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Abstract

A TU game is totally positive if it is a linear combination of unanimity games with nonneg-
ative coefficients. We show that the core on each cone of convex games that contains the
set of totally positive games is characterized by the traditional properties Pareto efficiency,
additivity (ADD), individual rationality, and the null-player property together with one new
property, called unanimity requiring that the solution, when applied to a unanimity game
on an arbitrary coalition, allows to distribute the entire available amount of money to each
player of this coalition. We also show that the foregoing characterization can be general-
ized to the domain of balanced games by replacing ADD by “ADD on the set of totally
positive games plus super-additivity (SUPA) in general”. Adding converse SUPA allows to
characterize the core on arbitrary domains of TU games that contain the set of all totally
positive games. Converse SUPA requires a vector to be a member of the solution to a game
whenever, when adding a totally positive game such that the sum becomes totally additive,
the sum of the vector and each solution element of the totally positive game belongs to
the solution of the aggregate game. Unlike in traditional characterizations of the core, our

results do not use consistency properties.
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1. Introduction

The core is one of the most prominent solution concepts in cooperative game theory. It
assigns to a transferable utility game (for short, a TU game, or a game) all Pareto-efficient
payoff vectors such that each coalition of players obtains at least the amount that is avail-
able in the coalition. We offer an axiomatic characterization of the core on domains of
games with a fixed player set. Axiomatic characterizations of the core on several classes
of TU and nontransferable utility games, typically with varying sets of players, have been
provided by Peleg (1986), Tadenuma (1992), Winter and Wooders (1994), Voorneveld and
van den Nouweland (1998), Hwang and Sudholter (2001), and Llerena and Rafels (2007).
We should like to mention in particular the characterizations on totally balanced games by
Peleg (1989) and Sudhélter and Peleg (2002) and on convex games by Hokari et al. (2020)
and Dietzenbacher and Sudholter (2020), among others. All these characterizations invoke
a consistency axiom.? A solution is consistent if the restriction to the remaining players
of each vector selected by this solution is also selected in each reduced game on the set of
remaining players, in which only the subset of remaining players considers its reduced game.
We refer to Funaki and Yamato (2001) for some forms of reduced games used in some of the
characterizations of the core. Merits of several variants of consistency and its converse for

characterizing the core and several extensions were recently discussed by Bejan et al. (2022).

We provide characterizations of the core on several classes of TU games with a fixed player
set which do not invoke any consistency axiom. Omne of the crucial properties in these
characterizations is the additivity axiom requiring that the solution of the sum of two games
is the sum of the solutions in these two games. Bloch and de Clippel (2010) show that the
set of all balanced games, i.e., the set of games with a nonempty core, can be partitioned
into subsets in which the core is an additive solution. One of these subsets is the set
of convex games as proved already by Tijs and Branzei (2002), which contains the set of
totally positive games. These two subsets of games are of particular interest in view of
the rapidly increasing number of applications of the theory of cooperative games in recent

years in various fields like, e.g., economics (O’Neill, 1982), operations research (Maniquet,

stephane.gonzalez@univ-st-etienne.fr (Stéphane Gonzalez), philippe.solal@univ-st-etienne.fr
(Philippe Solal), psu@sam.sdu.dk (Peter Sudhélter)

2 An exception is the axiomatic characterization of the restricted core for the specific set of totally positive
games (i.e., games that are nonnegative linear combinations of unanimity games) with ordered players by
van den Brink et al. (2009).



2003), voting theory (Ginsburgh and Zang, 2012), scientometrics (Karpov, 2014), medicine
(Lucchetti et al., 2010), and law (Dehez and Ferey, 2013). In these applications the arising
cooperative game is convex and/or totally positive. We mention one explicit example here.
According to Sudholter and Zarzuelo (2017, Theorem 5.1), a game is totally positive if and
only if it is the cost game of a generalized highway problem in which each customer selects

an arbitrary, not necessarily connected, part of the highway:.

For replacing consistency, we introduce two new axioms. A solution satisfies unanimity
(UNA) if, when applied to the unanimity game on a coalition, it contains, for each player
of this coalition, the vectors that assign the whole amount (i.e., one utility unit) to this
player. UNA, hence, requires that the solution to a unanimity game contains the vertices of
the imputation set of this game. This property is similar to Peleg’s condition of “unanimity
for 2-person games” (UTPG) in a characterization of the core on totally balanced games
(Peleg, 1989; Sudhélter and Peleg, 2002). On the one hand, UTPG is stronger than UNA
as it requires coincidence with the imputation set for all unanimity games (even for all
games that are strategically equivalent to unanimity games). On the other hand, UNA is a
generalization of UTPG because it is a condition for games that may have more than two

players.

The other new property employed in some of our characterizations is called converse super-
additivity (CSUPA). The traditional axiom super-additivity (SUPA) requires that the sum
of solution elements of two games is a vector of the solution of the sum of these two games.
CSUPA may be regarded as a converse super-additivity property because it requires that
a payoff vector belongs to the solution of a game v if, for each totally positive game w # 0
such that v + w is also totally positive, the sum of this vector and an arbitrary element of

the solution of w belongs to the solution of v + w.

In addition to the aforementioned new properties, we invoke classical axioms such as Pareto
efficiency, the null-player property, individual rationality, and non-emptiness. We also in-
troduce variants of the well-known reasonableness properties. A solution is coalition-wise
reasonable from above (REAB) or below (REBE), respectively, if each coalition receives at

most its maximal or at least its minimal, respectively, contribution.

Our axiomatic characterizations of the core are valid for various domains. The first and
main result is that, on each cone of convex games which contains the set of totally positive

games, the core is the unique solution which satisfies UNA, additivity, Pareto efficiency, the
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null-player property, and individual rationality (Theorem 3.2). This result can be extended
to the larger set of balanced games (Corollary 4.1). To do so, as in the previous result,
we employ UNA, Pareto efficiency, the null-player property, and individual rationality on
balanced games. Furthermore, we require non-emptiness and super-additivity on the set of
balanced games, and additivity on the set of totally positive games. Replacing non-emptiness
by CSUPA yields a characterization of the core on each set of games which contains the set
of totally positive games (Corollary 4.4). Moreover, we show that REBE (alternatively,
Pareto efficiency and REAB) may be used to replace “additivity on totally positive games”.

The article is organized as follows. Section 2 provides definitions and notation. Section 3
introduces and motivates UNA and states the first main result, the characterization of the
core on several domains of convex games. Section 4 states the characterization results of
the core on the domain of balanced games and on more general domains. It also introduces
converse super-additivity and the new reasonableness properties and presents the second
main result, the characterization of the core on arbitrary sets of games with a fixed player

set that contain the set of totally positive games (Theorem 4.6). Section 5 concludes.

2. Preliminaries

Let N be a finite set of at least two elements, which is called the set of players. Throughout,
let n = |N|. A coalitional game with transferable utility (for short, a game) on N is a pair
(N,v) where v is a function that associates a real number v(.S) with each subset S of N. We
always assume that v(@) = 0. As N is fixed in this article, we identify a game (N, v) with
its coalition function v. A coalition is a nonempty subset of N. Player ¢ € N is a null-player
in game v if v(Su{i}) =v(S) for all S < N\ {i}. Two players i,j € N are substitutes of the
game v if v(Su{i})=v(Su{j}) for all Sc N~ {i,j}.

For each nonempty coalition 7" we denote by u” the unanimity game on T, i.e., for each
ScN,

1,if S2T,

0, otherwise.

(5)-{

According to Shapley (1953), the unanimity games form a basis of the set of all games.
Therefore, for each game v there exists a unique collection (@’ (v))ren () of real coefficients
such that

v=" > af(v)u". (2.1)

Te2N\{gz}
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A game v is totally positive (Vasil’ev, 1975) if o' (v) > 0 for all T'e 2V \ {@}.

For each S ¢ N and each vector x = (x;)ien € RN, let 2(S) = Yes 2 (2(2) =0). We also
denote the indicator function of S by 15 € R, i.e.,
{ 1,ifie S,

15 =
0,ifie N\ S.

Let X*(v) and X (v) be the sets of feasible and Pareto efficient feasible vectors, respectively,
ie.,

X*(v)={z eRY |2(N) <v(N)} and X(v) = {z e RY |(N) =v(N)}.
The core of a game v is the set of vectors

Cw)={zeX(v)|z(S)2v(S)VSc N}.

Remark 2.1. For each game v there exist totally positive games u,w such that v +u = w.
Indeed, with A = {T' € 2V ~\ {@} | aT(v) < 0} and B = {T € 2V ~ {@} | aT(v) > 0} put
u=Yrca(—al'(v))ul and w = Y pga (v)ul. Then u and w are totally positive and v+u = w.

A game v is conver (Shapley, 1971) if v(S) +v(T) <v(SnT)+v(SuT) for all S, T c N.
A game v is balanced (Bondareva, 1963; Shapley, 1967) if and only if C'(v) + @. Let T'Pos,
I'vez and I'*@ denote the sets of totally positive, convex and balanced games, respectively.
As unanimity games are convex and the set of convex games is closed under summation
and under multiplication by a non-negative scalar, each totally positive game is convex.

Furthermore, each convex game is balanced (Shapley, 1971).

An ordering of N is a bijective mapping 7 : N - {1,...,n}. Denote by TIV the set of
orderings of N. For each 7 € IIV and ¢ € N, denote by PT the coalition of predecessors of i,
ie., Pr={jeN|n(j)<m(i)}. Moreover, for each game v, denote by a™(v) the contribution

vector of 7, i.e., the vector defined by

al(v) =v(PF)-v(PF ~{i})Vie N. (2.2)
Note that a™(v) = x € RY is uniquely determined by the n equations x(P[) = v(PF) for all
1€N.

Remark 2.2. According to Shapley (1971) the core of a convex game v is the convex hull
of all of its contribution vectors:

C(v) z{ Z Ara" (V)

mellNV

Ae 2 0Vm e IIN, Y A = 1}. (2.3)
mellV

b}



As a consequence, for each ¢ >0 and each coalition S,

C(cu®) = {a: e RY

x(S):c,xj:OVjeN\S}. (2.4)

A (set-valued) solution o on a set I' of games assigns to each game v € I' a set of vectors

o(v) € X*(v). Let o be a solution on a set I' of games on N. Then o satisfies

e non-emptiness (NE) if o(v) # @ for all v e T,

e the null-player property (NP) if, for all v € I' and all null-players i € N, z; = 0 for all

xeo(v),
e additivity (ADD) if, for all v,u,w €T with w=u+v, o(u) +o(v) = o(w),
e super-additivity (SUPA) if, for all v,u,w € I" with w = u+v, o(u) + o(v) € o(w),
e individual rationality (IR) if, for all v e T and all z € o(v), x; > v({i}) for all i € N,
e Pareto efficiency (EFF) if o(v) € X(N,v) for all veT,

e scale covariance (SCOV) if, for all v e " and all a >0 with av e T, o(av) = ac(v).

The core satisfies NP, SUPA, IR, EFF, and SCOV on each set of games. It satisfies NE on
each subset of balanced games. The core satisfies ADD on certain sets of games as shown by
Bloch and de Clippel (2010), e.g., on each subset of I'***. Note also that a solution satisfying
ADD also satisfies SUPA, while the converse implication may not hold.

We conclude this section by proving the following useful lemma.

Lemma 2.3. Let I be a set of games such that I'°s € I'. Then the core on I' satisfies ADD
if and only iof I" € T'ver,

Proof. Let T be as hypothesized. The if part is well-known as mentioned. To show the

only if part, assume that the core on I' satisfies ADD on I'. Let vel' and let ST ¢ N. It

remains to show that v(S) +v(T) <v(SnT)+v(SuT). We may assume that S ¢ T and

T ¢ S because otherwise the inequality is obviously satisfied. Hence, there exists 7 € TIV

such that SNT ={ie N |7(i) <|SnT|} and SUT = {i e N |7(i) <|SuT|}. By Remark

2.1 there exist u,w € I'P* such that v + u = w. By Remark 2.2, z := a™(w) € C(w). As
6



['ros ¢ T' and as the core is assumed to satisfy ADD, there exist x € C(u) and y € C'(v)
such that z+y =2 As 2(SnT) =w(SnT) and 2(SuT) =w(SuT), we conclude that
z(SNT)=u(SnT),z(SuT)=u(SuT),y(SnT)=v(SnT), and y(SuT) =v(SuT).
However, v(SnT) +v(SuT)=y(SnT)+y(SuT)=y(S)+y(T) >v(S)+v(T). i

3. Axiomatization of the core on domains of convex games

In this section we provide a characterization of the core on an arbitrary cone of convex
games that contains all totally positive games. Here, we say that a set of games is a cone
if it is closed under multiplication with positive scalars (a set I' of games is closed under

multiplication with positive scalars if cv € T" for all v € I and ¢ > 0).

For this purpose we introduce one further property. This axiom may be regarded as a weak-
ening of a natural generalization to n-person games of a well-known property for 2-person
games used by Peleg (1989) in an axiomatization of the core based on some consistency
properties. As our characterization results do not rely on consistency properties, such a
generalization to n-person games seems reasonable. Recall that, according to Peleg (1989),
a solution satisfies unanimity for 2-person games (UTPQG) if the solution assigns the set of
all imputations, i.e., X" (v) = {z € X(v) | z; > v({i}) for all i € N}, to each 2-person game
v under consideration. Now, a 2-person game for which X* is nonempty is, up to strategic
equivalence, a unanimity game. Hence, UTPG mainly requires that the solution selects the
set of imputations for each 2-person unanimity game. Hence, a natural generalization of
UTPG to n-person games would be to require that the solution assigns to each unanimity
game its set of imputations, i.e., its core. Our new axiom is weaker. It only requires that
the vertices of the imputation set are contained in the solution of every unanimity game.
The formal definition is as follows. Let I'" be a set of games and let o be a solution on I'.

Then o satisfies
o unanimity (UNA) if, for all T € 2V \ {@} such that u” €T, 11 € o(u”) for each i € T.

The interpretation of UNA is simple: A solution that satisfies UNA is liberal in the sense
that it allows to assign the entire amount of money available in a unanimity game to each
player in the determining coalition. Hence, the convex hull of these vectors is the entire set

of imputations, i.e., the entire core. Clearly, the core satisfies UNA on any domain of games.

The following lemma is useful.



Lemma 3.1. Let I' 2P and o be a solution on I' that satisfies SUPA such that a™(v) €
o(v) € C(v) for all m e TIN and v € TP°. Then o(w) € C(w) for all weT.

Proof. Let v € I By Remark 2.1, there exist u,w € I'P* such that v + u = w. Let
yeo(v). Let S e 2N~ {@}. It remains to show that y(S) > v(S). To this end let 7 € TIV
such that S = {j € N [ n(j) < |S|}. By (2.2), ¥jesaj(u) = u(S). Hence, by SUPA,
a™(u) +y € o(w) € C(w), which implies that y(S) > v(S). a

Theorem 3.2. Let I' be a cone of games such that T'P°s ¢ T' c T’ Then the core is the
unique solution on I' that satisfies EFF, ADD, IR, NP, and UNA.

Proof. The core satisfies the axioms (see the two preceding sections). It remains to show
uniqueness. To this end let ¢ be a solution on I' that satisfies the desired six axioms.

Step 1: We first show that the prerequisites of Lemma 3.1 are satisfied. Let v € I'Pos,
If v =cu® for some ¢ >0, S € 2V ~\ {@} and = € o(v), then, by EFF, z(N) = v(N) = ¢,
and, by NP, z; = 0 for all i € N~ S. Hence, z(S5) = v(N). By IR, z; >0 for all j € S,
Hence, z € C'(v) by (2.4). For 7 e IV, a™(v) = ca™(v®). Hence, for ¢ € N, a™(v) € o(v) by
UNA and ADD. If ¢ = 0, then a™(v) = (0,...,0) € RV is the unique core element by (2.4).
By ADD, o(v) + a(u") = o(u®) so that, by UNA, o(v) # @, hence o(v) = {(0,...,0)}.
If ¢ > 0 such that ¢ € R\ N, then, for ¢/ € N with ¢/ > ¢, a™(c'u®) € o(c'u®) as shown
before. By ADD, o(cu®) + o((¢ = c)u®) 3 c'a™(u®). As o(cu®) € ¢C(u®) = C(cu®) and
a((c'=c)u’) c (¢ -c)C(u®) = C((¢ —c)u®), ADD guarantees that there are y € C'(cu®) and
z e C((¢" - c¢)u¥) such that y + z = a™(c'u®) == 2’. By (2.2), 2/(P7) = cu®(PF) for all i € N.
Hence, y(P7) = cu®(PF) and z(PF) = (¢’ - c)u’(PF) for all i € N so that y = a™(cu®) and
z=a"((c - c)u®). If v € I'P%s is arbitrary, then a™(v) € o(v) € C(v) by ADD.

Step 2: We now show that, for each v € T' and 7 € TIV, a™(v) € o(v) € C(v). Indeed, by
Lemma 3.1, o(v) € C(v). By Remark 2.1, there exist u,w € ['?* such that v +u = w. As
w e TP z:=a™(w) € o(w). By ADD, there exist x € o(u) € C(u) and y € o(v) such that
x+y=z Foreachre{l,...,n} put S"={ie N |n(i) <r} and note that z(S") = w(S").
As o(v) € C(v), we conclude that z(S7) = u(S™) and y(S™) = v(S") so that y = a™(v).

Step 3: We now finish the proof. If y is an arbitrary element of C(v), then, by (2.3),
Y=Y ey Ara™(v) for some A\; >0, e IV, such that ¥ v Ar = 1. As v =3 v Ao, and

as ca™(v) = a™(cv) and cv € I for all ¢ > 0, we get y € 0(v) because o satisfies ADD. i

8



Let I' be a cone of games such that I'?*s c I' c I'¢*. The following examples show that each

of the axioms employed in Theorem 3.2 is logically independent of the remaining axioms:

e The solution o' on I, defined by
ol(v) = (C(v) -RY)n{z e RN | ; > v({i}) for all i e N'}
for each v € I', satisfies all axioms except EFF.

e The solution 02 on I, defined by o2(v) = C(v) if v € I' contains at least one null player
and o%(v) = C(v) u{ESD(v)} if v € I" does not contain a null player, where ESD is
the equal surplus division value given by ESD;(v) = v({i}) + (v(N) = Xjenv({7})/n

for each v € I' and each i € N, satisfies all axioms except ADD.

e The solution o3 on I', defined by o3(u?) = {z € X(uT) | z; =0 for all j e N\T} for
all T e 2V ~ {@} and, for each v € I, by 03(v) = Y ean gy (v)o?(ul), satisfies all

axioms except IR.

e The solution 0% on I, defined by o%(v) = {z € X(v) | x; > v({i}) for all i € N} for all
v € I', satisfies all axioms except NP provided that n > 3. For n = 2, NP follows from
IR and EFF.

e The solution ¢° on I', defined by o°(v) = {¢(v)} for each v € I, where ¢(v) is the
Shapley value (recall that ¢(v) = ¥ gy~ a’(v)

——), satisfies all axioms except UNA.

The following example, which can easily be generalized to the case n > 3, shows that it is
crucial to assume in Theorem 3.2 that the set I' is a cone. For n = 2, all convex games are

totally positive.

Example 3.3. Let n =3, say N ={1,2,3}, let vy = ul? + 2013} + ¢{1:2} 4+ {13} 4 {23} — 4NV,
and let T" = TP U {vy}. Note that vy € T'v**. We define the solution ¢ on I" by o(vp) =
{Xa™(vg) + (1 = N)a™(vg) | 0 < X < 1,m,7" € [IN} and o(v) = C(v) for all v e TPos. As
{a™(vo) | m e TIV} = {(0,2,3),(1,1,3),(1,2,2)}, we obtain

o(vg) ={(AN,2-XA,3)|0< A<} U{(N2,3-N)|0< AT u{(1,2-X,2+X)|0< A<},
ie.,

Xi=0(v9)—(0,1,2)={( A\, 1-X, 1) |0 < A< TJU{(A\, 1, 1-X) [0 < A < 1}U{(1,1-\, \) |0 < A < 1.
9



Except ADD, the remaining axioms in Theorem 3.2 are punctual/“local” properties, i.e.,
properties that do not require to compare games. All properties are satisfied for all games
in I'P°$ because restricted to this domain our solution is the core. EFF, IR, and NP are also
satisfied for vy because o(vg) € C(vg). As vg is not a unanimity game, UNA is also trivially
valid. Hence, it remains to show that ADD is satisfied. For this purpose, let u,v,w € I’
such that u +v = w. By SUPA of the core it remains to show that o(w) € o(u) + o(v).
If u,v e I'Pos, then w € I'P*¢ and the proof is finished by ADD of the core. The case that
u = v = vy does not appear because 2vg ¢ I'. Hence, we may assume that u = vg,v € ['P5,
and w € T'P*s. Hence, v = /v + v’ for some v’ € TP°. By ADD of the core, o(w) = C(w) =
Cvg+v) =C(vg+uN) + C(v") = o(vg + uN) + o(v'"). Hence, it suffices to consider the case
v=ud. Let v; = vop—ul? - 2ul} ie., v; is the O-normalization of vy. As the core is
covariant under strategic equivalence, it remains to show that C'(v; +uV) ¢ X +C'(u?). Let
zeo(vy+ul) =C(vy +u?). By symmetry of vy, hence of vy + 1, we may assume that
z3 > 1 because z(N) =3. Let = (=2-, -2-,1) and y = z — . Then (see Fig. 1) z € X and

Z1+22) 21422

y € C'(uV) so that the proof is finished.

Figure 1: Sketch to Example 3.3

(0,0,3) (0,0,2)

(1,0,2) (0,1,2)

(2,0,1) (0,2,1)
(2,0,0) (1,1,0)  (0,2,0) (1,0,0) (0,1,0)

(3,0,0) (2,1,0) (1,2,0) (0,3,0)

4. Axiomatization of the core on general domains of games

We use the results of the former section to establish characterizations of the core on broader

domains of games. An immediate consequence of Theorem 3.2 is the following corollary.

Corollary 4.1. The core is the unique solution on I that satisfies EFF, IR, NP, NE,
UNA and SUPA and, on I'P*¢, ADD.
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Proof. The core satisfies the desired properties. In order to show uniqueness, let o
be solution that satisfies EFF, IR, NP, NE, UNA, and SUPA on I'** and ADD on I'Pos.
Let v € T Tt remains to show that o(v) = C'(v). For w € '’ g(w) = C(w) by
Theorem 3.2. Hence, by Lemma 3.1, o(v) ¢ C(v) for all v € T*@. In order to prove the
converse inclusion, let = € C(v). If n = 2, then v is convex so that a™¥(v) > 0 and
o(aN(v)u) = C(aN (v)ul). Moreover, C(att(v)ul?) = {al@ 11} for all i € N so that, by
NE, C(al? (v)ullt) = o(al? (v)uld). By ADD of the core on TV z € ¥, v C(al® (v)uld) +
C(a™N(v)u(N)) so that, by SUPA, = € o(v).

For n > 3 we proceed as Peleg (1986) by considering the game w given by w({i}) = v({i})
for all i e N and w(S) = z(S) otherwise. Note that C(w) = {x}. By Lemma 3.1 and NE,
o(w) = C(w) = {x}. Furthermore, set v = v—w and note that C(u) = {(0,...,0)}. As before
we conclude that o(u) = {0}. SUPA finishes the proof. o

Note that NE is not only crucial in the foregoing proof, but also necessary for the statement
of Corollary 4.1. Indeed, the solution that assigns the core to each totally positive game
and the empty set to each other balanced game satisfies EFF, IR, NP, UNA, SUPA, and,
on I'Ps ADD, and it violates NE.

In order to provide a characterization of the core on an arbitrary set of games that contains
the set of totally positive games, we note that, by Lemma 3.1, the core on such a set of
games is the maximum solution that coincides with the core on I'P* and satisfies SUPA.
Here, “maximum” is meant in the sense that each solution o that satisfies the mentioned
properties is a subsolution of the core (i.e., o(v) € C(v) for all v € I') and that the core
satisfies the mentioned properties. In order to replace “maximum”, we reconsider the axiom
SUPA. Recall that a solution ¢ on a set I' of games satisfies SUPA if for each v € I' and all
x e RN:

reo(v)={x}+o(w)co(v+w) for all weT such that v+w el
This formulation of SUPA motivates to define the following “converse” version of SUPA,
which requires that, for each v € I and all z € RV:

reo(w) <= {x}+o(w)<co(v+w) for all w eI such that v+wel (4.5)

Assume that I' contains ', the set of totally positive games. Then (4.5) is satisfied for
a solution ¢ if and only if 0 € RY is a member of ¢(0). But even if the condition w # 0
11



is added in (4.5) as a condition, the arising property remains very weak. For instance, the
solution that assigns the core to each totally positive game and the empty set to each other
game is still satisfying the aforementioned slightly stronger property provided I' contains,
for each v € T, also v + w for each w € I'"* ~ {0}. We now show that the core on I' satisfies
the following property that is even stronger than this modification of (4.5). A solution ¢ on

a set I' of games satisfies

e converse super-additivity (CSUPA) if, for all v € T and all 2 € RV the following condi-
tion is satisfied: If x +y € o(v+w) for all y € o(w) and all w € ' nTP° such that w # 0

and v+w e I'nTP then x € o(v).

Lemma 4.2. Let I' be a set of games that contains I'°5. Then the core on I' satisfies
CSUPA.

Proof. Let v el and x € RY such that {z} + C(w) € C(v +w) for each w € I'P** \ {0} such
that v+w € I'P°s. It remains to show that € C'(v). By Remark 2.1, there exists w € I'?* such
that v+w e I'P>5. We may assume that w # 0 because in the case that v € ['"* we may select
an arbitrary w € 7\ {0}. Assume, on the contrary, z € RN\ C(v), then either x(N) > v(N)
or there exists S € N such that z(S) < v(.S). In the former case (z + 2)(N) > (v+w)(N)
for all z € C'(w) so that x + z ¢ C'(v+w). In the latter case, there exists z € C'(w) such that
z(S) =w(S). Hence, (z+2)(5) < (v+w)(S), i.e., v+ 2z ¢ C(v+w) as well, and the desired

contradiction has been obtained. O

Thus, we may now show the following result.

Proposition 4.3. Let TP c I". A solution on I" that coincides with the core on I'P% satisfies
SUPA and CSUPA if and only if it coincides with the core on the entire set I.

Proof. The core satisfies SUPA so that the if part is due to Lemma 4.2. For the only if

part, assume that o satisfies SUPA and CSUPA on I' 2 I'P* and coincides with the core

on I'Pos. Let v e I'. By Lemma 3.1, o(v) € C(v). In order to show the other inclusion, let

x € C(v). By SUPA of the core, {z} + C(w) € C'(v+w) for all w eI such that v+w €T,

hence z € o(v) by CSUPA. o
12



Therefore, Proposition 4.3 and Theorem 3.2 lead to the following corollary.

Corollary 4.4. Let " be a set of games that contains I'P°s. Then the core is the unique
solution on I that satisfies EFF, SUPA, CSUPA, IR, NP, and UNA and, when restricted to
Iros - ADD.

Further axiomatizations of the core that avoid “ADD on I'?**” may be obtained by replacing

IR and NP by one of the following versions of reasonableness.

For a game v and i € N denote the maximal and minimal contribution of i by b!***(v) and
bmin(v), ie.,

b (v) = maxgen gy (v(S U {i}) —v(S5)) and

b (v) = mingen iy (v(S U {i}) - v(9)).
Recall that x € RY is called reasonable from above (Milnor, 1952) if x; < b**(v) for all i € N.
Similarly, we say that x is reasonable from below if x; > b*"(v) for all i € N. Arguments
supporting these kinds of reasonableness are as follows. It seems, indeed, unreasonable to pay
to any player more than her maximal contribution to any coalition and, vice versa, a player
may refuse to join any coalition if she does not receive at least her minimal contribution.

Note that individual rationality implies reasonableness from below.

We now define coalition-wise reasonableness as follows. The maximal and minimal contri-
bution of a coalition T' € 2V \ {@}, respectively, is

b%ax(v) =maxgen.r(v(SUT) -v(S)) and
b (v) = mingeyr(v(SUT)-v(S)).

Let I" be a set of games and o be a solution on I'. Say that o satisfies

e coalition-wise reasonableness from above (REAB) if, for all v € T', z € o(v) and T €
2V (), o) < (o)

e coalition-wise reasonableness from below (REBE) if, for all v e I', 2 € o(v) and T e
2V A{a}, x(T) > b (v).

Note that the core satisfies REBE by definition. If z € X*(v) does not satisfy REAB,
then there exists a coalition T such that z(T) > v(SuUT) —v(S) for all S € N\ T, hence,
z(T) > v(N)—-v(N ~T) which implies T'# N and, as (N) <v(N), z(N\T) <v(N\T).
Hence, the core also satisfies REAB.

13



Now, if v e ez, T'e 2N \ {@}, and S € N \ T, then
v(S)+u(T)<v(SuT)and v(SUT)+v(N~T) <v(N)+v(S)

so that b2 (v) = v(T) and b2**(v) =v(N) —v(N~T).
Remark 4.5. Let v e ['ver,

(1) The core of v coincides with the set of all feasible vectors that are coalition-wise
reasonable from below because b (v) = v(T') for all T € 2V \ {&}.

(2) Similarly it can be shown that the core of v is the set of Pareto efficient feasible vectors
that are coalition-wise reasonable from above.

We conclude with the following result.

Theorem 4.6. Let I'*s ¢ T'. The core on I' is the unique solution that satisfies REBE,
UNA, SUPA, SCOV, and CSUPA. Moreover, in this characterization REBE can be replaced
by EFF and REAB.

Proof. 1t remains to show the uniqueness part. Let o be a solution that satisfies REBE (or
EFF and REAB, respectively), UNA, SUPA, SCOV, and CSUPA. In view of Proposition
4.3 it suffices to show that ¢ coincides with the core on I'P?%. In view of Remark 4.5, 0 is a
subsolution of the core on I'"*. Now, we proceed similarly as in the proof of Theorem 3.2.
Let v eTPos. Let T € 2V N\ {@}, ¢ >0, and 7 € IIV. By UNA and SCOV, a™(cu”) € o(cul).
Hence, if v # 0, then a™(v) € o(v) by SUPA. If v = 0, then 0+ a™(w) € 0(0 + w) for each
w e TP~ {0} so 0 =a"(0) € 0(0) is guaranteed by CSUPA. The proof can now be completed
by literally copying Step 3 of the proof of Theorem 3.2 by using SUPA instead of ADD. O

It should be noted that each property in Theorem 4.6 is logically independent of the remain-
ing properties.

Indeed, the solution that assigns X (v), the set of feasible Pareto efficient vectors, to each
v e I' exclusively violates REBE or REAB, respectively.

The solution o defined by o(v) = {z € X*(V) | 2(T) 2 v(T)VT € 2N ~ {N}} for all v e T
exclusively violates EFF and REBE.

The solution that assigns the empty set to each additive game and the core to each other

14



game in I" exclusively violates UNA.

The solution o defined by o(v) = {a™(v) | # € IV} for all v € TP° and o(w) = C(w) for all
w e '\ T'Pos exclusively violates SUPA.

The solution that assigns the core to each game v € I satisfying v(S) e Nu{0} for all Sc N
and the empty set to all other games in I' satisfies all axioms except SCOV.

The solution o* defined by o*(v) = C'(v) for all v € I'?*¢ and o*(w) = @ for all w e " \ ['Pos
exclusively violates CSUPA provided that I'"* ¢ I". On I'P*% the core is characterized by the

remaining properties.

5. Concluding remarks

Some final remarks are of interest.

o For T c 2V~ {g}, put I'* = {v el |aT(v) #0 =T € T} , where o is defined by
(2.1). That is, ['¥¢* is the set of convex games that are linear combinations of unanimity
games on coalitions in 7. Moreover, let I'?* be the set of all totally positive games
that are linear combinations of such unanimity games, i.e., I"?* = I'4¢* n TP, Then

the statement of Theorem 3.2 is valid for each cone I satisfying " ¢ I" ¢ I'¢*.

e A game v is called almost positive if a*'(v) > 0 for all T ¢ N with |T'| > 2. Hence, almost
positive games arise by adding inessential (additive) games to totally positive games.
It should be noted that despite of Example 3.3 the statement of Theorem 3.2 holds
for an arbitrary set of almost positive games (not necessarily a cone) that contains all

totally positive games because the core of an inessential game is a singleton.

e Note that CSUPA is the only axiom invoked in Corollary 4.4 that has to be requested
for all games in I', whereas it is sufficient to apply all other axioms to totally positive

games.

Fig. 2 illustrates the domains for which our results are formulated. The union of the green
cones reminds us that Theorem 3.2 works on each set of games contained in the set of convex
games (the purple cone) that contains all totally positive games (the blue cone) and is a
cone. Corollary 4.4 and Theorem 4.6 are valid on each set of games that contains all totally
positive games (the blue cone). Such a set of games can include non-balanced games and

not all convex games. Fig. 2 illustrates that Theorem 3.2 can be applied to sets of games
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Figure 2: Domains of Games
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that are not necessarily convex. This is also true for the sets of games for which Corollary
4.4 and Theorem 4.6 work. Finally, Corollary 4.1 applies to the set of balanced games (the

orange cone).
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