
HAL Id: hal-04053011
https://hal.science/hal-04053011v1

Submitted on 30 Mar 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Demystifying MLOps and Presenting a Recipe for the
Selection of Open-Source Tools

Philipp Ruf, Manav Madan, Christoph Reich, Djafar Ould Abdeslam

To cite this version:
Philipp Ruf, Manav Madan, Christoph Reich, Djafar Ould Abdeslam. Demystifying MLOps and
Presenting a Recipe for the Selection of Open-Source Tools. Applied Sciences, 2021, 11 (19), pp.8861.
�10.3390/app11198861�. �hal-04053011�

https://hal.science/hal-04053011v1
https://hal.archives-ouvertes.fr


applied  
sciences

Article

Demystifying MLOps and Presenting a Recipe for the Selection
of Open-Source Tools

Philipp Ruf 1,† , Manav Madan 1,† , Christoph Reich 1,* and Djaffar Ould-Abdeslam 2

����������
�������

Citation: Ruf, P.; Madan, M.;

Reich, C.; Ould-Abdeslam, D.

Demystifying MLOps and Presenting

a Recipe for the Selection of

Open-Source Tools. Appl. Sci. 2021,

11, 8861. https://doi.org/10.3390/

app11198861

Academic Editor: Francesco Bianconi

Received: 2 September 2021

Accepted: 18 September 2021

Published: 23 September 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Institute for Data Science, Cloud Computing and IT-Security (IDACUS), Hochschule Furtwangen University,
78120 Furtwangen im Schwarzwald, Germany; philipp.ruf@hs-furtwangen.de (P.R.);
manav.madan@hs-furtwangen.de (M.M.)

2 Institut de Recherche en Informatique, Mathématiques, Automatique et Signal (IRIMAS),
Université de Haute-Alsace, 61 rue Albert Camus, 68093 Mulhouse, France; djaffar.ould-abdeslam@uha.fr

* Correspondence: christoph.reich@hs-furtwangen.de
† These authors contributed equally to this work.

Abstract: Nowadays, machine learning projects have become more and more relevant to various
real-world use cases. The success of complex Neural Network models depends upon many factors,
as the requirement for structured and machine learning-centric project development management
arises. Due to the multitude of tools available for different operational phases, responsibilities
and requirements become more and more unclear. In this work, Machine Learning Operations
(MLOps) technologies and tools for every part of the overall project pipeline, as well as involved
roles, are examined and clearly defined. With the focus on the inter-connectivity of specific tools and
comparison by well-selected requirements of MLOps, model performance, input data, and system
quality metrics are briefly discussed. By identifying aspects of machine learning, which can be reused
from project to project, open-source tools which help in specific parts of the pipeline, and possible
combinations, an overview of support in MLOps is given. Deep learning has revolutionized the field
of Image processing, and building an automated machine learning workflow for object detection
is of great interest for many organizations. For this, a simple MLOps workflow for object detection
with images is portrayed.

Keywords: MlOps; tool comparison; workflow automation; quality metrics

1. Introduction

Across multiple industries, new applications and products are becoming increasingly
Machine Learning (ML)-centric. In general, ML is still a tiny part of a larger ecosystem of
technologies involved in an ML-based software system. ML systems, i.e., a software system
incorporating ML as one of its parts, are known to add several new aspects previously not
known in the software development landscape. Furthermore, manual ML workflows are a
significant source of high technical debt [1]. Unlike standard software, ML systems have
complex entanglement with the data on top of standard code. This complex relationship
makes such systems much harder to maintain in the long run. Furthermore, different ex-
perts (application developers, data scientists, domain engineers, etc.) have to work together.
They have different temporal development cycles and tooling, and data management is
becoming the new focus in ML-based systems. As a reaction to these challenges, the area
of Machine Learning Operations (MLOps) emerged. MLOps can help reduce this technical
debt as it promotes automation of all the steps involved in the construction of an ML system
from development to deployment. Formally, MLOps is a discipline which is formed of a
combination of ML, Development Operations (DevOps), and Data Engineering to deploy
ML systems reliably and efficiently [2,3].

Advances in deep learning have promoted the broad adoption of AI-based image
analysis systems. Some systems specialize in utilizing images of an object to quantify the
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quality while capturing defects such as scratches and broken edges. Building an MLOps
workflow for object detection is a laborious task. The challenges one encounters when
adopting MLOps are directly linked with the complexity due to the high dimensionality of
the data involved in the process.

Data are a core part of any ML system, and generally, they can be divided into three
categories, i.e., structured, semi-structured, and unstructured data. Vision data, i.e., images
and videos, are considered as unstructured data [4]. Analyzing images and videos by
deep neural networks (DNNs) like FastMask has gained much popularity in the recent
past [5]. Nevertheless, processing images with ML is a resource-intensive and complex
process. As the training of DNNs requires a considerable amount of data, automated data
quality assessment is a critical step in an MLOps workflow. It is known that if the quality
of data is compromised to some specific level, this makes a system more prone to failure [6].
For images, it is challenging to define metrics for automated quality assessment because
metrics such as completeness, consistency, etc., cannot be universally defined for image
data sets. On the other hand, structured data are easier to process as one can clearly define
data types, quality ratings (set by domain experts), and quality assessment tests.

Moreover, several tools are available for building an automated MLOps workflow.
These tools can be used to achieve the best outcomes from developing of a model to
deployment until maintenance. In most cases creating an MLOps workflow requires
multiple tools which collaborate to fulfill individual parts.

There is also a high overlap of functionalities provided by many of these tools. The
selection of tools for an optimal MLOps pipeline is a tedious process. The recipe for the
selection of these tools is the requirements that each step of the workflow introduces. This
recipe is also dependent on the maturity level of the machine learning workflow adopted
in an organization and the capabilities of integration of each tool or ingredient. Therefore,
we address these challenges in the work on hand. The main contributions of this paper
are as follows:

• A holistic analysis and depiction of the need for principles of MLOps.
• An intensive consideration of related roles in MLOps workflows and their responsibilities.
• A comprehensive comparison of different supportive open-source MLOps tools, to

allow organizations to make an informed decision.
• An example workflow of object detection with deep learning that shows how a sim-

ple GitFlow-based software development process can be extended for MLOps with
selected MLOps tools.

Demystifying MLOps and selection procedure of tools is of utter importance as the
complexity of ML systems grows with time. Clarification of stages, roles, and tools is
required so that everyone involved in the workflow can understand their part in the
development of whole system.

This paper is structured as follows. In Section 2, a quick overview of work mentioning
and using MLOps techniques is given and is followed by the depiction of workflows in
MLOps in Section 3. With a description of the various roles in Section 4 and a comparison
of MLOps supporting tools and applicable monitoring metrics in Section 5, a use case
for automating the workflow for object detection with deep neural nets is discussed in
Section 6. With potential future research directions, this work is concluded in Section 7.

2. Related Work and State-of-the-Art

As MLOps is a relatively new phenomenon, there is not enough related work, imple-
mentation guidance, specific instructions for starting such project structures, or experience
reports. Therefore, we outline work on different aspects of MLOps in the following, paying
particular attention to holistic MLOps workflows, data quality metrics, and ML automation.
By addressing these core aspects during the work on hand, we aim to clarify the potentials
and practical applications of MLOps.

Trends and challenges of MLOps were summarized by Tamburri in [7]. In this paper,
MLOps is defined as the distribution of a set of software components realizing five ML
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pipeline functions: data ingestion, data transformation, continuous ML model (re-)training,
(re-)deployment, and output presentation. By further discussing trends in artificial intelli-
gence software operations such as explanation or accountability, an overview of state-of-
the-art in MLOps is given. While the author defined and discussed trends and challenges in
sustainable MLOps, the work at hand also covers a comparative overview of responsibili-
ties and possible tool combinations concerning image processing. A framework for scalable
fleet-analytic (e.g., ML in distributed systems) was proposed by Raj et al. in [3], facilitating
ML-Ops techniques with focus on edge devices in Internet of Things (IoT). The proposed
scalable architecture was utilized and evaluated concerning efficiency and robustness in
experiments covering air quality prediction in various campus rooms by applying the
models on the dedicated edge devices. As the formulated distributed scenario underlines
the demand for a well-defined MLOps workflow, the authors briefly introduced the applied
modeling approach. Next to the focus on IoT devices, the work on hand differs due to
an extensive discussion of applicable metrics, utilization of tools while experimenting,
and a definition of involved actors and their responsibilities. Fursin et al. proposed an
open platform CodeReef for mobile MLOps in [8]. The non-intrusive and complementary
concept allows the interconnection of many established ML tools for creating specific,
reproducible, and portable ML workflows. The authors aimed to share various parts of
an MLOps project and benchmark the created workflow within one platform. In contrast,
this work considers multiple applicable solutions to the various steps in such workflows.
Two real-world multi-organization MLOps setups were presented by Granlud et al. in [9].
With a focus on use cases that require splitting the MLOps process between the involved
organizations, the integration between two organizations and the scaling of ML to multi-
organizational context were addressed. The physical distribution of ML model training
and the deployment of resulting models are not explicitly responded to by the work on
hand. However, one can assemble its environment boundaries, dependent on the selected
toolchain. Although both scenarios stated by the authors were highly domain-specific, the
elementary formulation and differentiation of ML and deployment pipelines overlap with
this work. Zhao et al. reviewed the literature of MLOps. Briefly, they identified various
challenges of MLOps in ML projects, differences to DevOps, and how to apply MLOps
in production in [10]. Muralidhar et al. summarized commonly practiced antipatterns,
solutions, and future directions of MLOps in [11] for financial analytics. In applying the
stated recommendations, error sources in ML projects can be reduced. Next to conforming
with the stated collateral best practices in MLOps workflows, the work on hand also tries
to extend and generalize the author’s definition of involved actors, specific to the financial
use case.

An approach for easy-to-use monitoring of ML pipeline tasks, while also considering
hardware resources, was presented by Silva et al. in [12]. Concerning the required time for
completing tasks (e.g., operations in batch or stream processing data sets) and focus on
resource utilization, thoughts on benchmarking ML-based solutions in production were
given. The authors overall compared nine datasets consistent with binary and multiclass
regression problems, where three datasets were based on images. Their approach was eval-
uated by benchmarking all datasets in batch mode and applying five datasets for online
tasks with every 50 and 350 threads. Monitoring aspects of resources in the different stages
of an MLOps workflow is included in the work on hand, and there is no focus on bench-
marking the chosen toolchain environment. Concerning data warehousing applications,
Sureddy and Yallamula proposed a monitoring framework in [13] . In defining various
requirements for monitoring such complex and distributed systems, the framework helps
in building effective monitoring tools. As MLOps systems require a monitoring solution,
too, aspects of monitoring the server as well as the application are treated in the work
on hand. Various aspects and best practices of monitoring the performance and planning
infrastructure for specific projects were outlined by Shivakumar in [14]. In considering
the server- as well as the application side of such undertakings, a CICD sample setup
and sample strategy of using commercial tools for infrastructure monitoring in a disaster
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recovery scenario were given. As the monitoring and CICD aspects are an inevitable part
of MLOps, the work on hand is not concerned with disaster recovery. A definition of
measuring data quality dimensions as well as challenges while applying monitoring tools
was outlined by Coleman in [15]. By translating user-defined constraints into metrics, a
framework for unit tests for data was proposed by Schelter et al. in [16]. Using a declarative
Application Programming Interface (API) which consumes user-defined validation codes,
the incremental- and batch-based assessment of data quality was evaluated on growing
data sets. Regarding the data completeness, consistency, and statistics, the authors pro-
posed a set of constraints and the respective computable quality metrics. Although the
principles of a declarative quality check for datasets are applicable during an MLOps
workflow, the enumeration of this approach is a surrogate for the definition of quality
check systems and services.

Taking the big data value chain into consideration, there are similar requirements to
the domain of ML quality. Various aspects of demands on quality in big data were surveyed
by Taleb et al. in [17] and answered by a proposed quality management framework. While
considering the stated demands on data quality during the various sections of the work on
hand, no specific framework or quality management model for big data value chains, as
introduced by the authors, is proposed. Barrak et al. empirically analyzed 391 open-source
projects which used Data Version Control (DVC) techniques with respect to coupling of
software and DVC artifacts and their complexity evolution in [18]. Their empirical study
concludes that using DVC versioning tools becomes a growing practice, even though
there is a maintenance overhead. As DVC is a part of the work on hand, it neither ex-
clusively focuses on versioning details nor takes repository and DVC-specific statistics
into consideration. Practical aspects of performing ML model evaluation were given by
Ramasubramanian et al. in [19] concerning a real life dataset. In describing selected met-
rics, the authors introduced a typical model evaluation process. While the utilization of
well-known datasets is out of scope for the work on hand, the principles of ML model
evaluation are picked up during the various subsequent sections. A variety of concept
drift detection techniques and approaches were evaluated by Mhemood et al. in [20] with
respect to time series data. While the authors gave a detailed overview of adaption algo-
rithms and challenges during the implementation, aspects of monitoring the appearance
of concept drift are picked up in work on hand. The various methods, systems, and
challenges of Automated Machine Learning (AutoML) were outlined in [21]. Concerning
hyperparameter optimization, meta-learning, and neural architecture search, the common
foundation of AutoML frameworks is described. Subsequently, established and popular
frameworks for automating ML tasks were discussed. As the automation of the various
parts in an ML pipeline becomes more mature, and the framework landscape for specific
problems grows, the inclusion of ML-related automation in MLOps tasks becomes more
attractive. The area of AutoML was surveyed by Zöller et al. in [22]. A comprehensive
overview of techniques for pipeline structure creation, Combined Algorithm Selection
and Hyperparameter optimization (CASH) strategies, and feature generation is discussed
by the authors. As the AutoML paradigm has the potential of performance loss while
training model candidates, different patterns of improving the utilization of such sys-
tems are introduced. By discussing the shortcomings and challenges of AutoML, a broad
overview of this promising discipline was given by the authors. Although we refer to
specific aspects of ML automation in work on hand, models’ deployment and integra-
tion into the target application are treated more intensely. Concerning research data sets,
Peng et al. provided international guidelines on sharing and reusing quality information
in [23]. Based on the Findable, Accessible, Interoperable, and Reusable (FAIR) principles,
different data lifecycle stages and quality dimensions help in systematically processing
and organizing data sets, their quality information, respectively. While determining and
monitoring the quality of datasets and processed data structures are vital to different oper-
ations in MLOps, the work on hand does not address the sharing of preprocessed records.
A systematic approach for utilizing MLOps principles and techniques was proposed by
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Raj in [24]. With a focus on monitoring ML model quality, end-to-end traceability, and
continuous integration and delivery, a holistic overview of tasks in MLOps projects is
given, and real-world projects are introduced. As the authors focused on practical tips for
managing and implementing MLOps projects using the technologies Azure in combination
with MLflow, the work on hand considers a broader selection of supportive frameworks
and tools. Considering automation in MLOps, various roles and actors’ main tasks are
supported by interconnected tooling for the dedicated phases. Wang et al. surveyed the
degree of automation required by various actors (e.g., 239 employees of an international
organization) in defining a human-centric AutoML framework in [25]. With visualizing the
survey answers, an overview of the different actor’s thoughts on automating the various
phases of end-to-end ML life cycles was given and underlined the author’s assumption of
only partly automating processes in such complex and error-prone projects.

Additionally, the landscape of MLOps tools has evolved massively in the last few
years. There has been an emergence of high-quality software solutions in terms of both
open-source and commercial options. The commercial platforms and tools available in the
MLOps landscape make ML systems development more manageable. One such example
is the AWS MLOps framework [26]. The framework is one of the easiest ways to get
started with MLOps. The framework is built on two primary components, i.e., first, the
orchestrator, and second, the AWS CodePipeline instance. It is an extendable framework
that can initialize a preconfigured pipeline through a simple API call. Users are notified by
email about the status of the pipeline. There are certain disadvantages of using commercial
platforms for MLOps. The development process requires multiple iterations, and you
might end up spending much money on a solution that is of no use. Many training runs
do not produce any substantial outcome. To have a flexible and evolving workflow, it is
essential to have a 100% transparent workflow, and with commercial solutions, this can
not be completely ensured. In general, open-source tools are more modular and often offer
higher quality than their counterparts. This is the reason why only open-source tools are
benchmarked in this paper.

3. Workflow of DevOps and MLOps

With the development of hardware for the efficient development of ML systems [24],
like GPUs and TPUs, software development has evolved with time. DevOps has been
revolutionary for achieving this task for traditional software systems, and similarly, MLOps
aims to do this for ML-centered systems. In this section, the essential terminology for
DevOps and MLOps is explained.

3.1. DevOps Software Development

Software development teams have moved away from the traditional waterfall method
for software development to DevOps in the recent past [24]. The waterfall method is
depicted in Figure 1a. The method comprises five individual stages: Requirement Analysis,
Design, Development, Testing, and Maintenance. Every individual stage of the cycle is
pre-organized and executed in a non-iterative way. The process is not agile, and thus all
the requirements are collected before the cycle begins, and modification in requirements
is impossible. Once the requirements are implemented (Development stage), then only
the testing can begin. As soon as the testing is complete, the software is deployed in
production for obtaining user feedback. If, in the end, the customer is not satisfied, then the
whole pipeline is repeated. Such a life cycle is not suited for dynamic projects as needed
in the ML development process. To counter these disadvantages, the whole process has
evolved into an agile method. Unlike the waterfall method, the agile development process
is bidirectional with more feedback cycles such that the immediate changes in requirements
can be incorporated faster in the product. The agile method is aimed at producing rapid
changes in code as per the need. Therefore, close collaboration between Ops and software
development teams is required.
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Figure 1. (a,b) Difference between Waterfall and DevOps software development life cycle. (c) A manual ML Pipeline.

3.2. Dev vs. Ops

After the agile methodology, DevOps emerged as the new go-to methodology for
continuous software engineering. The DevOps method extended the agile development
method by streamlining the flow of software change through the build, test, deploy, and
delivery stages [24]. Looking at Dev and Ops individually, there was hardly any overlap
between them. In the past, software development consisted of two separate functioning
units, i.e., Dev (Software engineers and developers) and Ops (Operations engineers and IT
specialists). The Dev was responsible for translating the business idea into code, whereas
the Ops were responsible for providing a stable, fast, and responsive system to the customer
at all times [27].

3.3. DevOps

Traditionally, the developers would wait until the release date to pass the newly
developed code (patch) to the operations team. The operations team would then foresee that
the developed code is deployed with additional infrastructure abstraction, management,
and monitoring tasks. In contrast, DevOps aimed at bridging the gap between the two
branches: Dev and Ops. It responds to the agile need by combining cultural philosophies,
practices, and tools that focus on increasing the delivery of new features in production. It
emphasizes communication, collaboration, and integration between Software Developers
and Operations team [27]. An example of a DevOps workflow is depicted in Figure 1b. As
seen from the Figure, the customer and project manager can redirect the development team
on short notice if there are any changes in the specification. The different phases of DevOps
can be implemented in a shorter duration such that new features can be deployed rapidly.
The prominent actors involved in the DevOps process are also depicted in Figure 1b.
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DevOps has two core practices: Continuous Integration (CI) and Continuous Delivery
(CD). Continuous Integration is a software practice that focuses on automating the process
of code integration from multiple developers. In this practice, the contributors are encour-
aged to merge their code into the main repository more frequently. This enables shorter
development cycles and improves quality, as flaws are identified very early in the process.
The core of this process is a version control system and automated software building and
testing process. Continuous Delivery is a practice in which the software is built in a manner
that is always in a production-ready state. This ensures that changes could be released on
demand quickly and safely. The goal of CD is to get the new features developed to the end
user as soon as possible [27,28].

There is also another practice known as Continuous Deployment, which is often con-
fused with CD. Continuous deployment is a practice in which every change is deployed in
production automatically. However, some organizations have external approval processes
for checking what should be released to the user. In such cases, Continuous delivery is
considered a must, but Continuous deployment is an option that can be left out.

3.4. CI and CD Pipeline

CI and CD have been adopted as the best practices for software development in recent
years. Automating these practices also requires a robust pipeline known as the DevOps
pipeline or CI/CD pipeline. The pipeline consists of a series of automated processes that
enable software teams to build and deploy a new version of software smoothly. It ensures
that the new developments are automatically merged into the software, which is followed
up by automated testing and deployment. As a fact, the DevOps with CI and CD has
helped in improving and accelerating deployments of new features into production [29].

3.5. ML and ML Pipeline

An ML system is also a software system, but the development of an individual ML
model is essentially experimental. A typical ML workflow starts by gathering more insights
about the data and the problem at hand. The data need to be analyzed (Exploratory data
analysis (EDA)), cleaned, and preprocessed (feature engineering and selection) such that
essential features are extracted from the raw data (with the support of Data Stewards). This
is followed by dataset formation for training, testing, and validation.

Training, validating, and testing ML algorithms is not a straightforward method. The
iterative process involves fitting the hyperparameters of an ML algorithm on the training
data set while using the validation set to check the performance on the data that the model
has not seen before at every iteration. Finally, the test dataset is used to assess the final,
unbiased performance of the model. The validation dataset is unique concerning the test
dataset because it is not kept hidden from the preparation of the model, however it is
instead used to give an adequate performance of the ability of the last tuned model.

At the very beginning only, these three sets of data are separated and should not be
mixed at any point in time. Once the dataset is ready for training, the next step is algorithm
selection and, finally, training. This step is iterative, where multiple algorithms are tried to
obtain a trained model. For each algorithm, one has to optimize its hyperparameters on the
training set and validate the model on the validation set, which is a time-consuming task
(and implemented by a data scientist). Multiple iterations are required for acquiring the best
model, and keeping track of all iterations becomes a hectic process (often, this is manually
done in excel sheets). To regenerate the best results, one must use the precise configuration
(hyperparameters, model architecture, dataset, etc.). Next, this trained model is tested
using specific predefined criteria on the test set, and if the performance is acceptable, the
model is ready for deployment. Once the model is ready, it is handed over to the operations
team, which handles the deployment and monitoring process (usually implemented by an
Operation engineer) such that model inference can be done.

In the above process, all steps are incremental (similar to the waterfall software
development style). These steps together form an ML pipeline as shown in Figure 1c. An
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ML pipeline is a script-based, manual process formed of a combination of tasks such as
data analysis, data preparation, model training, model testing, and deployment. There is
no automatic feedback loop and transitioning from one process to another is also manually
done [29].

3.6. Operations in ML

Building an ML model is a role designated for a data scientist with the support of a
Domain expert, and it does not intersect with how the business value is produced with
that model. In a traditional ML development life cycle, the operations team is responsible
for deploying, monitoring, and managing the model in production. Once the data scientist
implements the suitable model, it is handed over to the operations team.

There are different techniques in which a trained model is deployed. The two most
common techniques are “Model as a Service” and “Embedded model” [30]. In “Model as a
Service”, the model is exposed as Representational state transfer (REST) API endpoints,
i.e., deploying the model on a web server so that it can interact through REST API and
any application can obtain predictions by transferring the input data through an API call.
The web server could run locally or in the cloud. On the other hand, in the “Embedded
model” case, the model is packaged into an application, which is then published. This use
case is practical when the model is deployed on an edge device. Note that how an ML
model should be deployed is wholly based on the final user’s interaction with the output
generated by the model.

3.7. Challenges of Traditional ML Workflow

In comparison to conventional software development, ML has unique challenges
that need to be handled differently. The major challenges encountered in the manual ML
pipeline are as follows.

• ML is a metrics-driven process, and in order to select the best model, multiple rounds
of experiments are performed. For each experiment, one needs to track the metrics
manually which increases the overall complexity.

• Manual logging is an inefficient and error-prone process.
• Data are not versioned. This further adds to the complexity as to reproduce results

not only code, but data is also required. Similar to code, data also evolve.
• No model versioning or model registry is available. It is harder to reproduce a model

from the past.
• Code reviews are not performed in ML. Testing is missing, such as unit or integration

tests are not performed, which are commonly seen in traditional software develop-
ment. The code development is limited to individual development environments,
such as jupyter notebooks, on a data scientist’s local workstation.

• The end product of the manual process is a single model rather than the whole pipeline.
• Collaboration between team members is a headache as it is difficult to share models

and other artifacts.
• There is neither CI nor CD in the workflow as operations and development are

considered as two distinct branches of the whole process.
• There is a lack of reproducibility as the experiments and the models produced (arti-

facts) are not tracked. There is no concept of maintenance of experiments.
• The deployed Model can not be retrained automatically, which might be required due

to a number of reasons such as model staleness or concept drift. As the process is
manual, deploying a new model takes a lot of time and there are less frequent releases.

• Changing one particular parameter (for example, a specific hyperparameter that
impacts the dimensions in a deep neural network) changes the total pipeline and
influences the pipeline stages afterward and may lack versioning or may contradict.
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3.8. MLOps Workflow

Building an ML pipeline is a strenuous task. The whole pipeline is often built sequen-
tially with the help of tools that hardly integrate. The MLOps aims to automate the ML
pipeline. It can be thought of as the intersection between machine learning, data engi-
neering, and DevOps practices [24]. Essentially, it is a method for automating, managing,
and speeding up an ML model’s lengthy operationalizing (build, test, and release) by
integrating the DevOps practices into ML.

DevOps practices mentioned in the previous section, such as CI and CD, have helped
keep the software developers and operations team in one loop. Through their continuous
integration, new reliable features are added to the deployed product more rapidly. MLOps
perceives the motivation from DevOps as it also aims to automate ML model development
and deployment process.

In addition to integrating CI and CD into machine learning, MLOPs also aim to
integrate a further practice known as CT (Continuous Training), which accounts for the
variation between traditional software development and ML. As in ML, the performance of
the model deployed might degrade with time due to specific phenomena such as concept
drift, and data drift [31]. There is a need to retrain the already deployed model on newer
incoming data or deploy a completely new model in production. This is where CT comes
to the rescue as it aims to retrain and deploy the model automatically whenever the need
arises. CT is the requirement for obtaining high-quality predictions all the time [32,33].

MLOps is a relatively new discipline. Therefore, there is not a fixed or standardized
process through which MLOps is achieved. As there are different levels of automation
with any workflow, so is also the case with MLOps, as discussed in [33]. Level-0 is the one
where one starts to think about automating the ML workflow. The first aim is to achieve
continuous training of the model to have a continuous delivery in production. On top
of this, there should be a facility for automated data validation, code validation, experi-
mentation tracking, data, and model versioning. This marks the completion of MLOps
level-1, where an automated workflow is executed through some triggering mechanism.
Furthermore, there could be more automated steps in the above workflow, e.g., deploying
a production-ready pipeline itself rather than just the model that embarks the transition
into the final stage or Level-2 of MLOps [33].

With the help of the first level of automation, one can get rid of the manual script-
driven ML workflow that is highly prone to error. It also lays the path for a more modular
and reusable structure that can be easily altered according to changes in requirements.
However, at this point, new pipelines are not developed rapidly, and the development
team is limited to just a few pipelines. The testing of these pipelines and their parts is also
done manually. Once the tests are done, then the pipeline is handed over to the operations
team. The pipeline is executed sequentially, and each part of the pipeline strongly depends
on its predecessors. If the data processing part (relatively early part of the pipeline) fails,
there is no need to run the rest of the pipeline. Thus, there is a need for pipeline versioning
where the whole pipeline is deployed and versioned together. This is achieved in the
final level of MLOps automation. Through this, many robust pipelines are managed. It
promotes more collaboration between the data scientist and operations team. An essential
part of the final stage is CI/CD pipeline automation to achieve a robust automated ML
development workflow.

4. Workflow Stages in MLOps

Throughout the whole MLOps project, risk managers and auditors minimize model-
caused risks and ensure compliance with the predefined project requirements [30]. As
depicted in Figure 2, each role involved in an MLOps scenario may influence various steps
among the workflow of implementing the solution. The task of deciding which stage should
be fulfilled by which actor is not so trivial as designing an ideal MLOps workflow; multiple
iterations are required. For organizations that are freshly adopting MLOps, there is a need
to clarify the involvement of actors in the different stages. Reasoning from this, first, a brief
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listing of different roles involved in MLOps is depicted. In assembling related working
packages into the different MLOps phases, e.g., Data Management, ML Preparation, and
ML Training and Deployment, the responsibilities of each actor are described in more detail
in the following. Additionally, requirements on supportive tools of the respective phases
(as further described in Section 5.1) are referenced. Finally, for each phase, we define a
section as Supportive Tool Requirements, which outline the recipes or features needed
to be fulfilled in that phase. Subsequently, we outline each component in detail for that
particular stage.

The involved actors of MLOps workflow are as follows:

• Data Scientists are involved in various phases of MLOps, such as designing the feasi-
bility of elementary objectives and implementing model training which outcomes the
core of ML systems, a model.

• As the Domain Expert is concerned with the engineering of requirements of domain-
specific undertakings, as well as validating (partial) results, this actor is irreplaceable
within ML projects.

• The assurance of ingesting real-world data in ML pipelines and optimal conditions
for applying them in projects is within the responsibility of Data Stewards.

• A Data Engineer is concerned with transforming unprocessed data sets into interpre-
tive information for the specified systems.

• Software Engineers achieve the requirement of deploying value-added ML-based
products.

• Operations Engineers realize the monitoring and continuous integration and delivery
of the whole MLOps workflow.

Figure 2. Common actors in MLOps and their responsibilities throughout the workflow.

4.1. Project Requirement Engineering

As the overall goal of a project is domain-specific, subject matters (e.g., domain experts)
and data scientists must gather, engineer, and evaluate all necessary requirements for a
successful implementation. One major task of the data scientist is to help the domain expert
in framing the problem, such that it is feasible for being solved by ML technology [30].
As MLOps projects advocate for cross-expertise collaboration, engineering-specific obscu-
rities originating at this point have to be clarified with the respective actors. In extreme
cases, re-evaluating acquired concepts may be required, and implementing fine-grained
discussions about potential uncertainties throughout the whole project becomes extremely



Appl. Sci. 2021, 11, 8861 11 of 39

important. By comparing scenarios with the problem on hand, possible workarounds, and
the determination of human expertise required for solving them, a common understanding
of how the ML system is applied in the end is generated. As the specifics of ML projects
become more apparent within this process, the first draft of technologies required for suc-
cessful implementation can be outlined. Next to data quality attributes, Key Performance
Indicator (KPI)s of the resulting deployment, and the feasibility of the infrastructural
design choices or demands on re-training of models must be identified. Additionally, much
effort is required to fix the current business need for the ML solution. Business metrics
differ significantly from the traditional ML metrics, and a high-performing model does not
always guarantee that a higher business value would be generated.

4.2. Data Management Phase

As project-specific data may be restricted by domain-dependent constants, the rela-
tional integrity of attributes, the validity of historical timelines or state-dependent transi-
tions [34], archiving overall data quality is not an easy task. Furthermore, the life cycle of
data sets is associated with different quality dimensions, as described in [23]. Data quality
in ML is closely related to principles of ‘big data’. Quality issues should be discovered as
early as possible in order to isolate and adapt faulty processes which impact subsequent
utilization [17]. Subject-specific experts (e.g., Domain experts) are responsible for provid-
ing problem specific questions and goals, as well as KPIs for (data) models to create. The
validation of potential (data as well as ML) models is in their area of responsibility, too [30].
As data scientists build operational ML models which address the formulated problem,
the scientific quality must be assessed in tandem with the domain experts [30]. Depending
on the organization’s structure, there are additional involved entities and roles for data
operations, for example, the Data Stewardship [35], which is responsible for supervising
data during various phases of a project. With a focus on Data Quality Management (DQM)
and data governance, multiple data steward-related roles were defined in early approaches
in [36], distinguishing between chief, business, and technical data steward, as well as a data
quality board which defines the data governance framework of the organization. Especially
when planning or finishing the implementation of a project, this entity is responsible for
maintaining resulting data, often represented by a Data Management Plan (DMP) [37].
In [38], the stewardship was divided into three roles, where data stewards provide guid-
ance on data governance (e.g., data integrity, provenance, requirements, and improving
quality metadata), domain knowledge, and scientific integrity (e.g., data quality and us-
ability evaluation) is provided by scientific stewards and software, and system guidance
(persisting and accessing data) is provided by technical stewards. As there is a variety of
tools for supporting data stewards, as well as every other involved individual, in their
domain-specific work, the best practice is to gather all tooling for each experiment in a
repository, accessible by all team members [39]. Concerning the quality of actual processing
data, the FAIR data principles are often quoted [39] in the context of data stewards. The
definition of principles for increasing reusability of data sets describes characteristics for
systems with a focus on valuable research output [40]. Even when only publishing these data
sets within a project, the complete data life cycle may profit from such FAIR-implementing
products, such as in [37].

4.2.1. Supportive Tool Requirements

With ingesting data into the system, the handling of the specific project-related data
origins (e.g., sensors) must be integrated (DPR 1). In order to ensure applicable data, data
preprocessing (DPR-2) and subsequent quality measures (DPR-3) are required. Due to
potential massive data sets, the support of managing data (DPR-4) through cockpits is
recommended.
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4.2.2. Science Quality

As the scientific quality of the incoming data depends on the gathered requirements
of the project (see Section 4.1), data scientists and domain experts are responsible for
evaluating its quality and usability [30]. From defining data accuracy and precision
requirements for the intended use of information as a first critical stage, input data quality
assurance, data generation quality control, and DMP are derivable during the development
of input data-specific processing algorithms [23]. Next to raw data features like data
types or formats, the processing of generated information (e.g., sensed or accumulated
data) depends on domain-specific features like semantics, environmental influences, and
statistical properties [41].

4.2.3. Data Quality

Assessing the quality of a data set is a complex and multidimensional problem [23].
According to defined production workflows, data are produced by the product, e.g., a
sensor. An evaluation of the actual production workflow, the produced data quality, and a
comparison of the assessed quality with similar products is carried out by a domain expert
in order to pinpoint data error sources, quality assurance, compliance procedures, and data
processing flowcharts [23].

There are multiple factors to the data quality dimensions as mentioned in [16], such as,
for example, completeness of data in which problem-related missing values are considered
and must be addressed. According to the authors of [17], completeness, data format
and structure (e.g., consistency), accuracy (e.g., realistic values), and timeliness are the
cases of the intrinsic quality dimension. To compute a data quality dimension score
by applying the feasible metrics, other representational (e.g., interpretability or ease of
understanding) or contextual quality dimensions like reputation or relevancy can also be
measured. Additionally, ML-related quality dimensions like data dimensionality reduction,
data heterogeneity, or data duplication are considered according to authors in [42].

Regardless of whether the data is applied in an ML pipeline, most scenarios depend
upon automated data quality checks and perform them by either incremental or batch
processing of the new data.

4.2.4. Stewardship Quality

In supervising rich data set metadata, its ingestion, and archiving, the overall data
set quality is preserved [23] by data stewards. By ensuring metadata completeness and
satisfying metadata standards and data accessibility, the data set’s maturity is evaluated,
and recommendations for (re)use of this iteration can be declared. This documentation of
the data sets stewardship maturity evaluation and data fixation enables a subsequent data
access of well-defined data.

4.2.5. Use and Service Quality

Dependent on the overall product problem, possible services must be selected while
considering the provision of secure and stable interfaces for obtaining data sets, offering
user support, or act as central feedback collectors. The data product may be reused for
alienated purposes or being improved, based on user feedback in subsequent steps [23].
Additionally, the data stewards are required to prevent the leakage of sensitive data [11],
which may require the input of domain experts in order to identify, for example, privacy
risks in data usage concepts.

4.3. Machine Learning Preparation Phase

This collection of functions in the ML preparation phase is mainly related to classic
ML preprocessing tasks. Dependent on the previously DMP, various roles must ensure
the overall data quality for the domain-specific ML solution. As data engineers are respon-
sible for bringing the data into a ML model-consuming structure [30], support from data
stewards for data ingestion is required. The overall previously defined domain-specific



Appl. Sci. 2021, 11, 8861 13 of 39

problem and subsequent plans for implementing the ML model also requires interaction
with data scientist and domain experts.

4.3.1. Supportive Tool Requirements

By preparing data for utilization by machine learning techniques, the versioning of
data sets (DPR-5) is required to reference respective data origin for a specific model. As
there is often no elegant way to enhance data with domain-specific information while
sensing or generating them, and many use cases require support for manually labeling
specific data (DPR-6).

4.3.2. ML Data Acquisition

In traditional big data, the acquisition of data refers to the initial collection from
sensors to the transport of data by interconnected networks to storage solution and a
subsequent pre-processing (integration, enrichment, transformation, reduction, cleansing,
etc.) [17]. Dependent on the product, not all collected data is relevant for the ML pipeline.
Based on the previously declared DMP, a data engineer feeds the ML pipeline with an
appropriate selection of the provided data. With support from data stewards, the optimal
circumstances for obtaining problem-specific data are implemented.

4.3.3. Data Cleaning and Labeling

Next to the elimination of existing errors in the input data, procedures for feature
engineering, carried out by data scientists (in cooperation with domain experts), are
necessary for other domain-specific ML operations. Data cleaning can be split into three
parts [43], where error detection like duplicate data, violations of logical constraints, or
incorrect value recognition is the first task. Moreover, solving every detected error is a
second operation, and the data imputation supplements the missing and incomplete data
as the last step.

4.3.4. Data Versioning

In order to build robust and reproducible models, special attention must be payed
to the versioning of every data source involved in the project. The prevention of data
leakage [11], e.g., the strict separation of test, training, and validation data sets, is vital to
the success of ML models When the characteristic of input data changes, the re-training of
existing models, the fine-tuning of hyperparameters applied respectively may be necessary.
By associating the specific circumstances, e.g., a new data version or iteration, the founda-
tion of ’audit trails’ for input data is created. In contrast to simple ML-based approaches,
where a finite set of samples trains a model, specific data versions may be extended over
time with new samples or features. The advantages of versioning every piece of data
involved in ML projects can be summarized as tracking the evolution of data over time. As
there is often a massive amount of frequently changing input data involved in ML projects,
local data repositories (e.g., edge devices) often hold the actual data set. At the same time,
the remote storage solutions only persist a hash of the current version [18].

4.4. ML Training Phase

This is the phase where data scientists play a significant role. These experts ensure the
flexibility and scalability of ML pipelines, as well as an appropriate technology selection
and efforts in model performance improvement [30]. In order to train a model until a
specific goal (e.g., accuracy threshold) is reached, data scientists are responsible for choosing
ML pipeline structures, algorithms and hyperparameters through model versioning and
validation. They are the most expected users for the data processing phases in big data
projects [17]. Every model version candidate is evaluated, and one is chosen with the
domain expert for further deployment.

Dependent on the required degree of automation in search for an ML pipeline, data
scientists and domain experts are supported by different so-called AutoML techniques and
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tools. This area of ML was started to let non-technical domain experts somewhat configure
the model training instead of having to implement the individual steps manually. In as-
sembling different ML concepts and techniques, the development of feature preprocessing,
model selection, and hyperparameter optimization are automated [44]. The process of
selecting an algorithm, as well as its hyperparameters, is often implemented in one singular
step and is referred to as CASH. In order to improve the performance in automated model
training and hyperparameter optimization, techniques like k-fold cross-validation can be
applied for early stopping the training when reaching a particular threshold [22].

4.4.1. Supportive Tool Requirements

For implementing the actual ML training, a variety of supportive tools exist. When
manual model type selection (TP-1) is required, recommendations of respective hyper-
parameters (TP-2) support inexperienced data scientists (as well as other individuals as
non-technical domain experts) in choosing well-performing model configurations. Despite
the required degree of automation while training a model, tracking the whole model run
(TP-3), including quality metrics applied for validation, creates an audit trail. As there are
multiple ML libraries and frameworks, many with a focus on a specific type of problem,
the support for integrating them into the MLOps workflow (TP-4) is often required in-
stead of decoupling them from the pipeline. In versioning the code for training the model
(TP-5), another audit trail is created for later inspection. With packing the trained model
into reproducible archives (MM-1) and their persistence in a model registry (MM-2), the
foundation for ML market-place-alike structures can be set.

4.4.2. Pipeline Structure Search

Dependent on the type of data (e.g., structured or unstructured input data) and the
appropriate technique to solve the problem (supervised, unsupervised, or semi-supervised
learning), the overall ML pipeline structure differs. As each problem probably requires
its individual set of domain-specific quality demands, the regarding model performance
monitoring metrics (as exemplary shown in Section 5.1.5) must be defined.

4.4.3. Algorithm and Hyperparameter Selection

The selection of the most appropriate ML algorithm for a specified problem (e.g.,
neural networks, vector machines, and random forest) is carried out by the data scientists.
On top of this, each algorithm has parameters that must be tuned for achieving good
performance. These parameters are called algorithms hyperparameters, for example, the
number of layers or neutrons within a neural network. Tuning these hyperparameters
and selecting an optimal algorithm is one of the most resource-intensive and tedious
tasks in an ML workflow. AutoML aims to simplify this and many other manual tasks
in modeling by making decisions in an automated way. AutoML aims to decrease the
human effort required for building efficient ML systems. It advocates for fairness and
reproducibility. It supports the data scientist such that new experiments could be tried
rapidly and helps the enterprise to quickly develop new ML systems through automating
much of the modeling activities. A comprehensive guide on AutoML is provided in [21].
Regarding the automation of CASH which is a sub part of AutoML, different strategies
(such as, for example, generating a grid of configurations and evaluating all of them or
applying random search for each hyperparameter) exist [22].

4.4.4. Model Version

ML models are fairly complex and have strong interdependency on data, framework,
and modeling procedure. Model versioning is a way of keeping a track of these interde-
pendencies. It is also an essential feature through which models could be rolled back if
something goes wrong in production. Due to several reasons, different models could be
required at different time-frames, and versioning helps in deploying the correct version at
the right time. It increases accountability and works as an essential component required for
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governance in ML. With storing each model iteration configuration (e.g., chosen hyperpa-
rameters, data version, and quality demands) and persisting the actual versions of trained
(and well performing) models, a comparable history of solutions to specific input data is
created. Furthermore, the combination of model and data version makes the sharing and
re-validating results in a community easy.

4.4.5. Model Validation

Dependent on the input data generated at the foremost data management phase (see
Section 4.2), as well as the type of implemented learning (e.g., supervised learning or
unsupervised), the test and validation sets are applied for validating the learned model
and ensuring the prevention of overfitting the model. As model performance is an indirect
measurement of data quality applied in training [42], bad-performing models may be
enhanced by fixing errors in the data management phase.

4.5. Deployment Phase

The deployment phase marks the most critical phase of the MLOps journey. In this
phase, software engineers integrate the validated models into the respective applications
and ensure the operational stability of the whole applications system [30]. As aspects of the
various decisions and configurations of the whole pipeline are derivable in this integrative
phase, permanent monitoring of the model, the overall application, and consuming data
must be implemented by MLOps Engineers. Another role in this infrastructural deploy-
ment phase is the DevOps engineer, which is responsible for conducting, building, and
testing the working system [30].

4.5.1. Supportive Tool Requirements

As the trained, validated, and registered model is ready for utilization, there are
multiple application-specific and infrastructure-dependent support requirements for differ-
ent deployment patterns (DP-1). As the overall system state (OMP-1) and its input data
(OMP-2) will influence the overall model performance (OMP-3), constant monitoring is
required. In assuring the model’s quality (OMP-4), requirements for operating the complete
application are finally met.

4.5.2. Solution Deployment

The sub-phase solution deployment is mainly focusing on extracted value out of the
trained model. There are many potential problems and challenges in applying a trained
model within existing infrastructures. Next to complications with the system-related mon-
itoring metrics described in Section 5.1.5, various organizational or project-specific con-
straints, network restrictions, or missing required technologies in the ecosystem may hinder
the deployment of the solution.

4.5.3. Model Integration

There are three straightforward approaches of providing an application with the
overvalue of an ML model, as briefly demonstrated concerning the framework ML.NET
by Lee et al. in [45]. Next to deploying a model inside containers and connecting them
via Remote Procedure Call (RPC) to the serving system (the application respectively), the
direct integration of the model execution into the application decreases custom engineering
effort during deployment. Another approach is to white-box the model, where different
models are represented as Directed Acyclic graph (DAG) and registered inside a serving
system which is accessible via RPC or REST calls. The exchangeability of models decreases
with integrating its execution within an application’s source code. At the same time, the
central deployment via REST endpoints will increase the application’s dependability on
network connectivity and service availability.
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4.5.4. Model and Application Monitoring

The constant monitoring of the whole project stack, e.g., model and application
performance, as well as infrastructural circumstances and (most importantly) the data
utilized by the model, is the foundation of a robust ML-based product. In utilizing metrics
suggested in Section 5.1.5, many operational errors and shortcomings can be compensated
in advance. With a focus on tracking the data through the pipeline operations [11], graph
databases can help in managing and maintaining linkage between data objects and the
respective assertions.

4.5.5. Continuous Integration and Delivery/Deployment Validation

With the goal of continuously integrating newer trained models inside the application,
CI/CD Validation is the last step of the workflow in MLOps projects. To have permanent
monitoring and testing of new iterations of the ML-based applications, the CI/CD valida-
tion can be applied for indicating a certain product quality and therefore is an essential
component. With validating the predefined KPIs of every phase within the project, a
holistic assessment of the ML-based product implementation can be derived.

5. Tooling in MLOps

In recent years, many different tools have emerged which help in automating the
ML pipeline. The choice of tools for MLOps is based on the context of the respective ML
solution and the operations setup [24].

In this section, an overview of the different requirements which these tools fulfill is
discussed. Note that different tools automate different phases of the ML workflow. There
is no single open-sourced tool currently known to us that can create a fully automated
MLOps workflow. Specific tasks are more difficult to automate than others, such as data
validation for images. Furthermore, some of the standard Full Reference-based Image
Quality Assessment (FR-IQA) metrics are listed. These metrics could be applied for
automating the data validation part. After discussing typical demands on such tools,
26 open-source tools are benchmarked according to these requirements. A ranking is
provided indicating their fulfillment.

5.1. Requirements on Tools in MLOps

In the following, various requirements for MLOps are discussed, including general
demands on tooling. These set of requirements form a typical recipe based on which differ-
ent tools could be selected. The requirements are based on the stages introduced in the last
section. By defining these requirements as the ones that the MLOps tools must address,
each can be matched to one or more of these requirements. One can identify combinations
of tools that cover a range of these requirements. Furthermore, formalizing the various
applicable quality metrics is out of scope for the work on hand, a brief overview of image
quality, system monitoring, data monitoring, and ML system monitoring metrics is given.

5.1.1. Data Preprocessing Phase (DPR)

ML models are only as good as their input data. The data collected from different
sources undergo different preprocessing steps through which they are prepared to be used
by an ML algorithm. There are various requirements for implementing the preprocessing
steps in ML projects.

DPR-1: Data Source Handling

Integrating different data sources in a project’s pipeline can be accomplished by using
connectors or interfaces to load data. As every data science project depends on data sources,
handling various sources (databases, files, network sockets, complete services, and many
more) is vital to the pipeline.
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DPR-2: Data Preprocessing and Transformations

As input data are frequently formatted in incompatible ways, the preprocessing and
transformation of data must be supported. Often, the domain-specific input data are of a
structured nature like text or numbers. As the ML project is dependent on cleaned data,
other unstructured formats like audio, images, or videos must be taken into considera-
tion, too.

DPR-3: Data Quality Measurement Support through Metrics

Automated data validation is a critical component of MLOps. In order to ensure
data quality for images, one can utilize reference-based Image Quality Assessment (IQA)
methods. These methods require a high-quality reference image to which other images
are compared. Some of these methods are listed in Table 1. Other aspects of data quality
measurements are auditioning of data (unit and integration testing for data).

Table 1. Full-reference-based deterministic metrics for automated image quality assessment.

Metric Brief Metric Description

SSIM [46] Predict image quality by measuring the structural similarity between two
images.

MS-SSIM [47] SSIM based on modeling of image luminance, contrast and structure at
multiple scales.

MC-SSIM [47] Motion-compensated SSIM by comparing input to previous im-
ages/frames in a video.

IW-SSIM [48] Determines the Information Content of an image and performs Weighting
SSIM.

3-SSIM [49] Three-component SSIM determines edges, textures, and smooth regions,
and associates different weights for each region.

G-SSIM [47] Gradient SSIM compares edge information between distorted and original
images.

NQM [50] The Noise Quality Measure models distorted images by using a linear
frequency distortion with additive noise injection.

VIF [51] Visual information fidelity is calculated by relation of Distorted Image
Information to the Reference Image Information.

FSIM [52] Feature Similarity Index maps features and compares them to the original
image.

GMSM [53] Gradient Magnitude Similarity Mean makes use of average pooling on
GMS maps.

GMSD [53]
Gradient Magnitude Similarity Deviation using pixel-wise GMS captures
local image information. The standard deviation of the GMS-map is the
final image quality index.

UQI [54] Compute an ’Universal Quality Index’ by loss of correlation, luminance
distortion.

MAD [55]

The most apparent distortion metric utilizes contrast sensitivity, local
luminance, and contrast masking for high-resolution images. For low-
resolution images, changes in local statistics between the originals image
sub-bands are compared.

DSCSI [56] Directional Statistics based Color Similarity Index can handle chromatic
and achromatic distortions.

VSI [57] Visual Saliency-Induced Index uses ‘saliency map’ as a quality feature and
weighting function to characterize the importance of local regions.
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DPR-4: Data Management

Managing data sets in a centralized cockpit is an obvious requirement of MlOps. In
visualizing diverse aspects of gathered information (for example, the distribution of specific
attributes values or the alteration of a variable over time), the respective user is supported
with a quick overview of potential problems or errors in the data set.

DPR-5: Data Versioning

Data versioning is an essential requirement for implementing MLOps, similar to the
importance of code versioning in DevOps. Without data versioning, reproducibility cannot
be achieved in ML. The approaches for data versioning can be divided into two sections,
i.e., git-style alike and time-difference-based. The git-style approaches track immutable
files but cannot store the differences between them.

DPR-6: Data Labeling

The labeling of data is a mandatory task in supervised learning scenarios. When
manually preprocessing such data sets, several tools can support the respective actor (e.g.,
data scientist and domain expert) in extending the various samples with a target label (e.g.,
the attribute to be predicted when executing the model).

5.1.2. Model Training Phase (TP)

Training of ML models is a resource-intensive, complex, and iterative process. ML
is capable of offering multiple correct solutions for a single problem, unlike traditional
technologies that offer only one perfect solution [58]. In this section, we define requirements
based on challenges faced during the training of an ML model.

TP-1: Model Type Selection

In providing a user with the choice of defining a model type, as the selection between
forest tree or naive Bayes, the training is made configurable. When offering the basis for
the solution of multiple problem types, such supportive tools for model training may also
be applied for further operations within an organization.

TP-2: Hyperparameter Tuning

Once an algorithm for solving a well-defined problem is chosen, its configuration (e.g.,
the model’s hyperparameters) must be selected. Concerning automating this technically
sophisticated task, various AutoML approaches can lighten the data scientists’ workload
by applying CASH techniques.

TP-3: Tracking

ML is intrinsically approximate, and the development process is iterative. As the
number of iterations increases, the information necessary for reproducing that experiment
also grows. Tracking in ML is a process through which all modeling-related information,
i.e., the algorithm, its hyperparameters, and the observed performance based on some
metrics, could be saved automatically in a database. This collection of meta-information
helps compare algorithms, runs, and performance metrics.

Tracking the training runs, configured hyperparameters, and the corresponding model
quality metrics are the overall foundation of the model’s quality. Especially when imple-
menting multiple different ML models as a solution to a problem in parallel, comparing
results of measurements may help in selecting feasible model candidates. ML experiment
tracking tools are an essential part of a data scientist tool kit.
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TP-4: Integration Friendly

As there is a multitude of different ML frameworks (e.g., Pytorch, Scikit-Learn, or
Tensorflow), each with a focus on a specific ML technique, concept, or implementation
details, the integration of arbitrary frameworks in the MLOps workflow enables diverse
technical approaches for problem-solving.

TP-5: Code Versioning

The failure of ML systems does not create explicit errors, and pointing to the source of
the error is quite a difficult task. To revert quickly back to the previous working solution,
versioning is necessary. As in DevOps, code versioning is also an essential part of MLOps.
With versioning, the applications code, advantages in classic software engineering tasks
(branches, rollbacks, etc.) are realized. The demand for such technologies increases with
the complexity of the application and the actors involved in its implementation. Code
versioning stimulates successful deployments and reduces the chaos which surrounds the
development process.

5.1.3. Model Management Phase (MM)

Model management is also an essential principle of MLOps. As the number of ML
models created in an organization increases, it becomes more challenging to manage them.
ML model management is required so that new models can be consistently deployed, and
if something goes wrong, then they can also be reverted easily. In this section, we define
requirements based on challenges faced during the management of ML models.

MM-1: Model Packaging

As the deployment of ML applications is dependent on the respective technologies,
the packaging of trained models must be considered. Depending on the MLOps projects’
motivation and objectives, sharing resulting models within a scientific community may
be expected.

MM-2: Model Registry

The goal of the model registry is to store every model along with all of its versions and
metadata. Without a model registry, the model serving tool cannot process automatic re-
quests of querying the models. The registration of models within a central registry helps in
coordinating the selection and deployment of specific versions. It helps in governance and
offers better visibility while decreasing the time to production for already saved models.

5.1.4. Model Deployment Phase (DP)

As the deployment of the ML model is organization-specific, restrictions in deploy-
ment options of a model may hinder the utilization of supportive tools.

DP-1: Support for Different Deployment Patterns

Concerning the physical location of where the prediction should be executed, different
deployment strategies are possible. Next to offering the prediction as a service, deploying
the edge or inside a container structure or cluster is thinkable.

5.1.5. Operations and Monitoring Phase (OMP)

Different monitoring metrics are feasible depending on the MLOps project’s structure
and approach to solve a specific problem. As the model performance depends upon
input data, as well as the overall system infrastructure, different observation aspects and
strategies for the overall status of the ML environment are summarized in the following.
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OMP-1: System Monitoring (SM)

The constant monitoring of the deployment infrastructure (for example, the systems
latency, throughput, or server load) is the foundation of counteracting deployment-related
errors. Different metrics for monitoring the overall system utilized for ML tasks are
depicted in Table 2.

Table 2. Metrics for system monitoring.

Metric Remarks

Serving latency

The metric measures the response time. Low latency is one of
the critical aspects of a good user experience. In order to create
an expressive measurement, the responses of every tier must be
taken into consideration. Next to the average time to answer a re-
quest, other aspects like perceived page load time may influence
the metering [14].

Throughput

Average predictions returned in one second. High throughput is
representative of a healthy system. Additionally, measurements
regarding the throughput could be impacted by additional met-
rics, e.g., total hits per week, average hit size, or the occurring
error rate [14].

Disk utilization

Monitoring free disk space helps prevent data loss and avoid
server downtime. The statistics of the respective server’s filesys-
tem may also help in determining and understanding the appli-
cations health status [13]

System’s uptime

System uptime is an important measure of the reliability of the
system. It accounts for the availability of the service. Therefore,
this performance metric type is especially useful when serving
web-based applications [14].

CPU/GPU usage

Monitoring GPU/CPU usage helps identify whether some in-
puts result in longer computation time. This information is
beneficial for tuning the model for a better user experience.
While fine-tuning the capacity and configuration of infrastruc-
ture, these resources may be resized in order to fit the required
serving capability [14].

Number of API calls
While serving the model to many users, monitoring the number
of API calls is a good metric for approximating the maximum
load and systems availability.

OMP-2: Input Data Monitoring (IDM)

When not permanently monitoring the incoming data of an application, error factors
like data or concept drift are easily overlooked, and impacts are to be expected in the
subsequent model utilization. Different aspects of monitoring the respective data sets are
overviewed in Table 3.
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Table 3. Metrics for input data monitoring.

Metric Remarks

Data schema

This metric aims to check whether the data schema in the infer-
ence stage is identical to what was there during training. It is an
important measure of data integrity. By assuring such referential
integrity, a certain degree of data quality, as well as assumptions
on data completeness can be observed [15].

Data consistency

The metric checks if the data encountered in production is within
the expected range. It could also be used for catching data type
or format errors. By comparing the amount of records to previ-
ously known states of the dataset, another consistency factor can
be measured [15].

Data quality

The metrics checks if the quality of data is similar to what the
model was trained on. If the quality is changed, then that will have
a direct effect on the model’s performance. Therefore, the different
data quality dimensions must be assured in every stage of the data
lifecycle [17].

Data drift
The metric aims to examine changes in the distribution of data. It
checks whether or not the input data’s statistical structure (changes
in input feature space) has changed over time.

Outliers

Many algorithms are sensitive to outliers and perform poorly
on such data points. Outliers could bring additional knowledge
about the use case and therefore should be investigated in detail.
When comparing the incoming information to a previously known
reference or mathematical rule, the validity of data can be mea-
sured [15].

Training/Serving
skew

The aim is to check if there is a mismatch of data between data
acquired for training and what is received in production.

OMP-3: Model’s Performance Monitoring (MPM)

As patterns in the incoming data change dramatically over time, the model will not be
able to perform as expected (which is referred to as model staleness) and must be re-trained.
Therefore, having a close look at the model’s performance helps in preventing decreasing
effectiveness of models. The metrics summarized in Table 4 point out various problems
which have to be evaluated before and during deployment for production.
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Table 4. The different metrics that can be used for monitoring ML systems.

Metric Remarks

Output distribution

The distribution shift of the predicted outputs between data
from the training and production phase indicates model degra-
dation. Metrics such as the Population stability index or Diver-
gence index could help in alerting when such shifts happen.
Especially in time-series-based datasets, this metric is essential
in order to determine the credibility of existing models on the
new data [19].

Model’s performance

This particular metric is dependent on the task at hand. It is
useful for checking whether the current model is good enough
or not. Examples are Auc score, precision, recall, FPR, TPR,
and Confusion Matrix for classification tasks. Such metrics are
difficult to calculate as there might be long latency between
the output and true label. In general, a model’s performance
can be evaluated by its accuracy (e.g., right predictions), gains
(comparison to other models), and accreditation (credibility of
resulting predictions) [19].

Feature importance
change

The model’s performance might not degrade, but there could be
a change in feature importance based on which the predictions
are made. This could be an indication of drift and possibly a
point where data should be collected again for retraining.

Concept drift

Concept drift is a major source of model performance degra-
dation. It represents the pattern which the model has learned
in the past is not valid anymore. For a comparative discus-
sion of active and passive concept drift detection in distributed
environments, we refer to the work in [20].

Bias/Fairness

The trained model could be biased towards one class or group.
Accuracy difference (AD) can be measured for each class to
check for model bias. Another possibility is that the model can
be evaluated on specific slices of data for obtaining an in-depth
review of the model’s performance.

Numerical stability

Numeric values that are invalid or wrong are possibly learned
during model training. These do not directly trigger any explicit
errors but can produce significantly wrong predictions in pro-
duction. Checking for numerical stability ensures robustness.

5.1.6. General Requirements

Other than the ML-specific requirements, there are some additional elements that
could play an important role in the selection of tools. In this section, we define four key
points which are also used commonly for other software domains.

GR-1: Scalability

The scalability of supportive tools for data science projects is a basic requirement.
Depending on the specific task, various aspects like the required processing power, storage
amount, or service latency must be flexible.

GR-2: APIs

By controlling a tool via its served APIs, many tasks can be realized programmatically,
potentially strengthening the robustness of the MLOps pipeline by automating specific
tasks and eliminating errors of manually utilization or configuration of tools.
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GR-3: Tool Maturity Level

The reliability of tools in production environments is a vital requirement, as errors
may dramatically impact business goals. Therefore, a maturity assessment of potential
tools (e.g., well-tested, widely spread utilization, etc.) should be carried out beforehand in
any case.

GR-4: User Friendliness

As many actors are active within the MLOps workflow, non-technical personal must
be supported by user-friendly tools (e.g., self-explaining or intuitive user interfaces).

5.2. Tool Comparison

In this section, different open-sourced tools for MLOps that have emerged in the recent
past are compared and overviewed. These tools are benchmarked in Table 5 according to
the requirements mentioned in the previous section by additionally giving a ranking of
how well they fulfill those requirements. The ranking is as follows:

• o: Feature is missing.
• +: Feature is present but does not fulfill the complete requirement or is not user friendly.
• ++: Feature is present and is also easy to integrate and user friendly.

A short overview of existing tools could help in identifying key markers based on
which an individual can decide whether to choose a particular tool or not. In the following
subsections, we discuss the critical remarks for each of the tools, which we find essential
for the selection for creating a successful MLOps workflow.

5.2.1. MLflow

MLflow [59] is a Machine Learning Platform that can be used for partial automation
for small- to medium-sized data science teams. The tool has four parts—Tracking, Model,
Projects, and registry—targeting a specific phase of the ML lifecycle. The feature of User
management is missing from the tool. It is also not fully customizable (it cannot group
experiments under one architecture).

5.2.2. Polyaxon

Polyaxon [60] is a tool that focuses on two things, i.e., first, it promotes collaboration
among ML teams, and second, it focuses on the complete life cycle management of ML
projects. Unlike MLflow, it Deals with user management and offers code and data version-
ing support. The platform is not fully open-sourced, and it needs Kubernetes. Therefore, it
is not fully architecture agnostic. It provides an interface to run any job on a Kubernetes
cluster. The platform requires greater setup time and might be unnecessary for small teams.

5.2.3. Kedro

The main focus of kedro [61] is pipeline construction and providing a basic project
structure for ML projects (scaffolding). It offers the capabilities of defining pipelines by
using a list of functions, and it also provides inbuilt file and database access wrappers.
It also offers code versioning functionality with pipeline visualization (with an extra
python package, ‘Kedro-Viz’). However, with the pipeline visualization feature, there is no
functionality to see real-time progress monitoring.
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Table 5. A comparison of supportive tools for the different MLOps phases.

Tool Name Introduction/ Use Case
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Mlflow (v1.14.1) [59] An open-sourced tool kit for ML experiment tracking,
registry, packaging and lifecycle management. o +

TP-3 TP-4

+
MM-1
MM-2

+
DP-1 o

+
GR-2 GR-3
GR-4

Polyaxon (v1.9.5) [60] An enterprise-grade platform for building, training,
and monitoring large-scale deep learning applications. + DPR-5

++
TP-2 TP-3
TP-4 TP-5

++
MM-1
MM-2

+
DP-1 + OMP-1

+
GR-1 GR-2
GR-3

* Kedro (v0.17.3) [61]
A python-based tool for creating reproducible, main-
tainable, and modular data science code. It offers CLI
and UI to visualize data and ML pipelines.

o +
TP-4

+
MM-1

+
DP-1 o +

GR-3 GR-4

TFX (v0.30.0) [62] TFX is an end-to-end platform for deploying produc-
tion ML pipelines.

+ DPR-2
DPR-3
DPR-4
DPR-5

+
TP-3

++
MM-1
MM-2

+
DP-1

+
OMP-2
OMP-3

+
GR-1 GR-3

* ZenMl (v0.3.8) [63]
A lightweight tool for creating reproducible ML
Pipelines. It provides the ability to shift between cloud
and on-premises environments rapidly.

+
DPR-1
DPR-5

+
TP-3 TP-4
TP-5

++
MM-1
MM-2

+
DP-1 o

+
GR-2 GR-3
GR-4

H20 [64] A fully open-source, distributed in-memory machine
learning platform with linear scalability.

+ DPR-1
DPR-2

+
TP-1 TP-2

+
MM-1 o o GR-1 GR-2

GR-4

* Kubeflow (v1.3.0) [65]

It is a Kubernetes-native platform formed out of a collec-
tion of different components that focuses on orchestrat-
ing, developing, and deploying scalable ML workloads.
Comes with a GUI and CLI.

+
DPR-2
DPR-5

++ TP-1 TP-2
TP-3 TP-4
TP-5

+ MM-1 + DP-1 + OMP-1 +
GR-1 GR-3
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* Flyte (v0.15.0) [66]

A container-native workflow orchestration platform for
building complex, concurrent, scalable, and maintain-
able workflows for data processing and machine learn-
ing. It comes with an intuitive UI, CLI, and REST/gRPC
API.

o +
TP-5

++ MM-1
MM-2

+
DP-1 + OMP-1 ++ GR-1 GR-

2 GR-3 GR-4

* Airflow (v2.1.1) [67] It is a general task orchestration open-source workflow
management platform.

+ DPR-1
DPR-2 o o o + OMP-1

+
GR-1 GR-2
GR-3

DVC (v2.3.0) [68]
A command line tool that mimics Git-like format and is
used mainly as a data versioning tool. It is completely
free, light-free, and offers easy integration.

+ DPR-1
DPR-5

+
TP-3 TP-5 + MM-2 o o ++ GR-1 GR-

2 GR-3 GR-4

Pachyderm [69]

A tool designated for data versioning, creating end-
to-end pipelines, and creating data lineage. It comes
in three different versions: Community Edition (open-
source), Enterprise Edition, and Hub Edition.

+ DPR-1
DPR-2
DPR-5

+
TP-5 o o o +

GR-1 GR-3

Quiltdata (v3.2.1) [70]

Data versioning wrapper tool of AWS S3. It helps to
package data and create different versions of it inside
an S3 bucket. There are three versions available: free,
limited, and enterprise.

+ DPR-2
DPR-3
DPR-4
DPR-5

o o o o +
GR-1
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Great
Expectations
(v0.13.21) [71]

An open-source python framework for profiling, vali-
dating, and documenting data. + DPR-3 o o o + OMP-2 +

GR-3 GR-4

GitLFS [72] An open-sourced project which works as an extension
to Git for handling large files. + DPR-5 o o o o

+
GR-2 GR-3
GR-4

** CML (v0.5.0) [73] A CLI tool (a library of functions) focused on Continu-
ous Machine learning. o o o o o +

GR-4

** Github
actions [74]

A functionality of GitHub that helps in automating
software development workflows. Not free of charge
for private repositories.

o o o o o +
GR-4

** CircleCI [75] CircleCI is a cloud-hosted platform for creating CI/CD
workflows. Not free of charge for private repositories. o o o o o

+
GR-1 GR-2
GR-3

** GoCD [76] Open-source Continuous Integration and Continuous
Delivery system. o o o o o ++ GR-1 GR-

2 GR-3 GR-4

Cortex (v1.9.0) [77] A multi-framework tool with CLI for deploying, man-
aging, and scaling ML models. o o o o + OMP-1 +

GR-1 GR-2
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Seldon Core [78] A framework that simplifies and accelerates ML model
deployment on Kubernetes on a large scale. o o + MM-1 ++ DP-1

+ OMP-1
OMP-2
OMP-3

+
GR-1 GR-2
GR-3

BentoML [79]
A flexible, high-performance framework for serving,
managing, and deploying machine learning models.
The tool has both CLI and Web UI.

o o ++ MM-1
MM-2 ++ DP-1 + OMP-1

+
GR-2 GR-3
GR-4

Prometheus [80] A toolkit for monitoring systems and generating alerts. o o o o
+ OMP-1
OMP-2
OMP-3

+
GR-2 GR-3
GR-4

* Kibana [81]
A framework that is an essential part of the ELK stack
(Elasticsearch, Logstash, and Kibana). Kibana is used
mainly for visualizing machine logs.

o o o o o +
GR-1 GR-3

* Grafana [82] A tool that can be used to visualize and analyze any
machine-readable data. o o o o o

+
GR-2 GR-3
GR-4

Label Studio [83]

An open-sourced web application platform for data
labeling, which offers labeling solutions for multiple
data types such as text, images, video, audio, and time
series.

+ DPR-6 o o o o +
GR-2 GR-3

Make sense [84] A browser based platform for labeling images. + DPR-6 o o o o
+
GR-1 GR-3
GR-4

* Indicates that tool fulfills other requirements of the ML lifecycle such as pipeline orchestration or visualization. ** Indicates fulfillment of CI/CD tools for the ML lifecycle.
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5.2.4. TFX

TensorFlow Extended (TFX) [62] is an end-to-end platform for deploying production-
ready ML pipelines. The pipeline is formed as a sequence of components that implement
an ML system. To benefit from TFX, one has to use the TF framework libraries for building
individual components of the pipeline. The pipeline can be orchestrated using common
orchestrators like Apache Beam, Apache Airflow, and Kubeflow pipelines. It has higher
integration costs and might not be ideal for small projects where new models are required
less frequently.

5.2.5. ZenML

ZenML [63] is a lightweight tool for creating reproducible ML Pipelines. It provides
the capability to shift between cloud and on-premises environments rapidly. It is focused on
pipeline construction formed through a combination of steps by using Apache Beam. It has
a UI for visualizing pipelines and comparing different pipelines in one Zenml repository.
However, it does not offer support for scheduling pipelines currently. It has powerful, out-
of-the-box integrations to various backends like Kubernetes, Dataflow, Cortex, Sagemaker,
Google AI Platform, and more.

5.2.6. H2O

The H2O platform [64] is a part of a large stack of tools where not every tool is
open-sourced. It comes with a web UI. It is more like an analytics platform, but it is also
regarded as a library due to the different APIs it offers. The tool is used mainly for running
predefined models with automl capabilities, but it does not give the freedom to integrate
state-of-the-art custom models. It has leading AutoML functionality. It is Java-based and
requires Java 7 or later. Additionally, it lacks the capabilities of model governance.

5.2.7. Kubeflow

Kubeflow [65] is a specialized tool for orchestrating ML workflows. One disadvantage
of the tool is that it has high competency with Kubernetes and therefore is more difficult to
configure. The main goal of the tool is to make ML lifecycle and components interaction
(workflow manager) easy on Kubernetes.

5.2.8. Flyte

The focus of this tool is on ML and data processing workflow orchestration. The
Flyte [66] platform is modular and flexible by design. It is directly built on Kubernetes
and therefore gets all the benefits that containerization provides but is also difficult to
configure. It uses “workflow” as a core concept and a “task” as the most basic unit of
computation. It has grafana [82] and prometheus [80] integration for monitoring. It can
generate cross-cloud portable pipelines. There are SDKs for Python, Java, and scala.

5.2.9. Airflow

Airflow [67] is a workflow management platform that offers functionalities for man-
aging and scheduling tasks (depicted as DAGs). Airflow is not limited to Kubernetes like
the kubeflow tool; rather it is designed to be integrated into the Python ecosystem. It is not
intuitive by design and has a steep learning curve for new users. One can define tasks in
python and orchestrate a simple pipeline. It is also quite difficult to integrate Airflow for
ML projects which are already under development.

5.2.10. DVC

DVC is a Version Control System for ML Projects [68]. The tool is capable of tracking
models, datasets (including large dataset 10–100 Gb vs. 2 Gb limit on Github), and pipelines.
It is cloud- and storage-agnostic, i.e., the datasets can be stored, accessed, and versioned
locally or on some cloud platform. It is git compatible and can track experiments but does
not offer a dashboard. It works by creating the file ‘.dvc’ in the project root, where meta
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information such as storage location and format of the data is stored. For unstructured
data, the changes are tracked as new versions by themselves, which requires high storage
capacity. It is a very lightweight tool which offers great features with the minimum effort
required for integrating it into any Gitflow workflow.

5.2.11. Pachyderm

Pachyderm [69] is another tool that runs on top of Kubernetes and Docker. It helps
configure continuous integration with container images. It has a git-like immutable file
system. It has a steep learning curve due to dependency on the Kubernetes cluster if using
the free version. Compared to DVC, it offers many options for data engineering, such as
creating a data lineage by tracking the sources of data. The web dashboard is not available
in the free version.

5.2.12. Quilt Data

If AWS services are being used for the ML workflow then Quilt data [70] is an excellent
choice for data versioning. Data quality testing support is also available. Sharing data
between different projects is easily accomplished. The tool consists of a Python client, web
catalog, and a backend to manage data sets in S3 buckets.

5.2.13. Great Expectations

Great Expectations [71] is a tool for data validation and data profiling. It can be easily
plugged and extended with many frameworks. It offers integration support for many data
sources including MySQL, SQLAlchemy, and others. The main purpose of this tool is to do
data quality assessment through automated testing, but it is limited to tabular data only.

5.2.14. GitLFS

It is an extension created by Atlassian for Git. It introduced the concept of tracking
pointers instead of the actual files. Unlike DVC, Git-lfs requires installing a dedicated
server. The servers cannot scale as DVC does. The framework is used for storing large files,
but with GitHub, that limit is up to 2 GB (limitation of Github as Github has a 2 GB limit of
the file size with Git LFS).

5.2.15. CML

The tool is for implementing CI/CD/CT functionality in ML projects. It is ideal if one
is using GitFlow for data science, i.e., using git ecosystem and DVC for ML development
lifecycle. Every time some code or data is changed, the ML model can be automatically
retrained, tested, or deployed. It relies on GitHub actions and GitLab CI but offers an
abstraction on the top for better usability. It is intended to save model metrics and other
artifacts as comments in GitHub/Lab.

5.2.16. GitHub Action

GitHub actions [74] are not a tool but a new feature for setting up CI/CD workflows
within the GitHub platform. Actions are accessible for every open-source GitHub repository.
The private repository has 2000 build minutes as a limit for free.

5.2.17. CircleCI

CircleCI [75] is a cloud-hosted platform for creating CI/CD workflows that is not free
of charge for private repositories. It is an alternative to CML but with more functionality. It
has a dashboard and can generate detailed reports. It is a complete continuous integration
system. The tool was originally developed for DevOps and not intended for ML purposes.

5.2.18. GoCD

The GoCD tool is focused on Continuous Delivery (CD). It can be used for tracing
(visualizing) the changes in the workflow and also for creating one. It has native Docker
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and Kubernetes support. For the open-source version, you have to set up and maintain
the GoCD server (acting as central management endpoint). Different options for the
automation of triggers are also available.

5.2.19. Cortex

The main purpose of the tool is ML Model serving (as a web service) and Monitoring.
It is built on top of Kubernetes and has the capability of autoscaling. It requires a lot of
effort for setting up and currently supports AWS only (therefore, the tool can be seen as
an open-source alternative to Amazon’s Sagemaker). Cortex includes Prometheus [80] for
metrics collection and Grafana [82] for visualization.

5.2.20. Seldon Core

Seldon core [78] also has a strong dependency on Kubernetes. It can be thought of as
a wrapper around the model. It comes with multiple pre-packaged Inference Servers. It is
a language-agnostic framework with support for many ML libraries. The tool allows the
creation of more complex inference graphs where multiple model artifacts are containerized
into separate reusable inference containers that are linked together.

5.2.21. BentoML

The framework is focused on building and shipping high-performance prediction
services, i.e., models serving the purpose of solving specific problems. With just a few
lines of code, the model can be converted into a production REST API endpoint. Similar to
MLflow models, it offers a unified model packaging format. It acts as a wrapper around the
ML model for converting it into a prediction service. This approach is also followed up by
the tool Seldon core. It offers an extensible API. There is support available for almost every
major ML framework (Pytorch, Tensorflow, etc.). It currently does not handle horizontal
scaling, i.e., spinning up more nodes for prediction service when required.

5.2.22. Prometheus

It is a metric-based monitoring and alerting system which scraps metrics and saves
them to a database as time-series data. Applications do not send data to Prometheus,
but it is the tool that pulls data. Each target is scrapped at a fixed interval. It is highly
customizable and modular. The only disadvantage is that with time, managing the database
and the server becomes difficult. The tool is mostly used together with Grafana [82].

5.2.23. Kibana

Kibana is a data visualization and exploration tool. The user has to connect to Elas-
ticsearch (a popular analytics and search engine). It can be run on-premise or on cloud
platforms and has options for creating and saving browser-based dashboards. The tool has
a steep learning curve for new users, especially for the initial setup. If one does not use
Elasticsearch, then the tool is of no use.

5.2.24. Grafana

Grafana [82] is a metric-based tool that supports various data sources such as the
Prometheus database, Elasticsearch, etc., generally used with Prometheus. It comes with
an in-built alert system. It can be deployed on-premises, but this increases maintainabil-
ity. There are fewer options for customization of the dashboard by default and require
installation of extra plugins, which may increase complexity.

5.2.25. Label Studio

Lable Studio [83] is a data labeling tool. The interface of the tool is not pre-built, but
it needs to be configured manually, similar to any typical web-based application. The
platform offers SDKs for multiple frameworks for easy ML integration.
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5.2.26. Make Sense

Make Sense is a free-to-use online tool for labeling images. No installation is required
for using the tool as one can directly access it from the browser. The main focus is on
annotating images for the object detection and image recognition task.

5.3. Selection of Tools

In the previous section, different tools are compared and a short description of each
tool is provided. In general, selecting a tool depends not on the use case or domain, but on
what stage of the workflow in Figure 2 is automated by the tool. Similar to an ML model,
building an ideal MLOps workflow for the first time requires multiple iterations. Each
company faces unique challenges when building an ML system, even though life cycle
development phases remain the same.

The above table does not showcase the solutions required for developing newer ML
models as the tools for modeling are mostly frameworks or libraries such as Pytorch and
Keras. Furthermore, there are standalone tools available for some functionalities, such as
Prometheus for monitoring, but most tools offer a large variety of functionalities. This
might cause extra redundancy and lead to unwanted complications. Furthermore, tools are
developed for different scalability requirements. Therefore, there is no single best tool for
one particular phase for all the organizations.

Another vital point to keep in mind when selecting tools is the integration support a
tool offers. Some tools have their APIs only in python. In contrast, some offer support for
JAVA and R. The support of different intermediate libraries required for model building
is also an essential factor. Additionally, due to the lack of interactions between the pro-
duction and development teams, some extra complications might occur in the future. The
production team needs to use the tool stack, which will be in sync with the development
team. For example, if the development team chooses a platform such as TFX, then the
deployment team is somewhat limited to the tf serving compatible solutions. There is
a high dependency on the overall workflow as the construction of the pipeline occurs
sequentially. In summary, when getting started with MLOps, the focus should not be on
automating everything at once; instead, focus on individual stages; try to choose a tool
that offers flexibility and has support for other stages also. Achieving an ideal workflow
might require few iterations, and therefore creating a list of tools that every department
agrees on is a must. These tools, like chains, act as the blueprint for the whole workflow,
and spending extra time initially identifying exact needs is beneficial in the longer run.

In order to use the table presented in this section, one should first think about the
requirements and then select the tools that fulfill those requirements. For example, if track-
ing functionality is required, then one can choose MLflow or DVC. However, the selection
of the optimal tool is not a straight word task. As mentioned in the above descriptions,
some tools have a dependency on Kubernetes, and setting up a Kubernetes cluster is an
expensive operation, especially for companies that do not need frequent model updates.
Organizations mostly have some frameworks in use already, and selecting a tool com-
patible with the already in use platform is also essential. The goal should be to fulfill the
requirements, decrease the complexity, and aim for automation in smaller steps.

6. Exemplar Workflow: Partially Automating Object Detection with MLOps Tools

In this section, an example of basic level-1 MLOps workflow as discussed in Section 3.8
for “Defect detection on objects with deep learning” is shown by coupling some of the
tools from the previous section. This workflow aims to showcase how we can combine
open-source tools for a use case where newer models are not required frequently and
there is no CD. Such an example could be valuable for people in the early stages of ML
development. Most organizations already have code versioning tools such as Git and
GitHub in their tool stack. This example extends the push-based development process,
which has already been adopted in the industry. With fewer integrations, even the older
notebooks and data science code can be reused for designing such a simple workflow.
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Designing an automated MLOps workflow follows the semi-identical recipe for any
domain. What changes from one domain to another are metrics involved in data quality
assessment, model evaluation, and system evaluation stages. For example, when working
with object detection using images, one may use IOU as a metric for model evaluation.
However, the same metric cannot be used for a natural language processing task. The
requirements on which the different tools are benchmarked are chosen so that the choice of
the domain becomes irrelevant. Even if an MLOps workflow is designed using the tools
mentioned in Table 5, the workflow will still have to be tweaked to fit a particular use case.

Concisely, the MLOps workflow for Image Processing mainly with data-driven ap-
proaches follows a similar pattern as explained in Section 3. However, it has more com-
plexity when compared to workflows for structured datasets. The reasons for this high
complexity are as follows:

• High dimensionality of the data involved.
• Interpretation and understanding of visual data is a complex task.
• Image data sets are generally enormous which require extra storage resources.
• Training of data-driven model for image processing is a time-consuming task that

requires more extensive computational resources.
• The quality assessment of images is a challenging task. The image quality is dependent

on various factors such as external sources (e.g., poor lighting conditions) or the
camera’s hardware itself.

A suitable starting point for developing the workflow is thinking of a manual pipeline
for object detection and automating each stage individually. From the manual pipeline
shown in Figure 1c, we need to automate five stages, i.e., Data analysis, Data preparation,
Model training, Model testing, and, finally, deployment. The particular tools which
automate the stages mentioned above are listed below.

• Data analysis: Git and DVC
• Data preparation: GitHub actions
• Model training, Model testing, and deployment: MLflow

We only focus on the design for simplification and overlook the reasoning for selecting
these particular tools. Additionally, in this example, there is no monitoring of the model or
the workflow. The model serving is just limited to saving ML models as a python function
at a fixed location. Furthermore, these tools do not require any significant additional
installations, and most of them are already commonly used for software development. This
ensures reusability, and in order to automate an old model training script, one only has to
integrate MLflow API and set up a new DVC repository.

Regarding the automation level of a workflow, also note that an MLOps workflow
can be distinguished based on the maturity level of the data science process followed in
an organization and also on how many end users interact with the ML model. A lower
maturity level represents a small team working on data science with manual ML workflow
execution (in most cases, an individual data scientist). In such scenarios, a model is not
deployed to multiple users, and there is no monitoring of the deployed service. The data
science team hands over the trained model to the operations team for further usage, like its
integration into the target application.

Interestingly, most organizations start with a data-centric approach and then work their
way to a model-centric and, then, pipeline centric approach when adopting MLOps [29].
The data-centric approach entails that initially, some models are created to check whether or
not business value can be created from the data gathered at the organization. This is the first
attempt at applying ML to data (low maturity level) where simple modeling approaches
are preferred. Once the proof of concept is ready, the organization shifts to more complex
state-of-the-art algorithms for solving the problem at hand (increasing maturity level). The
final stage of this characterization is the pipeline-centric approach which represents that an
organization has ML models which are critical for generating business value and are looking
for ways to scale them for achieving continuous development (highest level of maturity).
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6.1. Simple MLOps Workflow

For the use cases where new models are not frequently deployed, and deployment
happens on an edge device rather than as a prediction service, even simpler Level-1
workflow might be the best fit. In such cases, automation is required for the modeling part
but pipeline versioning is not a must.

The first step towards adopting MLOps for such a use case is automating the process of
training a new model as soon as new data is available for production. This involves running
the ML pipeline automatically with steps such as automated data quality assessment and
model testing. The target problem for this workflow is defect detection on objects using
images with deep learning. Anomaly detection is a major part of industrial sectors where
identification of defects or frauds is widely implemented [85]. An extensive overview of
detecting anomalies with deep learning is reported in [86]. However, in a data-centric
approach, the selection of the best algorithm is not the focus of the process. For this purpose,
YOLOv5, an already implemented deep neural network is selected. The implementation is
provided by Ultralytics as an open-source project [87]. YOLO algorithms are commonly
used for real-time object detection with images.

The goal of this workflow is to perform CT with automated hyperparameter optimiza-
tion for an object detection problem. This includes the functionality of experimentation
tracking, artifacts logging, and model registration. For each run, the user-defined metrics
and the resulting model are logged in an SQLite database. A summary of tools used for
this workflow is as follows:

• Git: for code versioning.
• GitHub actions: for triggering automated data validation and other steps of pipeline.
• DVC: for data versioning.
• MLflow Tracking: for tracking experiments and comparing runs.
• Hyperopt: for automated hyperparameter optimization.
• MLflow Projects: for packaging code and environment dependencies.
• MLflow Models: for storing the model as a python function.
• MLflow Registry: for managing and annotating models.

The workflow follows a Gitflow design for continuous development. The first step is
data acquisition, followed by data cleaning and data labeling. To use YOLOv5, bounding
boxes have to be drawn around the anomalies, which is utilized through the Make Sense
platform [84]. Once the whole data set is labeled, it is divided into training, testing, and
validation sets as discussed in Section 3.5.

The workflow starts by initializing an empty git repository on Github, where DVC is
installed and initialized. DVC creates a .dvc file that contains a unique md5 hash for linking
the data set to the project. The next step is to add the code into the GitHub repository and
training data to the initialized DVC repository. With the help of GitHub actions, automated
triggers are generated for code and data validation as soon as these additions are made. For
automated data validation, the full reference-based image quality assessment metric, SSIM,
is utilized. One of the best quality images (according to the domain expert) is marked
as a reference. The metric goes over the whole data set and evaluates a quality score for
each image based on structural, contrast, and luminance information in comparison to the
reference image. Every image which has a lower SSIM score than the average is removed
from the data set. For code, basic unit and sanity checks are performed to check for any
syntax-related errors.

In the next step, experiments are executed for finding the best-performing models
using the Hyperopt library [88] while integrating the MLflow tracking in the training
script. The MLflow tracking server can automatically track metrics, artifacts (models and
plots), and parameters for these experiments. The runs are logged in an SQLite database,
and artifacts are stored locally. These runs can be visualized with the help of the MLflow
tracking user interface or can be accessed via the REST API. On top of this, the MLflow
registry lets the user annotate models for model versioning. The best-performing model is
packaged using the MLflow models as a python function.
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6.2. Critical Discussion

Many organizations have mastered developing a model that works on a static dataset,
but realizing real value from a model in the production environment is still a challenge.
This challenge exists because the process of deploying the already developed model
is not straightforward. In addition to the incremental complexity of the development
environment, there is also dependency on the data. Information regarding the development
environment, dataset, and hyperparameters is necessary for reproducing the same model.
As the number of experiments increases, the amount of information required to be stored
increases dramatically. All this information can not be logged manually, and there is a
need for a tools stack that can ease the work of a data scientist and promote shareability
between different data science teams. Muralidhar et al. show a real-life use case of MLOps
in the financial analytics domain in [11]. They describe challenges and defective practices
in terms of patterns (anti-patterns) that should be avoided for the successful deployment
of ML models. The challenges faced by object detection models in real-world scenarios are
well described by Ahmed et al. in [89]. The paper showcases that even the state of the art
deep learning models suffer from performance degradation in challenging environments
due to various factors. One solution for this is continual learning, where a model is updated
frequently. If continual updates are required, then the development of newer models has
to be automated. This is where MLOps showcases its potential.

MLOps has become a necessity for businesses to create actual practical workflows for
computer vision applications. This is visible from the workflow defined in Figure 3. For
example, suppose Git and DVC are not used for data and code versioning. In that case,
the development team has to perform versioning by manually saving different folders
with different datasets or outsourcing the complete data handling to a third party. Another
complexity involved with images is the quality assurance of the data. Image quality
assessment (IQA) is usually divided into two sections: Full Reference-based IQA (FR-IQA)
and No Reference-based IQA (NR-IQA). The methods under NR-IQA require an additional
learned model to quantify the quality of the images and have higher complexity. On the
other hand, FR-IQA methods are less complex and have faster implementations. Some
of the most common FR-IQA methods are presented in Table 1. For this workflow, the
SSIM metric was chosen to perform automated quality assurance of the data due to the
fact that it outperforms standard metrics such as MSE and PSNR. After data preprocessing
and versioning, the following requirement is producing reproducible training experiments.
This is achieved through MLflow’s tracking functionality. In the above case, the YoloV5
large model is used, and the Hyperopt library optimizes hyperparameters. With very few
tweaks, the other versions of YOLOv5 object detection models can also be used. This is
also true if one decides to use any other optimization strategy such as genetic algorithms
for hyperparameter optimization. The portrayed automated workflow helps in organizing
this and other important information in a relational database. This information is vital
for knowing what worked and ensuring reproducibility. The shown workflow gives the
development team the freedom to try newer models and optimization strategies without
changing other parts of the workflow. Through the MLflow’s registry component, we
can also save the different development stages and versions for a single model in the
relational database. This information helps in debugging when a particular model fails in
the deployment environment. Through the workflow portrayed in Figure 3, the models can
be continuously improved, and this eases the complexity of the ML development process.



Appl. Sci. 2021, 11, 8861 35 of 39

Figure 3. Basic MLOps workflow with automated training, Automl, model packaging, and model registry.

6.3. Fully Automating the MLOps Worklfow

In the workflow depicted in Figure 3, rolling back to the previous version of models is
done manually. Furthermore, as the final product is a single model and not a pipeline, the
model’s continuous monitoring and continual learning are not performed. Furthermore,
there are no options for model governance nor the implementation of a network layer or
an orchestrator.

Additionally, a monitoring system is required to ensure a fast feedback loop for solv-
ing bugs and other problems that may be encountered in production. Some of the primary
metrics for monitoring are listed in Tables 2–4. Once a fault is found, then an action policy
is implemented. The action policy decides what changes should occur based on the alerts
generated by the monitoring system. For example, when drift is detected, then the system
has to calculate the ideal time of deploying a new model. All of these decisions are made
based on the thresholds set by the domain expert, which should be highly related to the
monitoring platform’s alerting mechanism.

As an organization gets more comfortable with data science, more focus is given on
containerization and full automation of ML workflows in addition to automation of CI/CD
pipelines. This is also referred to as the final level of automation (MLOps Level 2) [33]. With
this step, multiple pipelines can be deployed as a single entity rather than an individual
model. These pipelines can be versioned. With containerization, container orchestrators
like Kubernetes come into play. These all are important for managing the evolving work-
flow. For scalability and complete automation of MLOps workflow containers, orchestrators
and resource managers form together an essential toolchain. With these tools, continuous
and scalable ML pipelines are achieved.

7. Conclusions and Future Work

In this work, the potential of MLOps was presented. With the introduction of vari-
ous actors and roles involved in MLOps workflows, an overview of responsibilities and
supportive tools for the different phases were introduced. With the discussion of a real-
world Deep Learning (DL)-based object detection use case, the benefits of managing such a
project by interconnecting different concepts and supportive technologies were shown. By
comparing various tools with respect to preprocessing, training, management, deployment,
and operations in ML projects, a quick selection of problem-specific solutions or products is
realized. This supports and simplifies the definition of the initial starting point for MLOps
projects. Crucial metrics for monitoring ML systems are also listed (see Tables 2–4). These
metrics are the key to obtaining a continual learning solution.

From the comparison of different tools depicted in Table 5, it can be seen that no single
tool has the capability of realizing a fully automated MLOps workflow. Different tools
have overlapping features, increasing redundancy. For example, DVC is not just a tool
for data versioning; instead, it can also be used to track machine learning experiments,
but due to no dashboard to visualize the experiments, MLflow is often chosen over DVC
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for this task. Furthermore, there is also an expansion of the skills required by different
actors in the ML lifecycle to create any real business value. For example, earlier, the role
of data scientist was limited to experimentation and modeling. However, it can be seen
from Figure 2 that close collaboration with operation or software engineers is needed for
the successful deployment of an ML model.

In future work, the potentials of AutoML capabilities for MLOps workflows and
their deep integration and orchestration within such operations could be investigated. By
revealing the combinations of state-of-the-art software, their infrastructural restrictions
and requirements could be focused on. As the tool variety for supporting the different
phases in ML projects is constantly evolving, many operational tools are expected to be
refined in the future. Exciting and novel offerings for interconnection capabilities with
other tools and a more holistic metric support may be worth further investigation. The
implementation of expert interviews regarding their experience with interconnecting and
integrating various tools for creating complete MLOps pipelines and ecosystems are of
interest, too. As concepts for assuring data quality constantly emerge, pursuing their
integration into MLOps tools and workflows appears to be worthwhile.
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