

Anodic TiO2 Nanotube Layers for Wastewater and Air Treatments: Assessment of Performance Using Sulfamethoxazole Degradation and N2O Reduction

Marcel Sihor, Sridhar Gowrisankaran, Alexandr Martaus, Martin Motola,

Gilles Mailhot, Marcello Brigante, Olivier Monfort

To cite this version:

Marcel Sihor, Sridhar Gowrisankaran, Alexandr Martaus, Martin Motola, Gilles Mailhot, et al.. Anodic TiO2 Nanotube Layers for Wastewater and Air Treatments: Assessment of Performance Using Sulfamethoxazole Degradation and N2O Reduction. Molecules, 2022, 27 (24), pp.8959. $10.3390/molecules27248959$. hal-04053076

HAL Id: hal-04053076 <https://hal.science/hal-04053076>

Submitted on 31 Mar 2023

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

1 *Article*

² **Anodic TiO² nanotube layers for wastewater and air treatments:** Assessment of performance using sulfamethoxazole degrada-

⁴ **tion and N2O reduction**

- 5 Marcel Sihor 1.2, Sridhar Gowrisankaran 1, Alexandr Martaus 2, Martin Motola 1, Gilles Mailhot 3, Marcello Brigante **³ and Olivier Monfort 1,** 6 *****
- 7 ¹ Department of Inorganic Chemistry, Faculty of Natural Sciences, Comenius University Bratislava, Ilkovicova 8 6, Mlynska Dolina, 84215 Bratislava, Slovakia ² 9 Institute of Environmental Technology, CEET, VSB-Technical University of Ostrava, 17. Listopadu 15/2172; 10 70800, Ostrava-Poruba, Czech republic ³ 11 Institut de Chimie de Clermont-Ferrand, Université Clermont Auvergne, CNRS, Clermont Auvergne INP, 12 F-63000 Clermont-Ferrand, France 13 ***** Correspondence: monfort1@uniba.sk; Tel.: +421290142141 14 **Abstract:** The preparation of anodic TiO² nanotube layers have performed using electrochemical 15 15 **anodization of Ti foil for 4 h at different voltages (from 0 V to 80 V)**. In addition, TiO₂ thin layer has 16 been also prepared using the sol-gel method. All the photocatalysts has been characterized by XRD, 17 SEM, and DRS to investigate the crystalline phase composition, the surface morphology and the 18 optical properties, respectively. The performance of the photocatalyst has been assessed in versatile 19 **photocatalytic reactions including the reduction of N2O gas and the oxidation of aqueous** 20 sulfamethoxazole. Due to their high specific surface area and excellent charge carriers transport, 21 anodic TiO₂ nanotube layers have exhibited the highest N₂O conversion rate (up to 10% after 22 h) 22 and the highest degradation extent of sulfamethoxazole (about 65% after 4 h) under UVA light. The 23 degradation mechanism of sulfamethoxazole has been investigated by analyzing its transformation 24 products by LC-MS and predominant role of hydroxyl radicals has been confirmed. Finally, the 25 efficiency of anodic TiO² nanotube layer has been tested in real wastewater reaching up to 45% of 26 sulfamethoxazole degradation after 4 h.

27 **Keywords:** photocatalysis; pharmaceutical; water treatment; air treatment; N2O; TiO2.

29 **1. Introduction**

28

Citation: To be added by editorial

Publisher's Note: MDPI stay³³ neutral with regard to jurisdictional⁴ claims in published maps and

Copyright: $© 2022$ by the author³⁹. Submitted for possible open access0 publication under the terms and1 conditions of the Creative Commons Attribution (CC BY) licenses (https://creativecommons.org/license

staff during production. Academic Editor: Firstname

institutional affiliations.

 \odot

Lastname Received: date Accepted: date Published: date

s/by/4.0/).

 $\left(\operatorname{cc} \right)$

 With regard to number of publications, titania (TiO2) is the most investigated photocatalyst in a multitude of applications such as, for example, antibacterial coatings and water and air treatments [1–6]. Efficient TiO² photocatalysts are prepared in the form of nanomaterials ranging from 0D to 3D morphologies [5,7–12]. The 1D titania nanostructures include $TiO₂$ nanotubes (TNT) and are promising nanostructured photocatalysts mainly due to their excellent electron transport [13–15]. In the form of self-organized arrays (i.e., supported layers), TNT exhibit enhanced charge carriers sep- aration, thus leading to exceptional photocatalytic properties [13–16]. The preparation TNT layers can be done by anodic oxidation of Ti electrode in fluoride-containing elec- trolyte [17–19]. The variation of applied voltage and fluoride concentration and anodization time can be tuned to design TNT of specific length and wall thickness $[17–20]$. In addition, by extending one of these experimental parameters, the TNT mor- phology can be transformed in a porous nanostructure which exhibits also interesting photocatalytic properties as reported in our recent work [20].

The treatment of water by photocatalysis is one of the most investigated alternatives

 to enhance the already existing processes which are used in wastewater treatment plants (WWTPs) and in the production of drinking water [21]. Indeed, photocatalytic process belongs to advanced oxidation processes (AOPs), thus generating reactive oxygen spe- cies (ROS) like hydroxyl radicals (HO•) [22]. The HO• react with high kinetic rate and non-selectively with organic molecules including persistent organic pollutants (POPs) and contaminants of emerging concern (CECs) [22]. Among CECs, pharmaceutical and personal care products (PPCPs) are daily consumed and their long-term impact on the natural environmental and the human health is not yet clarified [23,24]. Intergovern- mental agencies have implemented stringent norms for pollution control and water quality, like the implementing decision of the European Union (EU) No. 2020/1161 on the directive No. 2008/105/CE [25]. Therefore, the modification of conventional water treat- ments appears a necessary conditions to fulfill these norms, thus TNT photocatalysts being excellent candidate. In this study, sulfamethoxazole (SMX) is used as a model pollutant since it is a widely used antibiotics. In addition, SMX is one of the most fre-quently detected pollutants in water around the World [23].

 The treatment of air for the removal of nitrous oxide (N2O) using photocatalytic re- actions has been described back in the 1990s, when the first experiments employed zeo- lite containing Cu-based photocatalysts [26]. N2O is in the top 3 gases responsible for the global warming since it has been proven to be involved at 6.2% of the total global radiative forcing. The major origin of N2O is from natural processes (nitrification of ammonia, denitrification of nitrates, etc.) but also anthropogenic activities (N-based fer- tilizers, combustion of fossil fuels, etc.) [27]. Therefore, intense research is carrying out to develop different types of photocatalysts including TiO² [28–33]. However, one signifi- cant disadvantage of these already existing photocatalysts is that they are not easy to handle because of their powder form. Using supported TNT photocatalysts, such a drawback might be overcome.

 In the present work, the use of anodic TNT layers in wastewater and air treatments is assessed using the degradation of aqueous sulfamethoxazole solution and the reduc- tion of gaseous nitrous oxide, respectively, as model reactions. To the best of our knowledge, it is the first time that TNT layers are used in such versatile photocatalytic reactions, and their performance is compared to another TiO² nanostructure i.e. TiO² thin layer deposited by the sol-gel method. In addition, the degradation of SMX is also per- formed in real wastewater while the degradation pathway of SMX is proposed to clarify the mechanism.

2. Materials and Methods

2.1 Preparation and characterization of photocatalysts

 The TNT layers are prepared using a similar procedure reported in one of our pre- vious works [34]. Briefly, a disk of 4 cm in diameter of titanium foil (Sigma-Aldrich, 99.7 % with 0.127 mm thickness) is used as a working electrode and dropped in fluo- ride-based electrolyte based on glycerol. The counter electrode is also a 4 cm diameter Ti foil. The distance between the two electrodes is set at 1.5 cm and electrochemical anodization is performed at different applied voltages from 0 to 80 V (with a 20 V step) **for 100 min.** The current intensity is kept at 5 A during the procedure. After rinsing the 88 as-prepared TNT followed by annealing at 400 °C for 1h, TNT layers labelled F0, F20, F40, 89 F60 and F80 are obtained.

 For comparison, TiO² sol-gel films are prepared. To this end, titanium isopropoxide (97.0%; Sigma-Aldrich) is added to isopropanol (reagent grade, Slavus sro.) containing acetic acid (99.0%, Slavus sro.) and Triton® X-100 (Sigma-Aldrich) as chelating and structure directing agents, respectively, thus a 0.2 M Ti alkoxide sol-gel is obtained. The sol-gel is deposited by spin-coating (Ossila Ltd.) at 2000 rpm on Si wafer (University Wafer Inc.) with diameter of 4 cm. Six-layer films are prepared with intermediate an96 nealing at 300 °C for 10 min and final annealing at 450 °C for 1 h. The TiO2 sol-gel films 97 are labelled SG.

 The TNT and sol-gel layers are characterized by DRS (Shimadzu UV-2600, IRS-2600Plus), XRD (Rigaku SmartLab) and SEM (Tescan Lyra 3) to control the optical 100 energy band gap (E_s) , the crystalline phase composition and the surface morphology, respectively. Further characterization details of these reproducible nanomaterials are provided in our previous publications [20,34].

104 *2.2 Degradation of N2O in the gas phase*

105 105 The photocatalytic decomposition of gaseous N₂O is performed in a custom-made 106 stainless-steel photo-reactor (Figure 1) where the photocatalytic layer is placed at the 107 bottom. After that, the reactor is closed and filled with N₂O/He mixture and pressurized 108 to 1.5 bar (pressure is controlled during the whole experiment). The initial N₂O concen-109 tration is set at 1030 ppm. The irradiation is generated by UVA source (UVP Pen-Ray, 8 110 W Hg lamp; *λ*max = 365 nm) situated at the top of photo-reactor and going through the 111 **111** quartz glass visor. The N₂O concentration is measured using a GC/BID (Gas Chroma-112 tography coupled with Barrier discharge Ionization detector, Shimadzu Tracera GC 113 2010Plus) in two hours intervals for 22 h. Each experiment is repeated to check the re-114 producibility. The conversion of N₂O (R_{N20}) is calculated using the equation 1 where 115 is the initial mole fraction of N₂O and x_{N20} is the mole fraction at different times 116 during the photocatalytic reaction.

$$
R_{N2O} = \frac{x_{N2O}^0 - x_{N2O}}{x_{N2O}^0} \tag{1}
$$

119 **Figure 1.** Scheme of the photo-reactor used to decompose N2O gas.

120 *2.3 Degradation of SMX in water*

121 Concerning the photocatalytic degradation of SMX solution (50 µM), the photocatalytic layers are placed at the bottom of home-made photo-reactor equipped of four UVA lamps at the top (Sylvania F15W/350BL; 1.9 mW cm⁻² in the range 290-400 nm). **Prior to turn on the lamps, the initial pH of SMX solution is adjusted at 7 using HClO**4 and NaOH. The photocatalytic degradation is performed under constant air bubbling for 126 126 120 126 4 h and 500 µL is sampled out every 30 min (filtration through 0.45 µm PTFE filter and **127** quenching into 100 µL methanol). The concentration of SMX is analyzed by HPLC (Shi- madzu Nexera XR LC-20AD) equipped with a C18 column (Agilent, EC 250/4.6 nucleodur 100/5). The mobile phase is a mixture of MeOH/H2O in gradient mode from $40:60 \, (v/v)$ to 95:5 (v/v) which is achieved in 10 min. The detection wavelength of SMX is fixed at 268 nm.

 In addition, to highlight the significance of the present study for potential industrial **application**, the degradation of SMX is performed in secondary effluent of municipal wastewater treatment plants collected in Clermont-Ferrand, France. Prior to use it as wastewater matrix, it is filtered through 0.45 µm PTFE membrane and further analyzed by total organic analysis (Shimadzu, TOC-L) and ionic chromatography (Thermo Scien-tific, ICS 5000). The data are presented in Table 1.

117

103

118

Species	Concentration (mg L-1)
$Cl-$	100
NO ₃	59
SO ₄ ²	53
$PO43-$	$<$ LOD ¹
$Na+$	131
$NH4+$	4
K^+	40
$\begin{array}{c}\n\mathbf{Mg}^{2+} \\ \mathbf{Ca}^{2+}\n\end{array}$	9
	25
Inorganic C	47
Organic C	7

138 **Table 1.** Concentration of inorganic ions and inorganic and organic carbon.

139 139 139

 The identification of SMX transformation by-products is obtained by ultra-high performance liquid chromatography (UHPLC) coupled with high-resolution mass spec- trometry (HRMS) performed on an Orbitrap Q-Exactive (Thermo scientific). The column 144 is a Phenomenex Kinetex C18 (1.7 μ m × 100 Å; 100 × 2.1mm) and the temperature is set at 145 30 °C. The initial gradient is 5% ACN and 95% water acidified with 1% formic acid, fol- lowed by a linear gradient to 99% ACN within 8.5 min and kept constant during 1 min. The flow rate is 0.45 mL min⁻¹ and the injection volume is 5μ L. Ionization is set to 3.2 kV (ESI+) and 3.0 kV (ESI-).

149 **3. Results and Discussion**

150 *3.1 Structural and optical properties of photocatalysts*

 The XRD patterns (Figure S1) of the F20, F40, F60, F80 and SG samples match with 152 the anatase phase of TiO₂ (ICDD card no. 03-065-5714) as reported in our previous works [20,34]. Very weak diffractions of TiO2 anatase phase are also confirmed in SG sample, where textured silicon wafer was used as the substrate. Therefore, additional diffractions of the textured silicon wafers correspond to the *Kbeta*, *Lalpha1* and *Lalpha2* lines of Si (111) along with impurities. It is worth noting the diffractions from metallic Ti in the TNT layers 157 since it is the underlying substrate of self-organized and highly oriented TiO₂ nanotubes. In addition, the F0 sample only exhibit metallic Ti diffraction (ICDD card no. 00-044-1294) 159 159 although an ultra-thin layer of TiO₂ (several nanometers) might be present due to surface oxidation.

 The SEM pictures (Figure 2) show that the photocatalysts possess different surface morphologies. The surface of the F0 sample exhibit typical morphology of Ti i.e., a dense structure of microcrystals (Figure 2a). As the anodization voltage increases from 20 to 80 V, a porous nanostructure is observed (Figure 2b-e). The F20 sample exhibit clear nanotubular morphology of self-organized and highly-ordered TNT layer. However, the surface of the TNT in F40 sample starts to be destroyed. In F60 and F80 samples, the nanotubular morphology disappears and a porous nanostructure is formed instead. In- deed, in F60 sample, the nanostructure is composed of reminiscent nanotube while in F80 sample, a sponge-like nanostructure is formed due to the high voltage, thus supporting 170 the complete dissolution of the nanotubes. Concerning the SG sample, the surface mor- phology is dense due to the nanoparticulated structure (Figure 2f) [35]. The thickness of 172 the anodized samples is about 2 μ m while the SG exhibit a thickness of about 400 nm (Figure S2) [34].

140

174

Figure 2. SEM pictures of (a) F0, (b) F20, (c) F40, (d) F60, (e) F80 and (f) SG.

 Concerning the optical properties, the Tauc's plot (Figure 3) exhibits that the sam- ples showing TNT morphology i.e., F20 and F40 possess the strongest light absorption along with *E^g* of about 3.3 eV. For porous nanostructures like F60 and F80 samples, light absorption decreases while the *E^g* is about 3.4 eV. For the SG sample, light absorption is weaker due to the thickness which is approx. 5 times thinner than anodized samples. In **addition, the F0 sample which is essentially composed of metallic Ti exhibit slight ab-**sorption in UVA due to the upper oxidized layer.

Figure 3. UV-visible DRS of the TiO² nanostructures.

3.2 N2O reduction experiments

 The ability of the TiO² photocatalysts prepared by two different methods (electro- chemical anodization and sol-gel deposition) to reduce nitrous oxide under UVA light is investigated (Figure 4). It is worth noting there is no reference in the literature about the 191 testing of photocatalytic decomposition of N_2O with the use of TiO_2 nanostructure pre- pared by electrochemical anodization, thus highlighting the significance of the present work.

196 **Figure 4.** N₂O gas conversion under UVA light.

From the Figure 4, it is clear that N₂O conversion which occurs during photocatalytic reactions is significantly higher than direct photolysis (i.e., without photocatalyst). Comparing the different photocatalysts, the highest N2O conversion is achieved using samples prepared by electrochemical anodization, especially F40 sample showing **nanotubular morphology.** Indeed, such a TNT layer can convert about 10% of N₂O after 22 h UVA irradiation. The lowest photocatalytic activities are observed for F0 and SG samples with a conversion about 7.2% and 7.9%, respectively. That is due to two main reasons which are supported by SEM analysis (Figure 2): (i) these samples exhibit sig- nificantly lower specific surface area compared to nanoporous F20, F40, F60 and F80 and (ii) their thickness is also smaller. Nevertheless, both of this poorly photoactive samples present a higher N2O conversion than simple photolysis (6.6%).

3.3 Degradation of SMX

 The degradation curves of SMX using the samples prepared by electrochemical anodization and sol-gel method are presented in Figure 5. Globally, similar trend is ob- served between N2O reduction and SMX oxidation since the best samples are F20 and F40, i.e. samples with nanotubular morphology. This fact highlights the versatility of anodic TiO² nanotube layers. The degradation extent of SMX after 4 h UVA irradiation reaches 65% and 62% for in the presence of F20 and F40, respectively. The degradation extent decreases to 52% using F60, since the structure is composed of reminiscent nano-217 tubes. The efficiency of the other samples is relatively poor due to the absence of nanotubular morphology. In other words, the number of catalytic sites and the lifetime of charge carriers is probably significantly reduced. The TOC analysis corroborates the degradation curves. Indeed, for F20, F40 and F60, the mineralization extent after 4 h UVA irradiation reaches 11%, 8% and 3%, respectively, while for the other samples, no miner- alization takes place. The potential application of anodic TiO² layer in water treatment is performed by the degradation of SMX in secondary effluents of wastewater treatment plants (Figure S3). The degradation efficiency decreases from 65 to 45% due to the nega- tive effects of the wastewater matrix, i.e. the dissolved organic matter that plays the role of ROS scavenger. However, the degradation efficiency is still considered to be satisfac-227 tory.

Figure 5. Degradation of SMX under UVA light.

 In order to get better insights into the degradation mechanism using F20, the SMX degradation by-products are identified using LC-MS. The transformation products of SMX are presented in Table S1. The initial SMX molecule displayed a peak at [M+H]⁺ = 234 254.0592 and a sodium adduct $[M+Na]^+$ = 276.0410 and $[M-H]^-$ = 252.0441. Different deg- radation pathways are proposed considering the identification of SMX by-products (Figure 6). The formation of P1 occurs through the photo-isomerization of the isoxazole ring which is also the dominant pathway in the degradation of SMX under UV-mediated degradation [36]. Electrophilic reaction on the aromatic ring leads to the formation of hydroxylated (P2) and dihydroxylated (P3) products while oxidation of the double bond at the isoxazole ring produced P4. The cleavage of sulfonamide bond by the hydroxyl radical leads to the formation of 3-amino-5-methylisoxazole (P5) and sulfanilic acid (P4). Isoxazole ring rearrangement leads to the formation of P7 that can be further oxidized on the amine ring in the presence of hydroxyl radical leading to the formation of P7 and P8. The degradation mechanism confirms the predominant role of hydroxyl radicals.

 Figure 6. Proposed mechanism of SMX degradation under UVA light in the presence of anodic TiO² nanotube layer.

4. Conclusion

-
-

Physics, Part 1 Regul. Pap. Short Notes Rev. Pap. **2005**, *44*, 8269–8285, doi:10.1143/JJAP.44.8269.

- 2. Schneider, J.; Matsuoka, M.; Takeuchi, M.; Zhang, J.; Horiuchi, Y.; Anpo, M.; Bahnemann, D.W. Schneider et Al. 2014 Understanding TiO² Photocatalysis Mechanisms and Materials *Chem. Rev.* **2014**, *114*, 9919−9986.
- 3. Moradeeya, P.G.; Sharma, A.; Kumar, M.A.; Basha, S. Titanium Dioxide Based Nanocomposites Current Trends and Emerging Strategies for the Photocatalytic Degradation of Ruinous Environmental Pollutants. *Environ. Res.* **2022**, *204*,

112384, doi:10.1016/j.envres.2021.112384.

- 4. Wu, M.J.; Bak, T.; O'Doherty, P.J.; Moffitt, M.C.; Nowotny, J.; Bailey, T.D.; Kersaitis, C. Photocatalysis of Titanium Dioxide for Water Disinfection: Challenges and Future Perspectives. *Int. J. Photochem.* **2014**, *2014*, 1–9, doi:10.1155/2014/973484.
- 5. Kumar, S.G.; Devi, L.G. Review on Modified TiO² Photocatalysis under UV/Visible Light: Selected Results and Related Mechanisms on Interfacial Charge Carrier Transfer Dynamics. *J. Phys. Chem. A* **2011**, *115*, 13211–13241, doi:10.1021/jp204364a.
- 6. Lan, Y.; Lu, Y.; Ren, Z. Mini Review on Photocatalysis of Titanium Dioxide Nanoparticles and Their Solar Applications. *Nano Energy* **2013**, *2*, 1031–1045, doi:10.1016/j.nanoen.2013.04.002.
- 7. Motola, M.; Dworniczek, E.; Satrapinskyy, L.; Chodaczek, G.; Grzesiak, J.; Gregor, M.; Plecenik, T.; Nowicka, J.; Plesch, G. UV Light-Induced Photocatalytic, Antimicrobial, and Antibiofilm Performance of Anodic TiO² Nanotube Layers Prepared on Titanium Mesh and Ti Sputtered on Silicon. *Chem. Pap.* **2019**, *73*, 1163–1172, doi:10.1007/s11696-018-0667-4.
- 8. Yemmireddy, V.K.; Hung, Y.C. Using Photocatalyst Metal Oxides as Antimicrobial Surface Coatings to Ensure Food Safety—Opportunities and Challenges. *Compr. Rev. Food Sci. Food Saf.* **2017**, *16*, 617–631, doi:10.1111/1541-4337.12267.
- 9. Fagan, R.; McCormack, D.E.; Dionysiou, D.D.; Pillai, S.C. A Review of Solar and Visible Light Active TiO² Photocatalysis for Treating Bacteria, Cyanotoxins and Contaminants of Emerging Concern. *Mater. Sci. Semicond. Process.* **2016**, *42*, 2–14, doi:10.1016/j.mssp.2015.07.052.
- 10. Motola, M.; Zazpe, R.; Hromadko, L.; Prikryl, J.; Cicmancova, V.; Rodriguez-Pereira, J.; Sopha, H.; Macak, J.M. Anodic TiO² Nanotube Walls Reconstructed: Inner Wall Replaced by ALD TiO² Coating. *Appl. Surf. Sci.* **2021**, *549*, doi:10.1016/j.apsusc.2021.149306.
- 11. Macak, J.M.; Zlamal, M.; Krysa, J.; Schmuki, P. Self-Organized TiO2 Nanotube Layers as Highly Efficient Photocatalysts. *Small* **2007**, *3*, 300–304, doi:10.1002/smll.200600426.
- 12. Kubacka, A.; Diez, M.S.; Rojo, D.; Bargiela, R.; Ciordia, S.; Zapico, I.; Albar, J.P.; Barbas, C.; Martins Dos Santos, V.A.P.; Fernández-García, M.; et al. Understanding the Antimicrobial Mechanism of TiO² -Based Nanocomposite Films in a Pathogenic Bacterium. *Sci. Rep.* **2014**, *4*, 1–9, doi:10.1038/srep04134.
- 13. Macák, J.M.; Tsuchiya, H.; Ghicov, A.; Schmuki, P. Dye-Sensitized Anodic TiO² Nanotubes. *Electrochem. commun.* **2005**, *7*, 1133–1137, doi:10.1016/j.elecom.2005.08.013.
- 14. Regonini, D.; Chen, G.; Leach, C.; Clemens, F.J. Comparison of Photoelectrochemical Properties of TiO² Nanotubes and Sol-Gel. *Electrochim. Acta* **2016**, *213*, 31–36, doi:10.1016/j.electacta.2016.07.097.
- 15. Beranek, R.; Tsuchiya, H.; Sugishima, T.; Macak, J.M.; Taveira, L.; Fujimoto, S.; Kisch, H.; Schmuki, P. Enhancement and Limits of the Photoelectrochemical Response from Anodic TiO² Nanotubes. *Appl. Phys. Lett.* **2005**, *87*, 1–3, doi:10.1063/1.2140085.
- 16. Thompson, T.L.; Yates, J.T. Surface Science Studies of the Photoactivation of TiO² New Photochemical Processes. *Chem. Rev.* **2006**, *106*, 4428–4453, doi:10.1021/cr050172k.
- 17. Lee, K.; Mazare, A.; Schmuki, P. One-Dimensional Titanium Dioxide Nanomaterials : Nanotubes. **2014**.
- 18. Roy, P.; Berger, S.; Schmuki, P. TiO² Nanotubes: Synthesis and Applications. *Angew. Chemie - Int. Ed.* **2011**, *50*, 2904–2939, doi:10.1002/anie.201001374.
- 19. Sopha, H.; Baudys, M.; Krbal, M.; Zazpe, R.; Prikryl, J.; Krysa, J.; Macak, J.M. Scaling up Anodic TiO² Nanotube Layers for Gas Phase Photocatalysis. *Electrochem. commun.* **2018**, *97*, 91–95, doi:10.1016/j.elecom.2018.10.025.
- 20. Hanif, M.B.; Sihor, M.; Liapun, V.; Makarov, H.; Monfort, O.; Motola, M. Porous vs. Nanotubular Anodic TiO2: Does the Morphology Really Matters for the Photodegradation of Caffeine? *Coatings* **2022**, *12*, 1–12, doi:10.3390/coatings12071002.
- 21. Crini, G.; Lichtfouse, E. Advantages and Disadvantages of Techniques Used for Wastewater Treatment. *Environ. Chem. Lett.* **2019**, *17*, 145–155, doi:10.1007/s10311-018-0785-9.
- 22. Devipriya, S.; Yesodharan, S. Photocatalytic Degradation of Pesticide Contaminants in Water. *Sol. Energy Mater. Sol. Cells* **2005**, *86*, 309–348, doi:10.1016/j.solmat.2004.07.013.
- 23. Wilkinson, J.L.; Boxall, A.B.A.; Kolpin, D.W.; Leung, K.M.Y.; Lai, R.W.S.; Wong, D.; Ntchantcho, R.; Pizarro, J.; Mart, J.; Echeverr, S.; et al. Pharmaceutical Pollution of the World ' s Rivers. **2022**, *119*, 1–10, doi:10.1073/pnas.2113947119/-/DCSupplemental.Published.
- 24. Mackuľak, T.; Černanský, S.; Fehér, M.; Birošová, L.; Gál, M. Pharmaceuticals, Drugs, and Resistant Microorganisms Environmental Impact on Population Health. *Curr. Opin. Environ. Sci. Heal.* **2019**, *9*, 40–48, doi:10.1016/j.coesh.2019.04.002.
- 25. Decision 2020/1161/EU Commision Implementing Decision (EU) 2020/1161-4 August 2020-Establishing a Watch List of Substances for Union-Wide Monitoring in the Field of Water Policy Pursuant to Directive 2008/105/EC of the European Parliament and of the Council. *Off. J. Eur. Union* **2020**, *257*, 32–35.
- 26. Ebitani, K.; Morokuma, M.; Kim, J.H.; Morikawa, A. Photocatalytic Decomposition of Nitrous Oxide on Cu Ion-Containing ZSM-5 Catalyst. *J. Catal.* **1993**, *141*, 725–728, doi:10.1006/jcat.1993.1177.
- 27. deRichter, R.; Caillol, S. Fighting Global Warming: The Potential of Photocatalysis against CO2, CH4, N2O, CFCs, Tropospheric O3, BC and Other Major Contributors to Climate Change. *J. Photochem. Photobiol. C Photochem. Rev.* **2011**, *12*, 1–19, doi:10.1016/j.jphotochemrev.2011.05.002.
- 356 28. Sano, T.; Negishi, N.; Mas, D.; Takeuchi, K. Photocatalytic Decomposition of N2O on Highly Dispersed Ag+ Ions on TiO2 Prepared by Photodeposition. *J. Catal.* **2000**, *194*, 71–79, doi:10.1006/jcat.2000.2915.
- 29. Obalová, L.; Reli, M.; Lang, J.; Matějka, V.; Kukutschová, J.; Lacný, Z.; Kočí, K. Photocatalytic Decomposition of Nitrous Oxide Using TiO² and Ag-TiO² Nanocomposite Thin Films. *Catal. Today* **2013**, *209*, 170–175, doi:10.1016/j.cattod.2012.11.012.
- 30. Kočí, K.; Krejčíková, S.; Šolcová, O.; Obalová, L. Photocatalytic Decomposition of N2O on Ag-TiO2. *Catal. Today* **2012**, *191*, 134–137, doi:10.1016/j.cattod.2012.01.021.
- 31. Matějová, L.; Polách, L.; Lang, J.; Šihor, M.; Reli, M.; Brunátová, T.; Daniš, S.; Peikertová, P.; Troppová, I.; Kočí, K. Novel TiO² Prepared from Titanyl Sulphate by Using Pressurized Water Processing and Its Photocatalytic Activity Evaluation. *Mater. Res. Bull.* **2017**, *95*, 30–46, doi:10.1016/j.materresbull.2017.07.010.
- 32. Kočí, K.; Reli, M.; Troppová, I.; Šihor, M.; Kupková, J.; Kustrowski, P.; Praus, P. Photocatalytic Decomposition of N2O over TiO2/g-C3N⁴ Photocatalysts Heterojunction. *Appl. Surf. Sci.* **2017**, *396*, 1685–1695, doi:10.1016/j.apsusc.2016.11.242.
- 33. Yuan, R.; Wang, M.; Liao, L.; Hu, W.; Liu, Z.; Liu, Z.; Guo, L.; Li, K.; Cui, Y.; Lin, F.; et al. 100% N2O Inhibition in Photocatalytic NOx Reduction by Carbon Particles over Bi2WO6/TiO² Z-Scheme Heterojunctions. *Chem. Eng. J.* **2023**, *453*, 139892, doi:10.1016/j.cej.2022.139892.
- 34. Sihor, M.; Hanif, M.B.; Thirunavukkarasu, G.K.; Liapun, V.; Edelmannova, M.F.; Roch, T.; Satrapinskyy, L.; Pleceník, T.; Rauf, S.; Hensel, K.; et al. Anodization of Large Area Ti: A Versatile Material for Caffeine Photodegradation and Hydrogen Production. *Catal. Sci. Technol.* **2022**, *12*, 5045–5052, doi:10.1039/d2cy00593j.
- 35. Monfort, O.; Roch, T.; Gregor, M.; Satrapinskyy, L.; Raptis, D.; Lianos, P.; Plesch, G. Photooxidative Properties of Various BiVO4/TiO² Layered Composite Films and Study of Their Photocatalytic Mechanism in Pollutant Degradation. *J. Environ. Chem. Eng.* **2017**, *5*, 5143–5149, doi:10.1016/j.jece.2017.09.050.
- 36. Ao, X.; Liu, W.; Sun, W.; Yang, C.; Lu, Z.; Li, C. Mechanisms and Toxicity Evaluation of the Degradation of Sulfamethoxazole by MPUV/PMS Process. *Chemosphere* **2018**, *212*, 365–375, doi:10.1016/j.chemosphere.2018.08.031.