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Abstract

Warehouses are nowadays the scene of complex logistic problems
integrating different decision layers. This paper addresses the Joint
Order Batching, Picker Routing and Sequencing Problem with Dead-
lines (JOBPRSP-D) in rectangular warehouses. To tackle the prob-
lem an exponential linear programming formulation is proposed. It is
solved with a column generation heuristic able to provide valid lower
and upper bounds on the optimal value. We start by showing that
the JOBPRSP-D is related to the bin packing problem rather than
the scheduling problem. We take advantage of this aspect to derive a
number of valid inequalities that enhance the resolution of the master
problem. The proposed algorithm is evaluated on publicly available
data-sets. It is able to optimally solve instances with up to 18 or-
ders in few minutes. It is also able to prove optimality or to provide
high-quality lower bounds on larger instances with 100 orders. To the
best of our knowledge this is the first paper that provides optimality
guarantee on large size instances for the JOBPRSP-D, thus the results
can be used to assert the quality of heuristics proposed for the same
problem.

1 Introduction

The scene takes place in a tall and dim building, lights flickering with a
buzzing noise. Pickers move across the warehouse, collecting items, fulfilling
customer’s orders. A digital voice for companionship.

To increase the efficiency of the operations, several orders might be
batched, i.e., put together to be collected by a picker in one single route.
Batching is possible as long as orders grouped together respect capacity con-
straints, namely they fit in a trolley. Since customer satisfaction is at the
core of competitiveness in e-commerce, each order is required to be prepared
and shipped before a strict deadline that usually corresponds to the depar-
ture of a truck from the warehouse to deliver orders. Pickers must therefore
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collect their batches in an appropriate sequence in such a way that all orders
meet their deadlines. Planning the entire process is referred to as the Joint
Order Batching, Picker Routing and Sequencing Problem with Deadlines
(JOBPRSP-D). In the present work, we consider optimal routing policies
in rectangular warehouse with several blocks (or cross-aisles). Such optimal
routes can be efficiently computed with dynamic programming following the
work of Ratliff and Rosenthal (1983); Pansart et al. (2018).

Order picking in warehouses is part of a complex logistic process involv-
ing a wide range of problems such as storage assignment, order batching,
picker routing and picker scheduling (de Koster et al. (2007)). Relatively
efficient methods have been designed for single problems such as the picker
routing problem. However the resolution of integrated problems is receiv-
ing attention since significant gains can be achieved by taking into account
the interrelations of the planning problems (van Gils et al. (2018)). The
resulting combinatorial problems embed many NP-Hard sub-problems with
distinct decision levels which make them very challenging to solve in practice.
Moreover, practical instances tend to be of large size which complicates even
more the resolution. Consequently, heuristic approaches have been favored
so far and, as mentioned in the review of van Gils et al. (2018) (page 6), the
use of mathematical programming as a research method to integrate different
order picking planning problems is limited.

In this work, we show that the methodology proposed by Briant et al.
(2020), that is a column generation heuristic able to produce lower and
upper bounds for the Joint Order Batching and Picker Routing Problem
(JOBPRP), can be extended to tackle the sequencing question i.e., the ad-
ditional assignment and sequencing of batches to each picker in order to
meet the deadlines of the orders. This aspect is currently seen as a schedul-
ing problem in the literature (van Gils et al. (2019); Haouassi et al. (2022)).
We take a different view-point and propose a bin packing formulation. As
a result, we benefit from families of valid inequalities identified for pack-
ing problems and derived from Dual-Feasible Functions (see Clautiaux et al.
(2010)). A high-quality lower bound for the integrated problem can be there-
fore derived by adding such cuts in the formulation proposed in Briant et al.
(2020). The bin packing view-point also provides new insights to design ef-
ficient heuristics. Finally, a key cutting plane that was used for solving the
pricing of Briant et al. (2020) can be considerably strengthened by using
timing considerations related to the sequencing aspect of the problem.

The contribution of the present paper are as follows:

• an extended mathematical formulation is proposed for the JOBPRSP-
D based on bin packing considerations;

• the resolution of such formulation is able to provide proven optimal
solutions on all the small benchmark instances for the JOBPRSP-D;
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• families of valid inequalities for the JOBPRSP-D are derived from
Dual-Feasible Functions;

• tour constraints proposed in Briant et al. (2020) are strengthened
based on the particular structure of the benchmark of instances for
the JOBPRSP-D;

• the column generation based heuristic proposed is able to provide high-
quality upper and lower bounds for subsets of the benchmark instances.

The paper is organized as follows. The problem specification and nota-
tions are given in Section 2. A literature review is presented in Section 3.
Formulations and valid inequalities are presented in Section 4, this is the key
section on the paper. A reader who is pressed for time can focus on Sec-
tion 4. Each component of the proposed methodology as well as the overall
algorithm design are then detailed in Section 5. Experimental results are
reported and discussed in Section 6. Finally Section 7 concludes the paper.

2 Problem definition and notation

The warehouse layout is modeled as a directed graph G = (V,A) where V
contains two depots s and s′ and two types of vertices: locations VL and
intersections VI . So, overall V = VL ∪ VI ∪ {s, s

′}. Each location in the set
VL contains one or more products to be picked, whereas the intersections in
VI are used to encode the warehouse structure. Additionally, s denotes the
depot where picking routes start and s′ is the depot where routes end and
picked orders are dropped off. Moreover, a travelling time tij is associated
with each arc (i, j) ∈ A.

The set of items is denoted by I . An item i ∈ I is characterized by its
location vi ∈ VL. Note that here we consider an item has a unique location.

A set O of orders to collect is given. Each order o ∈ O is composed of
a set Io ⊆ I of items to pick. Let us denote by Bo = |Io| the size of order
o ∈ O.

An order o ∈ O is associated with a time tpick
o that represents the time

needed to pick the items composing order o. It is proportional to the size
Bo of order o. We indicate as Vo ⊆ VL the set of locations that have to be
visited to retrieve order o ∈ O. Moreover, an order o ∈ O is associated with
a deadline d̄o > 0 that represents the latest instant of time to have the order
ready at node s′.

The set of deadlines is denoted as D, and in practice the number of differ-
ent deadlines in D is much lower than the number of orders since deadlines
correspond to the departure of a vehicle from the warehouse to deliver orders.
Hence many orders share the same deadline.

A batch is a set of orders that are collected together in a single route
by a picker. Each batch is associated to a route k in the warehouse starting
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from s, terminating in s′ and visiting a subset of locations in VL. The orders
collected along the route k are denoted as Ok ⊆ O. The deadline d̄k of a
route k is the minimum deadline among the deadlines of all its orders, that
is d̄k = mino∈Ok

d̄o.
The time tk to perform a route k is the sum of three terms: the picking

times of each order to be collected in the route, the travel times to go from
each location to the next one, and, finally, a setup time tsetup. The setup
time is supposed constant and represents the time needed by the picker to
get the trolley ready.

The routes are performed by a set P of pickers each of which pushes a
trolley of capacity B. A route k must respect the trolley’s capacity, that is
needs to satisfy

∑

o∈Ok
Bo ≤ B.

A solution of the JOBPRSP-D is a sequence of routes Kp for each picker
p ∈ P such that:

• all orders are picked up;

• each route respects the capacity constraint of the trolley;

• in each sequence Kp = {r1p, r
2
p, . . . , r

np
p }, route ri+1

p starts after route
rip ends;

• each route arrives at the final depot not later than the minimum dead-
line of the collected orders.

The objective of the JOBPRSP-D is to minimize the sum of the routing
times of the determined routes.

In the following, we will indicate by K the set of all possible feasible
routes. Moreover, given two routes k and k′ ∈ K, we may write k ⊆ k′

instead of Ok ⊆ Ok′ for ease of notation. Similarly, given an order o ∈ O
and a route k ∈ K, we may write o ∈ k instead of o ∈ Ok

3 Literature review

The literature on problems related to Order Batching and Picker Routing is
large and an exhaustive review is out of the scope of the present work. The
interested reader is referred to the literature reviews of de Koster et al. (2007),
van Gils et al. (2018), Çağla Cergibozan and Tasan (2019), Vanheusden et al.
(2022).

We thus limit the review presented in this section to works related to
this paper. First, we review works on the JOBPRP proposing algorithms
that are exact or that produce both lower and upper bounds on the studied
problem. Then, we review works that consider the sequencing of pickers
aspect.
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Some exact algorithms have been proposed for the JOBPRP but are
rarely extended to more complex integrated problems. Algorithmic tech-
niques relevant to the present work have also been investigated on the JOBPRP
and are mostly based on exponential Integer Programming (IP) formulations
inspired from vehicle routing.

In particular, to the best of our knowledge, Gademann and van de Velde
(2005) is the first to design a Branch-and-Price algorithm where variables
are related to batches and their corresponding routes in the warehouse. The
proposed approach remains limited to the case of a single block warehouse
where all orders have the same size. The pricing algorithm is a dedicated
Branch-and-Bound algorithm that uses the dynamic program of Ratliff and
Rosenthal (1983) to compute the optimal route of a batch. Muter and Ön-
can (2015) generalizes the pricing problem of Gademann and van de Velde
(2005) to deal with orders of different sizes, and also considers heuristic
routing policies. Valle et al. (2017) proposes a Branch-and-Cut approach to
solve the JOBPRP in a two blocks warehouse and an optimal routing pol-
icy. The optimal routing is based on sub-tour elimination constraints typical
of the Traveling Salesman Problem formulation of Dantizg. The algorithm
proposed is able to optimally solve instances with 20 orders. The dynamic
programming algorithm of Ratliff and Rosenthal (1983) is then generalized to
any number of cross-aisles and used by Briant et al. (2020) to design another
column generation technique. The pricing is solved with integer program-
ming and the addition of cutting planes based on the dynamic programs for
computing optimal routes. Finally, Heßler and Irnich (2022) proposes to ex-
tend the state space procedure of Ratliff and Rosenthal (1983) to formulate
the pricing problem as a shortest path problem with side constraints, namely
the grouping requirement of orders and the trolley capacity. It also natu-
rally handles scattered storage i.e, an item may be stored at more than one
pick location. The pricing problem can then be efficiently solved with an IP
model. The proposed algorithm remains limited to a one block warehouse.

Let us now consider the sequencing of pickers aspect, which is at the
heart of the present paper, and let us discuss a closely related issue: the
wave-based picking. Picking is often performed in the so-called wave-based
manner where a group of orders (a wave) is released at the same time and
need to be picked. The goal is to minimize the makespan of the wave which
requires to assign batches to pickers. This is a natural extension of the
JOBPRP where the exact sequence of each picker is not needed since the
makespan is only dependent on the assignment of batched to the pickers and
not to their sequencing. Wave picking problems with makespan minimisation
are addressed by Ardjmand et al. (2018, 2020); Muter and Öncan (2022).

Sequencing really matters when due dates or deadlines are considered
for orders. A number of variants of this integrated batching, routing and
sequencing problem are addressed in the literature depending on the ob-
jective and whether the due dates are considered hard or soft constraints.
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Typically, Tsai et al. (2008) minimizes a sum of traveling costs as well as
earliness/tardiness penalties, Henn and Schmid (2013); Henn (2015); Chen
et al. (2015); Scholz et al. (2017); Menéndez et al. (2017) focus on the sum
of the delays to the due dates whereas van Gils et al. (2019); Haouassi et al.
(2022); D’Haen et al. (2022) consider them as deadlines i.e as hard con-
straints. Two real life aspects of the problem are take into account in recent
works: dynamic arrival of orders (D’Haen et al. (2022)) and scattered stor-
age (Haouassi et al. (2022)). The algorithms proposed so far are all based on
metaheuristics as genetic algorithm (Tsai et al. (2008)), iterated local search
and tabu search (Henn and Schmid (2013); van Gils et al. (2019)), variable
neighborhood search (Henn (2015); Menéndez et al. (2017)), genetic algo-
rithm and ant colony (Chen et al. (2015)), variable neighborhood descent
(Scholz et al. (2017)), large neighbourhood search (D’Haen et al. (2022)).
Note that Haouassi et al. (2022) uses a constraint programming approach to
efficiently build a feasible schedule for each picker. Henn (2015) mentions
column generation as a possible resolution approach but turns to a heuris-
tic. To the best of our knowledge, none of the algorithms proposed in the
literature is exact or compute a lower bounds for this integrated problem.

The algorithm proposed in this paper is meant to close this gap and con-
tributes in asserting the numerous heuristics developed in this field. More-
over, order deadlines are a relevant set-up in real-life warehouse used by van
Gils et al. (2019); Haouassi et al. (2022) and a shared benchmark is available.

4 Formulation, relaxation and valid inequalities for

the JOBPRSP-D

In this section we first formulate the JOBPRSP-D as a (multiple) bin packing
problem. Let us first recall that given a route k ∈ K, tk represents its total
time, Ok ⊆ O the batch of orders to be collected while performing route k
and d̄k = mino∈Ok

d̄o its deadline. Additionally, to easily state the model,
we indicate:

• as K(o) = {k ∈ K : o ∈ Ok} the set of routes retrieving order o, for all
orders o ∈ O;

• as K(d̄) = {k ∈ K : d̄k ≤ d̄} the set of routes with a deadline that is
lower than or equal to d̄, for all d̄ ∈ D.

We make use of binary variables ρkp that equal 1 if route k ∈ K is assigned
to picker p ∈ P, 0 otherwise. The JOBPRSP-D can be formulated as follows:
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(B(K))







min
∑

k∈K

tk
∑

p∈P

ρkp (1)

s.t.
∑

k∈K(o)

∑

p∈P

ρkp ≥ 1 ∀o ∈ O (2)

∑

k∈K(d̄)

tk ρkp ≤ d̄ ∀d̄ ∈ D,∀p ∈ P (3)

ρkp ∈ {0, 1} ∀k ∈ K, p ∈ P (4)

The objective function (1) minimizes the total time needed by the pickers
to retrieve all orders. Constraints (2) ensure that each order is collected.
From a bin packing point of view, the constraints say that among the routes
that compose the final packing there is at least one that contains a given
order o ∈ O.

Constraints (3) impose the respect of the deadlines. In particular, for
each deadline d̄ ∈ D, they impose that the total time of routes in K(d̄)
assigned to a picker do not exceed the value of d̄. From a bin packing point
of view, these constraints impose that the total size (that is the picking time)
of the objects (that is the routes) assigned to a bin (that is a picker) do not
exceed its capacity (that is the deadline). Again here we emphasize the fact
that the sequence in which the picker performs the routes that are assigned
to him/her is not important as long as their total time is lower than or equal
to the considered deadline. This allows to look at the problem as a (variant
of the multiple) bin packing problem.

Note that a valid sequence for each picker is easily computed from an
assignment of the routes to the pickers provided by (B(K)) by sorting the
routes by increasing deadlines. Moreover, this bin packing formulation of
the problem is possible since there are no release dates for the orders, i.e. all
orders can be collected from the beginning of the planning horizon.

Finally constraints (4) define the variables.

4.1 A relaxation of formulation B(K)

Let us now consider the binary variables ρk defined as:

ρk =
∑

p∈P

ρkp ∀k ∈ K (5)

Note that ρk equals 1 if route k ∈ K is selected to be part of the solution,
0 otherwise. By taking into account the constraints (5) and aggregating
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constraints (3) in formulation (B(K)), we obtain the following formulation:

(M(K))







min
∑

k∈K

tk ρk (6)

s.t.
∑

k∈K(o)

ρk ≥ 1 ∀o ∈ O (7)

∑

k∈K(d̄)

tk ρk ≤ d̄× |P| ∀d̄ ∈ D (8)

ρk ∈ {0, 1} ∀k ∈ K (9)

The objective function (6) minimizes the total time of the selected routes.
Constraints (7) ensure that each order is collected. Constraints (8) are ob-
tained by summing constraints (3) over all pickers p ∈ P and taking into
consideration the relation defined in (5). Constraints (9) define the vari-
ables. Note that (M(K)) is the formulation proposed in Briant et al. (2020)
for the JOBPRP with the additional constraints (8).

Proposition 1 Formulation (M(K)) is a relaxation of (B(K)).

Proof: The proof is trivial and directly follows from the definition of
variables ρk, k ∈ K and the aggregation of constraints (3) to obtain con-
straints (8). �

Proposition 2 The linear relaxations of formulations (B(K)) and (M(K))
are equal.

Proof: Let us denote by (LB(K)) and (LM(K)) the linear relaxation of for-
mulations (B(K)) and (M(K)) respectively, that is, integrality requirements
on the variables are removed. From any fractional solution ρ̃kp of (LB(K)),
a feasible solution to (LM(K)) can be built by setting ρ̃k =

∑

p∈P ρ̃kp, that
is using relation (5). Reversely, from any solution ρ̃k of (LM(K)), we can
set ρ̃kp = 1

|P | ρ̃k for each picker p ∈ P to get a feasible solution of (LB(K)).
�

Note that constraints (8) can be seen as enforcing in (M(K)) the linear
relaxation of the bin packing constraints (3) of (B(K)). This bound is also
known as the L1 lower bound for bin packing. Stronger bounds (such as
L2) can be used to derive stronger inequalities following the framework of
Dual-Feasible Functions.
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4.2 Valid inequalities for the JOBPRSP-D from Dual-Feasible

Functions

In this section we derive valid inequalities for the JOBPRSP-D by using the
Dual-Feasible Functions (DFF). The concept of DFF has been used to solve
optimization problems involving knapsack constraints, like for example bin
packing, cutting stock, scheduling or routing problems. DFF are used either
to compute lower bounds or to add valid inequalities in integer programs.
The interested reader is referred to Clautiaux et al. (2010) that proposes a
survey on this topic. In the following, we recall some basic notions about
DFF.

Definition 1 A function f : [0, 1] → [0, 1] is dual-feasible if for any finite
set S of real non-negative numbers, we have the relation

∑

x∈S

x ≤ 1 ⇒
∑

x∈S

f(x) ≤ 1.

From any Dual-Feasible Function, the following proposition allows to
derive valid inequalities for integer programs.

Proposition 3 If

• f : [0, 1]→ [0, 1] is a DFF

• S =
{

x ∈ Z
n
+ |

∑n
j=1 aijxj ≤ bi, ∀i = 1, ...,m

}

, with bi ≥ aij ≥ 0,

for all i = 1, . . . ,m, j = 1, . . . , n and bi > 0 for all i = 1, . . . ,m

then for any i = 1, . . . ,m,
∑n

j=1 f(
aij
bi
)xj ≤ 1 is a valid inequality for S.

Numerous DFF for the bin packing problem have been proposed in the
literature. We present in Section 4.2.1 the so-called Martello and Toth’s cuts
and in Section 4.2.2 the so-called Fekete and Schepers’s cuts.

4.2.1 Martello and Toth’s cuts

As explain above, each deadline in the definition of the JOBPRSP-D can be
seen as the size of a bin from a bin packing problem point of view. Thus,
given a deadline d̄ ∈ D, we can consider the L2 bound for the related bin
packing problem (Martello and Toth (1990)). This provides a family of valid
inequalities for formulation (M(K)). Note that similar families of inequalities
can be proposed for formulation B(K). Let us denote Q(d̄) = {q ∈ N|q ≥
1, q ≤

⌊
1
2 d̄

⌋
}. Given a deadline d̄ ∈ D and an integer q ∈ Q(d̄), we define

the following sets:

• K1(d̄, q) =
{
k ∈ K(d̄) | tk > d̄− q

}
as the set containing all the routes

in K(d̄) which duration is strictly greater than d̄− q;
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• K2(d̄, q) =
{
k ∈ K(d̄) | q ≤ tk ≤ d̄− q

}
as the set containing all the

routes in K(d̄) which duration is greater than or equal to q and lower
than or equal to d̄− q;

• K3(d̄, q) =
{
k ∈ K(d̄) | tk < q

}
as the set containing all the routes in

K(d̄) which duration is strictly lower than q.

Proposition 4 The following constraints

∑

k∈K1(d̄,q)

d̄ ρk+
∑

k∈K2(d̄,q)

tk ρk ≤ d̄×|P| ∀d̄ ∈ D, q ∈ Q(d̄) (10) ← γd̄ qMT ≤ 0

are valid inequalities for (M(K)).

Sketch of the proof: For a detailed proof see Appendix 8.1. The propo-
sition is proven by applying Proposition 3 to Constraints (3) with DFF fλ

0 ,
λ ∈

[
0; 12

]
:

fλ
0 : [0, 1]→ [0, 1]

x 7→







1, if x > 1− λ
x, if λ ≤ x ≤ 1− λ
0, if x < λ

�

The meaning of these valid inequalities is the following. Each picker
p ∈ P is considered as a bin of size d̄. The routes in K1(d̄, q) of size strictly
greater than d̄ − q are accounted with size d̄. The routes of medium size,
that is those in K2(d̄, q) which length is between q and d̄− q, are accounted
with their normal size tk. Finally, the routes in K3(d̄, q) of size strictly lower
than q are ignored.

This is valid since a route of size greater than d̄ − q and a route of size
greater than q cannot be performed by the same picker without exceeding
the deadline d̄. Inequalities (10) will be called Martello and Toth’s cuts in
the following of the paper.

4.2.2 Fekete and Schepers’s cuts

Let us choose a deadline d̄ ∈ D, an integer q ∈ {2, . . . , d̄} and for all integers
i ∈ {0, . . . , q − 1} let us define the following set:

K(d̄, i, q) =
{

k ∈ K : d̄k ≤ d̄, and i
d̄

q
< tk ≤ (i+ 1)

d̄

q

}

Now, let us observe that if we consider the interval [0, d̄] divided in q

identical sub-intervals of length d̄
q and we select a route k ∈ K(d̄, i, q), it
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entirely covers i intervals of [0, d̄], plus a strictly non-empty part of the
(i+ 1)-th interval since, by definition of K(d̄, i, q) it holds tk − i d̄q > 0.

It follows that given a deadline d̄ ∈ D and an integer q ∈ {2, . . . , d̄}, we
have at most q − 1 equally sized intervals to place potential routes in [0, d̄],
since the last interval is dedicated to allocate the residuals. As this reasoning
is valid for each picker p ∈ P, it thus follows the following proposition:

Proposition 5 The following inequalities

q−1
∑

i=1

∑

k∈K(d̄,i,q)

i ρk ≤ (q−1)×|P| ∀d̄ ∈ D, q ∈ {2, . . . , d̄} (11) ← γd̄ qFS ≤ 0

are valid for (M(K)).

Sketch of the proof: For a detailed proof see Appendix 8.2. The propo-
sition is proven by applying Proposition 3 to constraints (3) with the DFF
gλ(x), λ ∈ N \ {0}:

gλ(x) =







0 if x = 0
x(λ+1)−1

λ if x(λ+ 1) ∈ Z \ {0}
⌊(λ+ 1)x⌋ 1

λ , otherwise

�

It can be shown that the DFF gλ(x) is a non-maximal DFF, meaning that
a stronger cut may be obtained. This can be done by considering the DFF
proposed in Fekete and Schepers (2001). However, we choose to consider the
weaker version since it makes easier the integration into the pricing problem
as it will be detailed in Section 5.2.4. Inequalities (11) will be called Fekete
and Schepers’s cuts in the following of the paper.

4.3 Valid inequalities for the JOBPRP

It can be noted that the problem described by formulation (M(K)) is an
extension of the JOBPRP, where packing constraints, that is constraints (8),
are considered. Hence, the valid inequalities for the JOBPRP are also valid
for the JOBPRSP-D and are thus valid for (M(K)).

4.3.1 Strengthened capacity cuts

The strengthened capacity cuts (SCC) play with the size of the orders and
the capacity of the trolley to impose the minimum number of routes needed
to retrieve a given set of orders. They are defined as follows:
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∑

k∈K|Ok∩R6=∅

ρk ≥

⌈∑

o∈R Bo

B

⌉

∀R ⊆ O (12) ← γRSC ≥ 0

This family of cuts has been first proposed by Baldacci et al. (2008) for
the Capacitated Vehicle Routing Problem (CVRP), and has also been used
by Briant et al. (2020) in the context of the JOBPRP. Note that if there exists

a set R′ ⊂ R such that
⌈∑

o∈R′ Bo

B

⌉

=
⌈∑

o∈R
Bo

B

⌉

, then the SCC defined over

R′ dominates the one defined over R, and the latter does not need to be
considered. When R = O, the corresponding SCC states a constraint on the
minimum number of routes required in any solution.

4.3.2 Rank-1 cuts

The Chvátal–Gomory rank-1 cuts (R1C) are obtained by considering a small
subset of the rows defining the set covering inequalities, i.e. constraints (7).
Given a subset of orders R = {o1, o2, . . . , oq} ⊆ O, with q ≥ 3 and non-
negative multipliers p = {p1, p2, . . . , pq}, R1C are defined as:

∑

k∈K






∑

o∈R∩Ok

po




 ρk ≤

⌊
∑

o∈R

po

⌋

∀R ⊆ O,p ∈ R
q
+ (13) ← γRp

R1 ≤ 0

The constraints that are obtained in the particular case when all the
multipliers have the same value po = 1

h for a given integer h ∈ {1, . . . , |R|}
are known as subset-row inequalities. They have been first proposed by
Jepsen et al. (2008), and are used in the state-of-the-art exact algorithms
for vehicle routing problems as they provide a significant improvement on
the lower bound (Pecin et al., 2017a). R1Cs have been used by Muter and
Öncan (2015) and Heßler and Irnich (2022) to solve the JOBPRP.

Note that Pecin et al. (2017b) performed a computational polyhedral
study to determine the best possible vectors of multipliers p for cuts with 3
to 5 rows. For example, when |R| = 3, there is a single optimal multiplier
that is p =

{
1
2 ,

1
2 ,

1
2

}
. The corresponding R1C is then the following:

∑

k∈K:|Ok∩R|≥2

ρk ≤ 1 ∀R ⊆ O, |R| = 3 (14)

5 A column generation based heuristic to solve the

JOBPRSP-D

In this section, we present the algorithm that we designed to tackle the
JOBPRSP-D. It is based on the one proposed in Briant et al. (2020) to solve
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the JOBPRP, and adapted to tackle the sequencing aspect of the JOBPRSP-
D. Briefly, it solves the linear relaxation (LM(K)) of formulation (M(K)) via
column generation. (LM(K)) is thus the so-called master problem and de-
tails on it are provided in Section 5.1. An overview of the complete algorithm
is provided in Algorithm 1.

First, a pool Kpool of routes is generated and an initial solution is deter-
mined (Section 5.6). Then, an initial set of routes K′ ⊆ K over which the
master problem is defined to obtain the restricted master problem (LM(K′))
is generated (Section 5.7).

The restricted master problem (LM(K′)) is then solved and, given the
dual information, new negative reduced cost routes are included in K′, first
by scanning the pool Kpool, and then by solving the pricing problem (Pr(K′))
(Section 5.2) if no negative reduced cost route has been found in the pool.
From the most negative reduced cost column found either in the pool or
by the pricing problem, a rich column set Krich is also included in K′ (Sec-
tion 5.3).

After each iteration of the pricing problem, the Lagrangian bound is com-
puted and the value of the lower bound LB is possibly updated (Section 5.5).
Moreover, in the hope of improving the upper bound, some columns of the
rich column set are generated to provide a feasible solution for (B(K)).

To strengthen the lower bound provided by the resolution of formulation
(LM(K)), we consider the valid inequalities presented in the previous section,
that are the Martello and Toth’s cuts (10), the Fekete and Schepers’s cuts
(11), the strengthened capacity cuts (12) and the rank-1 cuts (13). Their
separation is detailed in Section 5.4.

The procedure continues until (LM(K)) is optimally solved or the time
limit is reached. A final resolution of formulation (B(K′)) defined over the
set of routes K′ generated so far is lunched with a time limit τl. This column
generation based heuristic procedure presented in this section is indicated as
CGH in the following.

Since the proposed algorithm is based on the one proposed in Briant
et al. (2020), the details about the solving of the pricing problem, the rich
column set and the Lagrangian bound are not reported here. This choice
has been made to concentrate on and highlight the elements that allow to
extend the algorithm of Briant et al. (2020) to solve the JOBPRSP-D. In
particular, the main contributions are:

• a Mixed Integer Program (MIP) formulation of the pricing problem to
take into account the bin packing constraints (8) (Section 5.2.1);

• the strengthening of the tour constraints used in the MIP formulation
of the pricing problem (Section 5.2.2);

• the impact of the Martello and Toth’s cuts (10), and Fekete and Schep-
ers’s cuts (11) on the MIP formulation of the pricing problem (Sec-
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tion 5.2.4), and their separation (Section 5.4);

• the determination of an initial solution for the JOBPRSP-D and a pool
of columns (Section 5.6).

Moreover, note that contrary to Briant et al. (2020) no stabilization is used
in the proposed algorithm. Indeed, preliminary experimental results showed
that adding stabilization did not permit to improve the quality of the results.

In the next sections we present each of the components of the procedure
in details.

Algorithm 1 Column generation heuristic (CGH) pseudo code

1: Computation of pool of routes Kpool (Section 5.6)
2: UB ← value of the best solution found by the initial heuristic (Sec-

tion 5.6)
3: Initialization of K′ (Section 5.7)
4: LB ← 0
5: do

6: while (LM) is not optimal and time limit is not reached do

7: Solve (LM(K′)) with columns in K′ (Section 5.1)
8: if Kpool contains columns with negative reduced cost then

9: K′ ← K′ ∪ {negative reduced cost columns of Kpool}
10: else

11: Solve the pricing Pr(K
′

) (Section 5.2)
12: K′ ← K′ ∪ {negative reduced cost columns found by Pr(K

′

)}
13: LB ← max{LB, Lagrangian bound} (Section 5.5)
14: end if

15: Compute Krich from the most negative reduced cost column (Sec-
tion 5.3)

16: K′ ← K′ ∪ Krich

17: UB ← Seek for a primal solution from Krich

18: if UB < UB then

19: UB ← UB
20: end if

21: end while

22: Separate constraints (10), (11), (12) and (13) (Section 5.4)
23: while time limit not reached and at least one (10), (11), (12), (13) is

violated
24: UB ← Solve (B(K′))

5.1 Master problem

The master problem that we solve across column generation is the linear re-
laxation of formulation (M(K)), denoted as (LM(K)), where the integrality

14



requirements on the variables ρk, k ∈ K are removed. The master problem
(LM(K)) reads as follows:

(LM(K))







min
∑

k∈K

tk ρk (15)

s.t.
∑

k∈K(o)

ρk ≥ 1 ∀o ∈ O (16) ← αo ≥ 0

∑

k∈K(d̄)

tk ρk ≤ d̄× |P| ∀d̄ ∈ D (17) ← βd̄ ≤ 0

ρk ≥ 0 ∀k ∈ K (18)

The dual variables associated with each family of constraint are reported
next to the expression. Usually, the master problem is solved over a restricted
set of routes K′ ⊆ K. We thus refer to (LM(K′)) as the restricted master
problem, as it is usually done in the literature.

5.2 Pricing problem

In practice, the master problem (LM(K)) is solved on a subset K
′

⊆ K of
the entire set of routes. The role of the pricing problem is to identify a new
variable among those in K \ K

′

of negative reduced cost, or to prove that
none exists. The reduced cost c̄k of variable ρk ∈ K is computed as follows:

c̄k = tk −
∑

o∈O

αo
1K(o)(k) −

∑

d̄∈D

βd̄ tk 1K(d̄)(k)

In the rest of the section, we first formulate the pricing problem as a
MIP that is presented in Section 5.2.1. Sections 5.2.2 and 5.2.3 present
the strengthening of the tour constraints of Briant et al. (2020) that are
dynamically included in the MIP of the pricing. Section 5.2.4 discusses the
impact of the valid inequalities on the modelling and resolution of the pricing
problem.

5.2.1 A MIP formulation for the solving of the pricing problem

The solving of the pricing problem is performed as in Briant et al. (2020),
i.e. it is a cutting plane algorithm based on a MIP formulation for the
pricing problem. In this section we provide details on the MIP formula-
tion of the pricing problem. Details about the solving of the pricing can be
found in Section 5.3. For sake of simplicity, we state the MIP formulation
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without considering the dual contribution deriving from the valid inequal-
ities (10), (11), (12) and (13) presented in Section 4.2. This topic will be
treated apart in Section 5.2.4.

The MIP formulation of the pricing problem presented here extends the
one in Briant et al. (2020) by taking into account constraints (17) of the
master problem which capture the additional sequencing characteristic of
the JOBPRSP-D. The following sets of decision variables are used:

• t ≥ 0: real non-negative variable that represents a lower bound on the
total time of the route (including picking and setup times);

• δd̄ ≥ 0: real non-negative variable that equals t if the deadline of the
route is less than d̄, 0 otherwise;

• eo ∈ {0, 1}: binary variable that equals 1 if order o is in the route, 0
otherwise;

• µd̄ ∈ {0, 1}: binary variable that equals 1 if the deadline of the route
equals to d̄, 0 otherwise.

We introduce the following notation: Od̄ =
{
o ∈ O : d̄o = d̄

}
is the set

of orders with a deadline of d̄.
The pricing is solved by a cutting plane algorithm based on the following

MIP model Pr(K
′

):

16



Pr(K
′

)







min t −
∑

o∈O

αo eo −
∑

d̄∈D

βd̄ δd̄ (19)

s.t.
∑

o∈O

Boeo ≤ B (20)

tk




∑

o∈Ok

eo − |k|+ 1



 ≤ t ∀k ∈ K′ (21)

∑

d̄∈D

µd̄ = 1 (22)

∑

o∈Od̄

eo ≥ µd̄ ∀d̄ ∈ D (23)

∑

d̄≤d̄o

µd̄ ≥ eo ∀o ∈ O (24)

δd̄ ≥ t −
∑

d̄′>d̄

d̄′µd̄′ ∀d̄ ∈ D (25)

t ≤
∑

d̄∈D

d̄ µd̄ (26)

eo ∈ {0, 1} ∀o ∈ O (27)

µd̄ ∈ {0, 1} ∀d̄ ∈ D (28)

δd̄ ≥ 0 ∀d̄ ∈ D (29)
t ≥ 0 (30)

The objective function (19) of Pr(K
′

) minimizes the reduced cost ex-
pression. Constraints (20) enforce the respect of the capacity of the trolley.
Variable t encodes a lower bound on the travel time of a route. It is strength-
ened by the dynamic generation of constraints (21) that are called the tour
constraints. Typically, any selection of orders that is a superset of a known
set of orders k must require a total time longer than tk so that t ≥ tk.
Constraints (22) state that a single deadline must be selected for the route.
Constraints (23) impose that at least one order in the route must have the
selected deadline. Constraints (24) impose that the deadline of the route is
smaller than the one of any order picked by the route. Note that the two
previous constraints (23) and (24) enforce the deadline of the route is the
minimum among the deadlines of all the orders that are picked. Constraints
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(25) guarantee that the δd̄ variables are consistent with µd̄. Constraints
(26) impose that the duration of the route is smaller than its deadline to
avoid obviously inconsistent routes. Finally, constraints (27)–(30) define the
variables.

It is important to notice that solving Pr(K′) will provide a lower bound
on the value of the lowest reduced cost route in K, since Constraints (21) are
only defined for routes in set K′. When solving Pr(K′), the value of variable
t will also represent a lower bound on the exact time needed to collect all
the orders selected by the pricing problem (eo = 1).

5.2.2 Tour constraints and their strengthening

As mentioned in the previous section, to enhance the resolution of the pricing
problem, Briant et al. (2020) propose to add to Pr(K′), for each route k ∈ K′,
the following so-called tour constraint:

tk




∑

o∈Ok

eo − |k|+ 1



 ≤ t ∀k ∈ K′ (31)

We recall that the rationale behind these constraints is the following:
any selection of orders that is a superset of a known set of orders k must
require a total time longer than tk so that t ≥ tk. Moreover, note that a tour
constraint is active only when all variables eo, o ∈ Ok that are involved in it
take value 1. Otherwise, the term between brackets is lower than or equal
to zero and, obviously, the constraint is inactive.

In the following, we propose to strengthen these constraints by taking
into account, in a precise manner, the times that account for the total time
tk of a route. These are the setup time tsetup, the picking times tpicko for each
order that is picked, and the travelling times.

To start, let us define generic coefficients b ≥ 0 and ao ≥ 0,∀o ∈ O. Let
us also assume that the following constraint is valid:

b+
∑

o∈Ok

ao eo ≤ t (32)

Let us note
∆k = tk − b−

∑

o∈Ok

ao

as the difference between tk and the left-hand side of constraint (32) eval-
uated on the route k, i.e. when eo = 1 for all o ∈ Ok. Note that since t
encodes in Pr(K′) a lower bound on the travel time, it holds t ≤ tk where k
is the optimal route found by solving Pr(K′). Note that t = tk is insured if
k ∈ K′. Thus, since it is supposed that constraints (32) hold, it follows that
∆k ≥ 0.

The following propositions hold.
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Proposition 6 If constraints (32) are valid, then the following constraints

b+
∑

o∈Ok

ao eo + ∆k




∑

o∈Ok

eo − |k|+ 1



 ≤ t ∀k ∈ K′ (33)

are valid for Pr(K′) and allow to exactly compute the value of tk when eo = 1
for all orders o ∈ Ok.

Proof: If eo = 1 for all o ∈ Ok, then constraints (33) applied to route
k becomes tk ≤ t. Otherwise, we have:

∑

o∈Ok

eo − |k| + 1 ≤ 0, and the term

added to constraints (32) to obtain constraints (33) is non-positive since
∆k ≥ 0. �

Proposition 7 Constraints (33) provide a better estimation than constraints
(31) of the total time of the route determined by the resolution of the pricing
problem Pr(K′).

Proof: Let us suppose that the solution of Pr(K′) provides a route k∗,
and let us consider a route k ∈ K′. If k∗ ∩ k = k, i.e. k∗ is a superset of k,
then constraints (31) and (33) both lead to tk ≤ t.

If k∗ ∩ k ( k, thus, the following relation holds:

t ≥ b+
∑

o∈Ok∗

ao + ∆k(|k
∗ ∩ k| − |k|+ 1)

︸ ︷︷ ︸

Constraint (33)

≥ tk(|k
∗ ∩ k| − |k|+ 1).

︸ ︷︷ ︸

Constraint (31)

Indeed, b +
∑

o∈Ok∗

ao ≥ 0, ∆k ≤ tk and (|k∗ ∩ k| − |k| + 1) ≤ 0. Then t

takes a value that is closer to tk∗ when using constraints (33) instead of
constraints (31). �

Note that it is possible to generalize constraints (33) to consider all orders
o ∈ O. To this end, let us consider a route k and let us assume that the
following constraint

b+
∑

o∈O

ao eo ≤ t (34)

is valid and let us consider coefficients ao such that it holds the following
condition:

tk +
∑

o∈Ok′\Ok

ao ≤ tk′ ∀k′ ⊇ k (35)

We thus state the following proposition.
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Proposition 8 If constraint (34) is valid and hypothesis (35) holds, then
the following constraints

b+
∑

o∈O

ao eo + ∆k




∑

o∈Ok

eo − |k|+ 1



 ≤ t ∀k ∈ K′ (36)

are valid for Pr(K′) and allows to exactly compute tk.

Proof: See Appendix 8.3.
Note that since, as can be easily seen, constraints (33) are weaker than

constraints (36), we only add the latter to the pricing problem.

5.2.3 Examples of coefficients to be used in constraints (36)

By setting b = tsetup, and ao = tpicko for all o ∈ O, it is clear that con-
straint (34) is satisfied, and hypothesis (35) holds. Such coefficients can be
easily used in constraint (36). Note that these coefficients use the fact that
in the studied problem the duration tk of a route k is not only related to
travelling time, but also to setup and picking times.

It is then possible to provide larger coefficients ao for orders o ∈ k, by
considering the minimum additional traveling time to pick each order o ∈ k.
With this end, given a sequence (o1, . . . , o|k|) of the orders in route k, we
define:

aoi = tpickoi + min
R⊆{o1,...,oi−1}

{
t̃R∪oi − t̃R

}
∀i ∈ (1, . . . , |k|);

where t̃R is the optimal traveling time to collect all orders in R, and t̃∅ = 0.
Note that we still define b = tsetup and ao = tpicko for all o ∈ O \ k.

The coefficient aoi for each order oi ∈ k corresponds to the picking time
plus the minimum additional travelling time required when adding order oi to
any subset of orders in {o1, . . . , oi−1}. However, note that the computation
of each coefficient has a complexity of O(2i).

In order to avoid large computation times to compute the coefficients
when the constraint considers a large number of orders, we propose to com-
pute a lower bound on these coefficients. The latter is based on the compu-
tation of an estimation of the travelling time to collect a set of orders and is
calculated by considering the rectangular bounding box of the locations to
be visited. Details are provided thereafter.

Given a subset of orders R ⊆ O, let us denote by t̃boxR the time required
to travel the perimeter of the 2-dimensions bounding box of the locations
of all items in R and the depot. It is interesting to note that an optimal
route can go outside the bounding box if the item in R with the largest y
coordinate is located in the second half of its block (i.e. nearest from the
upper cross aisle of the block). In such case, an optimal route could use
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the upper cross-aisle of the upper block. We name large bounding box the
bounding box of the locations of all items in R and the depot, enlarged to
the upper cross-aisle. We denote by t̃boxLargeR the time required to travel the
perimeter of the large bounding box. Then, given a sequence (o1, . . . , o|k|)
of the orders in route k, the following coefficients can be used:

aoi = tpickoi +max
{

0; t̃box{o1,...,oi}
− t̃boxLarge{o1,...,oi−1}

}

.

The coefficient aoi equals to the picking time plus a lower bound on the
additional travelling time required when adding order oi to any subset of
orders in {o1, . . . , oi−1}.

5.2.4 Impact of valid inequalities on the pricing problem

We recall that a problem is usually solved with column generation based
algorithms when its mathematical formulation is defined over a set of ex-
ponentially many variables. For real size instances, the resulting number
of variables does not allow an a-priori complete generation of them, thus
only the interesting ones are dynamically generated. Such formulations are
usually called extended and can be obtained by applying Dantzing-Wolfe re-
formulation techniques to formulations for the same problem defined over a
polynomial number of variables. Such formulations are usually called com-
pact.

Cutting planes added to the extended formulation are called robust cuts
when they do not increase the complexity of the pricing problem needed to
generate interesting variables on the fly. This is usually the case of con-
straints that can be expressed in terms of the variables of the compact for-
mulation. Opposite to that, when the complexity of the pricing problem is
increased by the consideration of a family of cutting planes, they are said
nonrobust. Hence, each nonrobust cut that is added to the extended formu-
lation (that is the master problem) directly makes the pricing problem more
difficult to be solved. On the opposite, nonrobust cuts are known for their
great potential for reducing integrality gaps (Costa et al., 2019).

Note that the four families of cuts proposed in Sections 4.2 and 4.3 are
nonrobust cuts. When the pricing problem is modelled as an elementary
shortest path problem with resource constraints, as it is usually done for
routing problems, and solved by dynamic programming via a labelling algo-
rithm, the management of non-robust cuts can be cumbersome (Pecin et al.,
2017a). However, when the pricing problem is modelled as a MIP, as it is
the case of the present work, and solved with a commercial solver, adding
nonrobust cuts in the master problem implies to add extra decision variables
and constraints in the MIP formulation. Even if this can make the MIP large
and increase its resolution time, the coding effort to manage them is rather
limited. Each family of cuts therefore requires to update the MIP formula-
tion of the pricing problem and such modifications are detailed in Section 8.4
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of the Appendix since it amounts to relatively standard modelling techniques
in integer programming.

5.3 Pricing iteration

After the resolution of the restricted master problem (LM(K′)), we first
check if there are in the pool Kpool (see Section 5.6) routes with negative
reduced cost. If any, they are added to K′. If not, the pricing problem is
solved. As explained in Section 5.2, the solving of Pr(K′) provides a lower
bound on the most negative reduced cost column in set K. When solving
Pr(K′), each time a feasible route with a negative value is found, such a route
can potentially lead to a negative reduced cost column. An efficient dynamic
programming algorithm (see Cambazard and Catusse (2018); Pansart et al.
(2018)) is then applied on such promising routes to compute their exact total
time and check they indeed correspond to negative reduced cost routes.

After solving Pr(K′), it is possible that no real negative reduced cost
route has been found, while the optimal value of Pr(K′) was negative. In
such a case, the set K′ is enlarged with the best route found by Pr(K′),
and Pr(K′) is solved again. More details on this iterative solving of Pr(K′)
can be found in (Briant et al., 2020). Moreover, in this work, Pr(K′) is
solved with a time limit τPr. When the solving of the pricing problem has
identified at least one negative reduced cost route, we add to K′ up to 10
negative reduced cost routes found during the resolution of Pr(K′).

Moreover, after founding negative reduced cost routes, either in the pool,
or by solving Pr(K′), we then determine a set of routes to add in K′ with
respect to the route with the most negative reduced cost. This route will
be denoted as k∗ in the following. In particular, as proposed in Briant
et al. (2020), two different strategies are considered to propose other routes
to insert in K′: the first strategy is to complete the column k∗ with a set
of columns that potentially constitute a feasible solution of (B(K)), and
the second strategy is to propose columns similar to k∗ with fewer orders.
For the first strategy, we proceed as in Briant et al. (2020) to generate a
set of promising columns such that each order is collected. However, note
that because of the bin-packing constraints (3), there is no guarantee on the
feasibility of the solution. Hence, we then solve formulation (B(K)) with this
set of promising columns to evaluate the feasibility of the solution. If the
solution is feasible and improves the current upper bound, then the upper
bound is updated accordingly. For the second strategy, if k∗ has less than 8
orders, as in Briant et al. (2020), we generate all sub-tours of k∗ that use no
more than 75% of the capacity of the trolley. If k∗ has 8 orders or more, we
generate all sub-tours of k∗ with one order less than k∗. All these columns
generated by the two strategies compose the rich column set Krich that is
mentioned in the Algorithm 1. The reader is referred to Briant et al. (2020)
for precise details.
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5.4 Separation of the valid inequalities

Note that the Martello and Toth’s cuts (10) can be stronger than the relax-
ation of the bin-packing constraints (8) only if K1(d̄, q) contains at least one
element k such that ρ∗k > 0, where ρ∗ is the optimal solution of the master
problem (LM(K)). Note that when q increases, the size of K1(d̄, q) increases,
but the size of K1(d̄, q)∪K2(d̄, q) decreases. So, there is not a value of q that
a priori provides the most violated Martello and Toth’s cut (10). However,
as mentioned in Martello and Toth (1990), it is not necessary to consider all
the possible values of q in Q(d̄). The size of K1(d̄, q) increases when there
exist k ∈ K(d̄) such that q = d̄− tk+1. For a given size of K1(d̄, q), the most
violated Martello and Toth’s cut (10) is the one with the lowest q value, i.e.
associated with the highest size of K2(d̄, q). After all these remarks, for a
given d̄, we just consider the q = d̄− tk +1 values such that there is a route
k in K(d̄) with ρ∗k > 0 and tk ≥

1
2 d̄+ 1.

For the Fekete and Schepers’s cuts (11), given a value of d̄, several in-
equalities can be generated with different values of q. We decided to consider
the cut with the highest violation to be included in the model as a prelimi-
nary computational study showed that this was the best configuration.

For the SCC cuts (12), as done in Briant et al. (2020), we only consider
those characterized by a right-hand side that equal the minimum number of
trolleys to retrieve all orders. Note that given the benchmark of instances,
it is practically possible to enumerate all subset of orders that require such
minimum number of trolley to be picked. As a consequence, we do not call
a separation algorithm, but scan the set of such subsets to look for violated
constraints. Moreover, we only consider the SCC cuts that are minimum for
inclusion. The master problem is initialized only with the SCC cuts (12)
defined over the whole set of orders. The others are added to the master
problem only if they are violated.

For the rank-1 cuts (13), after each resolution of the master problem, we
check, in this order, if such constraints defined over subset of orders of size
3, then size 4 are violated. For small size instances (with 18 orders or less),
we also check subset of orders of size 5. We stop the procedure when 40
violated constraints are found or when the whole list has been scanned. In
any case, we do include in the master problem at most the 20 most violated
cuts.

5.5 Computation of a lower bound

When the time limit is reached by the procedure before that (LM(K)) is
solved, we calculate the so-called Lagrangian bound to be able to provide
a valid lower bound on the value of the optimal solution. The interested
reader is referred to Briant et al. (2020) for a detailed explanation of its
computation.
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5.6 Initial solution and generation of a pool of routes

Before starting the resolution of the master problem via column generation,
we provide an initial solution and generate a set of possible promising routes
to include in a pool Kpool.

The generation of the routes to include in Kpool starts by first creating
a set of routes as follows: the list of orders is swept and the first order not
yet considered is used to initialize a route k. The list of orders is then swept
again and the order o that does not violate the capacity constraints and
minimizes the following score

score(o, k) = max
l∈Vo

{ min
ō∈k,l̄∈Vō

{tl,l̄}}

is inserted in the route. Note that the score provides an estimation of the
increment in the travel time needed to pick order o ∈ O when added to
route k (see Briant et al. (2020)). When the route k cannot allocate other
orders, a new route is initialized. This step of the procedure continues until
all the orders have been assigned to a route.

Then, all the generated routes are concatenated to form a sequence σ
made of all the orders. Now, an acyclic graph Gσ = (Vσ, Aσ) is built over
σ as follows. Vσ contains a node for each order plus a dummy node 0 and
Aσ contains the arc (i, j) for all 0 = i < j = |O|, if picking items of orders
σi+1, . . . , σj is feasible with respect to the capacity of the trolley. The cost
associated to the arc is exactly the travel time needed to retrieve such orders.
We then compute the shortest path on Gσ that starts from the dummy
node 0 and ends at σ|O| and store all the routes associated with arcs in the
shortest path in a set S. Note that considering the set of arcs of the shortest
path provides a set of routes that is guaranteed to pick all the orders in O.
However such set is not guaranteed to provide a feasible solution with respect
to the bin-packing constraints. This step of the procedure is inspired by the
so-called Split procedure proposed in Prins (2004) to obtain a solution for
the capacitated vehicle routing problem from a sequence of all the customers
to serve.

Note that each of the route associated with each arc of Aσ goes in Kpool.
Formulation (B(K′)) defined over the set of routes K′ = S ∪ S0 is solved
(with a time limit of 10 seconds) in order to find feasible solution with the
generated routes. Note that S0 contains all routes of size 1 and 2. The
solution s∗ that is obtained is then stored.

We finally apply a local search based step where we swap pairs of orders
in σ. We pay attention to not swap orders that belong to the same arc
of the shortest path previously computed. After each swap, we call again
the split procedure and update set S that is used to call the bin packing
solver. If the solution that is provided is better than the previous one, s∗

is updated and the swap is implemented, that is the sequence σ is modified
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accordingly. Concurrently, Kpool is updated with all the new routes/arcs
that are generated.

Note that a swap in σ implies a minor modification of the graph Gσ. We
thus do not need to build it from scratch at every operation.

The procedure terminates when a time limit τpool is reached.

5.7 Initialization of the restricted master problem

The restricted master problem is initialized by adding in K′ all the routes of
size 1. Then K′ is completed with at most 2000 routes of size 2, 3 and 4 that
fill the trolley of at least 90% of its capacity, starting by generating those
of size 2, then size 3 and finally size 4. Then, for all the tours generated,
if they do not fill all the capacity, we add some orders if possible to fill the
remaining capacity. We also add in K′ the routes that compose the best
solution found by the procedure described in Section 5.6.

Concerning the valid inequalities, we only add from the beginning the
SCC cut defined over the whole set of orders O.

6 Experimental results

The experiments were performed on an Intel(R) Core(TM) i7-8650U CPU @
2.11 GHz processor with 16 GB of RAM and each algorithm ran on a single
thread. The code was written in Java and CPLEX 20.1 was used to solve
the LPs and the MIPs.

6.1 Parameters

The CGH uses a set of parameters that we list here. The procedure that fills
the pool Kpool is run for τpool = 600 seconds. The resolution of Pr(K′) has
a time limit τPr of 180 seconds. When CGH terminates, (B(K′)) is solved
with a time limit τl of the available remaining time to solve the problem. In
case τl is less than 600 seconds, τl is set to 600 seconds. The time limit to
solve the small instances is set to 3 600 seconds while the time limit to solve
the large instances is set to 14 400 seconds.

6.2 Benchmark of instances

To evaluate the performances of the procedure CGH proposed in Section 5,
we use the benchmark of instances generated to evaluate the iterated local
search (ILS) algorithm proposed in van Gils et al. (2019). This benchmark
of instances is divided in two sets: the small instances made of 6, 12 and 18
orders, and the large instances composed of 100, 200 and 300 orders. Other
four parameters, each taking three different values, are used to generated
the instances. These parameters specify the layout of the warehouse, the
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storage policy, the trolley capacity, and the deadline distribution (see Table
3 of van Gils et al. (2019)). In the case of the small (resp. large) instances,
for each set of the five parameters (the size of the orders plus the other four),
10 (resp. 30) instances are generated. This leads to a total of 2430 small
(resp. 7290 large) instances. Thus, the benchmark of instances is made of
9720 instances. We report the results obtained with the procedure presented
in Section 5 on the following subsets of instances:

• small instances: we select only one replication for each set of parame-
ters, thus 243 instances are considered;

• large instances: we select only instances with 100 orders and trolley
capacity in {15, 30}, for a total of 54 instances.

We limit the small instances to one replication due to similar behaviour
of the procedure over the other instances. For the large instances, the non-
considered instances are clearly too large to be tackle with our approach.

Finally, we report that some issues were found in the data sets of van
Gils et al. (2019). We contacted the authors and we had kind and construc-
tive exchanges with Kris Braekers which helped in correcting the problems1.
After the correction, one instance of the small as well as one of the large set
turned out to be infeasible. We thus removed them for sake of comparison
with the ILS proposed by van Gils et al. (2019). Note that Kris Braekers
let the algorithm proposed in van Gils et al. (2019) run on the corrected
benchmark. We thus compare here the performances of CGH against the
new results obtained by the ILS. Note that we provide optimal results on all
small instances, so these results permit to assess the quality if the solutions
obtained by the ILS.

The remainder of this section is organized as follows. In Sections 6.3
and 6.4, we first evaluate the interest of the proposed valid inequalities and
strengthened tour constraints in the pricing, respectively. Then, optimal
results for the small instances are provided in Section 6.5. Finally, the results
of CGH on large instances are reported in Section 6.6.

6.3 Analysis on the contribution of valid the inequalities

In this section, we evaluate the potential of each family of inequalities pre-
sented in Sections 4.2 and 4.3. To this end we solve (M(K)), the linear
relaxation of (B(K)) on the small instances, with different configurations.
Note that since the instances are small, we can generate all columns in K
and evaluate their duration by calling the dynamic programming of Cam-
bazard and Catusse (2018).

1The updated data-sets as well as the best solutions found are available on this page:
TODO
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Table 1 provides details on the contribution of each family of cuts on
the value of (M(K)) the linear relaxation of (B(K)). The first two columns
labelled Data sets report the number of orders (|O|) and the number of in-
stances (#Inst). The remaining columns, labelled Average Root Gap (%)
report the optimality gap at the root node of the branch and bound tree
for six different configurations: configuration labelled None solves (M(K))
without the use of any cut; configuration All uses all families of cuts; con-
figuration No cut, with cut ∈ {MT,FS,R1, SC} uses all the families of cuts
but one, that is indicated by the parameter cut. When cut = MT , it means
Martello and Toth’s cuts (10) (Section 4.2.1); when cut = FS it means
Fekete and Schepers’s cuts (11) (Section 4.2.2); when cut = R1 it means
rank-1 cuts (13) (Section 4.3.2); when cut = SC it means the strengthened
capacity cuts (12) (Section 4.3.1). The Average Root Gap (%) is computed

as: 100
z∗
B(K)

−z∗
M(K)

z∗
M(K)

, where z∗B(K) is the optimal value of B(K), and z∗M(K) is

the optimal value of M(K) after adding the corresponding violated cuts.

Data sets Average Root Gap (%)

|O| #Inst None All No MT No FS No R1 No SC

6 81 0.35 0 0.14 0 0 0
12 81 0.84 0.05 0.06 0.06 0.14 0.15
18 80 1.00 0.08 0.14 0.08 0.27 0.33

Table 1: Average root optimality gap for different sets of valid inequalities.

Overall the strengthened capacity cuts and the rank-1 cuts seem to be the
most effective while the Fekete and Schepers’s cuts have only a small impact
on instances with 12 orders. It is also interesting to note that for instances
with 6 orders, not adding the Martello and Toth’s cuts yields a positive root
gap while not adding other families of cuts has no impact. Moreover, from
our experiments, we also note that the strengthened capacity cut defined
over the whole set of orders O is a very effective cut. In conclusion, since all
the families of inequalities help in solving the considered set of instances, we
decided to consider all of them in the final configuration of CGH.

6.4 Interest of the strengthened tour constraints (36)

In that section, we assess the interest of using the strengthened tour con-
straints in the MIP formulation of the pricing problem (see Section 5.2.2).
On the 26 instances with a 100 orders and a trolley capacity of 15, we have
run CGH without considering the strengthened tour constraints, i.e. by
considering only the classical tour constraints (31) as already proposed in
Briant et al. (2020). The time limit is set to 14 400 seconds. Table 2 reports
overall results on this set of 26 instances. Column Strengh.TourCst. indi-
cates if CGH has been run with or without strengthened tour constraints.
The other columns report the number of instances that reach the time limit
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(#TimeLimit), the average cpu time in seconds to run all the instances (Avg.
Cpu(s)), the number of instances solved to proven optimality (#Opt), the
number of instances with a final gap that is lower than 1% (#Gap≤1%) and
the average optimality gap (Avg. Gap(%)).

Strengh.TourCst. #TimeLimit Avg. Cpu(s) #Opt #Gap≤1% Avg. Gap(%)

yes 10 8 433 4 21 1.73
no 16 11 748 3 11 5.80

Table 2: Overall comparison of CGH on data sets of 100 orders and batch
capacity 15, with and without strengthened tour constraints in the pricing.

From the results of Table 2, it is clear that adding the strengthened
tour constraints in the MIP formulation of the pricing problem permits to
reduce the computation time and to obtain optimality gaps of higher quality.
These results thus reflect the theoretical dominance of the strengthened tour
constraints (36) over the tour constraints (33) from a computational point
of view. We then consider them in the final configuration of CGH.

6.5 Exact algorithm using (B(K)) for small size instances

On the small instances a complete enumeration of the feasible routes is pos-
sible in a reasonable amount of time. The duration of each route is com-
puted with the dynamic programming of Cambazard and Catusse (2018).
Therefore the formulation (B(K)), strengthened with all the valid inequal-
ities presented in Sections 4.2 and 4.3, can be solved as a compact integer
programming formulation2.

The results on small instances are shown in Table 3. The first two
columns labelled Data sets report the number of orders (|O|) and the num-
ber of instances (#Inst). The next five columns labelled Cpu (s) report, in
seconds, the following computational times: the average (avg), the minimum
(min) and the maximum (max) computational time to solve one instance
with the corresponding characteristics, the average time to generate all the
routes (InitGen) and the average time to solve the MIP formulation (MIP).

We first note that all instances can be solved to optimality within the
given time limit. The maximum time needed is 410.2 seconds. The genera-
tion of all columns is the most time consuming part and takes in average 40.0
seconds for instances with 18 orders. We note that the resulting MIP formu-
lation is often solved relatively quickly: it indeed takes 4.9 seconds in average
for instances with 18 orders. The remaining time (that is not detailed in the
table) is used to separate the family of cuts that we consider. Note that, as

2Note that when ignoring the sequencing part of the problem, it boils down to the
batching and picker routing problem. All these small instances can also be optimally
solved in this case.
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one can expect, this considerably outperforms the exact approach proposed
in van Gils et al. (2019) which fails to solve to proven optimality 40.6% of
the small instances within a time limit of 4 hours. Note that having optimal
solutions for all small instances now permit to evaluate the quality of the
ILS proposed in van Gils et al. (2019).

Data sets Cpu (s)

|O| #Inst avg min max InitGen MIP

6 81 0 0.0 0.1 0 0
12 81 1.5 0.0 6.5 1.4 0
18 80 49.4 0.0 410.2 40.0 4.9

Table 3: Overall results on the small instances.

To conclude, formulation (B(K)) can solve to optimality all instances
with up to 18 orders. This is thanks to the fact that all the routes can be
generated before hand.

6.6 Evaluation of CGH on large size instances

We turn our attention to the ability of CGH to provide high quality lower
and upper bounds on the large instances. A time limit of 14 400 seconds (4
hours) is imposed. Note that the final resolution of B(K′) is not included in
the time limit, hence the final cpu time may exceed the 4 hours.

Tables 4 and 5 report the results obtained on instances of 100 orders and
a trolley capacity B equal to 15 and 30.

The first five columns labelled Data set report the identification of the
instance (Id), the number of pickers (|P|), the number of aisles in the ware-
house (#Aisles), the storage location policy that is used during the gen-
eration of the instance (Loc) and the deadline distribution (DD). Note that
values reported in the columns Loc and DD are in {1, 2, 3} with the following
meaning: i.e 1=‘Random’, 2=‘Within aisle’, 3=‘Across aisle’ and 1=‘Uni-
form’, 2=‘Triangular progressive’, 3=‘Triangular degressive’, respectively.

The sixth column (UB) reports the value of the best solution found by
the ILS algorithm of van Gils et al. (2019). The last five columns labelled
CGH concern the performances of CGH. In particular column UB reports
the best upper bound found by CGH, column Cpu (s) indicates the compu-
tation time in seconds that took the run on the respective instance, column
Gap (%) reports the optimality gap computed as: 100zUB−zLB

zLB , where zUB

and zLB respectively denote the best upper and lower bounds obtained at
the end of CGH. The optimality gap is reported in italic when it is zero,
to emphasize the optimality on the respective instance has been proven. Fi-
nally, columns #Cols and #It report the number of columns in K′ at the end
of the procedure and the number of calls to the pricing problem (see line 11
of Algorithm 1), respectively. Note that when some negative reduced cost
columns are found in the pool, this is not counted as an extra iteration.
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Data set ILS CGH

Id |P| #Aisles Loc DD UB UB Cpu (s) Gap (%) #Cols #It

7 4 12 1 1 360 314 359 348 3 361 0.02 6 386 73
8 3 12 1 2 308 226 307 070 7 931 0.04 13 367 99
9 4 12 1 3 337 286 332 952 4 006 0.01 7 325 74
34 3 12 2 1 285 768 281 688 3 448 0.03 6 031 86
35 3 12 2 2 279 886 278 818 1 129 0.00 5 104 38
36 4 12 2 3 265 444 264 568 2 990 0.02 8 500 79
61 3 12 3 1 292 240 290 648 10 064 0.02 12 935 124
62 4 12 3 2 337 164 336 990 1 434 0.00 453 37
63 4 12 3 3 294 490 290 808 8 205 0.01 9 669 120
88 5 24 1 1 510 786 504 552 14 408 0.45 11 182 111
89 5 24 1 2 453 518 448 960 14 404 0.71 9 645 120
90 6 24 1 3 533 726 531 584 14 423 4.18 9 818 91
115 5 24 2 1 440 786 437 212 2 515 0.01 5 511 48
116 5 24 2 2 487 356 482 316 2 373 0.02 4 469 36
117 6 24 2 3 426 670 426 226 4 596 0.06 5 874 74
142 5 24 3 1 452 266 446 276 14 405 0.05 9 235 99
143 5 24 3 2 449 182 443 084 6 089 0.00 6 667 78
144 6 24 3 3 471 632 470 294 14 434 4.61 10 655 95
169 6 36 1 1 708 648 693 786 15 003 1.72 9 874 113
170 6 36 1 2 583 298 582 794 14 462 24.7 15 797 71
196 6 36 2 1 559 908 553 320 14 406 0.57 8 940 110
197 6 36 2 2 652 180 650 470 3 486 0.01 4 938 28
198 7 36 2 3 547 630 541 890 10 868 0.02 10 086 120
223 6 36 3 1 525 258 517 924 14 419 7.60 14 267 108
224 6 36 3 2 614 394 610 220 14 413 0.03 8 491 93
225 7 36 3 3 654 416 649 296 1 990 0.00 5 032 51

Table 4: Detailed results on data sets of 100 orders (|O| = 100), and trolley
capacity B = 15.

From the results in Table 4, we point out the following observations.

• 16 out of the 26 instances solved the linear relaxation of B(K) before
the time limit of 4 hours.

• 21 out of the 26 instances are solved to near optimality and the opti-
mality gap at the end of the computation is lower than 1%. 4 instances,
that is Id35, Id62, Id143 and Id225, are solved to optimality. We can
claim that the lower bounds provided by (LM(K)) are of very high
quality even on large size data sets.

• The lower bound computed by CGH allows to assert the quality of ILS
on this benchmark which provides overall very good solutions. Note
that all upper bounds are slightly improved by CGH but with a signif-
icantly longer time (ILS is run with a limited number of iterations and
its runtime is 22 seconds in average with a maximum of 70 seconds).

• The number of calls to the pricing problem is rather small for the
given time limit. Moreover, more than 95% of the time is spent to
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solve the pricing problem, hence the solving of the pricing problem is
the bottleneck of the proposed approach.

Table 5 reports results obtained on instances with trolley capacity of
30. Note that a ‘-’ in column UB means that a feasible solution has not
been found for the respective instance. Analogously a ‘-’ in column Gap (%)
means that the lower bound is zero. In this case we do not report optimality
gaps. Note that for instance Id180, CGH fails in both providing a valid UB
and a LB strictly positive.

Data set ILS CGH

Id |P| #Aisles Loc DD UB UB Cpu (s) Gap (%) #Cols #It

16 4 12 1 1 305 840 305 016 14 918 9.25 18 199 92
17 3 12 1 2 268 896 268 846 15 046 22.44 20 045 53
18 4 12 1 3 256 420 260 508 15 042 27.95 20 326 65
43 3 12 2 1 219 278 218 018 14 492 2.53 19 107 123
44 3 12 2 2 203 742 203 030 14 538 4.92 22 551 100
45 4 12 2 3 201 350 200 998 15 111 1.75 25 709 131
70 3 12 3 1 232 510 232 036 14 870 22.31 19 356 71
71 3 12 3 2 228 188 229 908 15 006 15.65 20 963 77
72 4 12 3 3 239 470 240 434 15 002 20.14 19 233 64
97 4 24 1 1 343 062 361 130 15 006 878.73 15 722 43
98 5 24 1 2 458 204 458 814 14 971 63.07 17 855 59
99 5 24 1 3 417 336 446 658 15 026 228.18 20 151 67
124 4 24 2 1 322 434 331 250 15 036 96.64 20 757 79
125 4 24 2 2 321 718 324 468 15 025 57.83 21 913 45
126 5 24 2 3 349 442 348 542 14 631 70.17 23 785 53
151 4 24 3 1 358 618 378 824 15 003 194.68 20 663 59
152 4 24 3 2 361 010 366 308 15 013 81.21 17 877 49
153 5 24 3 3 383 112 387 088 15 018 69.15 17 587 50
178 5 36 1 1 480 888 510 588 15 010 - 15 645 71
179 5 36 1 2 531 724 553 044 15 037 - 17 443 60
180 6 36 1 3 600 422 - 15 042 - 16 480 56
205 5 36 2 1 451 856 470 242 15 030 192.73 20 133 66
206 6 36 2 2 502 722 507 516 14 740 108.39 18 221 35
207 7 36 2 3 503 854 508 732 15 012 125.61 19 487 50
232 6 36 3 1 523 364 529 706 14 483 351.96 20 450 42
233 6 36 3 2 497 086 504 674 15 025 148.86 17 395 45
234 6 36 3 3 450 494 467 620 15 024 644.05 17 532 44

Table 5: Detailed results on data sets of 100 orders (|O| = 100), and trolley
capacity B = 30.

From the results in Table 5, we point out the following observations.

• All instances ran up to the time limit of 4 hours.

• No instance is solved to near optimality, only four instances report
a gap of lass than 10%. Moreover, for three instances (Id178, Id179
and Id180) we report an infinite optimality gap. Hence, instances with
B = 30 are much more difficult to be solved with CGH.
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• CGH is able to improve the value of the upper bound with respect
to the ILS only for 7 instances. For fairness of the analysis we note
that the improvement is rather small. On the other hand, when ILS
performs better than CGH, the UB provided by the latter is sometime
of poor quality with respect to the one provided by the ILS. Moreover
CGH cannot find a feasible solution on instance Id180.

As a conclusion, it can observed that CGH provided overall very good
results on large size instance with a small trolley capacity (B = 15). How-
ever, the performances of CGH deteriorate drastically when enlarging the
capacity of the trolley to B = 30.

7 Conclusion

In this paper we showed that the Joint Order Batching, Picker Routing and
Sequencing Problem with Deadlines (JOBPRSP-D) is better captured by for-
mulating it as a bin packing problem rather than a scheduling problem. We
believe that the heuristic approaches as proposed in van Gils et al. (2019) can
be improved based on this analysis. This observation lead to the design of an
algorithm with performance guarantee (i.e., able to provide valid lower and
upper bounds), for a very complex integrated logistic problem. Experiments
results showed that the proposed approach correctly scales on instances of
reasonable sizes.

A key contribution is the design of valid inequalities for the master prob-
lem as well as for the pricing problem. The first family of cutting planes takes
advantage of the bin packing analysis and relies on Dual-Feasible Functions.
Regarding the pricing problem, the inequalities proposed in Briant et al.
(2020) (namely the tour constraints) are also strengthened. This allows to
efficiently solve the pricing problem that can be seen as the bottleneck of the
approach due to the hardness of the picker routing problem. As a result, the
work of this paper shows that the column generation based heuristic (CGH)
proposed for the for the Joint Order Batching and Picker Routing Problem
(JOBPRP) in Briant et al. (2020) can be extended to consider deadlines
associated with orders to be prepared.

The proposed algorithm is able to solve optimally all the small instances
generated by van Gils et al. (2019) and involving up to 18 orders. Surpris-
ingly, it provides very tight intervals of the optimal values (and improved
upper bounds) for some of the large instances of 100 orders. It therefore
contributes to assert the quality of the heuristic techniques often proposed
in this area of research due to the hardness of these integrated problems.

Future research on the topic may involve the JOBPRSP-D in the dynamic
setting where orders are dynamically released during the working day. The
proposed approach may be used to compute an initial solution that collects
already known orders. A quick insertion heuristic would then need to be
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developed to consider the inclusion of dynamic orders in the current plan.
Another interesting problem would be to integrate to the JOBPRP or to
the JOBPRSP-D storage location assignment decisions at the operational
level. It is indeed known that in the e-commerce context, the forward area
of the warehouse, is supplied on daily basis. Historical information coming
from previous orders can be used to efficiently fill the forward area. From a
computational point of view, another interesting perspective is to develop a
more efficient algorithm to optimaly solve the pricing problem, that is the
bottleneck of the proposed approach.
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8 Appendix

8.1 Proof of Proposition 4

Proposition 4 The following constraints

∑

k∈K1(d̄,q)

d̄ ρk +
∑

k∈K2(d̄,q)

tk ρk ≤ d̄× |P| ∀d̄ ∈ D, q ∈ Q(d̄) (10)

are valid inequalities for (M(K)).
Proof: Consider the function fλ

0 from the L2 lower bound proposed by
Martello and Toth (1990). Let λ ∈

[
0; 12

]
:

fλ
0 : [0, 1]→ [0, 1]

x 7→







1, if x > 1− λ
x, if λ ≤ x ≤ 1− λ
0, if x < λ

By applying Proposition 3 to constraints (3) with DFF fλ
0 , the following

valid inequalities are obtained:

∑

k∈K(d̄)

fλ
0

(
tk
d̄

)

ρkp ≤ 1, ∀d̄ ∈ D, p ∈ P

This can be written as:
∑

k∈K(d̄) |
tk
d̄
<λ

0ρkp+
∑

k∈K(d̄) | λ≤
tk
d̄
≤1−λ

tk
d̄
ρkp+

∑

k∈K(d̄) |
tk
d̄
>1−λ

1ρkp ≤ 1, ∀d̄ ∈ D, p ∈ P

By multiplying by d̄, and by setting λ = q
d̄
, we obtain the following:

∑

k∈K(d̄) | q≤tk≤d̄−q

tkρkp +
∑

k∈K(d̄) | tk>d̄−q

d̄ρkp ≤ d̄, ∀d̄ ∈ D, p ∈ P

By summing over all p ∈ P and taking into consideration (5), we get
exactly constraints (10). �

8.2 Proof of Proposition 5

Proposition 5 The following inequalities

q−1
∑

i=1

∑

k∈K(d̄,i,q)

i ρk ≤ (q − 1)× |P| ∀d̄ ∈ D, q ∈ {2, . . . , d̄} (11)

are valid for (M(K)).
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Proof: Fekete and Schepers (2001) proposed a DFF denoted by fλ
FS,1 (see

Clautiaux et al. (2010)). Given a λ ∈ N \ {0}, the function is the following:

fλ
FS,1 : [0, 1]→ [0, 1]

x 7→

{
x, if x(λ+ 1) ∈ Z

⌊(λ+ 1)x⌋ 1
λ , otherwise

We consider a weaker version of fλ
FS,1 referred to as gλ which handles

differently the case x(λ+ 1) ∈ Z:

gλ(x) =







0 if x = 0
x(λ+1)−1

λ if x(λ+ 1) ∈ Z \ {0}
⌊(λ+ 1)x⌋ 1

λ , otherwise

Note that gλ(x) ≤ fλ
FS,1(x) for any x ∈ [0, 1] so that gλ is a non-maximal

DFF. By applying Proposition 3 to constraints (3) with gλ(x), the following
valid inequalities are obtained:

∑

k∈K(d̄) |
tk
d̄
(λ+1)∈Z

tk
d̄
(λ+ 1)− 1

λ
ρkp+

∑

k∈K(d̄) |
tk
d̄
(λ+1)/∈Z

⌊

(λ+ 1)
tk
d̄

⌋
1

λ
ρkp ≤ 1, ∀d̄ ∈ D, p ∈ P

Let us now set λ = q − 1, and tk
d̄
(λ+ 1) = j and multiply by q − 1. We

obtain:

∑

k∈K(d̄) | tk=j d̄
q
,j∈Z

(j − 1)ρkp+
∑

k∈K(d̄) | tk=j d̄
q
,j /∈Z

⌊j⌋ ρkp ≤ q−1, ∀d̄ ∈ D, p ∈ P

Consider i = ⌊j⌋, we can replace tk = j d̄
q , j /∈ Z by i d̄q < tk < (i+1) d̄q , i ∈

Z. This gives the following constraints:
∑

k∈K(d̄) | tk=i d̄
q
,i∈Z

(i− 1)ρkp+
∑

k∈K(d̄) | i d̄
q
<tk<(i+1) d̄

q
,i∈Z

iρkp ≤ q−1, ∀d̄ ∈ D, p ∈ P

Thus the following inequality is valid:

∑

k∈K(d̄) | i d̄
q
<tk≤(i+1) d̄

q
,i∈Z

iρkp ≤ q − 1, ∀d̄ ∈ D, p ∈ P (37)

By summing (37) over all p ∈ P and taking into consideration (5), we
get exactly constraints (11).

�
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8.3 Proof of Proposition 8

Proposition 8 If constraint (34) is valid and hypothesis (35) holds, then
the following constraint

b+
∑

o∈O

ao eo + ∆k




∑

o∈Ok

eo − |k|+ 1



 ≤ t (36)

is valid for Pr(K′) and allows to exactly compute tk.
Proof: Let k′ be the route defined by the set of orders o ∈ O such that

eo = 1. We need to prove that constraint (36) is satisfied for k′, i.e.

b+
∑

o∈k′

ao + ∆k

(
|k ∩ k′| − |k|+ 1

)
≤ tk′ .

Let us consider the three possible cases:

case 1 : k′ = k, then constraint (36) becomes t ≥ tk. It is valid and also
permits to exactly compute tk′ .

case 2 : k ∩ k′ = k, i.e. k ⊆ k′, then constraint (36) becomes
t ≥ b+

∑

o∈k′

ao + ∆k = tk +
∑

o∈k′\k

ao

This is valid since from hypothesis (35), we obtain tk′ ≥ tk +
∑

o∈k′\k

ao.

case 3 : k ∩ k′ 6= k, then |k ∩ k′| ≤ |k| − 1, so ∆k (|k ∩ k′| − |k|+ 1) ≤ 0.
However, we have b +

∑

o∈k′

ao ≤ tk′ from constraint (34) applied to

route k′. Hence constraint (36) is valid.

�

8.4 Modifications of the pricing problem due to each type of

non-robust cut

Martello and Toth’s cuts. For each Martello and Toth’s cut (10) defined
by the pair (d̄∗, q∗), we consider the following additional variables. For the
sake of clarity we will not index them by (d̄∗, q∗).

• w ≥ 0: real non-negative variable that equal d̄∗ if the route is in
K1(d̄

∗, q∗), and equal t if the route is in K2(d̄
∗, q∗), and 0 otherwise

• b1: binary variable that equal 1 if the route is in K1(d̄
∗, q∗), 0 otherwise

• b2: binary variable that equal 1 if the route is in K2(d̄
∗, q∗), 0 otherwise
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• b3: binary variable that equal 1 if the route is in K3(d̄
∗, q∗), 0 otherwise

The objective function of Pr(K
′

) is modified by subtracting γd̄
∗ q∗

MT w,

where γd̄
∗ q∗

MT is the dual value associated to the cut. The following constraints
are added to Pr(K

′

):

b1 + b2 + b3 +
∑

d̄>d̄∗

µd̄ = 1 (38)

w ≥ d̄∗ b1 (39)
w ≥ t−max

d̄∈D

{
d̄
}
(1− b2) (40)

t ≥ q∗ b2 +
(
d̄∗ − q∗ + 1

)
b1 (41)

t ≤ d̄∗ b1 +
(
d̄∗ − q∗

)
b2 + (q∗ − 1) b3 +

∑

d̄>d̄∗

d̄ µd̄ (42)

w ≥ 0 (43)
b1, b2, b3 ∈ {0, 1} (44)

Constraint (38) ensures that the route is in one of the three setsK1(d̄
∗, q∗),

K2(d̄
∗, q∗), K3(d̄

∗, q∗), or the route has a deadline that is grater than d̄∗. Con-
straint (39) ensures that w takes value d̄∗ if the route is in K1(d̄

∗, q∗), while
constraint (40) ensures that w takes value t if the route is in K2(d̄

∗, q∗). Con-
straints (41) and (42) ensure the total time of the route is consistent with
the set that contains the route. Constraints (43) and (44) define the domain
of the decision variables.

Fekete et Schepers cuts. For each Fekete and Schepers’ cut (11) defined
by the pair (d̄∗, q∗), we need to consider the following additional variable:

• v : non-negative integer variable that represents the number of intervals
of size d̄∗/q∗ covered by the total time of the route (with a positive
residual), i.e. what is denoted by i in constraint (11).

For the sake of clarity we will not indexed it by (d̄∗, q∗).

The objective function of Pr(K
′

) is modified by subtracting γd̄
∗ q∗

FS v where

γd̄
∗ q∗

FS is the dual value associated to the cut. The following constraints are
added to Pr(K

′

):

t ≤ (v + 1)
d̄∗

q∗
+

∑

d̄>d̄∗

(

d̄−
d̄∗

q∗

)

µd̄ (45)

t ≥
d̄∗

q∗
v +

1

q∗
(46)

v ∈ N (47)

Constraints (45) and (46) ensure that v corresponds to the number of inter-
vals of size d̄∗/q∗ covered by the travel time of the route, if the deadline of
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the route is less or equal than d̄∗. Note that the value 1/q∗ in constraint (46)
is set to ensure tk > i d̄∗/q∗ in the definition of K(d̄∗, i, q∗). Finally, con-
straint (47) defines the domain of the variable.

Strengthened capacity cuts. For each SCC defined by the set of orders
R∗, we need to consider the following additional variable:

• z : binary variable that equal 1 if the route contains at least one order
in R∗, 0 otherwise.

Fort he sake of clarity we do not index the variable by R∗.
The objective function of Pr(K′) is modified by subtracting γR

∗

SC z where
γR

∗

SC is the dual value associated to the cut. The following constraints are
added to Pr(K′):

∑

o∈R∗

eo ≥ z (48)

Rank-1 cuts. The management of R1Cs in a MIP formulation of the pric-
ing problem has been recently proposed by Hintsch et al. (2021). They
propose two sets of constraints to be included in the MIP, where each set
does not dominate the other and are thus worth consideration. We detail
hereafter these two sets of constraints.

For each R1C cut (12) defined by the pair (R∗,p∗), we need to con-
sider the following additional variable: u ∈ N that represents the coefficient
⌊∑

o∈R∗ p∗oeo
⌋

of the route computed by the pricing problem. For the sake
of clarity we do not index the variable by (R∗,p∗).

The objective function of Pr(K′) is modified by subtracting γR
∗
p
∗

R1 u

where γR
∗
p
∗

R1 is the dual value associated to the cut.
Let us consider that the multipliers p∗ =

{
p∗1, p

∗
2, . . . , p

∗
q

}
can be written

as
{

s∗1
t∗ ,

s∗2
t∗ , . . . ,

s∗q
t∗

}

with s∗1, s
∗
2, . . . , s

∗
q , t

∗ ∈ N
∗.

The first constraint to be added to Pr(K′) is the following:
∑

o∈R∗

s∗oeo − t∗u ≤ t∗ − 1 (49)

For the second set of constraints, let us introduce the notion of minimal
subset defined as follows: a set M ⊆ R∗ is a minimal subset for R∗ and
multipliers p∗ if there exits an integer m ≥ 1 such that:

∑

o∈M

po ≥ m and
∑

o∈M′

po < m ∀M′ (M.

Let us denote by N ∗ the set of all minimal subsets for R∗ and multipliers
p∗. The second set of constraints, one for each element in N , is the following:

∑

o∈M

eo − u ≤ |M| −

⌊
∑

o∈M

p∗o

⌋

∀M ∈ N ∗ (50)
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The interested reader is referred to Hintsch et al. (2021) for a detailed
explanation, especially on minimal subsets N ∗ for each optimal vector of
multipliers for R1Cs defined over sets of orders of cardinality between 3 and
5.
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