
HAL Id: hal-04053118
https://hal.science/hal-04053118

Submitted on 31 Mar 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Public Domain

Test Amplification in the Pharo Smalltalk Ecosystem
Mehrdad Abdi, Henrique Rocha, Serge Demeyer

To cite this version:
Mehrdad Abdi, Henrique Rocha, Serge Demeyer. Test Amplification in the Pharo Smalltalk Ecosys-
tem. International Workshop on Smalltalk Technologies, Aug 2019, Koln, Germany. �hal-04053118�

https://hal.science/hal-04053118
https://hal.archives-ouvertes.fr

Test Amplification in the Pharo Smalltalk Ecosystem

Mehrdad Abdi
Universiteit Antwerpen

Antwerpen, België

Henrique Rocha
Universiteit Antwerpen

Antwerpen, België

Serge Demeyer
Universiteit Antwerpen, België

Flanders Make, België

Abstract

Test amplification is the act of strengthening existing unit-
tests to exercise the boundary conditions of the unit under
test. It is an emerging research idea which has been demon-
strated to work for Java, relying on the type system to safely
transform the code under test.
In this paper we report on a feasibility study concerning

test amplification in the context of the Smalltalk eco-system.
We introduce a proof-of-concept test amplifier named Small-
Amp, and discuss the advantages and challenges we encoun-
tered while incorporating the tool into the Pharo Smalltalk
environment. We demonstrate that by building on top of the
Refactoring Browser API, the MuTalk mutation tool, it is
feasible to build a test amplifier in Pharo Smalltalk despite
the absence of a type system.

CCS Concepts • Software and its engineering → Soft-

ware testing and debugging; Software evolution;

Keywords test amplification, automatic testing, test opti-
mization, dynamic languages
ACM Reference Format:

Mehrdad Abdi, Henrique Rocha, and Serge Demeyer. 2019. Test
Amplification in the Pharo Smalltalk Ecosystem. In Proceedings of
International Workshop on Smalltalk Technology (SUBMITTED TO
IWST19 2019). ACM, New York, NY, USA, 6 pages. https://doi.org/
10.1145/xxx

1 Introduction

Test amplification is the act of automatically transforming a
manually written unit test to exercise boundary conditions.
Although test amplification may appear similar to test gen-
eration, there is a key difference between them: the input.
Test amplification relies on test cases previously written by
developers, while most test generation techniques ignore
existing tests and just use the system under test to generate
new tests.

Modern software projects contain a considerable amount
of hand written test cases [7]. Such tests are a valuable asset
for assuring that the code does not regress when the system
under test evolves. Unfortunately, these test cases mainly
exercise to the default usage scenarios and seldom cover cor-
ner cases. In test amplification, we extend these test cases to
increase a specific measurable property, typically some form
of code coverage (branch coverage, mutation coverage) [3].

SUBMITTED TO IWST19 2019, August 27-29th, 2019, Cologne, Germany
2019. ACM ISBN xxx. . . $15.00
https://doi.org/10.1145/xxx

DSpot [4] is a test amplification tool for Java projects com-
bining two techniques: (i) evolutionary test case generation
or Input Amplification [9], and (ii) regression oracle genera-
tion or Assert Amplification [11]. DSpot uses the manually
written test cases as the initial population of the evolution-
ary algorithm. Then in each iteration, it creates extra test
cases by changing the setup part of tests and regenerating
the assertions, resulting in a new and larger set of test cases.
The algorithm then selects tests which increase the mutation
coverage, discarding others. This process is performed for a
fixed number of steps which eventually results in a new test
suite, with a better mutation coverage than the initial one,
thus covering more corner cases.
In Pharo Smalltalk [8], there are many tools designed to

help developers with their testing. For instance, MuTalk [10],
and SMutant [6] are mutation testing frameworks. Hapao [2]
is another testing tool focused on coverage.Moreover, DrTest [5]
is a new plugin based testing platform meant to replace pre-
vious SUnit [8] UI. However, as far as we know, there is
currently no tool for Pharo Smalltalk to support test amplifi-
cation.

In this paper, we show that it is feasible to implement a test
amplifier technique in the Pharo Smalltalk ecosystem. We in-
troduce Small-Amp, a proof-of-concept test amplifier based
on DSpot evolutionary approach, on top of the Smalltalk
powerful Refactoring Browser library, and using MuTalk as
the mutation testing framework. We use a simple example
to show how Small-Amp can improve a test suite.
The rest of the paper is structured as follows. In Sec-

tion 2, we elaborate on the concept of test amplification,
taking DSpot as a concrete example. In Section 3, we de-
scribe Small-Amp, the proof-of-concept tool implemented
in Pharo Smalltalk. In Section 4 we discuss the challenges
and lessons learned regarding test amplification in Pharo
Smalltalk. Finally, in Section 5 we present our final remarks
and outline future work ideas.

2 Background

In this section we elaborate on the concept of test ampli-
fication (Section 2.1), taking DSpot as a concrete example
(Section 2.2).

2.1 Test Amplification

Test amplification is an emerging topic in software engineer-
ing. Danglot et al. conducted a literature survey, classifying
test amplification works in four main groups [3].

1

https://doi.org/10.1145/xxx
https://doi.org/10.1145/xxx
https://doi.org/10.1145/xxx

SUBMITTED TO IWST19 2019, August 27-29th, 2019, Cologne, Germany Abdi et al.

AMPadd: Test amplification technique AMPadd consists of
creating new tests from existing ones so as to improve an
engineering goal. The most commonly used engineering goal
is to improve coverage according to a coverage criterion.

AMPchange: Test amplification technique AMPchange con-
sists of adding new tests to the current test suite, by creating
new tests that cover and/or observe the effects of a change
in the application code.

AMPexec: Test amplification technique AMPexec consists
of modifying the test execution process or the test harness
in order to maximize the knowledge gained from the testing
process.

AMPmod: Test amplification technique AMPmod refers to
modifying the body of existing test methods. The goal here
is to make the scope of each test cases more precise or to
improve the ability of test cases at assessing correctness
(with better oracles). Differently from AMPadd, it is not about
adding new test methods or new tests classes.

Based on their snowballing survey, they found 48 different
tools where only 18 of them was publicly available. Most
works aim at improving the code coverage and the most
targeted systems are Java programs.

2.2 DSpot

DSpot [1, 4] is a test amplification or missing assertion gen-
erator tool on Java for JUnit tests. It reads a Java project and
its existing test suites and writes new test cases based on
existing ones.
It is built upon the algorithms of Tonella[9] and Xie [11].

The transformation of existing tests to generate new test
cases is based on Tonella’s evolutionary technique (called
Input-Amplification), and inserting new assertion statements
to test body usingXie’s technique (called Assertion-Amplification).
DSpot uses mutation coverage as the measurable property
which is going to be enhanced. More specifically, DSpot
keeps new tests that are able to kill mutants that were not
killed by the original test suite.

DSpot main loop is presented in Algorithm 1. DSpot takes
the program under test P and its related test suite (TS) as
the input. The other input is the number of iterations N
which is a parameter related to the evolutionary part of the
algorithm. As the result, DSpot returns a new amplified test
suite (ATS). DSpot generates new versions for each test case
in amplifyAssertion step, then it insert new assertions to them
in amplifyAssertion step and finally selects the tests which
are better in killing mutant in applySelection step. DSpot
applies these steps on the generated test cases N times.
Input amplification is the process of generating new ver-

sions of a test case by mutating some parts of the original
test. DSpot removes all existing assertion statements before
generating new versions of the test cases. There are three
categories of mutation operations in Input amplification:

• Mutating literals

input :program P
input :existing test suite TS
input :number of iterations N
output :new amplified test suite ATS

1 ATS ← {};
2 for each t ∈ TS do

3 U ← amplifyAssertions(t);
4 ATS ← applySelection(U, P);
5 TMP ← ATS ;
6 for i ← 0 to N do

7 V ← amplifyInputs(TMP);
8 V ← amplifyAssertions(V);
9 ATS ← ATS ∪ applySelection(V, P);

10 TMP ← V ;
11 end

12 end

13 return ATS
Algorithm 1: DSpot main loop

• Adding new method calls
• Create new objects (if needed) as the parameter of
newly added method calls

Assertion amplification is the process of automatically
creating new assertions. This process consists of three steps:

1. Creating observation points
2. Running the program to collect the state of objects
3. Create new assertions based on collected data
To select test methods, DSpot uses a heuristic which sorts

amplified test methods based on (1) the ratio of killing new
mutants (2) the number of modifications in the code (smaller
changes are more preferred) (3) maximum numbers of mu-
tants killed in the same method.
DSpot is implemented in Java and it is publicly available

in Github1. It consists of 8,800+ logical lines of code and it is
implemented on top of Spoon and Pitest.

3 Small-Amp

In this section, we describe our test amplification technique.
Small-Amp is a replication of DSpot in the Pharo Smalltalk
ecosystem. With this replication, we aimed to investigate
the feasibility of implementing the most important aspects
of DSpot. The project is open source and is publicly available
in Github2.

3.1 Main Loop

The main loop of Small-Amp is similar to Algorithm 1. First,
we reject all failing test-cases and consider the passing tests
as the initial population. The population enters to an evo-
lutionary loop which iterates N times. In each iteration the

1https://github.com/STAMP-project/dspot, verified 2019-06-12.
2https://github.com/mabdi/small-amp, verified 2019-06-12.

2

https://github.com/STAMP-project/dspot
https://github.com/mabdi/small-amp

Test Amplification in the Pharo Smalltalk EcosystemSUBMITTED TO IWST19 2019, August 27-29th, 2019, Cologne, Germany

following steps will be applied on the population respec-
tively:

1. Input-Amplification
2. Assert-Amplification
3. Selection

At the end, Small-Amp makes a new test-class using the
latest population. As an illustrative example, we use a sample
class SmallBank and its related test class SmallBankTest

indicated respectively in Listing 1 and Listing 2.

Object subclass: #SmallBank
instanceVariableNames: 'balance'
classVariableNames: ''
poolDictionaries: ''
category: 'Amplification−TestsClasses'

initialize
balance := 0

balance
^ balance

withdraw: amount
(balance >= amount)
ifTrue: [balance := balance − amount]

deposit: amount
balance := balance + amount

Listing 1. SmallBank

TestCase subclass: #SmallBankTest
instanceVariableNames: ''
classVariableNames: ''
poolDictionaries: ''
category: 'Amplification−TestsClasses'

testInit
| b |
b := SmallBank new.
self assert: b balance equals: 0

testDeposit
| b |
b := SmallBank new.
b deposit: 10.
self assert: b balance equals: 10.
b deposit: 100.
self assert: b balance equals: 110

testWithdraw
| b |
b := SmallBank new.
b deposit: 100.
self assert: b balance equals: 100.
b withdraw: 30.
self assert: b balance equals: 70

Listing 2. SmallBankTest

testWithdraw
| b |
b := SmallBank new.
b deposit: 100.
b balance.
b withdraw: 30.
b balance

Listing 3. Removing Assertions

testWithdraw_0
| b |
b := SmallBank new.
b deposit: 50. "100 −> 50"
b balance.
b withdraw: 30.
b balance

Listing 4. A sample method of mutated versions

3.2 Input Amplification

Input amplification consists of the following steps:
1. Remove assertions.
2. Mutate the stripped test method.
Small-Amp finds all message calls appearing as a param-

eter in assertion statements and copies them before the as-
sertion. After extracting the message calls it removes the
assertions from the test method. Small-Amp keeps the exist-
ing message calls because some message calls may change
the internal state of the receiver.
As an example, let’s take the testWithdraw method in

Listing 2. This function after applying the step 1 will be
similar to Listing 3.

In the second step, Small-Amp starts to mutate the modi-
fied test method. Currently just literal mutations are imple-
mented, according to the ones listed in Table 1. Applying
mutators on a method generates a lot of versions of that
method. Listing 4 shows one example, where the constant
value of 100 is replaced by 50.

Integers ±1
multiply and divide by 2
Int.MIN, 0, Int.MAX

Booleans not
Strings empty string, random string,

add new character to random position
remove a character randomly
change a character randomly

Character ±1, null, cr, space
random character

Table 1. Literal mutation operators

3

SUBMITTED TO IWST19 2019, August 27-29th, 2019, Cologne, Germany Abdi et al.

testWithdraw_0
| b tmp_Jzu0JrwJ7V1 tmp_TyOf5CP59Q2 tmp_fPcdrWheM03

tmp_xjg7sDGICl4 |
b := SmallBank new.
tmp_Jzu0JrwJ7V1 := b deposit: 50.
tmp_TyOf5CP59Q2 := b balance.
tmp_fPcdrWheM03 := b withdraw: 30.
tmp_xjg7sDGICl4 := b balance

Listing 5. testWithdraw after adding temporary variables

testWithdraw_0
| b tmp_Jzu0JrwJ7V1 tmp_TyOf5CP59Q2 tmp_fPcdrWheM03

tmp_xjg7sDGICl4 |
b := SmallBank new.
self observe: anObject name: #b id: 0.
tmp_Jzu0JrwJ7V1 := b deposit: 50.
self observe: tmp_Jzu0JrwJ7V1 name: #tmp_Jzu0JrwJ7V1 id: 1.
self observe: b name: #b id: 2.
tmp_TyOf5CP59Q2 := b balance.
self observe: tmp_TyOf5CP59Q2 name: #tmp_TyOf5CP59Q2 id: 3.
self observe: b name: #b id: 4.
tmp_fPcdrWheM03 := b withdraw: 30.
self observe: tmp_fPcdrWheM03 name: #tmp_fPcdrWheM03 id: 5.
self observe: b name: #b id: 6.
tmp_xjg7sDGICl4 := b balance
self observe: tmp_xjg7sDGICl4 name: #tmp_xjg7sDGICl4 id: 7.
self observe: b name: #b id: 8.

Listing 6. testWithdraw after adding observation statements

3.3 Assertion Amplification

Assertion amplification consists of the following steps:
1. Add temporary variables.
2. Add observers.
3. Dynamic observation.
4. Insert assertions.
At the beginning of the assertion amplification, Small-

Amp adds some temporary variables to the source code.
These variables are used to capture the result of all message
calls (and nested calls) that are not enclosed by an assign-
ment. Small-Amp uses random names for these temporary
variables. Listing 5 is an example of testWithdraw_0 after
adding temporary variables.
Then, observation statements are added after each mes-

sage call. Small-Amp adds two observation statements after
each assignment, one for observing the state of the receiver
and the other for the result of the message call. We do not
observe state of the classes so after a class side message call
we have only one observation statement observing the result
of the call. The observation statement is in the form of self ob-
serve: anObject name: anString id: anInt. The observemethod
is a port to one of the Small-Amp core classes which serialize
an object and keep it in an incremental list. We call this list
the memory. Listing 6 is an example of testWithdraw_0

after adding observation statements.

After inserting the observation points, Small-Amp builds
a test class based on the original test class without its test
methods. It adds the generated test method and the ob-
serve:name:id: method to this class. Then Small-Amp
runs the tests by calling suite run on the test class. During
test execution, each observation statement serializes the ob-
ject under observation and maintains it in the memory. The
serialization process is a nested operation. We have chosen 5
as the max depth of the process, thus Small-Amp will ignore
the objects in depth more than 5.

Small-Amp serialization is performed dynamically as fol-
lows:

1. If the type of object at the runtime is kind of Number
or String or other primitive types, Small-Amp will
capture the string value of the object.

2. Else if the type of object at the runtime is kind of
Collections like Set or OrderedCollection, Small-Amp
iterates over the items and serialize each of them and
stores them as an OrderedCollection.

3. Otherwise, If the type of object is not primitive nor
collection, it’s considered as an object. Small-Ampwill
grab all methods in accessing protocol of the object
and will serialize the result and store it in a dictionary
object.

When the test suite is executed, Small-Amp collects the
memory variables related to this run and analyses each
record and based on the changes on the object state, it gen-
erates assertion statements and insert them in the place of
the related observation point. During the assert generation
process the object state is compared to its last state and if
they are not equal:
• If it is the serialization of a primitive: we assert if the
object’s value asString is equal to the value in memory.
• If it is the serialization of another object: we assert
the value of each accessor which is not equal to the
previous one.
• If the object is the serialization of a collection: if the
size of the collection is changed, we assert the new
value of the collection size. And if all elements except
for one are equal, we assert the changed value. Also,
if the size just increased by 1 and all the items in the
new collection are the same except for one, we assert
the value of the newly added item.

Listing 7 is an example of testWithdraw_0 after adding
assertion calls.

3.4 Selection

We implemented the same heuristic suggested by DSpot in
Small-Amp. As we explained in Section 2.2, DSpot selection
is based on killed mutants. Therefore, we need to employ
mutation testing for the selection phase in Small-Amp. In
this version of Small-Amp, we used MuTalk [10] as the
framework for all computations regarding mutation testing.

4

Test Amplification in the Pharo Smalltalk EcosystemSUBMITTED TO IWST19 2019, August 27-29th, 2019, Cologne, Germany

testWithdraw_0
| b tmp_Jzu0JrwJ7V1 tmp_TyOf5CP59Q2 tmp_fPcdrWheM03

tmp_xjg7sDGICl4 |
b := SmallBank new.
self assert: b balance equals: 0.
tmp_Jzu0JrwJ7V1 := b deposit: 50.
self assert: tmp_Jzu0JrwJ7V1 balance equals: 50.
self assert: b balance equals: 50.
tmp_TyOf5CP59Q2 := b balance.
self assert: tmp_TyOf5CP59Q2 asString equals: '50'.
tmp_fPcdrWheM03 := b withdraw: 30.
self assert: tmp_fPcdrWheM03 balance equals: 20.
self assert: b balance equals: 20.
tmp_xjg7sDGICl4 := b balance.
self assert: tmp_xjg7sDGICl4 asString equals: '20'

Listing 7. testWithdraw after adding assertions

Figure 1.MuTalk results showing the surviving mutations
before amplification

3.5 Illustrative Example

We use the SmallBankTest (Listing 2) example to assess whe-
ther Small-Amp is capable of enhancing a test suite. Since our
goal is to show a proof-of-concept, we believe this example
is enough to demonstrate the feasibility of test amplification
in Pharo. A case study using a real application is outside the
scope of this paper.

First, we execute MuTalk on the test suite and take note of
howmany mutants survive before the amplification. Figure 1
shows the result of MuTalk, where there are still twomutants
surviving after the mutation test. Therefore, if we want to
improve the mutation score of this test suite, we need to kill
those surviving mutants.
Second, we used Small-Amp on the same test suite. We

selected three as the number of iterations (i.e., N detailed
in Algorithm 1). The amplification performed in about two
minutes.
Third, we executed MuTalk again on the amplified test

suite. We expect to see an improvement in the mutation
score (i.e., fewer mutants surviving). After the amplification,

zero mutants survived. Consequently, this result shows that
Small-Amp can indeed enhance a test suite. In this case, the
mutation score improved after the test amplification.

4 Lessons Learned

In this section we talk about the lessons learned from im-
plementation and pre evaluating the the proof-of-concept
Small-Amp. These lessons include the challenges of test
amplification in smalltalk, observations from preliminary
running and future works.
Smalltalk is a dynamic language and type information is

not accessible until runtime. Type information is required in
two situations for test amplification using Small-Amp:
• Serializing objects in assert amplification. Fortunately
this action is a dynamic step and type information is
accessible.
• Mutation analysis. Mutation operators need type in-
formation to generate different versions of the appli-
cation. Existing mutation analysis, SMutant[6] and
Mutalk [10], have overcamed this problem.

One main difference between Smalltalk and C like pro-
gramming languages is themessage basedmechanisms. Most
structural syntax statements (e.g., if, while) are implemented
by sending messages to objects. This actually makes it easier
to implement the amplification. Furthermore, cascade state-
ments or nested message calls can compress a sequence of
calls into a single statement. Currently, we did not break
them to smaller statements. We can add a normalization step
before Input amplification to break down nested statements
to simpler ones. Another difference is the existence of blocks.
Currently, in Small-Amp, we completely ignore the codes
inside of the blocks. In this case, we may skip assertions
inside blocks.
Another challenge is how we can serialize the objects.

We used methods in accessing protocol to query the state
of an object. But there’s no guaranty that developers have
implemented all their accessors methods in this protocol. We
can use reflection mechanisms to capture the internal state
of the objects, but in this case, we miss the encapsulation of
objects. Moreover, another possible issue is nondeterministic
accessors, like atRandom. DSpot uses a nondeterministic
method detection mechanism. Such detection executes each
method three times and if the results are not equal, it marks
the accessor as nondeterministic and ignores it.
The increasing computational cost and execution time

in each generation is another challenge. This cost forces
us to use small numbers for iterations (Figure 2). Using a
small number of iterations may hinder the benefits of the
evolutionary algorithm. Possibly, reducing the computation
complexity in each generation could allow us to use a higher
number of iterations and take better gain of the genetic algo-
rithm advantages. Moreover, we found out that the Assertion
amplification step is computationally expensive.

5

SUBMITTED TO IWST19 2019, August 27-29th, 2019, Cologne, Germany Abdi et al.

Figure 2. Run time performance per iteration

The number of temporary variables increases at each gen-
eration quickly which causes a problem in the compiler at
higher generations. Furthermore, this makes the generated
test methods unreadable and hard to maintain. We need a
cleanup step after each generation to remove unnecessary
temporary variables or to store them in a collection.

5 Conclusions

Test amplification is an emerging topic where manually writ-
ten tests are used as a basis to create new test cases. Therefore,
test amplification could potentially enhance a test suite by
improving one of its characteristics (e.g., coverage, mutation
score).
In this paper, we showed that it is feasible to introduce

test amplification techniques into the Pharo ecosystem. We
presented Small-Amp as a proof-of-concept tool. We applied
our tool on an illustrative example which improved the test
suite mutation score. We also discussed lessons learned from
this implementation, challenges, and solutions to further
develop test amplification in the Pharo environment.

As future work, we plan to add a cleanup step at the end of
each generation to make the created test more readable. We
are also going to enhance the mutation testing framework to
tag the assertion statements that killed a mutant. Therefore,
we can distinguish useless assertions and safely erase them.
Moreover, we intend to add Small-Amp as a plugin for the
DrTest framework.

Another line of future work is to define a fitness function,
assessing the understandability quality of tests and use that

to discard tests with low readability before the assertion
amplification phase. We also are going to conduct a case
study applying an improved version of Small-Amp on a test
suite from a real software.

Acknowledgments

This work is supported by (a) the Fonds de la Recherche Scientifique-
FNRS and the Fonds Wetenschappelijk Onderzoek - Vlaanderen
(FWO) under EOS Project 30446992 SECO-ASSIST (b) Flanders
Make vzw, the strategic research centre for the manufacturing
industry.

References

[1] Benoit Baudry, Simon Allier, Marcelino Rodriguez-Cancio, and Mar-
tin Monperrus. 2015. DSpot: Test Amplification for Automatic As-
sessment of Computational Diversity. CoRR abs/1503.05807 (2015).
arXiv:1503.05807 http://arxiv.org/abs/1503.05807

[2] Alexandre Bergel and Vanessa Peña. 2014. Increasing test coverage
with Hapao. Science of Computer Programming 79 (2014), 86–100.
https://doi.org/10.1016/j.scico.2012.04.006 Experimental Software and
Toolkits (EST 4): A special issue of the Workshop on Academic Soft-
ware Development Tools and Techniques (WASDeTT-3 2010).

[3] Benjamin Danglot, Oscar Vera-Perez, Zhongxing Yu, Andy Zaidman,
Martin Monperrus, and Benoit Baudry. 2018. A Snowballing Literature
Study on Test Amplification. arXiv paper 1705.10692v2 (2018).

[4] Benjamin Danglot, Oscar Luis Vera-Pérez, Benoit Baudry, and Martin
Monperrus. 2019. Automatic Test Improvement with DSpot: a Study
with TenMature Open-Source Projects. Empirical Software Engineering,
Springer Verlag (2019).

[5] Julien Delplanque, Stéphane Ducasse, Guillermo Polito, Andrew P
Black, and Anne Etien. 2019. Rotten Green Tests. In 41th International
Conference on Software Engineering (ICSE ’19). IEEE, 500–511. https:
//hal.inria.fr/hal-02002346

[6] Milos Gligoric, Sandro Badame, and Ralph Johnson. 2011. SMutant:
a tool for type-sensitive mutation testing in a dynamic language. In
Proceedings of the 19th ACM SIGSOFT symposium and the 13th European
conference on Foundations of software engineering. ACM, 424–427.

[7] L. Madeyski. 2009. Test-Driven Development: An Empirical Evaluation
of Agile Practice. Springer Berlin Heidelberg.

[8] Oscar Nierstrasz, Stéphane Ducasse, and Damien Pollet. 2010. Pharo
by Example. Square Bracket Associates, c/o Oscar Nierstrasz.

[9] Paolo Tonella. 2004. Evolutionary testing of classes. Proceedings of the
2004 ACM SIGSOFT international symposium on Software testing and
analysis - ISSTA ’04 (2004). https://doi.org/10.1145/1007512.1007528

[10] Hernán Wilkinson, Nicolás Chillo, and Gabriel Brunstein. 2009. Muta-
tion Testing. European Smalltalk User Group (ESUG 09). Brest, France.
http://www.esug.org/data/ESUG2009/Friday/Mutation_Testing.pdf.

[11] Tao Xie. 2006. Augmenting Automatically Generated Unit-Test Suites
with Regression Oracle Checking. Lecture Notes in Computer Science
(2006), 380–403. https://doi.org/10.1007/11785477_23

6

http://arxiv.org/abs/1503.05807
http://arxiv.org/abs/1503.05807
https://doi.org/10.1016/j.scico.2012.04.006
https://hal.inria.fr/hal-02002346
https://hal.inria.fr/hal-02002346
https://doi.org/10.1145/1007512.1007528
http://www.esug.org/data/ESUG2009/Friday/Mutation_Testing.pdf
https://doi.org/10.1007/11785477_23

	Abstract
	1 Introduction
	2 Background
	2.1 Test Amplification
	2.2 DSpot

	3 Small-Amp
	3.1 Main Loop
	3.2 Input Amplification
	3.3 Assertion Amplification
	3.4 Selection
	3.5 Illustrative Example

	4 Lessons Learned
	5 Conclusions
	References

