languages

Scheme, a dialect of Lisp, is particularly noteworthy in tail call elimination research, as general tail call elim-ination was first presented as part of the development of the Scheme language. Scheme requires implementations to be properly tail-recursive as part of its specification [START_REF]The Revised6 Report on the Algorithmic Language Scheme[END_REF]. The definition of properly tail-recursive as presented in the specification encompasses all tail calls as well [START_REF] William | Proper Tail Recursion and Space Efficiency[END_REF].

Javascript is an implementation of the ECMAScript specification. The ECMAScript 6, or 2015, specification introduced proper tail call elimination into the specification when using strict mode [START_REF]ECMAScript 2015 Language Specification[END_REF]. The language definition defines what tail calls are considered and an abstract operation is provided which handles the tail call. However, support at the time of this writing is limited, with Safari/Webkit being the most notable inclusion [START_REF]ECMAScript 6 compatibility table[END_REF].

Python explicitly declines to support any form tail call elimination -this is by design for several reasons discussed in the context of tail recursion elimination [START_REF] Van Rossum | Tail Recursion Elimination[END_REF] even optionally. First, as tail recursion elimination removes stack frames, stack traces will not have the eliminated stack frames. This will make debugging more difficult. Second, if tail recursion elimination is introduced as a choice for implementers, programs may be written that rely on the presence of tail recursion elimination and not run on implementations that choose not to implement it. Third, Python also allows functions to be rebound at runtime, so implementing tail recursion may be difficult to accommodate in all cases.

Compilation targets supporting tail call elimination

Steele presented tail call elimination implemented as a compiler optimization of machine code while discussing the cost of procedure calls compared to goto statements [START_REF] Lewis | Debunking the "Expensive Procedure Call"; Myth or, Procedure Call Implementations Considered Harmful or, LAMBDA: The Ultimate GOTO[END_REF]. Steele was demonstrating several points in comparing procedure calls to goto statements in order to show that procedure calls were not necessarily too expensive and not expressive enough compared to goto statements. When demonstrating cost, a simple Lisp method was shown compiled to a machine language with a small set of instructions: JUMP, PUSHJ, and POPJ. JUMP jumps to an address, PUSHJ pushes a location onto a call stack and then jumps to an address, and POPJ pops a location off of a call stack and jumps to that location. The machine code representation of a procedure call is shown to be a PUSHJ operation in that it pushes the current instruction and then jumps.

The machine code representation of a return at the end of the procedure is shown to be a POPJ operation -it pops the previous address off the call stack and jumps. Steele shows that the final procedure call in the procedure can actually simply be executed as a JUMP without pushing the address (with a PUSHJ) and without needing the POPJ instruction for the return. Procedure calls can be optimized in this way within the branches of conditionals, looping constructs and the last component of a block, amongst others. Steele recognized this as a universal technique for optimizing procedure calls as opposed to tail recursive specific optimization done in earlier work.

Hanson builds on Steele's work presenting a technique for compiling tail-recursive languages using stack allocation [START_REF] Hanson | Efficient Stack Allocation for Tailrecursive Languages[END_REF].

Kelsey presents several methods for implementing proper tail recursion in a stack-based interpreter [START_REF] Kelsey | Tail-Recursive Stack Disciplines for an Interpreter[END_REF]. Kelsey first presents the issue as to why a traditional call stack doesn't provide proper tail recursion. As discussed elsewhere, when a function calls another function in tail position, the environment (variables, access link) for the calling function is left on the stack despite never needing to be referenced again. Kelsey then considers three general approaches to dealing with this issue. The first is to allocate all environments to a heap, and then later garbage collect any unused environments. The second is to overwrite the existing environment with the new environment, replacing existing arguments with new arguments. Third, the stack could be allowed to fill with environments, and then later be garbage collected. Three garbage collection strategies for the stack were looked at as well -compacting the existing stack, copying the stack to a new stack and copying it to a heap. Looking at the three different approaches for im-plementing tail recursion, as well as not using a stack at all, Kelsey looked at the costs of making continuations, making procedure calls and garbage collection. Kelsey found that the second approach worked best in general for languages except Scheme.

Assembler code can, of course, support tail call elimination, but compiler developers usually want a more portable target.

Peyton Jones, Ramsey and Reig designed an intermediate assembly language named C-that provided tail call elimination [START_REF] Simon | C-: A Portable Assembly Language That Supports Garbage Collection[END_REF]. The motivation for writing this language was to produce a portable high quality assembly language that other languages could target. The authors reject C as an intermediate language for various reasons -relevant to here is the lack of easy implementation of tail call elimination. In C-, tail calls are treated as jumps from which control does not return. An implementation is required to reorganize the caller's stack frame before the jump.

The LLVM compiler infrastructure, which has become the portable target of choice for compilers such as the clang C compiler, has optional tail call elimination depending on the calling convention of the caller and the callee (typically preferring calling conventions where arguments are passed in registers). Tail call elimination is implemented by having the callee reuse the stack of the caller for calls in tail position. When the callee has more arguments than the caller, the convention is that the callee pops the arguments [START_REF]LLVM Language Reference Manual[END_REF].

The Common Language Runtime, or CLR, is Microsoft's virtual machine for .NET applications programmed in languages such as C# and F#. The specification for the CLR is laid out in the Common Language Infrastructure (CLI) specification and supports a specific tail prefix to call instructions -this indicates that the stack frame of the current method can be eliminated before the call is executed [START_REF]Standard ECMA-335 Common Language Infrastructure (CLI)[END_REF]. Implementations are only required to honor the tail prefix for call instructions for which the targets are known at compile time. F# uses the tail call capabilities laid out in the CLI for tail-recursive calls, but does not perform general tail call elimination [START_REF]Tail calls in F#[END_REF]. The Roslyn compiler for C#, however, never emits the tail instruction [START_REF]ProposalSupport tail recursion #1235[END_REF]. Regardless of whether the individual languages emit the tail instruction, the JIT compiler for CLR on AMD64 platforms can opportunistically eliminate tail calls [START_REF]JIT Compiler Structure[END_REF].

Other compilation targets

C and the JVM are the two most popular targets for compilers. Unfortunately, neither support tail-call elimination.

The Java Virtual Machine, or JVM, is the specification for virtual machines to run the Java programming language, as well as numerous other languages that target the JVM. Tail call elimination was originally not included as part of the JVM due to security methods that relied on counting stack frames -as tail call elimination may change the number of frames, this security implementation prevented tail call elimination [START_REF] Clojuretv | Stewardship: the Sobering Parts[END_REF]. Clements and Felleisen presented an abstract machine with general tail call elimination that also has security stack inspection, which they claim invalidates the belief that tail call elimination and stack inspection are incompatible [START_REF] Clements | A Tailrecursive Machine with Stack Inspection[END_REF]. Subsequently this security implementation has been replaced with something more robust, tail call elimination has yet to be implemented. This creates a problem for functional languages which rely on tail call elimination for, at the very least, tail recursive calls to implement looping in a functional paradigm. The approach taken by some languages is to add special syntax to indicate tail recursive calls to the compiler. Examples of languages designed for the JVM use this approach include Clojure [START_REF]The Clojure Programming Language[END_REF], Scala [START_REF]The Scala Programming Language[END_REF], and Kotlin [START_REF] Kotlin | [END_REF].

The two basic approaches are:

1. Only support tail calls for directly self-recursive functions (or method). This approach essentially translates the recursion into a loop within the function, with the tail calls becoming jumps. While this sometimes meets the language requirements, it is not a complete solution and misses many optimization opportunities where tail-calls exist in OO code.

Benton, Kennedy, and Russell presented a compiler for Standard ML to Java bytecode which, amongst other things, implemented tail recursion elimination [START_REF] Benton | Compiling Standard ML to Java Bytecodes[END_REF]. The compiler converts tail recursive calls into goto instructions, but does not perform general tail call elimination, as the authors believed that general tail call elimination would be added to JVMs (as mentioned before, this has yet to happen).

Bothner presented a compiler for dynamic languages such as Scheme on the JVM, based on the Kawa Scheme interpreter [START_REF] Bothner | Kawa: Compiling Dynamic Languages to the Java VM[END_REF]. The implementation that the author presented supported almost all features of Scheme at the time, but only handles self-recursive tail calls.

2. Use a trampoline. This approach monitors the depth of the call stack 5 , and when it gets too deep, it throws control back to a loop in the outer function of the program, which then resumes calling at the interrupted point. This preserves semantics, but can have a significant amount of overhead.

Tauber et al. presented FCore, which is a JVM implementation of System F, a typed lambda calculus, that has full tail call elimination [START_REF] Tauber | Memory-Efficient tail calls in the JVM with imperative functional objects[END_REF]. The authors discard two typical approaches on how to represent functions: (a) representing functions as Java methods has limitations as JVM methods don't support currying; (b) representing functions as Java objects, which languages like Scala and Clojure use, allows for more flexibility. Functions as objects (FAO) can be represented as a FAO interface, with an apply method that takes an argument. Neither option provided a good solution to the problem of general tail call elimination. The authors presented a different approach to representing first class functions called imperative function objects (IFO). IFOs are represented as an abstract class with argument and result fields, and an apply function. This is distinct from the previous approach for representing functions as objects in that setting an argument and invoking a function are two different steps. In tail calls, the IFO has its arguments set, but invocation is delayedinstead, an auxillary structure saves the IFO. The saved IFO is executed at the original call site, looping until the auxillary structure is null.

Conclusion and Future Work

We extended the OpenSmalltalk Stack Interpreter and the Cog JIT code generator to recognize monomophic tail-calls and eliminate them. This can produce dramatic space-saving and moderate execution-time improvements for particular applications without negatively affecting other applications. Based on our preliminary research, it appears this would be a worthwhile improvement to the OpenSmalltalk VM.

The next step is to extend the handling of tail calls to include polymorphic sends. Megamophic sends are rare and would probably not benefit significantly from this optimization.

Once the optimization is part of the VM, the compiler should be tweaked to recognize patterns of hidden tail calls, such as returning the result of an ifTrue:ifFalse: message send. 5 
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	Platform Packages Tail Calls	Total	Percentage
	Squeak -All	25162	407971	6.17
	Squeak -Compiler	863	8747	9.87
	Figure 1. Static Tail Call Counts	
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