
HAL Id: hal-04053143
https://hal.science/hal-04053143

Submitted on 2 Oct 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Adaptive Look-Ahead Distance Based on an Intelligent
Fuzzy Decision for an Autonomous Vehicle

Fadel Tarhini, Reine Talj, Moustapha Doumiati

To cite this version:
Fadel Tarhini, Reine Talj, Moustapha Doumiati. Adaptive Look-Ahead Distance Based on an Intel-
ligent Fuzzy Decision for an Autonomous Vehicle. 35th IEEE Intelligent Vehicles Symposium (IV
2023), Jun 2023, Anchorage, AK, United States. �10.1109/IV55152.2023.10186791�. �hal-04053143�

https://hal.science/hal-04053143
https://hal.archives-ouvertes.fr


Adaptive Look-Ahead Distance Based on an
Intelligent Fuzzy Decision for an Autonomous

Vehicle

Fadel Tarhini
CNRS, Heudiasyc UMR 7253
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Abstract—Autonomous vehicles use a set of perceptual and
localization data proceeding from sensor measurements, in order
to plan a certain trajectory based on decision-making, and finally
to track the generated path. Trajectory following is performed
by adjusting the steering angle generated by a lateral controller
based on a geometric or non-geometric approach. The objective
of the lateral controller is to minimize the lateral error between
the vehicle and the path at a target point at a look-ahead
distance from the vehicle. This paper investigates the look-ahead
distance due to its high impact on performance alteration, and
energy consumption. An intuitive analysis will be performed to
study the effect of three varying parameters on the look-ahead
distance, and the necessity to consider them. Then, a Fuzzy Logic
approach will be established to adjust the look-ahead distance
in accordance with three parameters: longitudinal velocity, road
curvature, and original consideration of road adherence. Finally,
a non-geometric model-based lateral controller will be developed
based on the Super-Twisting Sliding Mode Control technique to
control the steering angle via the Active Front Steering. The
membership functions and the rules of the inputs and output of
the Fuzzy Logic approach are implemented in a Matlab/Simulink
environment and tested on a validated full non-linear vehicle
model. Simulation results indicate the effectiveness of the fuzzy
decision approach on the performance and energy consumption
of the autonomous vehicle.

Index Terms—Autonomous Vehicle, Fuzzy Logic, Look-ahead
Distance, Super-Twisting Sliding Mode Control

I. INTRODUCTION

The Grand Challenge was designed to extend beyond
traditional vehicle driving and tap into the ingenuity of
the wider research community. Such challenges can boost
research growth and attract a wide variety of researchers in
correspondence to this domain. Research on Autonomous
Vehicles (AVs) has been progressively accelerating since the
foundation of the first DARPA Challenge in 2004 [1].
Following the decision-making based on a defined policy,
the autonomous vehicle generates a path and acts toward
tracking it. Path-tracking is achieved by controlling the
lateral dynamics by adjusting the vehicle steering angle.
[2] developed an efficient Model Predictive Control (MPC)
for lateral control considering path preview to improve the
robustness and computational efficiency in high-speed lateral
motion control. A design was proposed for an automatic
steering controller and has been implemented on an 18.3-m
articulated bus for revenue service [3], where the resultant
system achieved all performance requirements, and the
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revenue service at Eugene, OR, USA, started in June 2013.
[4] presented a novel robust MPC with a finite time horizon,
for the purpose of coordinating between path tracking and
direct yaw moment control, while [5] designed an MPC for
path following and yaw motion control. As an approach to
couple the lateral and longitudinal dynamics, [6] proposed to
follow a trajectory while controlling the vehicle’s longitudinal
velocity.
Lateral controllers can be divided into geometric controllers
such as Pure Pursuit (PP) and Stanley method, and non-
geometric control-theory-based controllers, like for instance
model-based controllers. The objective of the lateral
controllers is to minimize the lateral displacement error
between the vehicle and the reference lane. Instead of
immediately attempting to minimize the error from the
vehicle’s center of gravity, it is minimized at a target point
at a look-ahead distance in front of the vehicle. The control
concepts based on look-ahead systems have been researched
since the 90s. Ollero proposed a method that generates the
appropriate vehicle’s steering angle command by combining
fuzzy logic with the geometric pure-pursuit (PP) technique
[7]. Four variables served as inputs in his fuzzy system:
the distance from the vehicle to the nearest point, actual
velocity, curvature at the target point, and the difference
between vehicle heading and the heading of the nearest point
in the path. [8] proposed an improved PP with an adaptive
adjustment of the look-ahead distance based on the steering
angle and the deflection angle. [9] proposed a non-linear
relation between the look-ahead distance and the steering
angle rate and the velocity. The aim was to design a controller
that minimizes the steering angle rate by determining a proper
look-ahead distance. [10] designed an output measurement
matrix using clothoidal constraints to consider look-ahead
distance in the kinematic vehicle lateral motion model. [11]
proposed an adaptive Brownian motion salp swarm algorithm
to optimize the look-ahead distance for the PP method.
Other recent studies have considered particular varieties
of lateral controllers based on a look-ahead distance. [12]
presented an MPC-based path-following controller with
steering angle envelopes, and a look-ahead distance adapted
to velocity variation. In order to reduce the overall monetary
cost of hybrid electric vehicles, [13] proposed a look-ahead
traffic information-based real-time MPC scheme where the
look-ahead horizon considers vehicle-to-vehicle and vehicle-



to-infrastructure information extraction.
Literature indicates that the look-ahead distance has often
been treated based on vehicle longitudinal velocity or road
curvature. Other studies considered tuning this distance in
terms of one or more of the following: heading angle, steering
angle, steering angle rate, lateral displacement error, lateral
error at the initial conditions, etc. The look-ahead distance
based on road adherence has not been the subject of any
investigation, to the best of our knowledge. In this paper, a
fuzzy logic approach was applied to handle three parameters
that affect the look-ahead distance. These inputs were defined
as the vehicle’s longitudinal velocity, road curvature, and
road adherence.

The paper contributions are stated as:

• For the first time, a study is conducted on the effect of road
adherence on the look-ahead distance.

• Development of a novel fuzzy logic approach considering
three inputs: vehicle’s longitudinal velocity, road curvature,
and road adherence, with the look-ahead distance as the sole
output.

• Establishment of complex membership functions to guaran-
tee smooth transitions and assign a total of 75 rules based
on several simulations and driver experience.

• Conducting several tests to demonstrate the effectiveness
of the proposed method in terms of vehicle stability, path
tracking, and energy consumption.

The paper is structured as follows: Section II discusses lateral
control based on a look-ahead distance, elaborating a set
of rules based on a study of the effect of the parameters
under consideration on the look-ahead distance. Section III
introduces the fuzzy logic approach to determine the look-
ahead distance. Results and discussion are presented in Section
IV, followed by a conclusion in Section V.

II. LATERAL CONTROL BASED ON A LOOK-AHEAD
DISTANCE Ls

The objective of attaining vehicle autonomy is a non-
trivial problem. Autonomous vehicles are driven by a complex
interconnection between several modules, from perception to
localization, planning, and control. The objective of the latter
is to regulate the lateral dynamics in order to minimize the
lateral displacement error between the vehicle and a target
point at a look-ahead distance Ls on the vehicle’s longitudinal
axis (see Fig. 1).
Unlike geometric methods, this study considered a non-
geometric model-based approach for trajectory following. Lat-
eral control is achieved using the Active Front Steering (AFS)
mechanism. The AFS actuator comprises a small electric
motor that generates a controlled steering angle δc, which is
determined based on a control technique. The Super-twisting
Sliding Mode Control (STSMC) is applied, which is a second-
order sliding mode control. The vehicle is localized on a
map formed of recorded data points, and the lateral error ey
is computed by projecting the corresponding points on the
vehicle’s longitudinal axis. Therefore, the objective is to drive
the lateral error at a look-ahead distance (ey@Ls) and its rate
to zero. To this end, let’s define the sliding variable

sy = ėy@Ls + kyey@Ls, with ky > 0 (1)
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Fig. 1: Look-ahead distance

where sy has a relative degree equal to 1 w.r.t the control
input δc. Assume that there exist S0, bmin, bmax, C0, Umax

verifying that for all x ∈ Rn and |s(x, t)| < S0:
|u(t)| ≤ Umax

|Φ(s, t)| < C0

0 < bmin ≤ |ξ(s, t)| ≤ bmax

(2)

where Φy(sy, t) and ξy(sy, t) are bounded functions and u is
the control input. Hence,

s̈y(sy, t) = Φy(sy, t) + ξy(sy, t)δ̇c(t) (3)

Finally, the controlled steering angle δc is given by

δc = −αδ,1|sy|τδsign(sy)− αδ,2

∫ t

0

sign(sy) dτ, (4)

where τδ is a constant in the interval ]0,0.5] and αδ,i with i =
[1,2] are positive constants satisfying the conditionsα1 ≥

√
4C0(bmaxα2+C0)
b2min(bminα2−C0)

α2 >
C0

bmin

(5)

The STSM control input δc (4) guarantees the convergence of
sy to zero in a finite time, hence ėy@Ls+kyey@Ls → 0. Once
reaching the sliding surface, ey@Ls converges exponentially to
zero with a rate ky > 0. The reader can refer to [14] for the
convergence analysis.
Tuning the look-ahead distance Ls solely based on the velocity
or road curvature is not sufficient. There is a set of complex
scenarios that the autonomous vehicle can’t handle. Moreover,
it will be demonstrated that the look-ahead distance must be
tuned with the adherence variation, in dependence on the road
curvature.

A. Longitudinal Velocity Vx
Trajectory following is associated with velocity control to

ensure comfortable driving. The longitudinal velocity of the
vehicle is controlled to track a desired velocity profile Vxdes

(6) which takes into consideration the speed limit (Vxlim
) and

comfort criteria by keeping the lateral acceleration under a
maximum threshold aymax

= 4 m/s2 as stated in [15].

Vxdes
= min

(√aymax

ρ
, Vxlim

)
(6)



where ρ is the road curvature. Then, longitudinal velocity
control is achieved using the STSMC for Vx to track Vxdes

.
As similar to sy , let’s define

sx = (Vx − Vxdes
) + kx

∫
(Vx − Vxdes

) dt (7)

where kx > 0. Then the control input Tm representing the
total driving torque is given by

Tm = −αTm,1|sx|τTm sign(sx)−αTm,2

∫ t

0

sign(sx) dτ, (8)

where αTm,i with i = [1,2] are positive constants satisfying
conditions of (5). τTm

is a constant in the interval ]0,0.5].
Look-ahead systems use perceptual data extracted from vision
sensors such as cameras and LiDARs to compute the lateral
displacement error in front of the vehicle. Hence, there exist
time delays from the sensors to the controller and the actuator.
As a consequence, if Ls remains near the vehicle as the vehicle
speed increases, the actuator may be unable to minimize
the lateral error. Therefore, the look-ahead distance must be
regulated with the velocity variation.
As Ls is incremented, the distance needed to be traveled
will decrease, however, the lateral error will increase. Con-
sequently, lower traveled distance implies lower energy con-
sumption (see Fig. 2). On the other hand, Ls must not be
excessively augmented, in order to take into consideration the
possibility of near obstacles. Therefore, it is decided that as
the vehicle speed raises, Ls should increase accordingly to
account for time delays and to compromise between the energy
consumption and the lateral error, under a certain limit to allow
a reasonable time for obstacle detection.
Several studies have been conducted on tuning Ls with the ve-
locity variation only. [3] estimated Ls manually by analyzing
the closed-loop poles with respect to speed and lateral control
feedback gains at different target points. Kuwata proposed a
tuning strategy that adapts the look-ahead distance according
to the velocity [16]. The MIT method proposed a geometric-
based approach for the path-tracking problem by adjusting Ls
as a function of the velocity [17]. [18] established a linear
relationship between the velocity and the look-ahead distance
to vary from 5 to 25.
Indeed, the desired velocity profile merely reflects its de-
pendency on road curvature. Nevertheless, ρ can’t be totally
represented by Vx, which can be influenced by other traffic
factors.

B. Road Curvature ρ
The road is represented by a sequence of points (way-

points) and modeled by a parametric curve. The map-matching
module determines the vehicle’s location in relation to the
points and computes the curvature of each point. The curvature
estimation is adopted from [19]. The curvature of each point
on the candidate’s path is determined by:

ρiM =
Si
M

Qi
M

(
ρPbf +

(1− qiρPbf )
∂2qi

∂s2
+ ρPbf

∂qi

∂s

2

Qi
M

2

)
(9a)

Si
M = sgn(1− qiρPbf ), Q

i
M =

√
∂qi

∂s

2

+ (1− qiρPbf )
2 (9b)

where Pbf represent the way-points, ρPbf
is the curvature

profile, (s, q) represent a local curvilinear coordinate system,
and i is an iteration index.
A small Ls forces the system to follow the path more precisely
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Cutting-Corner 
Phenomenon

Large Ls

Target
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Fig. 2: Effect of Ls variation in different situations

and allows a higher amount of curvature covering. However,
small Ls results in oscillation during the lane-tracking, con-
sequently making the vehicle unstable. Whilst, a large Ls
reduces overshoot as the look-ahead distance acts as a damping
factor [18], however, if it exceeds a higher limit, the tracking
performance will deteriorate, leading to certain phenomena
such as the cutting corner (Fig. 2).
Researchers have tended to study the effect of ρ on Ls. In
order to avoid the cutting-corner problem, [20] improved the
PP method, by heuristically selecting a look-ahead point by
considering the relationship between a vehicle and a path,
using the Dubins path algorithm. [21] extended the PP method
by replacing the employed circle with a clothoid in order to
decrease tracking errors. A simple feedback controller that
uses vehicle lateral deviations at three look-ahead points is
proposed in [22]. [23] tuned Ls by applying fuzzy logic to
combine as inputs, the distance from the current location to
the reference path and its changing rate.
Therefore, as road curvature increases, it is preferred to
decrease the look-ahead distance to provide lower lateral
errors, avoid the cutting-corner problem, and avert choosing
target points outside the path. Subsequently, as road curvature
decreases, reflecting a straight non-curvy road, Ls can be
augmented to preclude the oscillations and lower the amount
of energy consumption (see Fig. 2).

C. Road Adherence µ

Road adherence µ represents the capability of the tire to
adhere to the road without slipping, or in other terms the
tire-road friction. This parameter has been heavily researched
due to its impact on vehicle stability, and its importance for
trajectory planning. [24] presented three algorithms based on
onboard sensor measurements (brake and engine torques and
GPS) to estimate road adherence in real-time, and [25] pro-
posed a framework for estimating the road friction coefficient
while ensuring stability and robustness using the total aligning
torque in the vehicle’s front axle during steering. In this study,
we considered that µ is accessible.
The lateral acceleration ay can be related to the yaw rate ψ̇
and the side-slip angle β by the relation (10). As the lateral
stability is highly dependent on ay , [15] proposes to maintain
ay below a threshold depending on µ.

ay = Vx(ψ̇ + β̇) ≤ µg (10)
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Hence, as road adherence decreases, so does the maximal
allowable lateral acceleration.
Small Ls lead to oscillations in the path-tracking of the
autonomous vehicle. Due to the low friction between the tire
and the road, these oscillations are amplified on low-adherence
roads. Consequently, this results in a higher slip angle causing
the lateral acceleration to increase. Therefore, Ls should be
adapted to have higher values in the case of low-adherence
roads.
Let’s define two values of Ls: Lsminµ

, Lsmaxµ
represent-

ing respectively the minimum and maximum limits on low-
adherence roads. On low-curvature roads, as µ decreases, it is
preferred to lower the look-ahead distance in order to minimize
as much as possible the lateral error to avoid unnecessary road
divergence. However, Ls can be decreased to a certain limit
that takes the tracking oscillations into account. Hence, on
low-adherence roads, as ρ decreases to the minimum, Ls is
assigned as Lsminµ

, where Lsminµ
increases as µ decreases.

On the other hand, for high-curvature roads, the vehicle is sub-
jected to a steering angle δ in order to track the desired path.
Thus, an additional fluctuated steering reflected by the tracking
oscillations to δ will result in a large lateral error and impose a
high lateral acceleration leading to vehicle instability (see Fig.
3). Therefore, Ls should be increased on the high-curvature
low-adherence roads. Hence, on low-adherence roads, as ρ
increases to the maximum, Ls is assigned as Lsmaxµ

, where
Lsmaxµ

increases as µ decreases.
Therefore, the look-ahead distance must be adapted to the
adherence variation, which in terms depends on the road
curvature. The study should be generalized by including the
longitudinal velocity in order to deem the complex scenarios
that the on-road vehicle may encounter. Table I summarize
the rules for adapting Ls to the three parameters, where
LsmaxV

, Lsmaxρ
present a compromise between energy con-

sumption and path-tracking accuracy and respect the road

TABLE I: Look-ahead distance adaptation to V , ρ, µ

Parameter Variation Look-ahead distance

V ↗ Ls ↗ until LsmaxV

ρ ↘ Ls ↗ until Lsmaxρ

µ ↘ and ρ ↘ Ls ↘ until Lsminµ
; for each µ

µ ↘ and ρ ↗ Ls ↗ until Lsmaxµ
; for each µ

Fuzzy Inference 
Engine

Rule Base

Fuzzification Defuzzification

Linguistic Inputs Linguistic Outputs

Crisp Inputs Crisp Output

Fig. 4: Fuzzy system structure
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rules, Lsminµ
> {Lsmaxρ

, LsmaxV
}, and {Lsminµ

, Lsmaxµ
}

increase as µ decreases.

III. FUZZY LOGIC CONTROL

The theory of the relationship between the look-ahead dis-
tance and the velocity and road curvature has not yet matured.
There is no mathematical model that can relate the mentioned
three variables. Besides, Ls must be adapted heuristically
to road adherence. So, what is available is the performed
intuitive analysis, driver experience, and data extracted from
several simulations. Hence, the fuzzy logic approach is utilized
in view of the fact that it does not require a complete
mathematical model of the system. Furthermore, Sugeno and
Nishida demonstrated the capability of fuzzy control to handle
nonlinear control problems through oral instructions [26].
Fuzzy logic employs a set of rules based on expert knowledge
to reach the fuzzy decision conveyed by linguistic values. The
structure of the fuzzy logic system is given in Fig. 4. It consists
of three stages: 1) Fuzzification where the crisp inputs are
transformed into linguistic ones by computing a degree of truth
for each of the input values, depending on the shape of their
associated membership functions. 2) The Inference Engine is
responsible for applying the defined rules to the fuzzy input
in order to generate the fuzzy output. These rules are used to
evaluate the linguistic values and map them to the output fuzzy
set. 3) Defuzzification is the transformation of the linguistic
output fuzzy values into crisp values that provide the most
accurate representation of the fuzzy set.
The membership functions for the velocity V , curvature ρ, and
adherence µ are shown in Fig. 6. These functions are defined
as a combination of Gaussian functions to provide a smooth
variation, where each Gaussian function is represented by

f = e(−
(x−c)2

2σ2 ) (11)
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Fig. 6: Fuzzy Logic Inputs: V , µ, and ρ

where c is the mean and σ represents the standard devia-
tion. Five fuzzy sets are defined for the velocity V: {Small
(S), Medium-Small (MS), Medium-Large (ML), Large-Small
(LS), Large-Large (LL)}. Three fuzzy sets for the adherence
µ: {Small (S), Medium (M), Large (L)}, and five sets for
the curvature ρ: {Small (S), Medium-Small (MS), Medium-
Medium (MM), Medium-Large (ML), Large (L)}.
The Rule Base in the Inference Engine is established based on
the driver’s experience and multiple conducted simulations.
Rules are defined in terms of two parameters (V , ρ) for each
set of µ. Hence, there are a total of 75 rules divided into 3
tables shown in Tables II, III, IV. For each set of values for
the inputs (V , ρ, µ), there exists one value for the output Ls.
These values abide by the rules deducted from the analysis in
section II. The fuzzy implication is solved by the Mamdani
inference method (min-min-max) [27].
The membership functions of the output fuzzy variable Ls are

TABLE II: Rules for µ = L

V

ρ

Ls S MS ML LS LL
S ML LS LM LL HS

MS MM ML LS LM LL
MM MS MM ML LS LM
ML SL MS MM ML LS
L SM SL MS MM ML

TABLE III: Rules for µ = M

V

ρ

Ls S MS ML LS LL
S SL MS MM ML LS

MS MS MM ML LS LM
MM MM ML LS LM LL
ML ML LS LM LL HS
L LS LM LL HS HM
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Fig. 7: Fuzzy Logic Output: Ls

TABLE IV: Rules for µ = S

V

ρ

Ls S MS ML LS LL
S MS MM ML LS LM

MS MM ML LS LM LL
MM ML LS LM LL HS
ML LS LM LL HS HM
L LM LL HS HM HL

given in Fig. 7, in the form of Gaussian function (11). Twelve
sets are defined for the look-ahead distance Ls: {ij} where i:
{Small (S), Medium (M), Large (L), Huge (H)} and j: {Small
(S), Medium (M), Large (L)}. Finally, the centroid method is
used for the defuzzification process.
As µ decreases, the required look-ahead distance increases
drastically, up until a certain limit. For µ = 0.5, it has been
noticed that Ls should be roughly 18 for low-curvature roads,
and as it goes down, Ls should be augmented. As shown in
Fig. 7, Ls ranges from 1.5 to 13. More membership functions
will render the system more complex and impose more rules.
Expanding the membership functions, on the other hand, will
result in a greater discontinuity in Ls and reflect an instability
to the vehicle. In light of this, an adherence supervisory block
is inserted into the system. This block analyzes road adherence
and generates an additional look-ahead distance Lsadd to be
combined with Ls. Lsadd can take several values and increases
as µ decreases. Further, if µ decreases below a minimum
threshold µmin reflecting a terrible road condition, then the
effect of varying Ls dwindles. In this case, the supervisory
block assigns 0 to Lsadd and requests an emergency braking.
The complete control scheme is shown in Fig. 5.

IV. RESULTS AND DISCUSSION

The proposed approach was implemented in Simulink/Mat-
Lab and tested on a vehicle full nonlinear model developed and
validated in [28]. In order to have a better insight into the effect
of Ls variation, three cost variables were introduced. The
Root Mean Square (RMS) of the lateral error ey , defined by√

1
T

∫ T

0
e2y dt, the maximum lateral error, and the total energy

consumed by the vehicle at the end of the test, computed by
accumulating the energy at each time-step (Ei =

Tω
η ), where

T, ω, η respectively represent the torque, rotational velocity,
and the efficiency of the motor.
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While several works proposed to adapt Ls to various param-
eters, multiple studies have decided to keep Ls constant as in
[6], [29]. The developed fuzzy decision approach will be tested
and contrasted with other works presented in the literature.
In particular, the approach based on tuning Ls as a function
of velocity presented in [18] denominated by f1(v), and the
mentioned approaches considering a constant Ls in the path
tracking problem. Further, we proposed another method for
tuning Ls in terms of velocity (m/s) only, designated by f2(v)
and given by

Ls = f2 =

3 if V ≤ 10/3.6
0.42V + 1.83 if 10/3.6 ≤ V ≤ 70/3.6
10 if V ≥ 70/3.6

(12)

A case study is performed considering three scenarios. It will
be demonstrated that the proposed fuzzy approach exhibits a
compromise between energy consumption and tracking per-
formance, and offers supreme stability in case of adherence
variation.

A. Scenario 1 (Sc1)
A portion of a realistic trajectory is taken from

SCANeRTM studio simulator and presented in Fig. 8. The
autonomous vehicle is driven on the track by implementing
the lateral controller based on the fuzzy look-ahead distance.
The longitudinal control assisted the AV in the path-following
by tracking the desired velocity profile V xref . V xref is
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reduplicated by a constant to augment the maximum velocity
from 60km/h to 72km/h in order to alienate the vehicle from
its comfortable driving. The initial velocity is set slightly lower
than the initial desired one. Road adherence µ is considered
a constant equal to 1 representing a normal condition under a
dry surface. The resulting fuzzy look-ahead distance is shown
in Fig. 9 adapted to the three parameters. Ls ranges from 5m
to 10m as a variation of V and ρ.
Multiple simulations are performed considering several con-
stant values for Ls and contrasted with our fuzzy approach.
It can be observed that there is a nominal value for Ls which
reveals the best tracking (Ls = 5m), where it decays as Ls
detaches from this value (Fig. 10). On the other hand, as Ls
rises up to a certain limit (Ls = 10m), the consumed energy
by the vehicle decreases (Fig. 11), as the traveled distance
becomes shorter. Obviously, there is a trade-off between the
path-tracking performance and the energy economy. Figure
12 reveals the Root Mean Square and the maximum lateral
errors corresponding to the distinct values of Ls, in addition
to the total consumed energy by the AV. RMS is minimal
corresponding to low look-ahead distances with a global
minimum at Ls = 5m. The fuzzy Ls ensue Ls = 2m by an
RMS lower than Ls = 8m. Similarly for the maximum lateral
error except for Ls = 2m which exhibited a value greater than
the fuzzy Ls. The total energy consumption on the other hand
exposes a maximum for Ls = 2m. The fuzzy Ls exhibited an
energy consumption lower than Ls = 5m, and slightly higher
than the Ls = 8m case. The case for Ls = 10m which
revealed an energy consumption similar to the fuzzy Ls is
excluded in regards to a high RMS and max error. Therefore,
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the fuzzy Ls approach manifested a compromise between the
path-tracking error and the energy consumption of the AV.

B. Scenario 2 (Sc2)
The second scenario is executed on the same track presented

in Fig. 8, with modification of the longitudinal velocity condi-
tions. The scenario is initiated with a velocity lower than the
desired and controlled to track the constructed speed profile.
Road adherence is set to 1 as before. The fuzzy approach is
now compared with the f1(v) and f2(v) strategies. The f1(v)
strategy presented in [18] considered tuning Ls to vary from
5m to 25m as the velocity ranges from 10km/h to 50km/h.
The velocity in the case of Sc2 is always above 50km/h,
as it will demonstrate the ineffectiveness of the f1 strategy.
Figure 13 shows the fuzzy Ls and the Ls resulting from
f2(v) as their corresponding parameters vary. f1(v) reveals
an inadmissible behavior in terms of the lateral error Fig. 14
and the energy consumption Fig. 15. Whilst f2(v) exposes a
reasonable lateral error with energy consumption significantly
lower than f1(v). Alternatively, the proposed fuzzy approach
elucidated its distinction with the lowest lateral error and
energy consumption.

C. Scenario 3 (Sc3)
The last scenario is performed to distinguish the behavior of

the AV based on the fuzzy approach in the case of varying road
adherence. The road conditions are permanently varying and
divided into portions such that: a low adherence (µ = 0.45)
on a high curvature, followed by a normal adherence (µ = 1)
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on a combination of low and high curvatures, then extremely
low adherence (µ = 0.2) representing a snowy road on high
curvature, and finally a moderate adherence (µ = 0.8) on
a combination of high and low curvature road. The desired
longitudinal velocity, road curvature, road adherence, and the
resultant fuzzy look-ahead distance are presented in Figure 16.
Several simulations are conducted by assigning distinct con-
stant look-ahead distance values, and assaying the functions



f1(v) and f2(v) with the purpose of comparing them with
the fuzzy approach. The trajectories of the AV based on the
several approaches to tune Ls are presented in Fig. 17, with
their associated lateral errors in Fig. 18. It can be observed
that besides the fuzzy approach, none of the strategies has
succeeded to terminate the test. The road divergence occurs
when the AV reaches a level where the lateral error is large and
the controller isn’t able to further diminish it. Consequently, a
complete loss of stability exists and the simulation is ceased.
At the first portion of the test (low µ, high ρ), the fuzzy Ls
was roughly 18 by dint of Lsadd. Hence, Ls = 2, 8, 15m
and Ls = f2(v) were far little from the required value,
consequently, the AV diverge from the trajectory. In the second
portion, the fuzzy Ls reveals better tracking behavior from the
remaining ongoing strategies. In the third portion, the fuzzy Ls
was around 20 which is close to the constants Ls = 18, 20m,
however, f2(v) was way too large which revealed a cutting-
corner phenomenon consequently instability and divergence.
At the beginning of the fourth portion, the road condition
was significantly altered from µ = 0.2 to 0.8, forcing the
fuzzy Ls to attenuate from 20m to 10m and lesser later when
the curvature changed. Hence, the remaining strategies diverge
from the road due to their significantly high value.
This test has demonstrated the leading performance of the
fuzzy look-ahead distance, and the necessity to consider adapt-
ing Ls to the variation of road adherence.

V. CONCLUSION

In this paper, a fuzzy decision approach is developed to
adapt the look-ahead distance of the lateral controller to three
parameters, stated as velocity, road curvature, and adherence.
It has been demonstrated that for the same controller, under the
same test conditions, the performance of the AV significantly
alters with the variation of the opted tuning strategy for the
look-ahead distance. The proposed fuzzy strategy manifested
a compromise between path-tracking performance and energy
consumption, and revealed a superior performance in terms of
stability and tracking under varying adherence road conditions.
Further future works may consider extending the proposed
approach to include more parameters or membership functions,
and to develop other strategies considering road adherence as
a dependent parameter.
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