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Abstract

Warehouses are the scene of complex logistic problems integrating different decision
layers. This paper addresses the Joint Order Batching, Picker Routing and Sequencing
Problem with Deadlines (JOBPRSP-D) in rectangular warehouses. To tackle the problem
an exponential linear programming formulation is proposed. It is solved with a column
generation heuristic able to provide valid lower and upper bounds on the optimal value.
We start by showing that the JOBPRSP-D is related to the bin packing problem rather
than the scheduling problem. We take advantage of this aspect to derive a number of valid
inequalities that enhance the resolution of the master problem. The proposed algorithm is
evaluated on publicly available data-sets. It is able to optimally solve instances with up
to 18 orders in few minutes. It is also able to prove optimality or to provide high-quality
lower bounds on larger instances with 100 orders. To the best of our knowledge this is the
first paper that provides optimality guarantee on large size instances for the JOBPRSP-D,
the results can therefore be used to assert the quality of heuristics proposed for the same

problem.

Keywords: picker sequencing; order batching; picker routing; bin packing; column genera-

tion.

1 Introduction

The scene takes place in a tall and dim building, lights flickering with a buzzing noise. Pickers
move across the warehouse, collecting items, fulfilling customer’s orders, with a digital voice for
companionship.

To increase the efficiency of the operations, several orders might be batched, i.e., put together

to be collected by a picker in a single route. Batching is possible as long as orders grouped



together respect capacity constraints, namely they fit in a trolley. Since customer satisfaction is
at the core of competitiveness in e-commerce, each order is required to be prepared and shipped
before a strict deadline that usually corresponds to the departure of a truck from the warehouse
to deliver orders. Pickers must therefore collect their batches in an appropriate sequence in such
a way that all orders meet their deadlines. Planning the entire process is referred to as the Joint
Order Batching, Picker Routing and Sequencing Problem with Deadlines (JOBPRSP-D). In the
present work, we consider optimal routing policies in a rectangular warehouse with several blocks
(or cross-aisles). Such optimal routes can be efficiently computed with dynamic programming
following the work of [Ratliff and Rosenthal (1983); [Pansart et al| (2018).

Order picking in warehouses is part of a complex logistic process involving a wide range
of problems such as storage assignment, order batching, picker routing and picker scheduling
(de Koster et al! (2007)). Relatively efficient methods have been designed for single problems
such as the picker routing problem. However integrated problems are receiving attention since
significant gains can be achieved by taking into account the interrelations of the planning prob-
lems (van Gils et al. (2018)). The resulting combinatorial problems embed many NP-Hard sub-
problems with distinct decision levels which make them very challenging to solve in practice.
Moreover, practical instances tend to be of large size which complicates even more the resolution.
Consequently, heuristic approaches have been favored so far and, as mentioned in the review of
van Gils et al. (2018) (page 6), the use of mathematical programming as a research method to
integrate different order picking planning problems is limited.

Briant et all (2020) propose a column generation heuristic able to produce lower and upper
bounds for the Joint Order Batching and Picker Routing Problem (JOBPRP). In this work,
we show that the methodology proposed by Briant et all (2020), can be extended to tackle the
sequencing question as well i.e., the additional assignment and sequencing of batches to each
picker in order to meet the deadlines of the orders. This aspect is currently seen as a scheduling
problem in the literature (van Gils et all (2019); Haouassi et all (2022)). We take a different
view-point and propose a bin packing formulation. As a result, we benefit from families of
valid inequalities identified for packing problems and derived from Dual-Feasible Functions (see
Clautiaux et all (2010)). A high-quality lower bound for the integrated problem can therefore be
derived by adding such cuts in the formulation proposed in Briant et al. (2020). The bin packing
view-point also provides new insights to design efficient heuristics. Finally, a key cutting plane
that was used for solving the pricing of Briant et all (2020) can be considerably strengthened
by using timing considerations related to the sequencing aspect of the problem.

The contribution of the present paper are as follows:

e an extended mathematical formulation based on bin packing considerations is proposed

for the JOBPRSP-D ;

e solving this formulation yields proven optimal solutions on all the small benchmark in-
stances for the JOBPRSP-D;

o families of valid inequalities for the JOBPRSP-D are derived from Dual-Feasible Functions;

e tour constraints proposed in Briant et al. (2020) are strengthened based on the particular
structure of the benchmark of instances for the JOBPRSP-D;



e the column generation based heuristic proposed is able to provide high-quality upper and

lower bounds for subsets of the benchmark instances.

The paper is organized as follows. The problem specification and notations are given in
Section 2l A literature review is presented in Section Bl Formulations and valid inequalities are
presented in Section [ this is the key section on the paper. A reader who is pressed for time
can focus on Section @l Each component of the proposed methodology as well as the overall
algorithm design are then detailed in Section 5l Experimental results are reported and discussed

in Section [6l Finally Section [7] concludes the paper.

2 Problem definition and notation

The warehouse layout is modeled as a directed graph G = (V, A) where V contains two depots
s and s’ and two types of vertices: locations V;, and intersections V;. So, overall V = Vy U
Vi U {s, s'}. Each location in the set V, contains one or more products to be picked, whereas
the intersections in V; are used to encode the warehouse structure. Additionally, s denotes the
depot where picking routes start and s’ is the depot where routes end and picked orders are
dropped off. Moreover, a travelling time t;; is associated with each arc (7,7) € A.

The set of items is denoted by Z. An item ¢ € 7 is characterized by its location v; € Vr.
Note that here we consider an item has a unique location.

A set O of orders to collect is given. Each order o € O is composed of a set Z, C 7T of items
to pick. Let us denote by B, = |Z,| the size of order o € O.

An order o € O is associated with a time tgiCk that represents the time needed to pick the
items composing order o. It is proportional to the size B, of order o. We indicate as V, C Vy,
the set of locations that have to be visited to retrieve order o € . Moreover, an order o € O
is associated with a deadline d, > 0 that represents the latest instant of time to have the order
ready at node s’.

The set of deadlines is denoted as D, and in practice the number of different deadlines in D
is much lower than the number of orders since deadlines correspond to the departure of a vehicle
from the warehouse to deliver orders. Hence many orders share the same deadline.

A batch is a set of orders that are collected together in a single route by a picker. Each
batch is associated to a route k in the warehouse starting from s, terminating in s’ and visiting
a subset of locations in V7. The orders collected along the route k are denoted as O C O. The
deadline dj, of a route k is the minimum deadline among the deadlines of all its orders, that is
di = mineeo, d,.

The time ¢ to perform a route k is the sum of three terms: the picking times of all order to
be collected in the route, the travel times to go from each location to the next one, and, finally,
a setup time #5°*"P. The setup time is supposed constant and represents the time needed by the
picker to get the trolley ready.

The routes are performed by a set P of pickers, each of whom pushes a trolley of capacity
B. A route k must respect the trolley’s capacity, that is needs to satisfy > oco,, Bo < B.

A solution of the JOBPRSP-D is a sequence of routes K, for each picker p € P such that:

e all orders are picked up;



e cach route respects the capacity constraint of the trolley;

. n ; ;
e in each sequence K, = {r},, 7";, ...,Tp"}, route r;,“ starts after route r;, ends;

e cach route arrives at the final depot not later than the minimum deadline of the collected

orders.

The objective of the JOBPRSP-D is to minimize the sum of the times to perform the de-
termined routes. Indeed, since the number of available pickers and orders to be collected is an
input, minimizing the total time improves the productivity of the system. Moreover, deadlines
being considered here as hard constraints, there is no need to consider tardiness aspect in the
objective function.

In the following, we will indicate by K the set of all possible feasible routes. Moreover, given
two routes k and k¥’ € K, we may write k C k' instead of O, C Oy for ease of notation. Similarly,

given an order o € O and a route k € K, we may write o € k instead of o € Ok.

3 Literature review

The literature on problems related to Order Batching and Picker Routing is large and an ex-
haustive review is out of the scope of the present work. The interested reader is referred to the
literature reviews of de Koster et al! (2007), van Gils et al) (2018), (Cagla Cergibozan and Tasan
(2019), Vanheusden et al) (2022).

We thus limit the review presented in this section to works directly related to this paper.
First, we review works on the JOBPRP proposing algorithms that are exact or that produce
both lower and upper bounds on the studied problem. Then, we review works that consider the

sequencing of pickers.

3.1 Solving the JOBPRP exactly or producing lower and upper bounds

Some exact algorithms have been proposed for the JOBPRP but are rarely extended to more
complex integrated problems. Algorithmic techniques relevant to the present work have also
been investigated on the JOBPRP and are mostly based on exponential Integer Programming
(IP) formulations inspired by vehicle routing.

In particular, to the best of our knowledge, (Gademann and van de Velde (2005) are the first
to design a Branch-and-Price algorithm where variables are related to batches and their cor-
responding routes in the warehouse. The proposed approach remains limited to the case of a
single block warehouse where all orders have the same size. The pricing algorithm is a dedicated
Branch-and-Bound algorithm that uses the dynamic program of Ratliff and Rosenthal (1983) to
compute the optimal route of a batch. Muter and Oncan (2015) generalize the pricing problem
of IGademann and van de Velde (2005) to deal with orders of different sizes, and also consider
heuristic routing policies. Valle et all (2017) propose a Branch-and-Cut approach to solve the
JOBPRP in a two blocks warehouse and an optimal routing policy. The optimal routing is based
on sub-tour elimination constraints typical of the Traveling Salesman Problem formulation of
Dantzig. The algorithm proposed is able to optimally solve instances with 20 orders. The dy-

namic programming algorithm of Ratliff and Rosenthal (1983) is then generalized to any number



of cross-aisles and used by Briant et all (2020) to design another column generation technique.
The pricing is solved with integer programming and the addition of cutting planes based on the
dynamic programs for computing optimal routes. Recently, [Hefler and Irnich (2022) propose
to extend the state space procedure of Ratliff and Rosenthal (1983) to formulate the pricing
problem as a shortest path problem with side constraints, namely the grouping requirement of
orders and the trolley capacity. It also naturally handles scattered storage i.e. an item may
be stored at more than one pick location. The pricing problem can then be efficiently solved
with an IP model. The proposed algorithm remains limited to a one block warehouse. Fi-
nally, Wahlen and Gschwind (2023) propose a Branch-and-Price-and-Cut algorithm to solve the
JOBPRP. The pricing problem is formulated as a Shortest Path Problem with Resource Con-
straints (SPPRC) on a linear graph where the nodes represent the customer orders in a given
sequence, and two arcs between two consecutive nodes represent the inclusion or exclusion of the
order in the batch. The SPPRC is solved by a labelling algorithm with strong completion bounds
- the results on instances with one block warehouses outperforms the results of Muter and Oncan
(2015).

3.2 Problems with picker sequencing considerations

The sequencing of pickers, which is at the heart of the present paper, is closely related to the
wave-based picking issue. Picking is often performed in the so-called wave-based manner where
a group of orders (a wave) is released at the same time and needs to be picked. The goal
is to minimize the makespan of the wave which requires to assign batches to pickers. This
is a natural extension of the JOBPRP where the exact sequence of each picker is not needed
since the makespan is only dependent on the assignment of batches to the pickers and not
on their sequencing. Wave picking problems with makespan minimisation are addressed by
Ardjmand et all (2018, 2020); Muter and Oncan (2022).

Sequencing really matters when due dates or deadlines are considered for orders. A number
of variants of this integrated batching, routing and sequencing problem are addressed in the
literature ; they vary on the objective and in the way they consider the due dates either as hard
or soft constraints. Table [Il provides an overview of the related literature. Columns time and
tardiness indicate if the objective function considers to minimize the time and the tardiness
respectively. Column Due date constraints indicates if due dates are considered as hard or
soft : note that a hard due date corresponds to a deadline. Finally, column Solution method

indicates the proposed solution methods.



Objective Due date
Reference Solution method
time tardiness constraints

Tsai et al. (2008) v v soft genetic algorithm
iterated local search
Henn and Schmid (2013) v soft tabu search
variable neighborhood descent
Henn (2015) v soft variable neighborhood search
genetic algorithm
Chen et al. (2015) v soft ant colony
Scholz et al. (2017) v soft variable neighborhood descent
Menéndez et al. (2017) v soft variable neighborhood search
van Gils et al. (2019) v hard iterated local search
Haouassi et al. (2022) v hard heuristic + constraint programming
D’Haen et al. (2022) v v soft large neighborhood search

Table 1: Studies of variants of the integrated batching, routing and sequencing problem.

Table [Ml shows that several works focus on the sum of the delays to the due dates whereas
others consider them as deadlines i.e as hard constraints, and then focus on the minimization
of the total time. Also, two papers consider the minimization of a weighted sum of tardiness
and total time. Additionally, note that two real life aspects of the problem are taken into
account in recent works: dynamic arrival of orders (D’Haen et al. (2022)) and scattered storage
(Haouassi et al. (2022)). All the algorithms proposed so far are based on metaheuristics such as
genetic algorithm, iterated local search, tabu search, variable neighborhood search, ant colony,
variable neighborhood descent, large neighbourhood search. Note that [Haouassi et al! (2022) use
a constraint programming approach to efficiently build a feasible schedule for each picker. [Henn
(2015) mentions column generation as a possible resolution approach but turns to a heuristic. To
the best of our knowledge, none of the algorithms proposed in the literature is exact or computes
lower bounds for this integrated problem.

The algorithm proposed in this paper is meant to close this gap and contribute in assessing
the numerous heuristics developed in this field. Moreover, order deadlines are a relevant set-
up in real-life warehouse used by van Gils et al. (2019); [Haouassi et all (2022) and a shared

benchmark is available.

4 Formulation, relaxation and valid inequalities for the JOBPRSP-
D

In this section we first provide an extended formulation of the JOBPRSP-D as a (multiple)
bin packing problem. Let us first recall that given a route k € K, t; represents its total time,
O C O the batch of orders to be collected while performing route k and dj, = min,eo, d, its

deadline. Additionally, to easily state the model, we denote as:

e [C(0) = {k € K:0€ O} the set of routes retrieving order o, for all orders o € O;



e K(d) = {k € K : dj, < d} the set of routes with a deadline that is lower than or equal to
d, for all d € D.

We use binary variables py, that equal 1 if route & € K is assigned to picker p € P, 0
otherwise. The JOBPRSP-D can be formulated as follows:

( min Ztk Zpkp (1)

keK  peP
s.t. Z Zpkl’ >1 YoeO (2)
keK (o) peP
(B(K)) . .
> thpwp <d  VIEDNpEP  (3)
kek(d)
pep € {0,1} VEe K,peP (4)

The objective function (1) minimizes the total time required by the pickers to retrieve all
orders. Constraints (2]) ensure that each order is collected. From a bin packing point of view,
those constraints state that among the routes that compose the final packing there is at least
one that contains a given order o € O.

Constraints (B) impose the respect of the deadlines. In particular, for each deadline d € D,
they impose that the total time of routes in K(d) assigned to a picker do not exceed the value
of d. From a bin packing point of view, these constraints impose that the total size (that is
the picking time) of the objects (that is the routes) assigned to a bin (that is a picker) do not
exceed its capacity (that is the deadline). Again here we emphasize the fact that the sequence
in which the picker performs the routes that are assigned to him/her is not important as long
as their total time is lower than or equal to the considered deadline. This allows to look at the
problem as a (variant of the multiple) bin packing problem.

Note that a valid sequence for each picker is easily computed from an assignment of the routes
to the pickers provided by (B(K)) by sorting the routes by increasing deadlines. Moreover, this
bin packing formulation of the problem is possible because there are no release dates for the
orders, i.e. all orders can be collected from the beginning of the planning horizon.

Finally constraints () define the variables.

Note that this extended formulation contains an exponential number of variables with regards
to the size of the instance, and solving directly such a formulation implies that all feasible routes

have been generated beforehand.

4.1 A relaxation of formulation B(K)

Let us now consider the binary variables p; defined as:

Pk = Z pp  YkEK  (5)
peEP



Note that pr equals 1 if route k € K is selected to be part of the solution, 0 otherwise. By
taking into account constraints (Bl) and aggregating constraints (B]) in formulation (B(K)), we

obtain the following formulation:

min Z tk Pk (6)

kel
s.t. Z pr > 1 YVoe O (7)
keK(o)
(M(K)) ) .
Y thpp < dx|P| VdeD  (8)
kek(d)
pr €1{0,1} Vee kK  (9)

\

The objective function (6l minimizes the total time of the selected routes. Constraints ()
ensure that each order is collected. Constraints (§) are obtained by summing constraints (3]
over all pickers p € P and taking into consideration the relation defined in (). Constraints (@)
define the variables. Note that (M (K)) is the formulation proposed in Briant et all (2020) for
the JOBPRP with the additional constraints (g]).

Proposition 1 Formulation (M (K)) is a relazation of (B(K)).

Proof:  The proof is trivial and directly follows from the definition of variables pi, k € K and
the aggregation of constraints (B]) to obtain constraints (8]). O

Proposition 2 The linear relazations of formulations (B(K)) and (M(K)) are equal.

Proof: Let us denote by (LB(K)) and (LM (K)) the linear relaxations of formulations (B(K))
and (M (K)) respectively, that is, integrality requirements on the variables (constraints () and
[@)) are removed. From any fractional solution pg, of (LB(K)), a feasible solution to (LM (K))
can be built by setting pr = ZpE'P Pip, that is using relation (B)). Reversely, from any solution py,
of (LM(K)), we can set pg, = ﬁﬁk for each picker p € P to get a feasible solution of (LB(K)).

0J

Note that constraints (§) can be seen as enforcing in (M (K)) the linear relaxation of the
bin packing constraints (3] of (B(K)). This bound is also known as the L; lower bound for bin
packing. Stronger bounds (such as L) can be used to derive stronger inequalities following the

framework of Dual-Feasible Functions.

4.2 Valid inequalities for the JOBPRSP-D from Dual-Feasible Functions

In this section we derive valid inequalities for the JOBPRSP-D by using Dual-Feasible Functions
(DFF). The concept of DFF has been used to solve optimization problems involving knapsack



constraints, like for example bin packing, cutting stock, scheduling or routing problems. DFF
are used either to compute lower bounds or to add valid inequalities in integer programj The
interested reader is referred to |Clautiaux et all (2010) who propose a survey on this topic. In

the following, we recall some basic notions about DFF.

Definition 1 A function f : [0,1] — [0,1] is dual-feasible if for any finite set S of real non-

negative numbers, we have the relation

ngl = Zf(x)gl

€S €S

From any Dual-Feasible Function, the following proposition allows to derive valid inequalities

for integer programs.

Proposition 3 If
e f:[0,1] = [0,1] is a DFF

° S:{xGZ ]Z] Laijry < b, Vi=1,. } withb; > a;; >0, foralli=1,...,m,j =
1,....,nand b; >0 foralli=1,...,m

then for anyi=1,...,m, 2?21 f(%])x] <1 is a valid inequality for S.

Numerous DFF for the bin packing problem have been proposed in the literature. We present
in Section E.2.7] the so-called Martello and Toth’s cuts and in Section [£.2.2] the so-called Fekete

and Schepers’s cuts.

4.2.1 Martello and Toth’s cuts

As explained above, each deadline in the definition of the JOBPRSP-D can be seen as the size of
a bin from a bin packing problem point of view. Thus, given a deadline d € D, we can consider
the Lo bound for the related bin packing problem (Martello and Toth (1990)). This provides
a family of valid inequalities for formulation (M (K)). Note that similar families of inequalities
can be proposed for formulation B(KC). Let us denote Q(d) = {g € N|g > 1,q < |3d|}. Given a
deadline d € D and an integer ¢ € Q(d), we define the following sets:

e Ki(d,q) = {k€K(d) | tx >d—q} as the set containing all the routes in K(d) which

durations are strictly greater than d — ¢;

e Ko(d,q) = {k € K(d) | g <ty <d—q} as the set containing all the routes in K(d) which
durations are greater than or equal to ¢ and lower than or equal to d — g¢;

e K3(d,q) = {k € K(d) | tx < q} as the set containing all the routes in '(d) which durations

are strictly lower than q.

LA pedagogical video on DFF is available on this page: https://youtu.be/5S5FOPW5mzA


https://youtu.be/5S5FOPW5mzA

Proposition 4 The following constraints

S dpe+ S tm<dx[P| VieDqeQd  (10) Al <0
keki(d,q) keKa(d,q)

are valid inequalities for (M(K)).

Sketch of the proof: For a detailed proof see Appendix BIl The proposition is proven by
applying Proposition Bl to Constraints ([3)) with DFF fé‘, AE [O; %]

£ 10,1] — [0,1]

1, fe>1-X
=9 oz, fA<ze<1T—A
0, ifx <A

O

The meaning of these valid inequalities is the following. Each picker p € P is considered as
a bin of size d. The routes in K1(d, q) of size strictly greater than d — g are accounted with size
d. The routes of medium size, that is those in Ko(d, ) which lengths are between ¢ and d — ¢,
are accounted with their normal size ¢. Finally, the routes in K3(d, q) of size strictly lower than
q are ignored.

This is valid since a route of size greater than d — ¢ and a route of size greater than ¢ cannot
be performed by the same picker without exceeding the deadline d. Inequalities (I0) will be
called Martello and Toth’s cuts in the following of the paper, and we denote by ’yﬁT < 0 the

dual variable associated to the cut with parameters d and g.

4.2.2 Fekete and Schepers’s cuts

Let us choose a deadline d € D, an integer ¢ € {2,...,d} and for all integers i € {0,...,q — 1}

let us define the following set:

- - d d
K(d,i,q) = {k:elc:dkgd, andz’5<tk§(i+1)a}

Now, let us observe that if we consider the interval [0, d] divided in ¢ identical sub-intervals of
length g and we select a route k € K(d, i, q), it entirely covers i intervals of [0, d], plus a strictly
non-empty part of the (i + 1)-th interval since, by definition of K(d, 1, q) it holds t; — z% > 0.

It follows that given a deadline d € D and an integer g € {2,...,d}, we have at most ¢ — 1
equally sized intervals to place potential routes in [0,d], since the last interval is dedicated to
allocate the residuals. As this reasoning is valid for each picker p € P, it thus follows the

following proposition:

10



Proposition 5 The following inequalities

-1

s}

Y ip<(@-1)x[P| VdeD,ge{2....d} (1) g <0
keK(d,i,q)

Il
-
|

are valid for (M(K)).

Sketch of the proof: For a detailed proof see Appendix The proposition is proven by
applying Proposition [ to constraints (B) with the DFF ¢g*(x), A € N\ {0}:

0 ifx=0
M) = DL if z(A+1) € 7\ {0}
[((A+1)z| §, otherwise

O

It can be shown that the DFF ¢*(z) is a non-maximal DFF, meaning that a stronger cut
may be obtained. This can be done by considering the DFF proposed in [Fekete and Schepers
(2001). However, we choose to consider the weaker version since it makes the integration into
the pricing problem easier as will be detailed in Section (.24l Inequalities (1)) will be called
Fekete and Schepers’s cuts in the following of the paper, and we denote by vg:% < 0 the dual

variable associated to the cut with parameters d and g.

4.3 Valid inequalities for the JOBPRP

The problem described by formulation (M (K)) is an extension of the JOBPRP, where packing
constraints, that is constraints (g]), are considered. Hence, the valid inequalities for the JOBPRP
are also valid for the JOBPRSP-D and are thus valid for (M (K)).

4.3.1 Strengthened capacity cuts

The strengthened capacity cuts (SCC) play with the size of the orders and the capacity of the
trolley to impose the minimum number of routes needed to retrieve a given set of orders. They

are defined as follows:

> o> FETRB] VRCO  (12) 5. >0
keK|ORNRAD
This family of cuts has been first proposed by Baldacci et al. (2008) for the Capacitated Vehi-
cle Routing Problem (CVRP), and has also been used by Briant et all (2020) and[Wahlen and Gschwind
(2023) in the context of the JOBPRP. Note that if there exists a set R’ C R such that
{w—‘ = {%—‘, then the SCC defined over R’ dominates the one defined over R,
and the latter does not need to be considered. When R = O, the corresponding SCC states a

constraint on the minimum number of routes required in any solution.

11



4.3.2 Rank-1 cuts

The Chvatal-Gomory rank-1 cuts (R1C) are obtained by considering a small subset of the
rows defining the set covering inequalities, i.e. constraints (7). Given a subset of orders R =
{01,02,...,04} C O, with ¢ > 3 and non-negative multipliers p = {p1,p2,...,pq}, R1C are
defined as:

ol Do pe ka{ZpoJ VRCO,peRl (13) +A8P<0

kel [ oeRNO 0ER

The constraints that are obtained in the particular case when all the multipliers have the
same value p, = % for a given integer h € {1,...,|R|} are known as subset-row inequalities.
They have been first proposed by lJepsen et all (2008), and are used in the state-of-the-art
exact algorithms for vehicle routing problems as they provide a significant improvement on
the lower bound (Pecin et all, 2017a). R1Cs have been used by Muter and Oncan (2015) and
HeRler and Irnich (2022) to solve the JOBPRP.

Note that [Pecin et al. (2017b) performed a computational polyhedral study to determine the
best possible vectors of multipliers p for cuts with 3 to 5 rows. For example, when |R| = 3,
there is a single optimal multiplier that is p = {%, %, %} The corresponding R1C is then the
following;:

Y k<1 YRCOR|=3  (14)
kEEK:|OxNR|>2

5 A column generation based heuristic to solve the JOBPRSP-D

In this section, we present the algorithm that we designed to tackle the JOBPRSP-D. It is
based on the one proposed in Briant et al) (2020) to solve the JOBPRP, and adapted to tackle
the sequencing aspect of the JOBPRSP-D. Briefly, it solves the linear relaxation (LM (K)) of
formulation (M (K)) via column generation. (LM (K)) is thus the so-called master problem and
details on it are provided in Section (.l An overview of the complete algorithm is provided in
Algorithm [II

First, a pool K, of routes is generated and an initial solution is determined (Section [.G).
Then, an initial set of routes K’ C K over which the master problem is defined to obtain the
restricted master problem (LM (K')) is generated (Section [5.7).

The restricted master problem (LM (K')) is then solved and, given the dual information, new
negative reduced cost routes are included in K’, first by scanning the pool Ky, and then by
solving the pricing problem (Pr(K’)) (Section (2] if no negative reduced cost route has been
found in the pool. From the most negative reduced cost column found either in the pool or by
the pricing problem, a rich column set ;e is also included in K’ (Section (.3)).

After each iteration of the pricing problem, the Lagrangian bound is computed and the value
of the lower bound LB is possibly updated (Section[5.5]). Moreover, in the hope of improving the
upper bound, some columns of the rich column set are generated to provide a feasible solution
for (B(K)).
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To strengthen the lower bound provided by the resolution of formulation (LM (K)), we
consider the valid inequalities presented in the previous section: the Martello and Toth’s cuts
(0], the Fekete and Schepers’s cuts ([I), the strengthened capacity cuts (I2]) and the rank-1
cuts (I3). Their separation is detailed in Section [5.4]

The procedure continues until (LM (K)) is optimally solved or the time limit is reached.
A final resolution of formulation (B(K')) defined over the set of routes K’ generated so far is
launched with a time limit 7;. This column generation based heuristic procedure presented in
this section is called CGH in the following.

Since the proposed algorithm is based on the one proposed in Briant et all (2020), the details
about the solving of the pricing problem, the rich column set and the Lagrangian bound are not
reported here. This choice has been made to concentrate on and highlight the elements that
allow to extend the algorithm of Briant et all (2020) to solve the JOBPRSP-D. In particular,

the main contributions are:

e a Mixed Integer Program (MIP) formulation of the pricing problem to take into account

the bin packing constraints (§)) (Section B.2.1));

e the strengthening of the tour constraints used in the MIP formulation of the pricing prob-

lem (Section [(.2.2l);

e the impact of the Martello and Toth’s cuts ([I0)), and Fekete and Schepers’s cuts ([l on the
MIP formulation of the pricing problem (Section [5.2.4]), and their separation (Section [5.4));

e the determination of an initial solution for the JOBPRSP-D and a pool of columns (Sec-

tion [£.0]).

Moreover, note that contrary to Briant et all (2020) no stabilization is used in the proposed
algorithm. Indeed, preliminary experimental results showed that adding stabilization did not
permit to improve the quality of the results.

The next sections present in details each component of the procedure.

5.1 Master problem

The master problem that we solve across column generation is the linear relaxation of formulation
(M(K)), denoted as (LM (K)), where the integrality requirements on the variables pg, k € K are
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Algorithm 1 Column generation heuristic (CGH) pseudo code

1: Computation of pool of routes K00 (Section B.6)

2: UB < value of the best solution found by the initial heuristic (Section [5.6))
3: Initialization of K’ (Section [B.7))

4: LB+ 0

5: do

6: while (LM) is not optimal and time limit is not reached do

7 Solve (LM (K')) with columns in K" (Section [E.TI)

8: if Kpoor contains columns with negative reduced cost then

9: K" < K" U {negative reduced cost columns of K0}

10: else

11: Solve pricing Pr(K') (Section [5.2)

12: K’ < K’ U {negative reduced cost columns found by Pr(K)}
13: LB + max{LB, Lagrangian bound} (Section [5.5])

14: end if

15: Compute K,jep, from the most negative reduced cost column (Section [5.3))
16: K+ K'UKpicn

17: UB « Seek for a primal solution from /Cpjcp,

18: if UB < UB then

19: UB+ UB
20: end if
21: end while

22: Separate constraints (I0), (III), (I2) and (3] (Section [£.4])
23: while time limit not reached and at least one (I0), (1)), (I2)), (I3)) is violated

24: UB < Solve (B(K"))

removed. The master problem (LM (K)) reads as follows:

min Z tk Pk (15)

kek

s.t. Z pr > 1 Yoe O (16) «+ a°>0
keK(o)

(LM(K)) _ ) ]

Y thpe < dx|P| VdeD (17) + p1<0

kek(d)

pe >0 VeeK  (18)

\

The dual variables associated with each family of constraint are reported next to the expres-
sion. Usually, the master problem is solved over a restricted set of routes K’ C K. We thus refer
to (LM (K')) as the restricted master problem, as it is usually done in the literature.

5.2 Pricing problem

In practice, the master problem (LM (K)) is solved on a subset K C K of the entire set of routes.

The role of the pricing problem is to identify a new variable among those in K\ K’ of negative
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reduced cost, or to prove that none exists. The reduced cost ¢ of variable pi € K is computed
as follows:
G o=t — Y a%dg(k) — > Btk Ty (k)
0e® deD

In the rest of the section, we first formulate the pricing problem as a MIP presented
in Section B.2Z.Il Sections and .23 present the strengthening of the tour constraints
of Briant et al. (2020) that are dynamically included in the MIP of the pricing. Section [(5.2.4]
discusses the impact of the valid inequalities on the modelling and resolution of the pricing

problem.

5.2.1 A MIP formulation for the solving of the pricing problem

The solving of the pricing problem is performed as in Briant et all (2020), i.e. it is a cutting
plane algorithm based on a MIP formulation for the pricing problem. In this section we provide
details on the MIP formulation of the pricing problem. Details about the solving of the pricing
can be found in Section B3l For sake of simplicity, we state the MIP formulation without
considering the dual contribution deriving from the valid inequalities (I0), (1)), (I2) and (I3
presented in Section This topic will be covered apart in Section [£.2.41

The MIP formulation of the pricing problem presented here extends the one in [Briant et al.
(2020) by taking into account constraints (I7)) of the master problem which capture the additional

sequencing characteristic of the JOBPRSP-D. The following sets of decision variables are used:

e { > 0: real non-negative variable that represents a lower bound on the total time of the

route (including picking and setup times);

o 54 > 0: real non-negative variable that equals t if the deadline of the route is less than d,

0 otherwise;
e ¢° €{0,1}: binary variable that equals 1 if order o is in the route, 0 otherwise;

° ,ucZ € {0,1}: binary variable that equals 1 if the deadline of the route equals to d, 0

otherwise.

We introduce the following notation: od = {0 €0:d, = CZ} is the set of orders with deadline

Sy

The pricing is solved by a cutting plane algorithm based on the following MIP model Pr(IC/):
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ocO deD
s.t. Z B,e, < B (20)
o€

te| > eo—lk|+1] <t VEeK (21)

0€0y
Sut =1 (22)
deD
Z e’ > ,ucz VdeD (23)
Pr(K) 0cO1
Z ,ucz > e’ Yoe O (24)
i<d,
5 >t — S du? VdeD (25)

t <y dul (26)

deD
e’ € {0,1} Yoe O (27)
pd € {0,1} YdeD (28)
5 >0 YdeD (29)
t >0 (30)

The objective function [I9) of Pr(K’) minimizes the reduced cost expression. Constraints
[20) enforce the respect of the capacity of the trolley. Variable ¢ encodes a lower bound on
the travel time of a route. It is strengthened by the dynamic generation of constraints (2I])
that are called the tour constraints. Typically, any selection of orders that is a superset of a
known set of orders k& must require a total time longer than ¢; so that ¢ > t;. Constraints (22)
state that a single deadline must be selected for the route. Constraints (23] impose that at
least one order in the route must have the selected deadline. Constraints (24]) impose that the
deadline of the route is smaller than the one of any order picked by the route. Note that the two
previous constraints (23] and (24]) ensure that the deadline of the route is the minimum among
the deadlines of all picked orders. Constraints (25]) guarantee that the 67 variables are consistent
with ,uJ. Constraints (26) impose that the duration of the route is smaller than its deadline to
avoid obviously inconsistent routes. Finally, constraints (27)—(30) define the variables.

It is important to notice that solving Pr(K') will provide a lower bound on the value of
the lowest reduced cost route in K, since Constraints (2II) are only defined for routes in set X'

When solving Pr(K’), the value of variable ¢ will also represent a lower bound on the exact time
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needed to collect all the orders selected by the pricing problem (e, = 1).

5.2.2 Tour constraints and their strengthening

As mentioned in the previous section, to enhance the resolution of the pricing problem, Briant et al.

(2020) propose to add to Pr(K’), for each route k € K’, the following so-called tour constraint:

te| > eo—|kl+1] <t VEek  (31)
0€Oy

We recall that the rationale behind these constraints is the following: any selection of orders
that is a superset of a known set of orders & must require a total time longer than t; so that
t > t;. Moreover, note that a tour constraint is active only when all variables e,,0 € O} that
are involved in it take value 1. Otherwise, the term between brackets is lower than or equal to
zero and, obviously, the constraint is inactive.

In the following, we propose to strengthen these constraints by taking into account, in a
precise manner, the times that account for the total time ¢; of a route. These are the setup time
ts¢tur the picking times t{,’iCk for each order that is picked, and the travelling times.

To start, let us define generic coefficients b > 0 and a, > 0,Vo € O. Let us also assume that

the following constraint is valid:

b+ZaOeO§t (32)
0€0y,

Let us note

Ap=t,—b— Zao

0€0y,

as the difference between ¢ and the left-hand side of constraint (32]) evaluated on the route k,

i.e. when e, =1 for all 0 € O. Note that since t encodes in Pr(K’) a lower bound on the travel

time, it holds ¢ < ¢, where k is the optimal route found by solving Pr(K’). Note that ¢t = t; is

insured if k € K'. Thus, since constraints ([B2]) are assumed to hold, it follows that Ay > 0.
The following propositions hold.

Proposition 6 If constraints [B32) are valid, then the following constraints
b+ > aceo + Ap | Y eo—lk[+1| <t Vkek (33
0€0y, 0€0y

are valid for Pr(K') and allow to exactly compute the value of t, when e, = 1 for all orders
o€ Oy.

Proof: If e, = 1 for all 0o € O, then constraints ([B3]) applied to route k become ¢ < ¢.

Otherwise, we have: Z e, — |k] +1 < 0, and the term added to constraints (32) to obtain
0€0y
constraints (33) is non-positive since Ay > 0. O
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Proposition 7 Constraints (33) provide a better estimation than constraints ([31)) of the total
time of the route determined by the resolution of the pricing problem Pr(K').

Proof: Let us suppose that the solution of Pr(K’) provides a route k*, and let us consider
aroute k € K'. If k* Nk =k, i.e. k* is a superset of k, then constraints (3I]) and (B3]) both lead
to t < t.

If k* Nk C Kk, thus, the following relation holds:

t > b+ Y a + A(E NE = K[ +1) > (kT Nk = [k + 1),

Oeok*

Constraint @)

Constraint @3)

Indeed, b+ Z a, > 0, A <t and (|[k*Nk|—|k|4+1) < 0. Then ¢ takes a value that is closer
oe(’)k*
to ti= when using constraints (33]) instead of constraints (BI)). O

Note that it is possible to generalize constraints (B3] to consider all orders o € O. To this

end, let us consider a route k and let us assume that the following constraint

b+ ace, <t (34)
0eO

is valid and let us consider coefficients a, such that it holds the following condition:

tht > <ty VK 2k (35
OEOk/\Ok

We thus state the following proposition.

Proposition 8 If constraint ([B4) is valid and hypothesis ([35]) holds, then the following con-

straints

b+ aceo + A | Y eo—lk[+1| <t Vkek  (36)
ocO 0€0y

are valid for Pr(K') and allow to exactly compute ty.

Proof: See Appendix R3]
Note that since, as can be easily seen, constraints (33]) are weaker than constraints (B6]), we

only add the latter to the pricing problem.

5.2.3 Examples of coefficients to be used in constraints (30)

By setting b = t*¢"? and a, = 2 for all 0 € O, it is clear that constraint (34]) is satisfied,
and hypothesis ([B5) holds. Such coefficients can be easily used in constraint ([B6). Note that
these coefficients use the fact that in the studied problem the duration t; of a route & is not
only related to travelling time, but also to setup and picking times.

It is then possible to provide larger coefficients a, for orders o € k, by considering the

minimum additional traveling time to pick each order o € k. To this end, given a sequence
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(01,...,0p) of the orders in route k, we define:

g, = tPick min tRUo, — T Vie (1,...,|k]);
04 0; +Rg{017“_70i_1}{ RUO'L R} ( ) | |)g

where {x is the optimal traveling time to collect all orders in R, and y = 0. Note that we still
define b = t°°™P and a, = t5'* for all 0 € O \ k.

Coefficient a,, for each order o; € k corresponds to the picking time plus the minimum
additional travelling time required when adding order o; to any subset of orders in {o1,...,0;-1}.
However, note that the computation of each coefficient has a complexity of O(2).

In order to avoid large computation times to compute the coefficients when the constraint
considers a large number of orders, we propose to compute a lower bound on these coefficients.
The latter is based on the computation of an estimation of the travelling time to collect a set
of orders and is calculated by considering the rectangular bounding box of the locations to be
visited. Details are provided thereafter.

Given a subset of orders R C O, let us denote by fs’g:” the time required to travel the
perimeter of the 2-dimensions bounding box of the locations of all items in R and the depot.
It is interesting to note that an optimal route can go outside the bounding box if the item in
R with the largest y coordinate is located in the second half of its block (i.e. nearest from the
upper cross aisle of the block). In such a case, an optimal route could use the upper cross-aisle

of the upper block. We name large bounding box the bounding box of the locations of all items

in R and the depot, enlarged to the upper cross-aisle. We denote by E?gaﬁLarge the time required
to travel the perimeter of the large bounding box. Then, given a sequence (o1, ... ,OW) of the

orders in route k, the following coefficients can be used:

__ ypick . jhox __ jboxLarge
ao;, = to, —i—max{O,t{Ol,___m} {01005 1} [

Coefficient a,, is equal to the picking time plus a lower bound on the additional travelling

time required when adding order o; to any subset of orders in {o1,...,0;—1}.

5.2.4 Impact of valid inequalities on the pricing problem

Column generation-based algorithms are usually used to solve a problem when its mathematical
formulation is defined over a set with an exponential amount of variables. For real-size instances,
the resulting number of variables does not allow to generate them all a-priori, thus only the
interesting ones are dynamically generated. Such formulations are usually called eztended and
can be obtained by applying Dantzig-Wolfe reformulation techniques to formulations for the
same problem defined over a polynomial number of variables. Such formulations are usually
called compact.

Cutting planes added to the extended formulation are called robust cuts when they do not
increase the complexity of the pricing problem needed to generate interesting variables on the fly.
This is usually the case of constraints that can be expressed with the variables of the compact
formulation. Opposite to that, when the complexity of the pricing problem is increased by the

consideration of a family of cutting planes, they are said nonrobust. Hence, each nonrobust
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cut that is added to the extended formulation (that is the master problem) directly makes the
pricing problem more difficult to be solved. On the opposite, nonrobust cuts are known for their
great potential for reducing integrality gaps (Costa et al., [2019).

Note that the four families of cuts proposed in Sections and [4.3] are nonrobust cuts.
When the pricing problem is modelled as an elementary shortest path problem with resource
constraints, as it is usually done for routing problems, and solved by dynamic programming
via a labelling algorithm, the management of non-robust cuts can be cumbersome (Pecin et al.,
20174). However, when the pricing problem is modelled as a MIP, as is the case of the present
work, and solved with a commercial solver, adding nonrobust cuts in the master problem implies
adding extra decision variables and constraints in the MIP formulation. Even if this can make
the MIP large and increase its resolution time, the coding effort to manage them is rather limited.
Each family of cuts therefore requires to update the MIP formulation of the pricing problem
and such modifications are detailed in Section [8.4] of the Appendix since it amounts to relatively

standard modelling techniques in integer programming.

5.3 Pricing iteration

After the resolution of the restricted master problem (LM (K")), we first check if pool Ko (see
Section [B.6]) includes routes with negative reduced cost. If any, they are added to K'. If not, the
pricing problem is solved. As explained in Section 5.2] solving Pr(K’) provides a lower bound
on the most negative reduced cost column in set K. When solving Pr(K’), each time a feasible
route with a negative value is found, such a route can potentially lead to a negative reduced
cost column. An efficient dynamic programming algorithm (see|Cambazard and Catusse (2018);
Pansart et all (2018)) is then applied on such promising routes to compute their exact total time
and check whether they indeed correspond to negative reduced cost routes.

After solving Pr(K'), it is possible that no real negative reduced cost route has been found,
while the optimal value of Pr(K’) was negative. In such a case, set K’ is enlarged with the
best route found by Pr(K’), and Pr(K’) is solved again. More details on this iterative solving of
Pr(K’) can be found in (Briant et all,[2020). Moreover, in this work, Pr(K') is solved with a time
limit 7p,. When the solving of the pricing problem has identified at least one negative reduced
cost route, we add to K’ up to 10 negative reduced cost routes found during the resolution of
Pr(K’).

After founding negative reduced cost routes, either in the pool, or by solving Pr(K'), we
then determine a set of routes to add in K’ with respect to the route with the most negative
reduced cost. This route will be denoted as k* in the following. In particular, as proposed in
Briant et all (2020), two different strategies are considered to propose other routes to insert in
K': the first strategy is to complete column k* with a set of columns that potentially constitute
a feasible solution of (B(K)), and the second strategy is to propose columns similar to k* with
fewer orders. For the first strategy, we proceed as in Briant et al! (2020) to generate a set of
promising columns such that each order is collected. However, note that because of the bin-
packing constraints (3], there is no guarantee on the feasibility of the solution. Hence, we then
solve formulation (B(K)) with this set of promising columns to evaluate the feasibility of the

solution. If the solution is feasible and improves the current upper bound, then the upper bound
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is updated accordingly. For the second strategy, if £* has less than 8 orders, as in [Briant et al.
(2020), we generate all sub-tours of k£* that use no more than 75% of the capacity of the trolley.
If £* has 8 orders or more, we generate all sub-tours of £* with one order less than k*. All these
columns generated by the two strategies compose the rich column set K,;., that is mentioned
in Algorithm [II The reader is referred to [Briant et al. (2020) for precise details.

5.4 Separation of the valid inequalities

Note that the Martello and Toth’s cuts (I0) can be stronger than the relaxation of the bin-
packing constraints (8] only if K1(d,¢) contains at least one element k such that p} > 0, where
p* is the optimal solution of the master problem (LM (K)). Note that when ¢ increases, the size
of K1(d,q) increases, but the size of K1(d,q) U K2(d,q) decreases. So, there is not a value of ¢
that a priori provides the most violated Martello and Toth’s cut (I0)). However, as mentioned
in Martello and Toth (1990), it is not necessary to consider all the possible values of ¢ in Q(d).
The size of K1(d, q) increases when there exist k € K(d) such that ¢ = d — t;, + 1. For a given
size of K1(d,q), the most violated Martello and Toth’s cut (I0) is the one with the lowest ¢
value, i.e. associated with the highest size of KCa(d,q). After all these remarks, for a given d,
we just consider the ¢ = d — t; + 1 values such that there is a route k in K(d) with p} > 0 and
ty > 1d+ 1.

For the Fekete and Schepers’s cuts (IIJ), given a value of d, several inequalities can be
generated with different values of q. We decided to consider the cut with the highest violation
to be included in the model as a preliminary computational study showed that this was the best
configuration.

For the SCC cuts (I2)), as done in [Briant et al. (2020), we only consider those characterized
by a right-hand side that equals the minimum number of trolleys to retrieve all orders. Note
that given the benchmark of instances, it is possible in practice to enumerate all subsets of
orders that require this minimum number of trolley to be picked. As a consequence, we do not
call a separation algorithm, but scan the set of such subsets to look for violated constraints.
Moreover, we only consider the SCC cuts that are minimum for inclusion. The master problem
is initialized only with the SCC cuts (I2)) defined over the entire set of orders. The others are
added to the master problem only if they are violated.

For the rank-1 cuts (I3]), after each resolution of the master problem, we check, in this order,
if such constraints defined over subset of orders of size 3, then size 4 are violated. For small size
instances (with 18 orders or less), we also check subset of orders of size 5. We stop the procedure
when 40 violated constraints are found or when the list has been fully scanned. In any case, we

do include in the master problem at most the 20 most violated cuts.

5.5 Computation of a lower bound

When the procedure reaches the time limit before (LM (K)) is solved, we calculate the so-
called Lagrangian bound to be able to provide a valid lower bound on the value of the optimal
solution. The interested reader is referred to Briant et all (2020) for a detailed explanation of

its computation.
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5.6 Initial solution and generation of a pool of routes

Before starting the resolution of the master problem via column generation, we provide an initial
solution and generate a set of possible promising routes to include in a pool Kpe-

The generation of the routes to include in )., starts by first creating a set of routes as
follows: the list of orders is swept and the first order not yet considered is used to initialize a
route k. The list of orders is then swept again and the order o that does not violate the capacity

constraints and minimizes the following score

score(o, k) = gg@f{aer;};gva{tu}}
is inserted in the route. Note that the score provides an estimation of the increment in the travel
time needed to pick order o € O when added to route k (see [Briant et al. (2020)). When route
k cannot allocate other orders, a new route is initialized. This step of the procedure continues
until all the orders have been assigned to a route.

Then, all the generated routes are concatenated to form a sequence o made of all the orders.
Now, an acyclic graph G, = (V,, A,) is built over o as follows. V, contains a node for each
order plus a dummy node 0 and A, contains the arc (i, 7) for all 0 = i < j = |O], if picking items
of orders gj;1,...,0; is feasible with respect to the capacity of the trolley. The cost associated
with the arc is exactly the travel time needed to retrieve such orders. We then compute the
shortest path on G, that starts from the dummy node 0 and ends at ojp| and store all the
routes associated with arcs in the shortest path in a set S. Note that considering the set of
arcs of the shortest path provides a set of routes that is guaranteed to pick all the orders in O.
However such set is not guaranteed to provide a feasible solution with respect to the bin-packing
constraints. This step of the procedure is inspired by the so-called Split procedure proposed in
Prins (2004) to obtain a solution for the capacitated vehicle routing problem from a sequence of
all the customers to serve.

Note that each of the route associated with each arc of A, goes in KCp00;. Formulation (B(K'))
defined over the set of routes K' = SUS) is solved (with a time limit of 10 seconds) in order to
find feasible solutions with the generated routes. Note that Sy contains all routes of size 1 and
2. The solution s* that is obtained is then stored.

We finally apply a local search-based step, where we swap pairs of orders in . We make
sure not to swap orders that belong to the same arc of the shortest path previously computed.
After each swap, we call the split procedure again and update set S that is used to call the bin
packing solver. If the provided solution is better than the previous one, s* is updated and the
swap is implemented, i.e. sequence o is modified accordingly. Concurrently, k)., is updated
with all the new routes/arcs that are generated.

Note that a swap in ¢ implies a minor modification of the graph G,. We thus do not need
to build it from scratch at every operation.

The procedure terminates when a time limit 7,,, is reached.
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5.7 Initialization of the restricted master problem

The restricted master problem is initialized by adding in K’ all routes of size 1. Then K’ is
completed with at most 2000 routes of size 2, 3 and 4 that fill the trolley at at least 90% of its
capacity, starting by generating those of size 2, then size 3 and finally size 4. Then, for all the
tours generated, if they do not use all the capacity, we add some orders if possible to fill the
remaining capacity. We also add in K’ the routes that compose the best solution found by the
procedure described in Section

Concerning the valid inequalities, we only add from the beginning the SCC cut defined over

the entire set of orders O.

6 Experimental results

The experiments were performed on an Intel(R) Core(TM) i7-8650U CPU @ 2.11 GHz processor
with 16 GB of RAM and each algorithm ran on a single thread. The code was written in Java
and CPLEX 20.1 was used to solve the LPs and the MIPs.

6.1 Parameters

The CGH uses a set of parameters that we list here. The procedure that fills pool KCp,0 is Tun
for 7,001 = 600 seconds. The resolution of Pr(K’) has a time limit 7p, of 180 seconds. When
CGH terminates, (B(K')) is solved with a time limit 7; of the available remaining time to solve
the problem. In case 77 is less than 600 seconds, 7; is set to 600 seconds. The time limit to solve
the small instances is set to 3 600 seconds while the time limit to solve the large instances is set
to 14 400 seconds.

6.2 Benchmark of instances

To evaluate the performances of procedure CGH proposed in Section [ we use the bench-
mark of instances generated to evaluate the iterated local search (ILS) algorithm proposed
invan Gils et al. (2019). This benchmark of instances is divided in two sets: the small instances
made of 6, 12 and 18 orders, and the large instances composed of 100, 200 and 300 orders.
Other four parameters, each taking three different values, are used to generated the instances.
These parameters specify the layout of the warehouse, the storage policy, the trolley capacity,
and the deadline distribution (see Table 3 of van Gils et all (2019)). In the case of the small
(resp. large) instances, for each set of the five parameters (the size of the orders plus the other
four), 10 (resp. 30) instances are generated. This leads to a total of 2430 small (resp. 7290
large) instances. Thus, the benchmark of instances is made of 9720 instances. We report the

results obtained with the procedure presented in Section [fl on the following subsets of instances:

e small instances: we select only one replication for each set of parameters, thus 243 instances

are considered;

e large instances: we select only instances with 100 orders and trolley capacity in {15, 30},

for a total of 54 instances.
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We limit the small instances to one replication due to similar behaviour of the procedure
over the other instances. For the large instances, the non-considered instances are clearly too
large to be tackle with our approach.

Finally, we report that some issues were found in the data sets of ivan Gils et al. (2019).
We contacted the authors and we had kind and constructive exchanges with Kris Braekers who
helped in correcting the problem. After the correction, one instance of the small as well as one
of the large set turned out to be infeasible. We thus removed them for sake of comparison with
the ILS proposed by lvan Gils et all (2019). Note that Kris Braekers let the algorithm proposed in
van Gils et al! (2019) run on the corrected benchmark. We thus compare here the performances
of CGH against the new results obtained by the ILS. Note that we provide optimal results on all
small instances, so these results make it possible to assess the quality of the solutions obtained
by the ILS.

The remainder of this section is organized as follows. In Sections and [6.4] we first evaluate
the interest of the proposed valid inequalities and strengthened tour constraints in the pricing,
respectively. Then, optimal results for the small instances are provided in Section Finally,

the results of CGH on large instances are reported in Section [6.6

6.3 Analysis on the contribution of valid the inequalities

In this section, we evaluate the potential of each family of inequalities presented in Sections
and[@3l To this end we solve (M (K)), the linear relaxation of (B(K)) on the small instances, with
different configurations. Note that since the instances are small, we can generate all columns in
K and evaluate their duration by calling the dynamic programming of (Cambazard and Catusse
(2018).

Table 2 provides details on the contribution of each family of cuts on the value of (M (K))
the linear relaxation of (B(K)). The first two columns labelled Data sets report the number
of orders (|O|) and the number of instances (#Inst). The remaining columns, labelled Average
Root Gap (%) report the optimality gap at the root node of the branch and bound tree for six
different configurations: configuration labelled None solves (M(K)) without the use of any cut;
configuration All uses all families of cuts; configuration No cut, with cut € {MT, FS, R1,SC}
uses all the families of cuts but one, that is indicated by parameter cut. When cut = MT,
it means Martello and Toth’s cuts (I0) (Section 2.1); when cut = F'S it means Fekete and
Schepers’s cuts ([l (Section £.2.2]); when cut = R1 it means rank-1 cuts (I3) (Section £3.2);
when cut = SC it means the st*rengt}*lened capacity cuts (I2)) (Section [£3.1]). The Average Root
Gap (%) is computed as: 100%, where z*B(K) is the optimal value of B(K), and 27\4(16)

M(K)

is the optimal value of M (K) after adding the corresponding violated cuts.

The wupdated data-sets as well as the best solutions found are available on this page:
https://pagesperso.g-scop.grenoble-inp.fr/~ cambazah/sequencing/
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Data sets Average Root Gap (%)
|O| | #Inst || None | All | NoMT | NoFS | NoR1 | No SC
6 81 0.35 0 0.14 0 0 0
12 81 0.84 | 0.05 0.06 0.06 0.14 0.15
18 80 1.00 | 0.08 0.14 0.08 0.27 0.33

Table 2: Average root optimality gap for different sets of valid inequalities.

Overall the strengthened capacity cuts and the rank-1 cuts seem to be the most effective
while the Fekete and Schepers’s cuts have only a small impact on instances with 12 orders. It is
also interesting to note that for instances with 6 orders, not adding the Martello and Toth’s cuts
yields a positive root gap while not adding other families of cuts has no impact. Moreover, from
our experiments, we also note that the strengthened capacity cut defined over the whole set of
orders O is a very effective cut. In conclusion, since all the families of inequalities help in solving
the considered set of instances, we decided to consider all of them in the final configuration of

CGH.

6.4 Interest of the strengthened tour constraints (30)

In this section, we assess the interest of using the strengthened tour constraints in the MIP
formulation of the pricing problem (see Section [£.2.2]). On the 26 instances with a 100 orders
and a trolley capacity of 15, we have run CGH without considering the strengthened tour
constraints, i.e. by considering only the classical tour constraints (BII) as already proposed in
Briant et all (2020). The time limit is set to 14 400 seconds. Table [l reports overall results on
this set of 26 instances. Column Strengh. TourCst. indicates if CGH has been run with or without
strengthened tour constraints. The other columns report the number of instances that reach
the time limit (# TimeLimit), the average computation time in seconds to run all the instances
(Avg. Cpu(s)), the number of instances solved to proven optimality (#Opt), the number of
instances with a final gap that is lower than 1% (#Gap<1%) and the average optimality gap

(Avg. Gap(%)).

Strengh.TourCst. || #TimeLimit | Avg. Cpu(s) | #O0pt | #Gap<1% | Avg. Gap(%)
yes 10 8 433 4 21 1.73
no 16 11 748 3 11 5.80

Table 3: Overall comparison of CGH on data sets of 100 orders and batch capacity 15, with and

without strengthened tour constraints in the pricing.

From the results of Table 3 it is clear that adding the strengthened tour constraints in the
MIP formulation of the pricing problem enables to reduce the computation time and to obtain
optimality gaps of higher quality. These results thus reflect the theoretical dominance of the
strengthened tour constraints (36) over the tour constraints (33]) from a computational point of

view. We then consider them in the final configuration of CGH.
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6.5 Exact algorithm using (B(K)) for small size instances

On the small instances a complete enumeration of the feasible routes is possible in a reason-
able amount of time. The duration of each route is computed with the dynamic programming
of ICambazard and Catusse (2018). Therefore formulation (B(K)), strengthened with all the
valid inequalities presented in Sections and [4.3] can be solved as a compact integer program-
ming formulationg.

The results on small instances are shown in Table @ The first two columns labelled Data
sets report the number of orders (|O|) and the number of instances (#Inst). The next five
columns labelled Cpu (s) report, in seconds, the following computational times: the average
(avg), the minimum (min) and the maximum (maz) computational time to solve one instance
with the corresponding characteristics, the average time to generate all the routes (InitGen) and
the average time to solve the MIP formulation (MIP).

We first note that all instances can be solved to optimality within the given time limit.
The maximum time needed is 410.2 seconds. The generation of all columns is the most time-
consuming part and takes in average 40.0 seconds for instances with 18 orders. We note that
the resulting MIP formulation is often solved relatively quickly: it indeed takes 4.9 seconds in
average for instances with 18 orders. The remaining time (that is not detailed in the table)
is used to separate the family of cuts that we consider. Note that, as could be expected, this
considerably outperforms the exact approach proposed in van Gils et al! (2019) which fails to
solve to proven optimality 40.6% of the small instances within a time limit of 4 hours. Note
that having optimal solutions for all small instances now enables to assess the quality of the ILS

proposed in lvan Gils et all (2019).

Data sets Cpu (s)
|O] | #Inst | avg | min | max || InitGen | MIP
6 81 0| 00 0.1 0 0
12 81 1.5 0.0 6.5 1.4 0
18 80 49.4 0.0 | 410.2 40.0 4.9

Table 4: Overall results on the small instances.

To conclude, formulation (B(K)) can solve to optimality all instances with up to 18 orders.
This is thanks to the fact that all the routes can be generated beforehand.

6.6 Evaluation of CGH on large size instances

We turn our attention to the ability of CGH to provide high quality lower and upper bounds
on the large instances. A time limit of 14 400 seconds (4 hours) is imposed. Note that the final
resolution of B(K') is not included in the time limit, hence the final cpu time may exceed the 4
hours.

Tables [ and [ report the results obtained on instances of 100 orders and a trolley capacity
B equal to 15 and 30.

3Note that when ignoring the sequencing part of the problem, it boils down to the batching and picker routing
problem. All these small instances can also be optimally solved in this case.
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The first five columns labelled Data set report the identification of the instance (Id), the
number of pickers (|P|), the number of aisles in the warehouse (#Aisles), the storage location
policy that is used during the generation of the instance (Loc) and the deadline distribution
(DD). Note that values reported in the columns Loc and DD are in {1,2,3} with the following
meaning: i.e 1='Random’, 2=‘Within aisle’, 3=‘Across aisle’ and 1=‘Uniform’, 2=‘Triangular
progressive’, 3="Triangular degressive’, respectively.

The sixth column (UB) reports the value of the best solution found by the ILS algorithm of
van Gils et al) (2019). The last five columns labelled CGH concern the performances of CGH. In
particular column UB reports the best upper bound found by CGH, column Cpu (s) indicates
the computation time in seconds, column Gap (%) reports the optimality gap computed as:
100%, where 2V and 2P respectively denote the best upper and lower bounds obtained
at the end of CGH. The optimality gap is reported in italic when it is zero, to emphasize that the
optimality on the respective instance has been proven. Finally, columns # Cols and #It report
the number of columns in K at the end of the procedure and the number of calls to the pricing
problem (see line [IT] of Algorithm [II), respectively. Note that when some negative reduced cost

columns are found in the pool, this is not counted as an extra iteration.

Data set ILS CGH

Id | |P| | #Aisles | Loc | DD UB UB | Cpu (s) | Gap (%) | #Cols | #It
7 4 12 1 1 360 314 || 359 348 3 361 0.02 6 386 73
8 3 12 1 2 308 226 || 307 070 7931 0.04 | 13 367 99
9 4 12 1 3 337 286 || 332 952 4 006 0.01 7 325 74
34 3 12 2 1 285 768 || 281 688 3 448 0.03 6 031 86
35 3 12 2 2 279 886 || 278 818 1129 0.00 5 104 38
36 4 12 2 3 265 444 || 264 568 2 990 0.02 8 500 79
61 3 12 3 1 292 240 || 290 648 10 064 0.02 | 12935 | 124
62 4 12 3 2 337 164 || 336 990 1434 0.00 453 37
63 4 12 3 3 294 490 || 290 808 8 205 0.01 9 669 | 120
88 5 24 1 1 510 786 || 504 552 14 408 0.45 | 11 182 | 111
89 5 24 1 2 453 518 || 448 960 14 404 0.71 9645 | 120
90 6 24 1 3 533 726 || 531 584 14 423 4.18 9 818 91
115 5 24 2 1 440 786 || 437 212 2 515 0.01 5 511 48
116 | 5 24 2 2 487 356 || 482 316 2373 0.02 4 469 36
117 6 24 2 3 426 670 || 426 226 4 596 0.06 5 874 74
142 5 24 3 1 452 266 || 446 276 14 405 0.05 9 235 99
143 | 5 24 3 2 449 182 || 443 084 6 089 0.00 6 667 78
144 6 24 3 3 471 632 || 470 294 14 434 4.61 | 10 655 95
169 | 6 36 1 1 708 648 || 693 786 15 003 1.72 9874 | 113
170 6 36 1 2 583 298 || 582 794 14 462 24.7 | 15 797 71
196 | 6 36 2 1 559 908 || 553 320 14 406 0.57 8940 | 110
197 | 6 36 2 2 652 180 || 650 470 3 486 0.01 4 938 28
198 7 36 2 3 547 630 || 541 890 10 868 0.02 | 10 086 | 120
223 | 6 36 3 1 525 258 || 517 924 14 419 7.60 | 14 267 | 108
224 6 36 3 2 614 394 || 610 220 14 413 0.03 8 491 93
225 7 36 3 3 654 416 || 649 296 1990 0.00 5 032 51

Table 5: Detailed results on data sets of 100 orders (|O| = 100), and trolley capacity B = 15.
From the results in Table B, we point out the following observations.
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e 16 out of the 26 instances solved the linear relaxation of B(K) before the time limit of 4

hours.

e 21 out of the 26 instances are solved to near optimality and the optimality gap at the end
of the computation is lower than 1%. 4 instances, that is Id35, 1d62, Id143 and 1d225, are
solved to optimality. We can claim that the lower bounds provided by (LM (K)) are of

very high quality even on large size data sets.

e The lower bound computed by CGH allows to assert the quality of ILS on this benchmark
which provides overall very good solutions. Note that all upper bounds are slightly im-
proved by CGH but with a significantly longer time (ILS is run with a limited number of

iterations and its runtime is 22 seconds in average with a maximum of 70 seconds).

e The number of calls to the pricing problem is rather small for the given time limit. More-
over, more than 95% of the time is spent to solve the pricing problem, hence the solving

of the pricing problem is the bottleneck of the proposed approach.

[

Table [0 reports results obtained on instances with trolley capacity of 30. Note that a ‘-
in column UB means that a feasible solution has not been found for the respective instance.
Similarly a ‘" in column Gap (%) means that the lower bound is zero. In this case we do not
report optimality gaps. Note that for instance Id180, CGH fails in both providing a valid UB
and a strictly positive LB.
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Data set ILS CGH
Id | |P| | #Aisles | Loc | DD UB UB | Cpu (s) | Gap (%) | #Cols | #It
16 4 12 1 1 305 840 (| 305 016 14 918 9.25 | 18 199 92
17 3 12 1 2 268 896 || 268 846 15 046 22.44 | 20 045 53
18 4 12 1 3 256 420 260 508 15 042 27.95 | 20 326 65
43 3 12 2 1 219 278 || 218 018 14 492 253 | 19107 | 123
44 3 12 2 2 203 742 || 203 030 14 538 4.92 | 22551 | 100
45 4 12 2 3 201 350 || 200 998 15 111 1.75 | 25709 | 131
70 3 12 3 1 232 510 || 232 036 14 870 22.31 | 19 356 71
71 3 12 3 2 228 188 229 908 15 006 15.65 | 20 963 7
72 4 12 3 3 239 470 240 434 15 002 20.14 | 19 233 64
97 4 24 1 1 343 062 361 130 15 006 878.73 | 15 722 43
98 5 24 1 2 458 204 458 814 14 971 63.07 | 17 855 59
99 5 24 1 3 417 336 446 658 15 026 228.18 | 20 151 67
124 | 4 24 2 1 322 434 331 250 15 036 96.64 | 20 757 79
125 4 24 2 2 321 718 324 468 15 025 57.83 | 21 913 45
126 5 24 2 3 349 442 || 348 542 14 631 70.17 | 23 785 53
151 | 4 24 3 1 358 618 378 824 15 003 194.68 | 20 663 59
152 4 24 3 2 361 010 366 308 15 013 81.21 | 17 877 49
153 | 5 24 3 3 383 112 387 088 15 018 69.15 | 17 587 50
178 | 5 36 1 1 480 888 510 588 15 010 - | 15645 71
179 | 5 36 1 2 531 724 553 044 15 037 - | 17 443 60
180 6 36 1 3 600 422 - 15 042 - | 16 480 56
205 | 5 36 2 1 451 856 470 242 15 030 192.73 | 20 133 66
206 | 6 36 2 2 502 722 507 516 14 740 108.39 | 18 221 35
207 | 7 36 2 3 503 854 508 732 15 012 125.61 | 19 487 50
232 | 6 36 3 1 523 364 529 706 14 483 351.96 | 20 450 42
233 | 6 36 3 2 497 086 504 674 15 025 148.86 | 17 395 45
234 6 36 3 3 450 494 467 620 15 024 644.05 | 17 532 44

Table 6: Detailed results on data sets of 100 orders (|O| = 100), and trolley capacity B = 30.

From the results in Table [6] we point out the following observations.
e All instances ran up to the time limit of 4 hours.

e No instance is solved to near optimality, only four instances report a gap of lass than 10%.
Moreover, for three instances (Id178, Id179 and Id180) we report an infinite optimality
gap. Hence, instances with B = 30 are much more difficult to be solved with CGH.

e CGH is able to improve the value of the upper bound with respect to the ILS only for 7
instances. For fairness of the analysis we note that the improvement is rather small. On
the other hand, when ILS performs better than CGH, the UB provided by the latter is
sometime of poor quality with respect to the one provided by ILS. Moreover CGH cannot

find a feasible solution on instance 1d1&0.

As a conclusion, it can observed that CGH provided overall very good results on large size
instance with a small trolley capacity (B = 15). However, the performances of CGH deteriorate

drastically when enlarging the capacity of the trolley to B = 30.
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7 Conclusion

In this paper we showed that the Joint Order Batching, Picker Routing and Sequencing Problem
with Deadlines (JOBPRSP-D) is better captured by formulating it as a bin packing problem
rather than a scheduling problem. We believe that the heuristic approaches as proposed in
van Gils et al! (2019) can be improved based on this analysis. This observation lead to the
design of an algorithm with performance guarantee (i.e., able to provide valid lower and upper
bounds), for a very complex integrated logistic problem. Experiments results showed that the
proposed approach correctly scales on instances of reasonable sizes.

A key contribution is the design of valid inequalities for the master problem as well as for
the pricing problem. The first family of cutting planes takes advantage of the bin packing
analysis and relies on Dual-Feasible Functions. Regarding the pricing problem, the inequalities
proposed in Briant et al) (2020) (namely the tour constraints) are also strengthened. This allows
to efficiently solve the pricing problem that can be seen as the bottleneck of the approach due
to the hardness of the picker routing problem. As a result, the work of this paper shows
that the column generation based heuristic (CGH) proposed for the Joint Order Batching and
Picker Routing Problem (JOBPRP) in|Briant et al! (2020) can be extended to consider deadlines
associated with orders to be prepared.

The proposed algorithm is able to solve optimally all the small instances generated by
van Gils et al! (2019) and involving up to 18 orders. Surprisingly, it provides very tight in-
tervals of the optimal values (and improved upper bounds) for some of the large instances of
100 orders. It therefore contributes in asserting the quality of the heuristic techniques often
proposed in this area of research due to the hardness of these integrated problems.

Future research on the topic may involve the JOBPRSP-D in the dynamic setting where
orders are dynamically released during the working day (see for example [D’Haen et al. (2022)).
The proposed approach may be used to compute an initial solution that collects already known
orders. A quick insertion heuristic would then need to be developed to consider the inclusion of
dynamic orders in the current plan.

Another interesting research perspective is to integrate more features in the scheduling aspect
of the JOBPRSP-D. The consideration of breaks in the schedule of the pickers can typically be
of interest, as well as the possibility to associate release dates to orders, if an order cannot be
collected too early to avoid its items staying too much time in the staging area (Rijal et al.,
2021). Considering such features would certainly require a scheduling formulation, rather than
a bin backing formulation as presented in the current work.

Another interesting problem would be to integrate to the JOBPRP or to the JOBPRSP-D
storage location assignment decisions at the operational level. It is indeed known that in the
e-commerce context, the forward area of the warehouse is supplied on a daily basis. Histor-
ical information coming from previous orders can be used to efficiently fill the forward area.
From a computational point of view, another interesting perspective is to develop a more effi-
cient algorithm to optimaly solve the pricing problem, which is the bottleneck of the proposed
approach.
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8 Appendix

8.1 Proof of Proposition M

Proposition [d The following constraints

> dpe+ Y, tkpp<dx|P| VdeD,qeQ(d) ()

kek1(d,q) keka(d,q)

are valid inequalities for (M(K)).
Proof: Consider the function fg‘ from the Lo lower bound proposed by [Martello and Toth
(1990). Let A € [0; 3]:

£ 10,1] — [0,1]

1, ifx>1-A
z—= e ox, A<z <1-—A
0, ifz <A

By applying Proposition [3 to constraints ([8) with DFF fé‘, the following valid inequalities
are obtained:

t _
> f@(é‘“)pkpg, VdeD,peP

kek(d)
This can be written as:
th _
Zt Oprp + 7 Zt —Prp + Z lpy <1, YdeD,peP
kek(d) | k<A keK(d) | A< E<1-X keK(d) | “E>1-x

By multiplying by d, and by setting A\ = %, we obtain the following:

Z Lk Prp + Z kap <d, YdeD,pecP
keK(d) | q<ty<d—q kek(d) | ty>d—q

By summing over all p € P and taking into consideration (Bl), we get exactly constraints (I0]).
O

8.2 Proof of Proposition

Proposition The following inequalities
q—1
> Y imk<(g-1)x|P| VdeD,qe{2,...,d} ()
i=1 kek(d,i,q)

are valid for (M(K)).
Proof: [Fekete and Schepers (2001) proposed a DFF denoted by fIf:SJ (see [Clautiaux et al
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(2010)). Given a A € N\ {0}, the function is the following:

fIéS,l : [O’ 1] - [0’ 1]
x, ifz(A+1)eZ
x
[(A+1)z] §, otherwise

We consider a weaker version of f}s , referred to as ¢ which handles differently the case
x(A+1) e Z:

0 ifx=0
M) = =D if z(A+1) € 7\ {0}
[(A+1)z] 3, otherwise

Note that ¢*(z) < flésg(m) for any 2 € [0,1] so that ¢* is a non-maximal DFF. By applying

Proposition B to constraints (B) with g*(z), the following valid inequalities are obtained:

x4 1)-1 te| 1 .
E d } : k

keK(d) | B (A+1)ez keK(d) | B (A+1)¢Z

Let us now set A =¢ — 1, and %ﬁ()\ + 1) = j and multiply by ¢ — 1. We obtain:
> (= Dpp + > il prp<a—1, YdeD,peP
keK(d) | th=j4.jez keK(d) | th=j4,j¢Z
Consider i = |j|, we can replace ty = jg,j ¢ 7 by z'g <t < (i+ 1)g,i € Z. This gives the
following constraints:
> (i = 1)prp + > ipgp <q—1, VdeD,peP
keK(d) | =il icZ keK(d) | id<ty<(i+1)dicz
Thus the following inequality is valid:
> ipgpy <q—1, YdeD,peP  (37)
keK(d) | id<t,<(i+1)2,iez

By summing (37) over all p € P and taking into consideration (], we get exactly con-

straints (IIJ).
4

8.3 Proof of Proposition

Proposition 8 If constraint [34) is valid and hypothesis [BH) holds, then the following con-
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straint

b+Zaon+Ak Zeg—\kHl <t (38)
ocO 0€0y
is valid for Pr(K') and allows to exactly compute t.
Proof: Let k' be the route defined by the set of orders o € O such that e, = 1. We need to
prove that constraint (3] is satisfied for £/, i.e.

b+ ao + Ay (JENE| = k| +1) <ty
ock’

Let us consider the three possible cases:

case 1 : k' = k, then constraint (36) becomes t > t;. It is valid and also permits to exactly

compute tgr.

case 2 : kNk' =k, i.e. k C K, then constraint (36) becomes
E20+ Y ao + Ap=t+ Y a
ock’ ock/\k
This is valid since from hypothesis ([B5), we obtain tx > t; + Z Go-
ock/\k
case 3 : kNKk # k, then [k NE| < |kl —1, so Ag(JkNEK'|—|k|+1) < 0. However, we have
b+ Z a, <ty from constraint ([34) applied to route k’. Hence constraint (36]) is valid.

o€k’

O

8.4 Modifications of the pricing problem due to each type of non-robust cut

Martello and Toth’s cuts. For each Martello and Toth’s cut (I0) defined by the pair (d*, ¢*),

we consider the following additional variables. For the sake of clarity we will not index them by
(d*, q%).

e w > 0: real non-negative variable that equal d* if the route is in K1(d*, ¢*), and equal t if

the route is in KCo(d*, ¢*), and 0 otherwise

e by: binary variable that equal 1 if the route is in K;(d*, ¢*), 0 otherwise

e by: binary variable that equal 1 if the route is in Ko(d*, ¢*), 0 otherwise

e b3: binary variable that equal 1 if the route is in K3(d*, ¢*), 0 otherwise

The objective function of P?“(]C/) is modified by subtracting 'yf;j‘{* w, where ’yj'\l;j'i* is the dual

value associated to the cut. The following constraints are added to Pr(K'):
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b1+b2+b3+z,ugzl (38)

_d>d*

w >t —max {d} (1 — by) (40)

aeD
t>q b+ (d" — g+ 1) by - (41)
t<d b+ (& —q)ba+ (" —Dbs+ > du’ (42)

d>d*

w >0 (43)
b1,b2,b3 € {0, 1} (44)

Constraint ([38) ensures that the route is in one of the three sets KCi(d*, ¢*), Kao(d*, q*),
K3(d*,q*), or the route has a deadline that is grater than d*. Constraint (39) ensures that w
takes value d* if the route is in KC1(d*,q*), while constraint (@0) ensures that w takes value ¢
if the route is in Ko(d*,¢*). Constraints (@) and (@2) ensure the total time of the route is
consistent with the set that contains the route. Constraints ([#3) and (44)) define the domain of

the decision variables.

Fekete et Schepers cuts. For each Fekete and Schepers’ cut ([Tl defined by the pair (d*, ¢*),

we need to consider the following additional variable:

e v : non-negative integer variable that represents the number of intervals of size d*/q*
covered by the total time of the route (with a positive residual), i.e. what is denoted by i
in constraint (IT).

For the sake of clarity we will not indexed it by (d*, ¢*). . .
The objective function of P’I“(’Cl) is modified by subtracting ygjsq* v where Wf;sq* is the dual

value associated to the cut. The following constraints are added to Pr(K):

J* _ * _
t<(+D)—+ Y (d--),ﬂ (45)
q L
_d>d*
|
t>—v+— (46)
q q
veN (47)

Constraints ([@5) and (@8] ensure that v corresponds to the number of intervals of size d*/q*
covered by the travel time of the route, if the deadline of the route is less or equal than d*. Note
that the value 1/¢* in constraint (48] is set to ensure t;, > i d*/q* in the definition of X(d*,1, ¢*).
Finally, constraint (A7) defines the domain of the variable.

Strengthened capacity cuts. For each SCC defined by the set of orders R*, we need to

consider the following additional variable:
e 2 : binary variable that equal 1 if the route contains at least one order in R*, 0 otherwise.

Fort he sake of clarity we do not index the variable by R*.
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The objective function of Pr(K’) is modified by subtracting Wg%z where 7?5% is the dual

value associated to the cut. The following constraints are added to Pr(K'):

Z e > 2z (48)

0ER*

Rank-1 cuts. The management of R1Cs in a MIP formulation of the pricing problem has been
recently proposed by [Hintsch et al. (2021). They propose two sets of constraints to be included
in the MIP, where each set does not dominate the other and are thus worth consideration. We
detail hereafter these two sets of constraints.

For each RI1C cut (I2)) defined by the pair (R*,p*), we need to consider the following
additional variable: u € N that represents the coefficient LZoeR* p:eoJ of the route computed
by the pricing problem. For the sake of clarity we do not index the variable by (R*,p*).

The objective function of Pr(K’) is modified by subtracting 751* Py where 751* P” is the dual
value associated to the cut.

Let us consider that the multipliers p* = {p’{,pg, e ,p’q‘} can be written as {i—;{, j—%, e ﬁ}
with s7,83,...,s5,t" € N*.

The first constraint to be added to Pr(K’) is the following:

Z Speo —t'u <t —1 (49)
0ER*
For the second set of constraints, let us introduce the notion of minimal subset defined as
follows: a set M C R* is a minimal subset for R* and multipliers p* if there exits an integer
m > 1 such that:

Y po=m  and Y po<m VM CM.
oeM oeM’

Let us denote by N* the set of all minimal subsets for R* and multipliers p*. The second

set of constraints, one for each element in A, is the following:
Y eo—u< M| - {ZpZJ YMeN*  (50)
oeM oeM

The interested reader is referred to|Hintsch et al. (2021)) for a detailed explanation, especially
on minimal subsets N* for each optimal vector of multipliers for R1Cs defined over sets of orders

of cardinality between 3 and 5.
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