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ON QUANTUM MODULAR FORMS OF NON-ZERO WEIGHTS

S. BETTIN AND S. DRAPPEAU

ABSTRACT. We study functions f on Q which statisfy a “quantum modularity” relation of
the shape

fle+1)=f(x),  f@)= |zl f(=1/z) = h(x)
where h : Ry — C is a function satisfying various regularity conditions. We study the
case Re(k) # 0. We prove the existence of a limiting function f* which extends continuously f
to R in some sense. This means in particular that in the Re(k) # 0 case the quantum modular
form itself has to have at least a certain level of regularity.

We deduce that the values {f(a/q),1 < a < g, (a,q) = 1}, appropriately normalized, tend
to equidistribute along the graph of f*, and we prove that under natural hypotheses the
limiting measure is diffuse.

We apply these results to obtain limiting distributions of values and continuity results for
several arithmetic functions known to satisfy the above quantum modularity: higher weight
modular symbols associated to holomorphic cusp forms; Eichler integral associated to Maass
forms; a function of Kontsevich and Zagier related to the Dedekind n-function; and generalized
cotangent sums.

1. INTRODUCTION

In [Zagl0], Zagier introduced the concept of quantum modular forms (QMF). Given a Fuch-
sian cofinite subgroup I' of SL(2, Z) whose set of cusps C(I') C P!(Q) is non-empty, and k € C,
QMF are defined as functions

F:OMNS = C,
for some finite set S, satisfying a form of modularity, in the purposely vague sense that for any
v =(2%) €T the period function

(1.1) hy(z) := f(z) — |ex + d\_kf(

has some regularity property.

Numerous examples of quantum modular forms are known, in various contexts, and we refer
in particular to [Zagl0, BFR15, NR17, [KLL16, BLZ15, JM18§|. More references are listed in
the introduction of [BDJ.

In this paper we focus on QMF for the full modular group I' = SL(2,Z), so that C(T") =
P'(Q), and which are periodic (i.e. hy =0 for U = (|} %))H By composition, it is sufficient to
consider for the second generator v = (9 ') of SL(2,Z), so that in order to prove that f
is a QMF, one only needs to verify that

(1.2) h(z) = f(z) — 2| " f(=1/2), xeQ~{0}

has some regularity property.
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1See [BDI Foonote 2] for a possible approach to the non-periodic case.
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2 S. BETTIN AND S. DRAPPEAU

The cases of Re(k) = 0 and Re(k) # 0 are different in nature. In the case k = 0, by iterating
the relation and using periodicity, we can express f as a Birkhoff sum of i evaluated along
orbits under the Gauss map, see [BD| eq. (3.1)]. Using this observation, in [BD] it was then
showed that for a large class of functions h, the multi-sets {f(x) | x € QN[0,1), Den(z) < @}
become asymptotically distributed, as () — oo, according to a stable law, which is in fact a
normal law if h is of moderate growth at OE| As a consequence one has that, in general, f
is nowhere continuous according to the real topology, nor can f be extended by continuity
to any point outside of Q. For the same reasons, we expect a similar phenomenon to occur
whenever Re(k) = 0.

The purpose of the present paper is to study the case when Re(k) # 0.

1.1. Weights with negative real parts. If Re(k) < 0 and h is continuous on [—1,1] \ {0}
with finite right and left limits 2(0%) at 0, then we show that in fact f can always be extended
by continuity to a bounded function f<: R — C. Moreover, we prove that f9 is continuous
on R\ Q and is continuous on the whole real line if h(0£) = f(0), a condition that could be
morally interpreted as saying that holds also at “0%”. More precisely, the following holds.

Theorem 1.1. Let Re(k) < 0 and let f : Q — C be a 1-periodic function satisfying (L.2)) for a
function h : R~ {0} — C which is continuous on [—1,1] \ {0} with finite left and right limits
h(0%) at 0. Then the function

f(z ifreqQ
(1.3) fi(=) ;:{ imi £y) z'fo@
Qay—=

is defined for all x € R and is continuous on R ~ Q. Moreover, for any rational x = % n

reduced form, one has f(y) — f(x) + ¢*(h(0%) — £(0)) as y — a*. In particular, f< is
continuous on R if and only if h(0F) = ( ). Furthermore, in this case, if h € C"™([—1,1],C)
with 0 < m < |Re(k)|/2, then f9 e C™(R,C).

If h is continuous at 0 but h(0) # f(0), we can modify f by letting flx ) = f(z) —
Den(z)¥(h(0) — f(0)). The map f is a QMF with h as its period function, and f(0) = h(0).

As we will see below, in some of the examples of QMF that we will cons,lder, the map f
actually admits an expression as an absolutely converging Fourier series. Theorem gives
a proof of the continuity and differentiability of f extended to R which does not rely on an a
priori knowledge of a Fourier expansion for f. From this point of view, our methodology bears
similarity to the works [BM19) [JM18]. These works are concerned with the Brjuno function,
which is close to being a QMF of weight —1, see [BM19, eq. (4)].

Moreover, Theorem [I.1] shows that in fact one cannot expect the period function h to be
continuous if f doesn’t have some continuity property to start with (thus the truly interesting
cases arise when h is differentiable at least [— Re(k)/2] times).

The existence of the function f9 in can actually be proved under much weaker hy-
potheses, which we explain in what follows. This will be required later on, when we will study
cotangent sums.

Theorem 1.2. Suppose that Re(k) < 0 and let 6 > 0. Suppose that f satisfies

(1.4) fl)=flx+1)  (zeQ~[-1,0),

in other words that f is 1-periodic separately on (—o0,0) and (0,00), and that the equation (|1.2))
holds for x € [—1,1] \ {0}, for a function h satisfying
|671

(1.5) sup |h(z) — h(y)| = o(1) ase— 0T, h(z) = O(e

6—1

) Vo € [-1,1] ~ {0}.

lz—y|<e™€
|x|>2e

2The same method yields an analogous result for {f(z) | z € QN [a,b), Den(z) < Q} for any 0 < a < b < 1.
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Then there is a set X C R\ Q of full measure, such that the limit
(1.6) fi(z) = lim f(z;)
j—o0o

exists for v € X, where (x;) = ([ap(x); a1(x), ..., a;j(x)]); denotes the sequence of convergents
of x. This value coincides with the limit when h is bounded. In general, for any e >
0, there is a subset X, C X invariant by v — x + 1 and with meas(X. N [0,1]) > 1 — ¢,
such that f9|x. is continuous on X equipped with the restricted topology. In particular f< is
Lebesgue-measurable.

The set X in this statement does not depend on f, h or é. It consists of numbers having
mildly growing continued fraction coefficients, see Lemma [2.1] below.

The extension of the definition of f(z) also allows us to show that f has a limiting distri-
bution when evaluated at reduced rationals 0 < % < 1 with ¢ — o0.

Theorem 1.3. Suppose that Re(k) < 0 and let f : Q — C satisfy (1.2) and (1.4), for a
function h : R~ {0} — C satisfying (1.5). Then the multiset

(f(®):1<a<q(a.q=1}

becomes distributed, as g — 0o, according to the push-forward fI(dv) of the measure v given
by the Lebesgue measure on [0, 1].

If, moreover, h is real-analytic on (—1,1) ~\ {0} and f is non-constant on Qsg, then the
measure f2(dv) is diffuse.

In contrast with the case k = 0 treated in [BV05, BD], we remark here that we did not need
to perform an additional average over ¢ in order to obtain a limiting statement.

We recall that a measure is diffuse if it has no atoms. When f< is real-valued, then fI(dv)
is supported on R, and diffuseness is equivalent to the continuity of the associated cumulative
distribution function. Under appropriate conditions, we are able to reach the stronger conclu-
sion that for any non-zero linear form ¢ : C — R, the measure (¢ o f9).(dv) on R is diﬁ'useﬂ
This is equivalent to the statement that the graph of f< never remains on a given straight line
for a positive amount of time: for any line D C C, meas((f>)~!(D)) = 0. Also, the statement
that (¢ o f9).(dv) is diffuse means that its cumulative distribution function is continuous.

1.2. Weights with positive real parts. In the case Re(k) > 0, we find that iterating the
reciprocity formula (1.2) does not imply the continuity of f, even if h is continuous. It is

however still possible to extend naturally f if one considers f(x), not as a function of z = %,

but rather as a function of 7 := %‘1, where @, € (0, ¢] is the multiplicative inverse of a (mod q).

Theorem 1.4. Let Re(k) > 0 and let f be 1-periodic and satisfy (1.2]) with h(z) : R~ {0} — C
satisfying h(x) = O(|z|~ Re®)) for |x| € (0,1]. Then the function

. " f () fz=3€Q
(1.7) fo(z) = o lim ¢ "f@) ifz¢Q
y:aﬁaz

defines a continuous function of x € R~ Q. Furthermore, if h(z) = o(|z|”®¢®)) as z — 0,
then < is continuous on R.

Finally, there exists a set X C R of full measure, such that f* is a-Hélder continuous at
any point of X, for any a < %Re(k). In particular, if Re(k) > 2 then f* has derivative zero
almost everywhere.

3Such a form ¢ is of course proportional to z — Re(ewz) for some 6 € R. This applies in particular to ¢ = Re
or ¢ = Im.
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Note that h is bounded on R ~\ {0} if and only if it is bounded on [—1,1] \ {0}, because
from the reciprocity relation we have h(z) = —|z| "h(=1/z) for z # 0.

Also in the case Re(k) > 0, the limit makes sense under more general hypotheses, which
we will require in some of our applications: it suffices that f satisfies instead of being

periodic on R, and that h be unbounded but satisfying h(z) = O(e_‘x|671) for x € [-1,1] {0}
and some 0 > 0. More precisely, the following holds.

Theorem 1.5. Suppose that Re(k) > 0 and let f : Q — C satisfy (1.2)) and (L.4)) for a function
h:R~ {0} = C with h(z) < e for x € (=1,1) ~ {0} and some 6 > 0. Then the limit

(1.8) fo(x) = jli_{{)lo q(z2j11) " f(F3571)

exists on a subset X of R of full measure, and coincides with the value (1.7) under the hy-
potheses of Theorem [1.4)

Remark 1.6. As in Theorem we will show under the hypotheses stated above the existence
of sets X C X with meas(X.) > 1 — e such that f*|x. is continuous with the restricted
topology, and in particular f* is also Lebesgue-measurable.

Similarly to Theorem we can then show that the values of f at rationals converge to a
limiting distributions.

Theorem 1.7. Under the notations and conditions of Theorem [I.5, the multisets

{19 1<a<qaq =1}

become distributed, as ¢ — oo, according to f2(dv).

Moreover, if h is not identically zero, and is either continuous on [—1, 1]; or satisfies h(z) <
el ™ and h(z) ~ cx™ as x — 0F for some 6 >0, c € C~ {0} and X € Ruqg ~ {k}, then the
measure fy(dv) is diffuse.

Remark 1.8. One can relax considerably the conditions required to ensure the diffuseness of the
limiting measures. For example it is sufficient that h is right continuous at 0 with 2(07) # 0
or that h(r) goes to oo as  — 0 without staying too close to a multiple of 1 — |z|~*. See
Section B.3] for more details.

Similarly as for Re(k) < 0, under natural conditions which are however more involved, we
show that the measure (¢ o f*).(dv) on R is diffuse for any non-zero linear form ¢ : C — R.

1.3. Applications. The above theorems apply to many objects, some of which are described
in the following corollaries.

1.3.1. Fichler integrals of classical holomorphic forms. The elementary-looking function

(1.9) App(z):= > Q(x)*, zeR, ke2N+3 O#D=1 (mod4)

Q(z)=ax?+bz+c>0
a€—N, b,c€Z, b*>—4ac=D

was introduced and studied by Zagier in |Zag99]ﬂ see [Benl5| for more details on the con-
vergence of the sum. With a simple algebraic computation we can verify that Ay p(z) is a
1-periodic QMF of weight —2k, satisfying with a period function h = hg p which is a
polynomial of degree 2k satisfying by [Zag99| eq. (25)]

hip(0) = App(0) = > op(23%)

0<b<v/D
b2=D (mod 4)

where op(n) = >4, d*. Theorem u applies to Ay p and gives another proof that it extends
to R with Ay p € CF71(R,R). The fact that Ay p(z) is in CF71(R,R) was instead obtained

4f k = 1,3 Agp(x) can still be defined but it turns out to be constant.
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by Zagier in [Zag99] by observing that hj p belongs to the space of period polynomials corre-

sponding to modular forms of weight 2k + 2. This implies in particular that Ay p(x) has to

coincide with the Eichler integral of a weight 2k 4+ 2 modular form and thus can be written as

a Fourier series whose n-th Fourier coefficient decays roughly as n=*=1/2, see [Zag99, eq. (53)].
From Theorem we deduce the following distributional result for Ay p.

Corollary 1.9. Let k > 5 be odd and assume D = 0,1 (mod 4) is not a square. Then

{Aw(%)i 1<a<gq(a,q) = 1} CR

becomes distributed, as ¢ — oo, according to the measure (A} p)«(dv). This measure has a
continuous cumulative distribution function.

More generally, let g be in the space Sg(1) of cusp forms of weight k > 12 and level 1. If
9(2) :== Y ,51 ane(nz) for Im(z) > 0, where e(z) := e*™*, the Eichler integral of g

~ a
(1.10) g(2) =) —ge(nz),  (Im(z) 2 0),
n>1"
restricted to @, is a quantum modular form of weight 2 — k with period function given by the
period polynomials of g.

Corollary 1.10. For k > 12, let 0 # g € Si(1). Then

{g(g) 1§a§q,(a,q):1} cC

becomes distributed, as ¢ — oo, according to gi(dv). For any non-zero linear form ¢ : C — R,
the measure (¢ o g9).(dv) is diffuse.

It follows from Theorem that the map g is k/2—1 times differentiable, but in this special
case it could be seen immediately from the definition ((1.10)) and square-root cancellation in
averages of a,, see [Iwa97, theorem 5.3]. We comment on this after the proofs, see Remark

1.3.2. Period functions of Maaf forms. In [LZ01], Lewis and Zagier extend in some sense
the theory of period polynomial to period functions associated to Maafl forms. Their work
then allows to construct quantum modular forms also from Maafl forms, as was described
by Bruggeman [Bru07]. We briefly review their construction. Let u be a Maafl cusp form
for SL(2, Z) of Laplace eigenvalue s(1—s), with s € 1/2+iR~¢, which we expand as u(z+iy) :=
2 om0 Any/YK _%(27r\n\y)e(nx). We define
ST(1 —
7T(2$) Z n* 1 2a,e(nz), (Im(z) > 0).

n>1

u(z) =

We then include Q in the domain of u by letting
(1.11) u(z) = lim u(z +iy), (x € Q).
y—0+
It is shown in [Bru07, [LZ01] that @(z) thus defined is a quantum modular form of weight 2s

whose associated period function h is C* on R and real-analytic on R \ {0}. Using a suitable
variant of Theorem [1.7] we will deduce the following result.

Corollary 1.11. Let u be a non-trivial Maass form of spectral eigenvalue s(1 — s). Then

{a®u(8),1<a<q (0,9 =1}

becomes distributed, as ¢ — 0o, according to uy(dv). Moreover, for any non-zero linear form ¢ :
C — R, the measure (¢ o u”)«(dv) is diffuse.

We also show that @ is almost everywhere locally (1/2 — ¢)-Holder continuous, but again
in this case, it can be seen directly from the Fourier expansion of the underlying form, see

Remark 411
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1.3.3. A function of Kontsevich and Zagier. Another example of quantum modular form, de-
scribed in [Zag01], [Zagl0], is given by the series

oo

(1.12) o(x) = e(z/24) Z(l —e(x))--- (1 —e(mx)), (x € Q).

m=0

This function was studied by Kontsevich and is related to the Stoimenow’s numbers, which
are used to bound the number of linearly independent Vassiliev invariants of a given degree.
In [Zag01], a proof is sketched that ¢ is a quantum modular form of weight % in the generalized
meaning that

(113)  o(z) - e(£1/8)[a|*2p(~1/z) = h(x), 2 € Qo @(z +1) = e(1/24)p(x),

for a period function h(z) which is smooth on R (and in fact also continues analytically
to C iR, )ﬂ See [BR16] for a proof in the general context of period functions for half-integral
weight forms. In this case, due to the automorphy factors in the reciprocity relation ,
the definition of the limiting function ¢" is as follows: for x € Q N (0,1], = = [0;b1,...,b;]
with 7 odd, denote o(x) =3+ ;< <,(—1)7b;. Then

e(310(x)) Den(z)32p(x) (x€Qn(0,1]),
limgsy—a () (z & Q).
By suitable variants of Theorems and we obtain the following result.

(1.14) F(x) = {

Corollary 1.12. The map ¢” is continuous and in fact almost everywhere locally (3/4 — ¢)-
Hélder continuous for any € > 0.
Moreover, the multiset

{e(Fo(@)a0(2): 1 <a<q,(a,0) = 1}

becomes distributed, as ¢ — 0o, according to ¢~ (dv). For any 6 € R, the cumulative distribution
function of (Ree® ), (dv) is continuous.

Remark 1.13. The function o(z) can be expressed in terms of the Dedekind sum s(z) [RG72]:
using [Hic77, Theorem 1], we find

o(r) =z 47T+ 12s(x), (x €(0,1)NQ).
The function ¢” : [0,1] — C is depicted in Figure|l] Note that ¢”(0) = 1.

1.08

1.06 -

—0.05 4
1.04

—0.10 4

1.02 A

1.00 —0.15 4

—0.204

—0.25 4

0.‘0 0:2 0:4 0:6 0.‘8 l.‘O
FIGURE 1. Approximate plots of Re ¢” (left) and Im ¢” (right) defined in (1.12)).

SHere h is, up to a constant, naturally interpreted as the period function for the 1 weight modular form

2
—3/2

given by the Dedekind 1 function, namely h(z) = cfooo n(iy)(y + iz) dy for some constant ¢ € R.
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0.00 ]

—0.05 1
1 0.5

~0.101

-0.15 1

-0.20 ] -0s

ua.})’/

(A) Approximate plot of ¢”(]0,1]) (B) Approximate plot of ('([0,1])

—0.25 1

FIGURE 2

If we normalize ¢ by letting ¢f(z) := Den(z)~3/2p(z), then as an immediate consequence
of Corollary we obtain that ¢f(Q) is equal to the curve G given by
24
G = | 2% (0,1,
n=1
which passes through the 24-th roots of unity. In Figure we have plotted the points ¢”(x)
for Den(z) < 101. The limiting curve is the graph of ¢”. In Figure we have plotted the
points o' (x) for Den(z) < 307, colored depending on o(z). The limiting curve is the curve G.

1.3.4. Generalized cotangent sums. Finally we mention the generalized cotangent functions,
studied in [BC13a] and defined for b € Z, ¢ € N+ coprime by

f£) oo B (2(-02),

m=1
where a € C. Here ((s, ) denotes the Hurwitz zeta function, which is the analytic continuation
of s = >, ~1(n+x)7°. When a = —1, the poles of ¢ cancel out and ¢, reduces in that case to
the classical Dedekind sum [RG72]. In [BCI13a], it was shown that the functions ¢, are almost
quantum modular forms of weight 1+ a with period function h, satisfying, in a neighborhood
of 0, the estimate

—Ll_a)i—s n(z) cot(o L
(o) = 25 g 3 0t () e+ O),

The meaning of “almost” here will be made precise later on. The function ¢, is very closely
related to Eichler integrals of certain real-analytic Eisenstein series, see Section 2]
and [LZ19]. We will deduce from our main results the following statement on the distribution
of values of c,.

Corollary 1.14. If Re(a) < —1, then the multiset

{ca(®):1<b<q,(b,0) =1}

becomes distributed, as ¢ — 0o, according to dAg := (c3)«(dv). IfRe(a) > —1, then the multiset

{7 e(d) 1<b<q, (b0 = 1]

becomes distributed, as ¢ — oo, according to a measure d\, := (c&)«(dv). Moreover,
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(1) When a € (2Z>0 + 1), the measure d\, is supported on {0}.

(2) When a € R\ (2Z>_1 + 1), the measure d\, is supported inside R and is diffuse.

(8) When Re(a) # —1 and a € R, then for any non-zero linear form ¢ : C — R, the
push-forward measure ¢.(dA,) on R is diffuse.

When Re(a) > 0, the map & is continuous at irrationals. Moreover, for 0 < Re(a) < 1, the
map x +— & (x) is a-Holder-continuous locally almost everywhere, for any o < (Re(a) +1)/2.
When Re(a) > 1, the same is true for the map x — & (x) + zal(1 — a)/7, and in particular
the map ¢ is then differentiable almost everywhere with derivative —a((1 — a)/7.

< however we warn that the actual defini-

In this statement we have kept the notations cj, ¢,
tions differ from those in Theorems and [[.4] mainly due to the fact ¢, is only “almost” a
quantum modular form. The precise definitions are given in Section [£.3] below in several cases
depending on the value of a.

In the case above, we obviously also have that d), itself has no atoms.

The empirical cumulative distribution functions (CDF) in Corollary for ¢ = 5000 are
plotted in Figure [3| for some real values of a. The fact that the corresponding measures are
diffuse, stated in item of the previous corollary, translates into the continuity of the limiting
functions.

T T T T T T T T T T T T T T
—30.0 —20.0 —10.0 10.0 200 30.0 0.2 -0.15 -0.1 -0.05 0.05 01 0.15 0.2

FiGure 3. CDF of the empirical measures at ¢ = 5000 in Corollary
for a = —2 (left) and a = 1/2 (right)

The case a = 0 was studied earlier in [MR16l Bet15]. The fact that the values of ¢y have
a limiting distribution was proved in [MRI6] with an elaborate argument. A simpler proof
was then given in [Betl5]. The methods of [MR16, Betl15] use an explicit computation of the
moments of both the original QMF and the limiting measure; thereafter, the limiting measure
is identified through the method of moments, subject to a good bound on these moments.
These ingredients are not available in the generality of Theorem The proof that we give of
Theorem instead identifies directly the limiting function, not passing through its moments,
thus allowing for much more general period functions h.

The continuity of the cumulative distribution function in the case a = 0 was also obtained
in [MR16]. The method used there however relies crucially on the fact that co(%q) can be
written explicitly as oL 0% (5 — {ng}) /n, where {x} is the fractional part of z, and there is
no clear way to extend it to the generality of Theorems and

The (weight zero) case of a = —1 corresponds to Dedekind sums, and it is proved in [Var93]
(see [BD, Section 9.4] for another argument) that the values c_1 () tend to distribute according
to a Cauchy distribution when z is picked at random among rationals of denominators at
most @), Q — oo. It might be interesting to know if the CDF of the Cauchy distribution
can be obtained as a limit of the distribution of values of ¢, c5, appropriately normalized,
as a — —1; in other words, if the limiting functions in Figure [3]tend to the CDF of the Cauchy
distribution as a — —1 after an appropriate normalization.
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In Figure [4] below, we present the plots of the real part of ¢ and ¢ for various values
of a. The relevant period function h(x) = h,(z) roughly satisfies h(x) ~ x(a)x=t + O(1) for
some constant x(a), see below. When Re(a) < —1, we witness a rise in regularity in
¢ as Re(a) decreases, but without reaching full continuity, due to the fact that h, has a pole
at 0. When Re(a) > 0, Corollary shows that the map ¢ is continuous at irrationals, and
when Re(a) > 1, that it has derivative —a{(1 — a)/m almost everywhere. In Figure we
have a = 1.5, and —a((1 — a)/7 ~ 0.09926.

2. EXTENDING THE DOMAIN OF QUANTUM MODULAR FORMS

In this section we define the main tools and notations, and then prove Theorems
[[.4] and L5l

2.1. Notations. Let T(z) := {1/x} be the Gauss map, T" its i-th iterate. For = € Q, we let
r:= r(x) be the minimum non-negative integer such that 7" (z) = 0 and, for 0 < j < r, we
write 77 (x) in simplest terms as

(2.1) 79 () = %1@)

In particular, we have
uo(z) = Den(z), ur(x) =1,
where Den(x) is the denominator of x. Whenever u,_1(z) > 1, we also define
’U,r+1($) =1,

which will be convenient to change the length of the continued fraction (CF) expansion. Also,
from the bound

(2.2) T (z) < 1/2,

we deduce

(2.3) ngg <2792y j(a) > 292
0

We will also use the following other decomposition. Given y € QN (0, 1) and writing uniquely
y as its CF expansion

y=1[0;¢1,...,c¢s
with s odd, we define
(2.4) v =1, vj(y):=Den([0;cr,....¢5])  (1<j<s).
Equivalently, v;(y) = Den([0;¢;, ..., c1]). Note that, with 7 = [0;cs, ..., ¢1], we have
vj(y) = us—;(7),
and as such
(25) 0(y) > 2/

with a uniform constant.
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FIGURE 4. Sample points of ¢, at N points of denominator ¢

2.2. Iteration of the reciprocity formula. First, we notice that by the Euclid’s algorithm,
any QMF f of level 1 is determined by h and its value at 0. Indeed, by repeatedly applying (|1.2)
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and periodicity we obtain, for x = % € [0,1) in reduced form,
r=1 ,j-1 —k o

(2:6) f@ =Y (TIT@) (1T @) +45(0)
j=0 \i=0

Notice that we used that [T/_g T%(z) = 1/q.
The above quantities are naturally expressed in terms of continued fractions. Indeed, if
€ (0,1), then the length of its CF expansion x = [0;b1,...,b,] with minimal length (i.e.
by # 1if r > 1) is r. Also, for 0 < j < r we have q]_[z;ol Ti(x) = (H;";jl Ti(z))~! is the
denominator u;(z) defined in ([2.1)). Notice also that ug(z) = g. Thus, abbreviating u; = u;(z),

we can then rewrite (2.6 as

r—1

Wi —k Ui

2.7 T) = - h<1ﬂj+)+u’“ 0).

(2.7) /(@) ;(UO) (/== ) +usf )

This formula holds also if  is formally replaced by r + 1, which corresponds to expressing = =
[0;b1,...,b;] rather as [0;b1,...,b, — 1,1], since the additional term in (2.7) is

(2.8) ugh((=1)") = ug(£(0) — f(0)) =0,

by and periodicity.

Finally, we deduce another variant of . First, we notice that if [0;by,...,b,] is the CF
expansion of z # 0 with r odd, then Z = [0;b,,...,b1]. In particular, after the change of
variables 7 — r — j, (2.7]) can be rewritten as

(2.9) ¢ " f(z) = V(z)

where, for y = [0; ¢y, ..., ¢,] with r odd, and the notation (2.4)),

(2.10) T(y) = Zq’“h((—l)jl”j‘l) + £(0).
j=1

Uj

From the expansions (2.7) and (2.10), and the fact that both quantities u;/uy and vj_l
decrease exponentially fast with j, we see the difference of behaviour according to the sign
of Re(k), and the relevance of switching = to T when Re(k) > 0.

2.3. Continuity almost everywhere and extension. In this section, we state and prove
a technical proposition which will be helpful when extending f almost everywhere in Theo-

rems and [0

We first need the following Lemma. In the following we will use the notation r(x) = oo if

Lemma 2.1. For each B > 0, let
T(B) := {z € R: bj(x) < max(B, j(logj)?) for all 1 < j < r(z)}.

The set T(B) is invariant under v — x+1. Moreover, meas(¥(B)N[0,1]) = 14+0(1) as B — o0
and the set

&= J B
B>0
1s of full Lebesgue measure.

Proof. By [Khi63, Theorem 30] one deduces that & has full measure. Since T(B’) C T(B) if
0 < B’ < B, one then deduces that meas(T(B)N[0,1]) =1+ o(1) as B — occ.

Given B > 0, an integer m > 1 and a number z € T(B), define
V(B,m,z):={2z' € QNI(B): r(z') > m, Vj <m,bj(z") =bj(x)},

the set of all rationals in T(B) whose first m coefficients coincide with those of x.
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Definition 2.2 (Property . (\)). We say that f : Q — C has the property .7 () if the quantity
Ax(m) = sup sup |f(') = f(=")]
z€T(m*) o/ ,z" €V (m* m,x)
satisfies
(2.11) Ax(m) = 0

as m — 0Q0.

Proposition 2.3. Let A > 1, and assume that f has the property #(\). Then for any = €
G\ Q, the limit

2.12 * = li

( ) f (-T) yEQﬂTl(rg),y—)ac

exists for any B > 0 such that x € T(B) ~ Q. Moreover, let m € N and B > 0 be given
with m > BY*, and define f*(z) := f(z) for x € Q. Then uniformly in z,z' € T(B)
satisfying r(x),r(x') > m and bj(z) = bj(a’) for j < m, we have

(2.13) fr@) = @) =o(1),  (m—o0),
where the rate of decay may depend on X\, but not on B.

Remark 2.4. Let x € T(B) ~ Q. Since T(B') C ¥(B) for B > B’ > 0, from we also
get [*(2) = limyeqna(pr),y—a f (), for any 0 < B’ < B with z € T(B’) \ Q. In particular, the
existence of the limit implies that its value f*(z) is independent of B. Notice that the rate of
convergence, however, might depend on it.

Proof of Proposition 2.5 Let € T(B) ~ Q. We wish to show that the limit (2.12)) exists. By
Cauchy’s criterion, it suffices to show that
(2.14) lim sup |f(z") = f(2")| =0.

=0T o 2" cQNT(B)
(o' al Ja""—a|<e

Let ¢ > 0. Since x ¢ Q, we may find m € N such that for any y € QN [z — e,z + €],
then r(y) > m and b;(y) = bj(z) for all j < m. Clearly m — oo as e — 07. In particular, we
can assume m > B'/* so that T(B) € T(m?*). Thus z € T(m*) and QN [z —¢,z+]NT(B) C

V(m?*, m, ) and - follovvs from 1'

It remains to show Let z,2' € T(B), m > BY* and for 0 < j < m, define b; :=
x

(
bj(z) = b;(2’), consider the convergents (x¢), (z}) of x and 2’ respectively, so that for 1nstance
)

xg = [bo; b1, .., by Dy (@), .. -, be()], (m <L <r(x)).

Also, consider the rational y := [bg; by, - - ,bm]. We have y € T(m?) by hypothesis on m. We
obviously also have x, € V(m, m*,y) whenever m < ¢ < r(z), and similarly x}, € V(m,m*,y)
for m < ¢ < r(z’). We deduce that |f(z¢) — f(z},)] < Ax(m) with the notation (2.11), and
therefore

(@) — ()] < Aa(m)
by taking £ = r(z) if z € Q or £ — oo if 2 ¢ Q, and similarly for /. The right-hand side does
not depend on B and tends to 0 by , which is what we claimed. [l

2.4. The case of Re(k) < 0. In this section we prove Theorems and We start by a
lemma regarding the size and regularity of products of consecutive iterates of the Gauss map.

Lemma 2.5. Let j € N, A€ R and g : [0,1] — C. For x € [0,1), define

(2.15) w(z) = w(z;j,\ g) =1 < r(z (HTZ ) (T4 (x)),

where we recall that r(x) = 400 by convention if x ¢ Q and 1(j < r(x)) indicates the indicator
function of the condition j < r(z).
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= If A >0 and g is continuous, then w is continuous on [0,1)~{z,r(x) € {j—1,j}}. Moreover,
letting +1 = (—1)?, we have

w(z*) = Den(z) *g(0) (r(z) e {7 —1,5}),
(2.16) w(@™) = Den(w) *g(1) (r(z) =),
w(z®) = (r(z) =7 —1).

~If X\ > 2 and g is of C' class, then w is of C' class on [0,1) ~ {x,r7(x) € {j — 1,5}}.
When r(x) & {j — 1,7}, we have

Jj—1 _
W) = 1(j < r(z) {Ag @ @)Y 0 [ @) @ (] ')
i=0 0<e<i i<l<j

(2.17)

@) ( 1 T%))H}-

0<(<j
Moreover, we have
Jj—1 )z
w'(zF) = Den(z)~ 2 ()\g
—0 uz Uz—l—l( )
-1

(2.18)  w/(z¥) = Den(x) A+2(Ag( )izom
w'(z¥) =0 (r(z) =7 —1).
~IfX>0 and g € C°, we have
(2.19) lwllse < 220792 g,
while if X > 2 and g € C', we have
(2.20) [ oo < 722727 (|lgllo + (19 lloo)-

Proof. — Value of w'. For the convenience of our argument, we start by noting that if ¢ € C*
and A\ > 2, then whenever r(z) > j, the right-hand side of (2.15)) defines a C! function in a
neighborhood of x. When m > 1, its derivative can be computed using the expression

(@Y @) = (0[] @) .
0<t<i

and this leads to the given formula for w’(x).

— Regularity. We treat the continuity and differentiability claims simultaneously, proving the
following more general assertion: given m € {0,1}, j > 1 and A > 2m, if there is a countable
set S for which g is C™ on [0, 1] \ S, then z — w(j, A, g) is C™ on the set

0,1~ {z:7(z) € {j — 1,5} or (r(z) > j and TV (x) € S)}.
We proceed by induction. Assume first j = 1. We have r(x) > 1 <= x # 0, so that
w(z;1,A,9) = 1(z # 0)2*g(T(x)).

This function is easily seen to be C™ at z € [0, 1] whenever x > 0, T'(x) € (0,1) and T'(x) & S.
These conditions amount to r(x) > 1 and T'(x) ¢ S, which gives our claim in the case j = 1.
Let 5 > 1, and suppose our claim is proven for j — 1. Then we note that

w(@; j, A, g) = w(z; LA [z = w(z;j — 1A g))).
By induction, the function z — w(z;j — 1, A, g) is C"™ on [0,1] . S’, where
S ={z,r(x)e{j—2,j—1}or (r(z) >j—1and TV }(z) € 9)}.
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The set S’ is again countable, since 779~ has countably many inverse branches. From the
case j = 1 of our claim, we deduce that z — w(z;j, A, g) is C™ on [0,1] . S”, where
S" ={z,r(z) € {0,1} or (r(z) > 1 and T'(z) € S}
— {zr(2) € {0,1,5 — 1,5} or (r(x) > j and T¥(x) € 5)}
by definition of S’. There remains to check that w is C™ at z if r(z) = 0 and j > 2, or
if 7(z) =1 and j > 3. But supposing r(z) = 1 we have for ¢ — 0T
T(x—¢e)=0(e), T(x+e)=1-0() = T*(x+¢)=0(e),

and therefore, we have in any case lim,_,, T(y)T?(y) = O(|z — y|). Thusifj > 3and A > 2m,
we then have as y — =,

w(y: 4, A 9) = O(T ()T (y))*) = o[z —yI™),
and so w is continuous at x, and differentiable there when m = 1, with derivative 0. More-
over, if m = 1, by the explicit expression (2.17)) and the bounds above, we find

w'(y) = O(lz —y[*7?) = o(1),
and therefore w is C™ at z. A similar argument holds when r(x) = 0, and concludes the
proof of our claim.
— Limits of w. Assume r(x) = j. Note that for y # x in the neighborhood of x, we have r(y) >
r(x), and moreover
lim TY(y) =0, lim TY(y) = 1.
y—at y—xTt
The expression given for w(z®) and w(xT) then follows upon taking the limit in the expres-
sion ([2.15)). The case when r(z) = j — 1 is similar, using instead the limits
lim T7(y) = lim 797 (y) = 0.
y—axt y—xT
— Limits of w'. The expressions given for w'(z*) when r(z) € {j — 1,5} follow from an
argument identical to the computation of the limits w(z%). In the claimed formulae, we

— Bounds. The bounds (2.19)), (2.20) follow immediately from the explicit expressions above,
along with the bound

O

2.4.1. Proof of Theorem[1.1, The domain of f<. In this section we show that f(z) is defined
for all x € R. By periodicity, we can assume x € (0,1) \ Q. We also recall that h is bounded
on [—1,1] by hypothesis. We let

(2.21) hi(y) = h((=1)y),  wi(y) := w(y, j. —k, hy),
for y > 0, and extend h; at y = 0 by continuity, so that in particular
(2.22) W,y (@) = Den(z)*h(0%), (2 €Q, £=(-1)"@)).
Thus, with this notation, reads
(2.23) f(a') = wj(a’) + Den(a')*(£(0) — h(0F)).

Jj=0

It suffices to show that sup |f(z') — f(2”)] — 0 as € — 0, where the sup is over all 2/, 2" € Q
with |z — 2/|,|x — 2| < e. Let n > 0 be arbitrary. Since z ¢ Q, there exists m(z,e) — oo
as € — 0 such that for all 2* € Q, |z — 2*| < ¢, we have r(z*) > m(x,¢) and b;(z*) = bj(x)
for j < m(z,e). By for e sufficiently small we have

m(z,e)—1

|f(z") = f(a")] <n+ Z lw;(z") —w;(z")], Vo' 2" € (x —e, 2 +e)NQ.
j=1
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By Lemmal[2.5] the function y — w;(y) is continuous at x and thus for 2/, z” € (z—¢’, 2+ )NQ
with ¢’ € (0,¢) sufficiently small we have | f(z") — f(2”)| < 2n. Since n was arbitrary, this yields
our claim.

In particular, approximating x = [0; b1, ba, ...] € (0,1)~Q by the sequence x,, = [0; b1, ..., by],
we get the normally converging series expression

(2.24) fila) =) wj(x)

Jj=0

for x ¢ Q. Notice that the same expression holds also for = € Q if f(0) = h(0%), by (2.23) .

2.4.2. Proof of Theorem|[I.1l The continuity of f*. First, assume z € (0,1) \ Q. Then, using
the expression and an identical argument as above, the continuity of f< at x follows
immediately.
Assume, then, that x € [0,1] N Q. Let r = r(z) and ¢ = Den(x). For all y # x in a
neighborhood of z, we have r(y) > r + 1, and therefore, with + = (—1)",
Fo) = f@) = ¢"(n(0F) = £(0)) + ODen(y)**W) + 3~ (w;(y) — w;())

J20

where the term O(Den(y)¥) is to be ignored if y ¢ Q. We let y — 2. First note that Den(y)* —
0. Also, for j ¢ {r,r+1}, the function w; is continuous by Lemma and so the j-th summand
in the sum tends to 0. By dominated convergence, we deduce

Foy) = f(x) = o(1) + " (h(0F) = £(0)) +wp(y) — wr (@) + wrs1 (y)
= o(1) + wr(y) + wrs1(y) — qkf(o)
by (2.22). Finally, by and since h,(1) = h((—=1)") = 0 by (2.8), we have

y
[0, Gsenly— ) = (1)),
) rw)=oll)+4 {cn (sgnly — z) = (—1)™),
R (1 (sgnly — ) = (~1)7)
r1(y) = o(1) + ¢ {hr+l(0)7 (sen(y — z) = (—1)™+L).

Since h,-(0) = h(0%), hy11(0) = h(0F), then splitting in cases depending on the sign 4 and on
whether y — 0 from the right or the left, we find

o ey (PR 5O, ),
=10 {0 o e

as claimed. We also notice for later use that if h is continuous at zero then (2.25) gives

lim wy(y) = lim wyp1(y), lim w,(y) = lIm wy41(y).
y—azt y—=z~ y—=r~ y—xt

2.4.3. Proof of Theorem[1.1. The diﬁerentiabilz’ty of f9. We argue by induction, starting from

the case m = 1. Assume that h € C*([-1,1]) and Re(k) < —2.

By Lemmanwe have that w; is of C1 class on [0,1) \ {z,r(z) 6 {] 1 ]}} (and thus on
any neigborhood of irrational numbers). In particular, by - ) and it follows
that f< is differentiable on R \ Q. The same argument also gives that Z e wi(T) 18
differentiable at rationals. In particular, it suffices to show that the right and left derivatives
of w,(y) + wy+1(y) coincide at rationals. To show this we start by observing that from the
period relation , proceeding as in [Zag99, eq. (23)], we have

hz+1)—h(z) = —1+z| "1 -1/(x+1)), zeQ~{0,—1}.

In particular, taking the limit as z — 0 we obtain h(1) = 0 and A'(1) = kh(0). Thus, since
by (1.2) we have h(—1/2) = —|z|~*h(x), we find h'(—~1) = —kh(0) and thus h;(1) = kh(0) for
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all j. Thus, recalling that k(1) = 0 (and h/;(0) = (—=1)7h(0)) and observing that

G CD S CY L egn)
5 uwi(@)uiv1(2) = ui(z)uip (@) ’ Y
we obtain from that
wp(@F) +wp (@) = wp(@7) Fwpga(@T),  zeQn(0,1),

thus giving that f< is differentiable at any = € Q N (0,1). Finally, by (1.2)), we see that f< is
differentiable at 0 also, with (f<)'(0) = A/(0). We conclude that f< is differentiable on [0, 1),
hence on R by periodicity. By (|1.2), its derivative satisfies, for z # 0,

hi(a) = (f9)' (2) = |l 772 (F9) (=1/a),

where hy(z) := h/(z) — ksgn(z)|z| "' f(=1/z). The function hy, extended at 0 by h;(0) =
R(0) = (f9)(0), is continuous on [—1,1]. We can then apply the continuity property proven
in Section to (f9)" and deduce that (f9)’ is continuous on [0, 1], and hence on R.

If k < —2m and h € C™, then this argument can be iterated m times, with functions (hy,)n<m
defined inductively by

ho(w) = h(z),  hnsi(x) = by (x) = (k + 2n) sgn(x)|e| "7 () (~1/2).

2.4.4. Proof of Theorem[I.3. Extending f when h is unbounded. We now justify Theorem
We assume that h satisfies (1.5)). First note that due to the fact that periodicity is assumed
separately on R} and R_, we have the following variant of (2.6]),

[ S At o )

f@) =3 (TIT@)  h(=1T () + d" F((~1)).

§j=0 =0
Lemma 2.6. Let § > 0 be such that the hypotheses (1.5)) hold. Then f has the property ./ (1+
9).

Proof. Let x = [by; b1, ba,...] € T(m'T®). By periodicity we can assume x € [0,1), that is
bp = 0. If U : [0,1) — R is the inverse branch of T™, given by U(y) = [0;b1,...,bm + 9],
then any 2’ € V(m'*®,m,x) is in the range of U. Since T is expanding ([BV05, eq. (2.4)]
with p < 271/2), we have ||[(T7 o U)/||oo < 27(™=9)/2 uniformly for 0 < j < m, and therefore,
for any 2/, 2" € V(m!'T0, m, ),

(2.26) ‘Tj(:n') — Ti(2")] « 272(m=)

for j < m. We note also that T7(z') =< T9(x) for ' € V(m't% m,z) and j < m, with a
uniform constant, and that the condition 77(z’) > min(m~17%, ;7! (log )~2) holds uniformly
over j. Finally, for any ' € V(m!*t m,z), the condition r(z') > m implies Den(z’) > 2™/

by virtue of (2.3) (with 7 = r(a’)).
Given z € T(m!'*™) and 2’ € V(m'*®, m,z), with the same notation as in Section we
have

f2') = Z wj(:L")+O(Den(m)Re(k)—l— Z oRe(k)j/2 sup |h(y)|),

0<j<m/2 >m/2 ly[>min(m=1=%,j=1(log j)~2)

s o2
By our hypothesis (L.5), the second sum is < 3,/ 2Re(k)j/2(gi' ™" (log)? 4 (O(M' ™)y
2-m/5 and therefore

(2.27) fah)y= Y wj(a;’)+o(2—m/5).

0<j<m/2
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We now let 2/, 2" € V(m!'*®, m,z) be given. Taking differences in the expansion (2.27)), we
obtain
f(@) = F@) < Y |wi(a!) —wy(a)| + 2775,
0<j<m/2

Denote temporarily IT;( 1_[0<2 < , which is also u;(y)/uo(y) in the notations of Sec-

tion [2.1] By the deﬁnltlon , of wj, splitting the difference in w;(z’) — w;(z") we
get

> ) —uwi < Y (\(%(Tﬂ'w))—hj<Tj<x">>>Hj<x">k\

0<j<m/2 0<j<m/2
- \hj<Tﬂ'<m'>><Hj<x'>—k -1, ™))

Regarding the first term inside the sum, the bound and our hypothesis applied
with some value of e < m~17% give |h;(T7(2')) — h; (TJ )| = o(1) as m — oo uniformly
for all j < m/2. By the bound (2.3), we further have II;(y ) < 279/2 uniformly for y € [0,1]
and j > 0, and therefore

> (T (@) = hy(TI @ )T (a")F| < o(1) x Y 2780/ = o(1)
0<j<m/2 7>0
4 52 g 4
as m — 0o. Regarding the second term, we have as above h;(T7(z)) < em' ™" 4 oI " (log)?

for all j > 0. We use the inequality v ™% —v™% < |u — v|min(1’7k) valid for 0 < u,v < 1, which
gives in our case

I (a') ™ — (") 7F < [ (a) = I (a0,
Splitting the difference, we have
() ~ (") € 3 (@) s (T4 (@)| TP (@) - TH(a")
0<i<y
< Z 9-1/2 o 9—=(1—1)/2 o 9—(m—i)/2

0<i<j
< 2*]'/3277)1/4
using our bound ([2.26)) and thus we conclude that

. . O(m'=9%) | 40(j'~*(10g 5)?)
S T ) () F )| < gk E
0<j<m/2 Jj=0 2 ’

< m min(—k,1)/4

which tends to 0 as m — oo. Grouping our bounds, we deduce Aj,5(m) — 0 when m — oo,
as claimed. ]

We now turn to the proof of Theorem Consider X = (R~ Q) NS, where & is defined
in Lemma [2.1} and let 2 € X. In particular z € T(B) for some B > 0, and therefore so do the
convergents x; of x. Summarizing, we have z; € QN E(B) for all j, and z; — = as j — oo.
Since f has the property (1 + 0) by Lemma the limit f9(z) := f*(z) = limj o f(z;)
in exists.

Moreover, for any e, by Lemma [2.1] we can find B > 0 such that X, := (R~ Q)NT(B) C X
satisfies meas(X: N [0,1]) > 1 —e. This set is also trivially invariant by x — x + 1. Let y € X,
and 7 > 0 be arbitrary. We pick an integer m > B'Y(%9) guch that the right-hand side
of has modulus at most . Having chosen m, and since y ¢ Q, we may find £ > 0
such that any number € (R~ Q) N[y — &y + ] satisfies bj(x) = b;(y) for j < m. Now
let x € Xe N[y —&,y+ & be arbitrary. Then x € ¥(B) by definition, and therefore the
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formula (2.13)) gives |f(z) — f9(y)| < n. We have thus proven that f9|x_ is continuous at y
with the restricted topology, as claimed.

5. The case of Re(k) > 0.

2.5.1. Proofs of Theorems and[1.5. The domain and continuity of f*. For the purpose of
studying the example of the Kontsevich function (1.12), it will be convenient to generalize the
period relations to
flx+1) =9f(x), (z € Q),
(2.28) Lai -k
h(z) = f(z) = 9= || " f(=1/2), (+z € Qso),
where 9 is some fixed root of unity. Define
P
(2.29) 9; = 0;(bi,ba,...) = g ( even),
193+Zz {CD (5 0dd).

where by, by, ... are integers. By arguing in the same way as (2.7)), we find for z = [0; b1, ..., b;]
that

(2:30) fa) = S0, (%)’“h((—n ") + 0 ).
§=0

Note that by the period relation, we have
h((=1)7) = (@D —g? DT (),
which confirms that the expression (2.30)) holds for 2z = [0; by, . .., b,] regardless of whether this
expansion is canonical (b, > 1 if » > 1) or not. Similarly to (2.9)), we may then work with r
odd, for which we observe that
Or—j(b1, ..., 0p)05(bpy ..., b1) = Ur(br, ..., by).

Changing j to r — j in the sum (2.30)), and using the notation (2.4), we deduce that for z =
[0;b1,...,b], r odd, we have

(2.31) 0, (2)g* f(x) = ()
where now U(y) is defined for y = [0; ¢y, ..., ¢ ], r odd, as
vj—1(y)
2.32 9t —kp 11222 + £(0),
(232 2 (<>Uj(y)) ©
where, whenever the expansion z = [0;by,...,b,] is clear from the context, we denote
(2.33) Oj(x) = 0;(by, . ..),

but this quantity in fact depends on the tuple (b;) representing x.
In the case of Re(k) > 0 and h(z) = O(|z|~ Re®)) for z € [~1,1] ~ {0}, the existence of f>
for all z € R is straightforward. Indeed, by (2.30) we have

(2.34) f* (@) :{ 1(1m) T(y) if:nZQ,
Q3y—=x

where the limit exists by virtue of the fact that the sum in (2.30) is uniformly convergent and
for each 7, vj(y) depends only on finitely many of the functions y — b;(y) = [1/77~!(y)| which
are locally constant at irrationals. Note that for irrational = [0; ¢y, co, .. .| we simply have

(2.35) 219 1vkh( 1)i-15= 1) + £(0).
Uj

The continuity of > on R ~ Q when h(z) = O(|z|~R¢()) is immediate from (2.35). Suppose
x = [0;b1,...,b,] € Q with r odd. If 2/ — 2~ with 2’ sufficiently close to x, then we have
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' = [0;b1,...,b,,0/ b o,...] with ' — oco. It follows immediately from the definition that
P (') — f2(z) if h(x) = o(|z|~R®)) as x — 0, and so under this assumption f> is continuous
at « from the left. Next, let 2’ — 2, then if b, > 1 we have 2’ = [0;b1,...,b,—1,1,V/,b] 5, ...]
with ¥’ — oo. Note that
vp—1(x)  _ vp_a(af) vp—1(x) .z vp(ah) _
=T, = = —, ~ = 1—7.
vp () vp (') vp(x) —vp—1(x) 1= vppi(a))

Then, under the hypothesis h(z) = o(|z|~ ®®)), by ([@2.32)) and the relations (2.28)), we obtain

P = @) = 0707 (070 - 2 h() + 9hG — 1) — b)) + ol1)

1—-7

T

=0 g (0710 -3 () + ol - 1) - £@) + o)
— o(1)

as b/ — oo. If b, = 1, then 2’ = [0;b1,...,b—1 + 1,00, ,...] with b’ — co. We then obtain
in a similar way

P = @) = 07 a7 (k@ - 1) = h(a) — 0*(@) 4 h(T) )+ o)
=o0(1)

which goes to 0 as 2’ — 2™, and concludes the proof that f> is continuous on R. This proves

the first part of Theorem

Assume now that f is not (twisted) periodic, but instead satisfies f(x) = ¢ f(z + 1) only for
2 € Q~ [=1,0], and that h satisfies h(z) = O(el* ™) for some § > 0. In this situation, we
use Proposition to extend W.

Lemma 2.7. Let 6 > 0, and assume that f satisfies

{f($+1)—19f($), (z € Q\[-1,0]),
h(z) = f(z) —953)2|" f(=1/z), (2 € Qsp),

and that the map h defined through (L.2)) satisfies h(x) = O(e|x|71+5). Then the formulae (2.31))
holds with

Zﬁ (U W) gy = e el odd),

and the map ¥ has the property /(1 + 9).

Proof. The verification that the equations ([2.31] - 2.32) hold, with f(0) replaced with 9= f(—1),
is straightforward. Let B = m!'*9 z € ‘Z( ) and 2',2"” € V(B,m,x). Note in particular
that b;(z’) = b;j(2”) for all j < m, and therefore also vj(ac/) =v;(2") and 9;(z’) = V;(a"). We
deduce

r(z')
) - B € YD vyl RO

j=m+1

Since 2’/ € T(B), we also have v;_1(z')/v;(z") > 1/bj($) > j Y(logj)~2 + B~!. The same
holds for z”. By our hypothesis on h, and combining this with (2.5, we deduce

’\I/<.1‘/)—\I/(:B”)’ < Z 2—jRe(k)/2(eO(jlf‘;(logjy)_|_eO(m1*‘52)) < Q—mRe(k)/S,
j=>m-+1

B((—1)7

which tends to 0 as m — oo, uniformly in z, 2/, 2. This shows the property . (1+4) for ¥. O

Letting f*(z) := U*(x) with the notations of Proposition the deduction Theorem
follows by arguments identical to those of Section[2.4.4] which were used to prove Theorem
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2.5.2. Proof of Theorem [1.J} The differentiability of f>. We assume here the hypotheses of
Theorem in particular, that h(z) = O(Jz|~Re®)) for 0 < |z| < 1. Let X = & be as
in Lemma let ¢ > 0 and suppose x = [0;b1,b2,...] € &. Let m := m(x,e) be as in
Section Let 2’ € (0,1) be such that |z — 2/| < e so that @’ = [b1,... by, by 1. -]
Let n > m be the least integer such that b,y1 # b, ;. We write x = [0;b1,...,b,,2] and
' = [0;b1,...,bp, 2] with 2 = [byg13bpa2,...], 27 = [U,1130540,...] (and byyq # ), by
hypothesis). By standard properties of continued fractions we have

/‘ _ |Z — Z/‘
(zvn + Vp—1) (205 + Vp—1)

|z —x

This is > b, 7,02, unless b,+1 — b, is equal to 1 or —1. In the first case we have z — 2’ =
1

1
1+ bny2ty b oty

1 1 -1 . .
oty T = >y/2 > —(bpys + 1)7". Since x € &, in all cases we have ¢ > |z — 2/| >,

vy, 2n"3(logn) 78 > v, 2 (log v,) .
Finally, we have

1 1 _Re e e
fr@) =)< > Rty T > —Reth) < Un Re(k) <, eRe(R)/2]1og g|Re(k)
j>n+1 Y51 j>n+1 Y51

> b;}rQ for some 0 < g,y < 1. In the second we have 2/ — 2z = 1 —

and so it follows that f* is locally a-Hoélder continuous at z, for any a < %Re(kz). This
completes the proof of Theorem [T.4}
3. LIMITING DISTRIBUTIONS OF QUANTUM MODULAR FORMS

3.1. Convergence in distribution.

3.1.1. Almost sure stability of the CF expansion. First we need the following lemmas.
Lemma 3.1. Let ¢ > 2, let

Ay :={0<a<ql(a,q) =1:a/qeI((logg)(loglogq)*)}.
Then |Aq4| = ¢(q)(1 + 0(1)) as ¢ — oo, where ¢ denotes Euler’s totient function.
Proof. This is a special case of [Ruk06]. O
Lemma 3.2. Let g > 2, let

Ty = ([0,1) ~ Q) NT((log g)(loglog ¢)*).

Then meas(T,) =1+ o(1) as ¢ = oo.
Proof. This is a consequence of Lemma with B = (log q)(loglog q)?. O

We can now deduce the following two lemmas which show that f* and f< can be well
approximated by their values at suitable closeby rationals. We will obtain this, here again, as
a consequence of the property .7 ()\) for some A\ > 1.

Lemma 3.3. Suppose that there exists A > 1 such that f : Q — C has the property .7 (X).
Then the map f* defined in Proposition satisfies
* % _1/4 1/4
(31 flaf)) = f@)+o(l) Vaed, Ve (=Ll (g, uly,).
as ¢ — 00, uniformly for a and x within the stated sets.

Proof. Let B := (logq)(loglogq)?. We assume first = € (a/q, (a + ¢'/*)/q), and we let m :=
2[BY*] + 1, so that in particular m = (log ¢)"/**°(1) as ¢ — co. Let a € 2, denote =’ := a/q
and let = € (a/q, (a + ¢'/*)/q) with either 2 N T, or = = b/q where b € A,. We wish to prove
that
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as ¢ — 00, with a rate of decay depending at most on h. This follows from Proposition [2.3]if we
can prove that z, 2’ € T(B), r(z) > m and bj(x) = b;(2’) for j < m. The fact that =, 2’ € T(B)
follows by definition. Write 2’ = a/q = [0;b1,...,b;]. Note that r < logq by Euclid’s algo-
rithm, so that by definition of T(B) and our choice of B, we have b; < (logg)(loglogq)>.
By induction (see the proof of Theorem 31 in [Khi63]), we have ¢'/7 < 2(by...b)"" <
(log q)(loglog q)?, and therefore r > (logq)/loglogq. We deduce that r(x’) > m for q
large enough. Finally, let a*/q* := [0,b1,...,by] be the m-th convergent of a/q. Then we
have (¢*)'/™ < (logq)(loglogq)? as above, and therefore log(q*) < mloglogq = o(logq)
as ¢ — oo. In particular ¢* < ¢'/3 for ¢ large enough. Since m is odd, we deduce

a* a 1 1 g/t

* *)2 > Z
¢ g (q)*bmi1+2) T ¢*3(logg)? T g

for ¢ large enough. In particular, any = € (§, “+Z v ) satisfies a/q < x < a*/q*, and it follows

that bj(x) = bj(a/q) for j < m. This concludes the proof.

The remaining case z € ((a — ¢'/*)/q,a/q) follows by an identical argument taking m even
instead of odd. O

3.1.2. Proof of Theorems and [I.7: The convergence in distribution. Let 6 > 0. We now
assume that either Re(k) < 0 and h satisfies (L.5), or Re(k) > 0 and h satisfies h(z) =
O(e'zrlH). Let f* be either f< or f*, depending on the sign of Re(k). By Lemmas and
the map f* satisfies the conclusion of Lemma

We will show that for any function G € C°(C) we have

1 =
R.:@ aZ:O_ “(a/q)) /G )) dv +o(1)

(a,q)=1

as q — oo.
For 0 < j < ¢4, let I; = [jq1/4,(j + 1)q1/4] N[0,q]. If j < ¢*/* — 1, by a standard
estimate [FT91) eqs. (1.13), (4.11)], we have

(3.2) i< Y 1= 9 1/ 4 o(g ),
a€AqNI; (a,q)=1 q
a€l;

Given € € (0,1), we let By = {j | £(#1; N A, — p(q)g%/*) > ep(q)g>/*} and E = Ey UE_.
By it is clear that E is empty if we assume ¢ is large enough. Also, summing over
j ¢ E_ we deduce from Lemma [3.1| that #F = #E_ = O(e¢**). Now, for each j ¢ E we fix
any y; € I; N2A,. Since ||G||oo, HG’HOO < 00, by Lemma [3.1] and equations (3.2) and (3.1]), we
have

1

R= G &, OV el et
1
@ 0<jz<;13/4 aelzr;mq G(f*(a/q)) +o(1) + O(e)
J¢E
1 o ) 8
= @ 0<j§13/4 G(f (y])) ae[jzmmq 1+ (1) + O( )

J¢E
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For j ¢ E the inner sum is 51 9) ¢"/*(1 + O(¢)) and thus by (3.1)) and Lemma [3.2{ we deduce

R:qg}ﬂ ST G ) +o(1) + O(e)

0<j<g?/4
J¢E
= > G(f*(x))dz +o(1) + O(e)
O<]<q3/4 ( I)mzq
J¢E

= /. G(f*(z))dz + o(1) + O(e)

= Jou G(f*(z))dz + o(1) + O(e),
0,1
since meas(Uj¢ E(%I ;) = O(e). Letting ¢ — 0 sufficiently slowly we obtain the claimed result.
This proves the first parts of Theorems and

3.2. Proof of Theorem[1.3} Diffuseness when Re(k) < 0. We now focus on the case Re(k) <
0 and aim to show the second part of Theorem

Proposition 3.4. Let k, f, f< and h as in Theorem[1.9 and let ¢ : C — R be a linear form.
Assume further that h is real analytic on (—1,1)~{0}. Assume that for some choice of sign =+,
there exists a set of positive measure C C R~ and a constant o € R such that ¢(f(x)) = «
forz € C. Then ¢(f%(x)) = « for almost all x € £R~.

This clearly implies the second part of Theorem [1.3] and concludes its proof.

Proof of Proposition|3.4. We start with the case k£ € R. Since the real part of a real-analytic
function is real- analytlc, we have that ¢ o f is a quantum modular form of weight k& and real-
analytic period function ¢ o h. In particular we can assume that f is real valued and that ¢
restricted to R is the identity function.

By Theorems [I.1] and there exists a set X of full measure with f< well defined on X.
Note that the equation holds on X \ {0} with f replaced by f<, by taking the limit along
convergents and using the definition ((1.6)). We also recall that in our proof of Theorem
the set X was taken to be X = & from Lemma [2.1] It is clear that & is closed under any fixed
inverse branch of the Gauss map. We may thus assume that X has this property.

We assume C' C R+, the other case being analogous. Also, by periodicity we can assume
C C[0,1]NX. For any € > 0, by Lebesgue’s density theorem we can find an interval I C (0,1)
such that meas(CNI) > (1—¢) meas(I). It follows that there exists an even g € N and an inverse
branch Uy, of TY given by Up(y) = [0;b1,...,by + y] for some coefficients b = (bq,...,b,) € N9,
such that D := {x € [0,1] N X | Up(z) € C} has measure 1 — O(e). Repeatedly applying the
reciprocity formula to Up(z) for any x € D, we have

(3.3) a=fi(Up(x E(HTZ Up())) (=1 T (Uy (2 (HT’ Uy(x))) ¥ F(@).

i=0

Note that T o Uy is a smooth map, and in fact a homography, for any i < g. In particular,
solving for f9(x), we obtain that f< is given on D by a function which is real analytic on (0, 1).
For ¢ sufficiently small we must have meas(C'N D) > meas(C') —meas([0, 1]\ D) > 0, and thus
by analytic continuation this implies that f(x) = « for all x € D. Since € > 0 is arbitrary we
conclude that f9(x) = « for a subset of (0,1) of measure 1.

Now, let us assume k ¢ R and write k = ki + iko with k; € R, ko # 0. We assume
¢(z) = Re(z), the general case being analogous. We let o € R such that Re(f9(z)) = « for a
set C' C [0,1] of positive measure. As in the case k € R, given € > 0 we can find b € N9 such
that D :={z € [0,1]N X | Up(z) € C} has measure 1 — O(e). Since (0,1] can be written as
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the disjoint union (0, 1] = Ue>1U(¢)((0,1]) we have
Zmeas({a: € Uc((0,1]) | Up(x) ¢ C}) =1 —meas(D) = O(e)

c>1
In particular, meas({z € U.((0,1]) | Up(x) ¢ C}) = O(e) for all ¢ € N and thus also meas({z €
(0,1] | U,y (z) ¢ C}) = O(K3¢) for all ¢ < K. Letting D, := {x € [0,1]N X | Uy (x) € C}
we then have meas(D,) = 1 — O({/e) for all ¢ < K := ¢~ /3,
Next, we write the formula with b1 = (b,c1) and by = (b, c2) in place of b for some
¢1,c9 < K. Taking the real part of the resulting equations, for z € D’ := D., N D., we find

(3.4) a = Aj(x) + Re(B;(x)" f(z)), j=1,2

: ~1
where for j = 1,2 we have that Bj(z) = ( 70 Tl(U(b,cj)(JU))) and A; is real analytic on
(0,1). Notice that Bj(z) = vg—1 + (¢; + x)vy where vy_; and v, are the partial denomina-
tors of [0;b1,...,bg—1] and [0;b1,...,b,] repectively. In particular, if ¢i,co € [VK, K] then
By(z)/B1(z) = ca/c1 + O(¥/e) uniformly in = € [0, 1].
Writing L;(x) := ko log(Bj(x)), the equations ([3.4) become

a = Ay(z) + Bj(x)" Re(f(x)) cos(L;(2)) — Bj(2)™ Im(f(2))sin(L;(2)),  j=1,2, z €D’

This is a system in Re(f9(x)),Im(f%(z)) of determinant Bj(z)* By(z)*' sin(L1(z) — La(x))
and solving for Re(f(x)) we find
(o — Ag(2)) By ()" sin(L1(z)) — (a — A1 () Ba(x)* sin(Ly(x))
By (z)k1 By(x)k1 sin(Ly (z) — Lo(z))
on z € D'. Now, for ¢ sufficiently small, we have

sin(Ly (z) — La(z)) = sin(kg log(cz/c1) + O(V/e))

uniformly for € [0,1]. Thus, for ¢ sufficiently small we can find c1,co € NN [VK, K] such
that sin(Lq(z) — La(x)) does not vanish on (0, 1). For this choice one has that the right hand
side of is analytic on (0,1). Since meas(D’) = 1 — O(+/e), we then reach the conclusion
as in the case k € R. O

(3.5) Re(f%(x)) =

3.3. The continuity of the cumulative distribution function when Re(k) > 0. We
prove the following generalization of Theorem Also, as in Section [2.5.1] we allow for a
twist by a root of unity 9 and assume f satisfies (2.28]).

Theorem 3.5. Let ¢ : C — R be a linear form, Re(k) > 0, and let h : R~ {0} — R be a
function satisfying either of the following two conditions.

(17) The function h extends to a continuous function on [—1,1], and either Imk = 0 and
there exists p € Z, a € (—1,1) such that ¢(9Ph(a)) # 0; or Imk # 0 and there
exists o € (—1,1) such that h(a) # 0.

(2”) One has lim,_,o+ |h(x)| = oo for a choice of &, there exists § € (0,1) such that h(z) <
o™ for |z| < 1, and
— either Im(k) = 0 and there exists p € Z such that for all small € > 0,

ph@) — )\ ey
0, o) >’.|1g | € (e,e )}>0,

— or Im(k) # 0 and there exists B € R such that for all small e > 0,
uFh(uz)
()]

Then the cumulative distribution function of (¢ o f*).(dv) is continuous.

(3.6) lim inf inf{‘qS(

x—0%t

)‘ :|logul € (2,677 Ja - 8] < <%} > 0.

z—0F

(3.7)  liminfinf {‘¢<e(a) ) ,;L
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Remark 3.6. — The hypotheses could be relaxed somehow. For instance, instead of it
suffices to ask that h has finite left- and right-limits at certain rationals along with a non-
vanishing condition. This will be clear from our arguments. One could also deal with some
cases when the limits and are zero, as long as one can control the asymptotic
of these quantities as x — 0. We refer to Remark below, as well as to the proof of
Corollary when a = 0 for an example where this consideration is relevant.

— When h is continuous on [—1, 1], the condition is clearly necessary, since otherwise ¢o f*
vanishes identically on [0, 1].

¥

— Some condition of the type [(2¥)| is necessary in order to prevent examples such as h(z) =
1 — |z| %, for which the function f is constant.

Proof of the second part of Theorem[1.7. Assume first that h is continuous on [—1, 1] and non-
zero. Then the hypothesis |(17)|is clearly satisfied with either ¢ = Re or ¢ = Im. We deduce
that (¢ o f).(dv) is diffuse, and therefore so is f(dv).

Assume next that h(z) < elel ™ on [~1,1] ~ {0} and h(z) ~ cz™ as 2 — 0F. Then
for |logu| < 1, we deduce that as z — 0T,
h(z) —uFh(uz) ¢

= = o S
|h(x)‘ - |C‘ (1 + (1))(1 ) >eral

if additionally |logu| > e. Similarly as above, we deduce that hypothesis|(2¥) holds for ¢ = Re
or ¢ = Im and we deduce that fZ(dv) is diffuse.
This shows that the second part of Theorem [I.7] holds, and concludes its proof. ]

Remark 3.7. When h(x) = cx™ with X satisfying Re(k) > 0 but A ¢ R, hypothesis no
longer holds, but it is plausible that our arguments could be adapted by further localizing the
values of z involved in (3.6)—(3.7)). We do not pursue this here.

We first give the following lemma.

Lemma 3.8. Let F': [0,1] — R be measurable. Assume that for each ¢ > 0, we can find a
countable collection (S;); of disjoint measurable subsets of [0, 1], such that

Zmeas(S’j) >1—c¢,
J

and for each j and y € Sj,
(3.8) meas({z € 5;, F(x) = F(y)}) < emeas(5}).
Then Fy(dv) is continuous.

Proof. Let a € R, and X = F~!({a}). Let ¢ > 0 be arbitrary, and (S;); given by the
hypothesis. For each j, either S; N X is empty, or there exists y € S; such that F'(y) = a and
then

meas(X NSj) = meas({x € S, F(x) = F(y)}) < e meas(S))

by hypothesis. In both cases we have meas(X N S;) < e meas(S;). Summing over j, we find

meas(X) < meas([0,1] \U;S;) + Zmeas(X NS;) < 2,
J

and letting € — 0 gives the conlusion. O

We divide the proof depending on whether |(1¥)| or |(2¥)| holds.
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3.3.1. The case of bounded h. Let N € Z~( be the order of ¥ as a root of unity, so that
oV =1,

where 9 is the automorphy factor in the generalized period relation . We recall that 9,
was defined in (2.29). Recall also from that the notation ¥;(z) for a number z € Q
depends on how we expand z in CF when z is rational. In what follows, we will work with the
expansion of odd length. For each g > 1, we define ey(x) € Z/NZ through ¥,(z) = 9°(*) and
notice that by definition we have

(3.9) eg(r) = eg_1(2) + (=1)9b, +3(—=1)9""  (mod N).
Given ¢y, ...,cp > 1, we denote
(3.10) J(ery ... c0) :={z €[0,1],bi(z) = ¢; for 1 <17 < (},
wu(cr, ... cp) := meas(J(cq,...,cp)).
By [Khi63l, p.57], we have
(3.11) w(crs . cp) = L ! (@ =[0sc1,...,el).

ve(w) (ve() +ve-1(2)) ~ ve(x)?’
Lemma 3.9. Let m € N, K > 1 and (L1,...,Ly) € N™ be fivred. Let V > 1, and for
each e € Z/N7Z and w > 0, let Z(e,w) C ZN [V, K\ V] be given, and

T := inf T .
eGZ/}\Ile,w>O# (e, )

Also, for x € (0,1) N Q, let
Gy (z) :={g € [V,2V] | by(z) € Z(eg—1(x),vg—1(x)), bgti(x) = L; Vi =1,...,m}.
and let Xyz = Xvz(K,L1,...,Ly) be the subset of [0,1] \ Q such that Gy (x) contains at

least an even and an odd integer. Then meas(Xyz) =1+ o(1) as V,T — oo, where the rate
of decay of o(1) depends at most on K, Ly, ..., Ly,.

Proof. We show that Gy (z) contains an even integer for x in a set of measure 1 + o(1), the
odd integer case being analogous.
By [Khi63, eq. (57)] we have uniformly for ¢ > 1 and c1,...,¢cp1 > 1,

(3.12) %CZ_E1M(017 coycp) <plery o) < 205_-5-21:“(617 ceeyCp)e
In particular, writing L := max (L, ..., L), we have for any ¢ € Z~g
plcr, .. yeoe, Ly o Ly) > 37 2L ey, L ).
Since 3 cez(e, ) ¢ 2 > oy #L(eg,vp), where e = e([0;¢1,. .., ¢]), it then follows that the

measure of x € [0,1] \ Q such that none of the integers g € {2|V/2] +¢(2m +2) |1 < /¢ <
V/(2m + 2)} satisty by(z) € 7 is
< (1 — K72@3L)=3mry—Hlv/em+2)] — (1)
as V,T — oo with m, L fixed. The Lemma then follows. O
We now prove Theorem To illustrate remark we assume only that h is bounded
on [—1,1], not necessarily continuous, and that it has finite left- or right-limit at 0. We
assume it is the former, the latter case being analogous, as we will comment after the proof. If

Im(k) = 0, we suppose that ¢(IPh(07)) # 0 for some p € Z, whereas if Im(k) # 0 we assume
h(07) # 0 and set p := 0. Moreover, we let

(3.13) keR: ¢(e(—k)UPh(07)) is maximal.
This means, in other terms, that for any z € C,
(3.14) p(9Ph(07)z) = |h(07)| Re(e(k)z).

If Im(k) = 0, then setting z = 1 we see that k # :I:% (mod 1) by hypothesis.
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We define our choice of sets Z = Z(e,w). We let £ € (0,1) be a parameter, on which these
sets will depend. For e € Z/NZ, w > 0, let K = 2 if Im(k) = 0 and K = max(2, 37/Im(*)l)
otherwise. Also, let Z(e,w) = Zy ¢ n (e, w) be defined by

I(e,w):= {bEZﬂ[\/V,K\/V]: b=3—(p+e) (mod N),

g 6 U5 log(wv/V) — k) + B3 log(b/VV) <€ if k¢ R,
OSIOg(b/f)ﬁg ifkeR |’

where {-} denotes the fractional part, and x was defined at (3.13). Here our choice of K ensures
that the set Z is not void for V large enough, and in fact

(3.16) HI >N EVV

for V large enough in terms of k, N and £. Moreover, on the one hand, by (3.9) the congruence
condition ensures that whenever a number x € [0, 1] \ Q satisfies by(z) € Z(eg—1(x), vg—1(x))

(3.15)

with g even, we have e4(z) = —p (mod N), and therefore we deduce

(3.17) Ug(x) =077, (9 € Gy(x)N2Z).

On the other hand, the condition involving | - ||r/7 ensures that

(3.18) Re(e(r)(vg-1(2)by(2)) ™) =1+ 0(€%)  (Imk #0,9 € Gv())

by the Taylor expansion of the cosine, with an absolute implicit constant.
We let Li,..., Ly, € N to be chosen later and take Xy 7, Gy (x) as in Lemma For all
even g and all c1,...,c4—1 € N we let

(3.19) Sy ez =17 € (0,1)\Q: Vi < g,bi(v) = ci59 € Gy (2)N2Z;Vj > 1,9—2j € Gy ()},

that is Sy ()7 is the subset of J(c1,...,¢4-1) such that g is the smallest even element of
Gy (x). We will drop the subscript Z from the notation.

Lemma 3.10. Assume that L; < V'V for all 1 < i < m and that g € 2Z N [V,2V]. For
all c1,...,cqg—1,¢ > 1 and € > 0, we have

)1 |bg(2) — | < eVV}) < e€ P meas(Sy )

where the constant depends on m, k and N at most.

meas ({z € Sy (¢,

(3

Proof. We start by observing that the condition g — 2j ¢ Gy () in the definition of Sy (.1
reduces to a condition on the first ¢ — 1 partial quotients of =, ¢y, .. cg 1, if j > m/2. In
particular, we can assume this condition is satisfied, since otherwise S = () and the result

is trivial. Similarly, we can assume ¢ € [(1 —e)VV, (K +¢)VV]
Next, we observe that if 1 < j < m/2, then the condition g — 2j € Gy (z) follows from the
truth of the other conditions in the deﬁmtlon of Sy (c;)- Indeed, for g € Gy (x) we have by(z) €

7 and byii(z) = L; for 1 < i < m, so that by_sja;(x) = by(x) > VV > Ly; and thus
g —2j ¢ Gy (x). Recalling the notation (3.10)), we thus have

{7 € Sy (c;): bglw) = dy=J(er,. .. cqg-1, Ly, .y Lyy,)
for all ¢ € Z(eg—1(z'),vg-1(2")) with 2’ = [0;c1,...,¢9—1]. By (B.11), for all ¢ € [(1 —
6)\/V, (K + E)W], we have

p(0;5e1,. .. cg-1,¢, Lay .oy Lyy) < (0501, ..., bg—1,¢, L1, ..., L)

with a constant depending at most on m and K. Then, using (3.16)) we deduce on the one
hand

meas(Sy (.,)) > EVV u([0; ClyevoyCg—1,¢ L1, ..., Li)).
and on the other hand

meas ({x € Sy (c,), [bg(x) — | < eVV)) < eVVu([0ser,. .oy cqo1,6, L, ..o, Lin)).
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Grouping these two bounds yields our claim. O

Let ¢ € (0,1) be fixed. We set m =1 and Ly := L € N5 be a parameter. We let Xy 7 as
in Lemma [3.9) and assume that L — oo as V — oo sufficiently slowly with respect to V, so
that we still have meas(Xy,z) — 1 as well as L < VV. In particular, assuming V > 1 is large
enough, we have

meas(Xyz) > 1—e.
For g € [V,2V]N2Z and cy,...,c4—1 > 1 the sets (S, (,)) are disjoint and, by construction,
their union over all g and (¢;) contains Xy 7 and thus has measure > 1 — e. The collection of
sets (S (c;)) will play the réle of (S;) in Lemma

Recall that, since h is assumed to be bounded, we have the expression . Consider one
of the sets Sy (), and z,y € Sy () satisfying ¢(f"(z)) = ¢(f"(y)). Since the terms j < g

in (2.35)) depend only on ¢y, ..., c4—1, we have f*(x) — f*(y) = Fy(x) — Fy(y), where

(3.20) 219 h(( 1)i- 1%71())

vj(z)

and similarly for y. If z € Sg7(cj) we have vy j(z) > v,(x)L2//2 for j > 1, whence since g is
even and h is bounded we have

_ Fg(@)™ +0(1) ( R N 1] B8 )
Fg(CU) = vg(x)’f (07)+0 Ug(x)Re(k) = 9Re(k)j/2
Ig(z)t+0(1), , _

21 =4
(321) L),
as V — oo.

Consider first the case Imk = 0. By (3.17)), we have
(3.22) Ug(x) = Dy(y) =077,

Also, since bj(z) = bj(y) for j < g and by(z) < by(y) = V'V we have vy_1(z) < v4-1(y)
and vg(x) < v4(y) with constants depending only on k. Thus, by (3.14) and the mean value
theorem we deduce that for Im k& = 0 we have

0 = |¢(Fy(x) — Fy(y))| = [h(07) cos(2m)|[og(2) ™ — vg(y) ~*| + o(uvg(a) " F)

—

> |h(07) COS(Q?TH)’W + O(’Ug(:zj)fRek)
> |h(07) cos(27k)| [bg(2) = by(y)|[V 1/ +0(1 )

vg(x)*

We deduce that |b,(z) — by(y)| = o(v/V) as V — oo.
We reach a similar conclusion when Im k& # 0. Indeed, in this case we still have (3.22)), with
p = 0. Furthermore, since vg(x) = vy_1by(x) + v4—2(x) we have

(07 Jug ()7 E) = [1(07) | Re (e(r) (vg-1bg () "™ F) (1 + O(VT1/2)) =1+ 0(62 + V712,
where in the last equality we used . Similarly to the above, as V' — oo, we have
0= lo(Fy(x) = Fy(y))l
= ‘qﬁ(ﬁg(w)_lh(o_)vg(m)_iImk)vg(x)_Rek — 3(Ig(y) ™ (07 Jug(y) I Jug (y)
= [(07) g ()R — vy ()| 4 (0(1) + O(E2) )~

[bg () — bg(y)|V "2 + o(1) + O(€?)
Ug(l‘)Rek '

> |1(07))]

As above, we deduce

[bg(2) = by(y)] = (o(1) + O(ENVV.

+ o(vg ()~ 1)
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We now pick £ = ¢/ with a sufficiently small constant ¢ > 0 and assume V is large enough,
so that the right-hand side above is most ev/V in modulus. We get

meas({x € Sy, F(x) = F(y)}) < meas ({z € 5, 4., by(x) — by(y)| < =VV}) < VEmeas(S, )

by Lemma Since € > 0 was arbitrary, this verifies the hypothesis , thus Lemma
applies and yields the desired conclusion.

The case when the non-vanishing hypothesis involves h(0") is similar, taking g to be odd
instead of even, and picking b =3+ p+ e (mod N) in (3.15).

Now, assume that a € (—1,1) satisfies Condition of the Theorem. We may assume
that a € Q by continuity. We pick « such that the length r(]c|) of the continued fraction
expansion of |a| is minimal. We may assume that o # 0, or in other words r(|a|) > 1, since the
complementary case was treated above. We write |a| = [0;¢1, ..., ¢;]. By minimality of r, we
have h(£[0;¢s,...,¢;]) =0 for 1 < s <rif Imk # 0; and likewise ¢(+9Ph([0;¢s,...,¢r])) =0
if Imk = 0. We repeat the arguments above with m =r + 1,

Li = Cr41—4 for 1 < 7 < r, Lr—i—l =L
with L — oo as V' — oo. Note that if b, < VV and bg1j = Lj = cry1-j for 1 < j <r, then
Vgtj
I 10ibg s, by i1y b+ O(1)] = (0501 -, 0]
Yg+j

as V — oo. Thus, if the parity of g was chosen such that (—1)97""! = sgn(a), then by
hypothesis we have

h((=1)9M " g4 j-1/vg45) = o(1) (G=1,...,r=1),
h((=1)94" g1 /vg4r) = h(@) + o(1).
The rest of the argument follows mutatis mutandis, with the estimate (3.21]) being replaced by

Dgir(2) "L+ 0(1)
F, n(z) =2 h(a).
) = SO o)
Remark 3.11. By choosing the parity of g appropriately, it is clear that the arguments above
hold under milder hypotheses, namely one-sided continuity of i at o along with the vanishing

of the values h(T7(a)*) for 1 < j <.

3.3.2. The case of unbounded h. The following lemma provides a substitute for Lemma [3.9] in
the case when h is unbounded.

Lemma 3.12. Let K > 1,5 € (0,1), and p > (2+26)71 be fived, V > 1, and ¢ : R>1 — R>4
be such that limy_ oo ¥(x) = 4o00. Also, for each e € Z/NZ and w > 0, let Z(e,w) C ZN
[\/V,K\/V] be given, and assume

T = inf I(e, Ve
eEZ/}\?Z7w>D# (e;w) >

Finally, for x € [0,1] N\ Q, let
Gy () = {g € [V,2V] | by(@) € T(egm1(w), vgm1 (@), byes(@) < H06(V) ¥j = 1),
and Xy be the subset of [0,1] \~ Q such that Gy (x) contains at least an even and an odd

integer. Then, meas(Xyz) =14 0(1) as V — oo, where the rate of decay of o(1) depends at
most on K,¥,6 and p.

Proof. We prove that Gy (x) contains an even integer asymptotically almost surely, the odd
case being identical. We fix ¢ > 0 and observe we can assume 1 < ¢(V) < V€. We then

observe that by Lemma one has that by (z) < j10%(V) for all j > D := Vliié%, all
g € [V,2V] and all x in a subset of [0,1) of measure 1+ o(1) as V' — oo. In particular, it
suffices to show that the larger set

Gy () :={g € [V,2V] | by(x) € T(eg-1(x),vg-1(x)), bysj(z) < j* 0 (V) V1 < j < D}
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contains an even integer asymptotically almost surely.
Now, for m >0 and ¢1,...,¢m € N, I C N let

M;:={z€[0,1]\Q: 2ZNINGYy(x) # 0}, Mi(ery.. . em) == MrnJ(er,...,cm),

so that we need to prove that meas(M[VQV]) — las V — oo. For m = £ — 1 and any
e 27N [V,2V], by (3.12)) we have

T 5 1 T
meas(Mp(c1, ..., cm)) > M(Ch---,cm)m H <1 - W) > uler,. .. ,cm)m
j=1

for V' large enough. Splitting into subintervals we then have that the same bound holds for
any m < £ — 1.

Next, we let C := [V1/(2+20)=¢] < D and notice that if 0 < £5—¢; < C, then M (ery- .y em)n
M{gQ}(Cl, cos¢m) = 0. Indeed, if x € My (c1,. .., cn) then

by, (z) < (ba — 0)" (V) < C'HVE < VV

and thus & Mg,y (c1,. .., cm). It follows that for any W € N with [W — C, W) C [V, 2V] we
have
TC/2
(3.23) meas(M[W_aW)(cl,...,cm)) = Z meas(Mg(c1,- -5 6m)) = p(crs - cm) L 2/ J
teln2z AKEV

for any m < W — C.

Let W e Nwith V < W —2D and W <2V,andlet m =W —C—-1>W —D. We
observe that the condition ¢ € GY,(x) depends only on the first £ + D partial quotients of .
Thus, since m > W — D, we have that My _ap)(c1,...,cn) is either empty or is equal to

J(ciy...,cm). By (3.23), we deduce
meas(My,w)) — meas(My,w—_2p)) = meas(Mw _2pw) ~ My,w))
> meas(Mw_cw) ~ Myv,w-2p))

- Z meaS(M[ch,W)(cl, ceyCm))
[ cem>1
M[VW 12D)(Cl ..... cm)=0
TC
i Ta Z (el ..o em)
12K2V Clyenns cm>1 ’ ’

. TC
- 12K?V
We have used |C/2| > C/3 in the fourth line. We thus obtain

1-— meas(M[VW)) (1 — meas(M[MW_gD)))(l — TC/IQV)
Iterating we then obtain
1 — meas(Myay) < (1 — TC/12K2V)V/2Pl = o(1)
since TC/K?D = TV~ (24202 _, 5 if £ is small enough. O

(1 — meas(Myw—2p)))-

For j € N and K, as in the lemma, we let
(V) = {jl*%(V) if j1OU(V) ¢ VYV, KV,
KVV otherwise.
We then define
Gy (z) :==A{g € [V,2V] [ by(z) € Z(eg-1(x),v9-1(2)), bgrj(x) < Q;(V) Vj = 1}

and the corresponding set Xy z. Clearly, Gi,(x) > Gy (x) and thus, under the hypothesis of
Lemma meas(Xy7) =1+ 0(1) as V — oo,
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We let
-3, if Imk # 0,
K=
0, if Imk =0,
and define the sets Z as in (3.15]). Also, we define S;:(Ci) = S;(c,-),I as in (3.19), but with Gy, (x)
in place of Gy (x). The following Lemma is an analogue of Lemma

Lemma 3.13. Assume that g € 2ZN[V,2V] with V' > 1 sufficiently large. For allcy, ..., cq—1,¢ >
1 and € > 0, we have

p({z € Sh oyt Ibg(x) — o] <eVV}) < e u(S) )
where the constant depends on k, 0 and N at most.

Proof. We may assume S7 ., # (. Let 2/ € o.(c;)-  First we prove that for all d €
Z(eg—1(x"),v4—1(z")), we have

(824) {2 € 8y by@) =) = {r € Jler ey, d) [ byasle) < Q;(V), j = 1},

Any z in the left-hand side satisfies g € G§,(x), and therefore by j(x) < Q;(V). The inclusion C
follows trivially. Consider then a number x in the right-hand side. The condition by(z) = ¢
is evident, and in order to prove the inclusion O, there remains to show x € S;,(cz-)' Since x €
J(c1,. .., cq-1,c), it suffices to prove that g € G, (x) and Vj > 1,9 — 2j ¢ Gy, (z). The con-
dition g € G7,(z) holds since ¢ € Z(eg—1(2'),vg—1(2")) by hypothesis and (eg—1(z),vg—1(x)) =
(0g-1(a"), €g-1(2")).

Let next j > 1; we wish to show that g—2j & G7,(z). We assume that g—2j € [V, 2V]; it suf-
fices to prove that for such j, we have by_o;(x) & Z(eg—2j—1(),vg—2j—1(x)) or that by_oj ¢(x) >
Q¢(V) for some ¢ > 1. We first prove that

(3.25)  by—2j(a) & L(eg—2j-1(2"), vg—2j-1(2")) or 3 e {l,..., 25}, by 2j1e(2') = Qe(V).
Indeed, from the condition g—2j & G3,(2’), it suffices to prove that by_o;4¢(2z") < Qu(V), if £ >
2j, but this is immediate since the condition g € GY/(2) implies by_2j1e(2’) < Qr—2;(V) <
Q¢(V). Now we argue that the conditions (3.25) hold with 2’ replaced by z. Since z, 2’ share
the same first g — 1 CF coefficients, this is trivial except for the condition at ¢ = 25, which
involves by. It suffices to check that by(z) > Q2;(V) <= by(2’) > Q2;(V). By construction,
we have Q2;(V) & [VV, KV/V], so both conditions are in fact equivalent to Q2;(V) < VV.
This shows that the conditions (3.25)) hold with &’ replaced by x, and therefore g—2j ¢ G7,(x).
This concludes the proof of the inclusion O in (3.24]).

From there, the rest of the proof follows closely that of Lemma By (3.12) and
since Q;(V) > j'9%(V), we deduce that

1
meas({x € S} .y: by(x) =}) = u(er,...,cq-1,¢ (1+O(,)>
({ g,(ci) Q( ) }) ( g )]];[1 ]14_51/}(‘/)
= pu(cry. .. e9-1,¢)(1 4 0(1))

as V — oo. We conclude as for Lemma [3.10l O

The following technical lemma allows us to extract values of h which will give a dominant
contribution to f*.

Lemma 3.14. Let R > 1,C > 1 and § € (0,1). Let h : [-1,1] ~ {0} — R be such that
h(z) < ! ™ for o £ 0, and assume |h(z)| — oo as * — 0F for a choice of +. Finally,
let £ : (0,1] — (0,1] with lim,_ g+ {(x) = 0. Then there exist v > 0 and ¢ : [1,00) — Ry
with limy o ¥ = +00 such that

(3.26) sup \h(az)] <  inf [A(y)l
(Ci1=sp(1/2)<lal<1 TV 0<ty<ez) Y(1/2)
for all 5 > 1 and all z € (0,v].
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Proof. Assume |h(z)| — oo as  — 0F; the complementary case follows by changing h(z)
to h(—z). We fix a function ¢, : (0,1] — Rs( going to oo at 0. By hypothesis we have
|h(z)] < exp(C105170%4 (2)179) for 2 € (0, 1], (Cj1 041 (2)) ™ < |2| < 1 and v > 0 sufficiently
small. Now, for any z € (0,1] the maximum 15(2) := max;en(R™ exp(CL=0j170% ), (2)179))
exists. Moreover, since v1(z) goes to infinity as z — 07 then clearly so does 19(z). Also,
by hypothesis we have info,¢(.) |h(y)| = oo as z — 0F. It follows that we can ensure that
Pa(2)? < infoey<e(z) [R(y)| for z € (0,v] by taking 11 that goes to infinity sufficiently slowly
and v small enough. By construction, for z € (0,v) and all j > 1 we then have

|h(z)| 182 1-5 infocy<e(z) |h(Y)]
sup < R exp(j (N <ho(z) < = :
(C+oy () 1<lal<t T U B <4a(z) Ya(z)
It is then sufficient to take ¥(1/z) := min(¢1(2), ¥2(2)). O

We shall now show that if is satisfied then the cumulative distribution function of
(¢ o f7)«(dv) is continuous. We assume lim,_,o- |h(x)| — oo, the other case being analogous.

We take R = 2Re(h)/4 ¢ = 2K where K was defined at (3.15)), and ¢(w) = w12 and
we apply Lemma thus finding a constant v > 0 and a function ¥ (x) with the properties
claimed in this Lemma. We then apply Lemma with the same function . As in the
bounded case, for any g € [V,2V]N2Z and c1,...,cq—1 > 1 the sets (S;(ci)) are disjoint and,
given any fixed € > 0, their union has measure > 1 — ¢, 1f V' is large enough i 1n terms of ¢.

For any = € S*( ) and any j > 1 we have Z:ijl > quﬂ > 2QJ1(V) > 2Kw(V) -5, Where we
dropped the dependency on z in the inequalities for easy of notation. Thus, assuming V' > 1/v,
by (3.26) (with z =1/V) we have

Ih((=1) vy 1/vg15)]
9Re(k)j/2

P TG RN Y|
sty ZROTT(V) = FRTip(V)
since v,_1/vy < 1/by < 1/3/V. With F,(z) as in (3:20) we then deduce the following analogue

of @21)

IPh(—vy_ v h(( ‘ vgj Vg+j(
Fy(z) = (—vg—1(x)/vg( (Z| -t);ée(l{j/;-( )))

vg(x )k j>1
= o) (@) ().
Ug(ff)

vg(z) — bg(x)vg—1+vg-2
vg(y) bg(y)vg—1+vg—2

We let z,y € 57 ..y and write uy = and wy = vg_1/vg(x), so that we

have

|h(—wg)| (h(—wg) — ubh(—ugw,) )
y) =P +o(1) ).
el () W
By the definition of Z we have

vy () 70 = e(ag)(1+ o(1)),

with ay = a4(x) = 0 if Im(k) = 0 and otherwise ay(x) satisfying |ag(x) — 8] < £. Moreover,
logu, = log(by(z)/by(y)) + o(1) <k € and, if |by(z) — by(y)| > V'V, then also |logu,| >
log(1 4+ ¢/K) 4 o(1) >}, € for V large enough. Taking & = £/% we then have

_|h(=wy)] h(—wg) — “I;h(_ugwg)
B21) o) - F) = oo welog) (T T ) o)

£0

by hypothesis |(2*)} provided that |by(z) — by(y)| > ev'V. We then conclude in the same way
as we did in Section B.3.1]
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Remark 3.15. From the above proof, it is clear that the term o(1) in (3.27)) can be replaced
O(1/v/V41/4(V)). This will be used in one special case of our applications to the cotangent
sums.

Remark 3.16. From the above proof, it is also immediate to see that we can modify the
condition (2*), k ¢ R, of Theorem as follows. Given 8 € R and any small € > 0, we denote
by R = Ri.. s the set or reduced rationals 2 = p/q with |¢~*™*e(—8) — 1| < 10e%/3. Then,
we can weaken the condition lim,_,o+ |h(x)| = oo in (2*) by introducing the restriction z € R
in the limiﬂ and replace by

hz) - u’“h(um))\  llogul € (¢,6?), o — 8] <€, } o
|h(z)] " ur € R,Num(uz) = Num(z) '

lim 1nf inf {‘qb(

z—0E
TE

4. ARITHMETIC APPLICATIONS

4.1. Eichler integrals of holomorphic cusp forms.

Proof of Corollary[I.10. The map f(xz) = g(x) satisfies the relation (1.2)) with weight 2 — k
and with h being a non-zero polynomial of degree at most k — 2, see [Eich7, p. 273]. Since h is
Lipschitz and bounded on [—1, 1], the estimates hold trivially. We may therefore apply
Theorem which gives the claimed convergence in distribution. Notice that in this case g
coincides on the whole real line with g as defined in .

Finally, assume (¢ 0 g9).(dv) has an atom for some non-zero linear form ¢ and write ¢(z) =
Re(e?z) for some # € R and all z € C. Then by Proposition we obtain that ¢ o g9 is
constant on [0,1]. By , ¢ o g is given by the Fourier series

n I i n
x Z Reni ? cos(nz) — Z mn(li?) sin(nx),

n>1 n>1

which is constant on [0, 1] only if Re(e?a,) = Im(e?a,) = 0, i.e. a, = 0, for all n € Ns,.
Thus g = 0 which was excluded by hypothesis. ([l

Proof of Corollary[1.9. The map Ay, p defined in coincides with Fy41 p defined in [Zag99,
eq. (15)]. Consider the even cusp form g = fr11,p € Sor+2(1) defined in [Zag99, eq. (53)].
By [Zag99, eq. (55)], we have Ay p(z) = cxp + 39(x) for all z € Q and some ¢ p € R.
Therefore Corollary follows from the just proved Corollary O

4.2. Kontsevich’s function.

Proof of Corollary[1.73 Define h by formula (1.13). In [Zag01, Theorem, p. 958]E|, it is proved
that h € C°°(R) and that h is real-analytic except at 0, and moreover h(0) = 1. Thus ¢ and h
satisfy the hypotheses of the first part of Theorem with the generalized hypotheses
(with ¥ = e(1/24)) which were adopted in the proof. This proves the existence of the limiting
distribution. The limit arises from the relations (2.31]) and (2.34)).

Let 0 € R and ¢ : z — Re(e?z). To see that (¢ o ¢”).(dv) does not have atoms, we apply
Theorem The period function A is continuous on [—1,1], and h(0) = 1. Since ¥ ¢ R,
certainly one of ¢(1) or ¢(1J) is non-zero, and therefore hypothesis is satisfied for some p €
{0,1}. Theorem applies and yields the desired conclusion.

Finally, the continuity of ¢” follows immediately from (the twisted version of) Theorem

O

6This amounts to observing that also Lemma “ 4] holds under this weaker hypothesis, provided that one
adds the condition y € R in the inf on the rlght hand side of -
"The factors CgES there should be read C



ON QUANTUM MODULAR FORMS OF NON-ZERO WEIGHTS 33

4.3. Cotangent sums. For b € Z, ¢ > 1 and (b, q) = 1, the cotangent sums we are interested

in are defined by

(D) = 5 ot (MY~ 0™

q — q Tq/

see [BC13al, p. 226]. The special case a = —1 corresponds to the classical Dedekind sums [Rie92,
p. 466], while the case a = 0 corresponds to the cotangent sum from [BCI3b]. These sums
were described as “imperfect” quantum modular forms, due to an irregular term arising in
the period relation, namely the last term on the right-hand side of [BC13al, eq. (17)]; see the
discussion in Example 0 in [Zagl0]. The point of the upcoming definition is that we can relax
this lack of regularity at the cost of weakening the periodicity hypothesis to . Let

[0 s Lme =),
p(3)=41  =1b>0)
0 (¢g=1,b<0).
By Bezout’s theorem, we have for b # 0, ¢ > 1, (b,q) = 1,

For x € Q, let
Ca(®) == ca(x) + ar1(a) Den(z) *p(x)  (x#0),

extended arbitrarily at 0, and with x1(a) := @ Note that c, is 1-periodic, and that p

satisfies the weak periodicity (1.4), from which we deduce that ¢, also satisfies (|1.4)).
From [BC13a, Theorem 4], we have

Den(x)®

(4.1) o) — &) 7 (=1 /1) = ho(x) — am(a)m (x € Q~{0}),
and thus
(4.2) Ca(@) = |27 T C(=1/2) = ha(x)  (z € Q~{0}),

for hq(z) := —sgn(x)i((—a)yq(|z|) with ¥, (z) as in [BC13al, Theorem 4]. In particular, h, is
real-analytic on R_g. Also, by the same theorem, for a # 0, we havﬁ
(4.3) ha(z) = Ko(a)sgn(z)|z| 7% + ki(a)z™ + Ou(|z|)

asx — 0, for ka(a) = —((—a) cot(5*), and where the error has to be replaced by O(|z|log |1/x|)
if a = —2. For a = 0 we instead have

(1.4 o(e) = — BTN 4 (1.

We prove the distributional statements in Corollary [[.14] considering several cases depending
on the value of a. The statement in Corollary about the continuity of ¢, when Re(a) >0
will follow immediately from Theorem [I.4) and the behaviour around 0 of the period functions.
4.3.1. The case Re(a) < —1. By [BCI3al Theorem 1], it follows that both h, and h are
bounded by |x]o(1) for all = # 0. Thus, the conditions (|1.5)) are satisfied, and by Theorem
the function

(4.5) Co(x) = lim ¢q([bo; b1, - .., bj]), (x = [bo; b1, b2,...])

a
J—00

exists for  in a set X C R of full measure. By Theorem [I.3| we deduce that the multisets
{Ca(2), 0<b<q,(bq) =1}
become equidistributed, as ¢ — oo, according to (¢§)«(dv). Since

(4.6) Ca(2) — ca(z) = O(Den(z) FRe@) = o, (1)

8For a € Z the result is obtained by continuity, cf. the explanation after Theorem 1 in [BC13a].
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as Den(z) — oo, uniformly in the numerator Num(z), it follows that the same conclusion holds
for the multisets
{ca(g)v 0<b<yg, (b7 Q) = 1}’

Next we prove that if a € R._q, then (¢J).(dv) is diffuse on R. Assume, for the sake of
contradiction, the existence of A € R and C' C X N Ry of positive Lebesgue measure such
that ¢(z) = A for all z € C. By Proposition 3.4, we deduce that ¢;(z) = X for almost all 2 > 0.
Using the fact that ¢, is odd, which transfers to ¢ almost everywhere by , we obtain by
the period relation that ha(z) = A(1 + |2/~ %) for almost all z > 0. However, this
contradicts as © — 07, regardless of the value of a.

Now, let a ¢ R and let ¢ : C — R a non-zero linear form. We assume by contradiction that
(¢pocy)«(dv) is not diffuse. As above we deduce that there exists A € R such that ¢(¢5(z)) = A
for almost all z > 0. Composing the period relation (4.2) with ¢, we obtain ¢(he(x)) =
A — o(|z| @ (~1/x)). We pick y € (0,1) so that ¢2(—y) and ¢(1/(n + y)) are defined
in for all n € Ny, and ¢(¢5(1/(n+y))) = A. Taking x = 1/(n + y), by periodicity we
then obtain

(4.7) (ha(x)) = X = d(In+y| " (~y))-
Now, by [BC13al, Theorem 1]E| the asymptotic in (4.3) can be extended to

(48) ho(a) = 2@ Sgn<$)+“l(a)+§j(—1)m23m C(1=2m—a)(2r2)2™ 4 O pr (| 2M 1)
. a = |$’1+a T — (zm)' us a,M )
for any M € N, where By, € Q4 denotes the 2n-th Bernoulli number. By the functional

equation we have
¢(1—2m —a) 2m ¢(2m +a) 27 (2_1+2a+0(m2))

C(1-2(m+1)—a)  (2m+a)2m+a+1)(2m+2+a) 4m?

as m — oo. In particular, {(1 — 2m — a) cannot be a real multiple of (1 —2(m + 1) — a)
for m large enough and thus at least one of these terms in the expansion (4.8]) survives once
composed with ¢. Letting n — oo, we see that this is not compatible with (4.7) and thus we
reach a contradiction. This finishes the proof of Corollary when Re(a) < —1.

4.3.2. The case Re(a) > —1 and aC(a) # 0. It is remarked in [BC13al p. 227] that c,(z) =0
whenever a is a positive odd integer. In this case Corollary holds for trivial reasons and
thus we assume that a ¢ 2Z + 1 throughout the section. We also assume Re(a) > —1 and
a((a) # 0 and notice that by the functional equation we have k;(a) # 0.

Since hq(z) = O(|z|~ mex(LIFRe()) o1 | 2| < 1, the hypotheses of Theorem [1.7] are satisfied
and it follows that the limit

49) )= jlggo Den(zj41) " “Ca(T2j71), (2241 = [bo(2); b1 (), . . ., baj1(2)])
exists for z in a set X C R~ Q of full measure. By Theorem we have that the multiset

{a7 7 e(2): 0 <b<q,(bg) =1} = {g"a(}): 0< b < g, (bq) =1}

becomes distributed, as ¢ — oo, according to (¢;)«(dv). But by definition of ¢,, we have

qua»cva(g) _ quLCa(g) + a,ﬂ(a){g} for ¢ > 1. Letting
(4.10) Calw) =& (x) — ar(a){z},
it follows that the multiset
{qil*aca(g): 0<b<aq,(bgq) =1}
>

becomes distributed according to ()« (dv), as claimed.

We now turn to showing that the relevant measures are diffuse.

9We remark that there is a typo in [BCT3al eq. (5)], as the minus sign in front of the sum should be removed.
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It is convenient to make a further simple modification to ¢, and define ¢é,(x) := ¢,(x) —
k2(a)sgn(z). Clearly, one has that ¢,(x) still satisfies (1.4]), whereas (4.2)) holds with hg(x)
replaced by ha(z) = ha(z) — k1(a)(1 + |z|7'%). In particular, [.3) becomes

(4.11) ha(x) = —ka(a) sgn(z) + r1(a)z™ + O, (x), x — 0.

The hypothesis of Theorem are thus still satisfied. Taking the limit as in (4.9) one deduces
that & (z) = &(z) for z € X. Also, by ([#.11)) for € < |logu| < £2/3 we have

ha(z) — ut*ohg(uz)  wo(a)(l —u*®) + ki(a)(1 — uMz~ ' +o(1) .
i Rl 2(a) + ra(@)a T + o 1) = 1w oll)

as £ — 0%, uniformly in sufficiently small € > 0. Notice that 1 —u® = —alogu+ O, (e*/3) > e.
When a € R, then clearly c,(z) € R for all z € Q, and therefore h,(z) € R for z # 0 as well.
By one can then deduce that (&).(dv) is diffuse, and thus so is (¢}).(dv). If a ¢ R one
can show in the same way that (¢(¢)).(dv) is diffuse for any non-zero linear form ¢ : C — R,
upon choosing 3 := — arg(—a) — & in (3.7), where & is such that ¢(z) = Re(e'*z) for all z € C.

We now wish to prove that also the measure (¢4 (c))«(dv) is diffuse (with ¢ = Re if a € R).
Notice that we can assume ¢(ari(a)) # 0 since otherwise ¢ o ¢ = ¢ o cb.

We start with the case Re(a) > 1. Suppose by contradiction that ¢ o & (x) = A for all
x € C C (0,1) for a set C of positive measure. Since Re(a) > 1, by Theorem [1.4] we can
assume that ¢, is a-Hélder continuous at any point of C' for any a € (1, (1 + Re(a))). Also,
since C' is uncountable, it contains one of its accumulation points, i.e. there exists a sequence
(zm)m in C converging to z € C. Then, on the one hand we have

$(Ca(2)) = ¢(Ca(zm)) = ¢(Ca(2) = Ca(zm)) = O(|z — 2m|*) = o(|z — zm])
as m — oo, and on the other hand by we have

¢(¢(2)) — (5 (2m)) = d(cz(2)) — d(ca(2m)) — Plaki(a))(z — zm) = —¢(ak1(a))(z — zm).
Since these equations are not compatible we reach the desired contradiction.

Now, assume Re(a) € (—1,1]. First we notice that in this case we can proceed directly with
Den(z)®
Num(z)

1gp is the indicator function of the rationals, we have that }Ala(:u) still satisfies the hypothesis
of Theorem Clearly the function ¢ (z) obtained this way coincides with the ¢ (z) defined

above for almost all z. Also, if Re(a) < 1 we have that he(z) ~ ha(z) as © — 0, and thus we
can show as in (4.12) that h@)—u"hluz) _ 1 ya o(1) as © — 0. The same argument then

()|
gives that (¢4(c))«(dv) is diffuse.

Finally, we assume Re(a) = 1 (we recall a # 1). We apply Lemma [3.14] in the form of
Remark|3.16, Using the notation of the remark, we have h,(x) = ary (a)%ijO(l) =
1/ — oo with € R, for f ¢ Z and ¢ sufficiently small. Then, for z,ux € R, z = p/q,
Num(uz) = p, € < |logu| < €2/3, as © — 0T we have

(1—u)g/p— (1 —u)g"/p

a(z) = ca(x) — ra(a)sgn(z). Indeed, if we let hq(z) = hq(z) — ari(a)

1g(x), where

ho() — ul R, (uz)

— = akri(a = o1
Foa(2)] 1) al@)] o)
R (q“_1 —a) logu—{—0(64/3) o(1

O e Y

(@ (€B) —@)logu+ OEY?)

1( ) \Ea(x)\x + ( )7

from which we can once again conclude that (¢, (c%)).(dv) is diffuse by choising § appropriately.
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4.3.3. The case of ((a) = 0. We assume ((a) = 0, so that x;(a) = 0, Re(a) € (0,1) and
Im(a) # 0. In particular, with the same notation as in the previous section, we have that
ha(z) = —ra(a)sgn(z) + o(1) as & — 0. Thus hg(z) is continuous on [—1,1] ~ {0} with
non-zero right and left limits ha(0%) = Fro(a) at z = 0 Since k2(a) # 0 and the weight
14 a ¢ R, we immediately deduce from the condition in Theorem [3.5|that (¢(c%)).«(dv) is
diffuse for any non-zero linear form ¢.
4.3.4. The case of a = 0. We let ho(x) := ho(z) + ml(@(l‘). Using instead of
we obtain

ho(x) — uho(ux) _ulogu + O(]z)

()] log(27|x[) 4

which is not quite sufficient for hypothesis [3.6] to hold. However, we observe that for h = hg
(and 6 =1/2, C =4, R =2"* and &(w) := w~/?) the conclusion of Lemma holds with
Y(z) = z~1/5. In view of this, and following Remark we obtain

?Lo(x)Af uho(uz)
o ()]

which is clearly non-zero for z > 0 small enough and ¢ < |logu| < £2/3. Substituting this esti-
mate inside (3.27)) and completing the arguments in Section we conclude that (cf)«(dv)
is diffuse.

_ulogu+ O(|z])

~1/5y _
+O(lz| ) log(2m|x|) +

+O(lz| /%)

4.4. Eichler integrals of Maass cusp forms.

Proof of Corollary[1.11l For simplicity, we assume u is even or odd and let j € {0,1} be such
that u(—%) = (—1)7u(z). The case where u is neither is believed not to be possible, but it
could as well be handled easily by splitting « in its even or odd components. In [BruQ7], it
is shown that the map w defined in is a quantum modular form of weight 2s, whose
associated period function h is defined by|'}

h(z) = c(s)sgn(z) p(la]), 2 € Ry

and by continuity at x = 0, where ¢(s) = in~*/I'(1 — s) is a non-zero proportionality con-
stant [LZ01, eq. (1.12)]. The map h is real-analytic separately on R<o and R>o and is C* on
R. Thus Theorem applies and yields the first part of Corollary The expansion of v
at 0 is implicit in [LZ01] and can be immediately deduced by shifting the line of integration to
the left in the first display of [LZ01), p. 205] from which one deduces that h(x) is not identically
zero on [—1,1]. Thus, since the weight is 2s ¢ R, Theorem applies in the case and we
deduce that (¢ o u”)«(dv) is diffuse. This concludes the proof of Corollary O

Remark 4.1. By the functional equation for twists of Maafl forms L-functions [KMV02) (A.12)-
(A.13)], we have

@(a/q) = ¢*° ; %(cl cos(2mna/q) + casin(2mna/q)), (aa=1 (mod q)),

q %*u(a@/q) relates to the differentiability properties for § which we mentioned in Section

An important classical problem is the analogous question when a, = d(n) is the divisor
function, see [Riel3, [Cho3ll, (Win37]. This can be seen as the case when u is replaced by a
certain weight 0 real-analytic, non-cuspidal Eisenstein series [Iwa02l p. 62]. Regularity in this
case can be studied from the expression above as a Fourier series; recent general results can
be found in [CPRCIT].

where c1, co are numbers depending on u. With this formulation, the regularity of a/q +—
h

101y fact one has that hq (z) + k2(a) sgn(z) extends to a function in C*°(R).
Hhis corrects a typo in [BruQ7, Section 1.1.3], as the equation for ) should be —|z| >y (—1/z) = ¥(z).
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