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1. Introduction 1.1. Central values. Let Γ ⊂ SL(2, R) be a discrete, co-finite group with cusps, and φ : H → C be a Maaß form for Γ. To φ we associate the sequence (a(n)) n =0 of its Fourier coefficients, by means of which we form the L-function

L(φ, s) := ∞ n=1 a(n) n s-1/2 ,
initially convergent on same half-plane, and analytically continued. The normalization here is such that when Γ = Γ 0 (N ) is a Hecke congruence subgroup, the Ramanujan-Peterson conjecture [30, p. 95] predicts |a(n)| ≤ C ε n -1/2+ε for φ cuspidal, all ε > 0 and some C ε > 0. This L-function satisfies a functional equation relating s to 1-s [START_REF] Duke | The subconvexity problem for Artin L-functions[END_REF]. When Γ is a Hecke congruence subgroup, and φ is a Hecke newform, then L(φ, s) has additionally an Euler product factorization [30, chapter 5.11]. It is an instance of a rank 2 L-function in the Selberg class, and it is conjectured that all L functions in the Selberg class of rank 2 over Q can be obtained in this way [START_REF] Perelli | Converse theorems: from the Riemann zeta function to the Selberg class[END_REF]. This statement for Artin L-functions of degree 2 representations is a particular case of the Langlands conjectures.

To simplify the exposition we assume here that Γ = Γ 0 (N ) is a Hecke congruence subgroup. The present work concerns the analytic properties of the twisted L-value

L(φ, s, x) := ∞ n=1 a(n) n s-1/2 e 2πinx
as a function of x ∈ R. The sum converges uniformly on compacts inside {Re(s) > 1}. At the edge Re(s) = 1 of this half-plane, the regularity with respect to x of L(φ, s, x) is related to classical topics, see for instance [START_REF] Balazard | On certain approximate functional equations that are related to the Gauss transformation[END_REF][START_REF] Wilton | An approximate functional equation with applications to a problem of diophantine approximation[END_REF] and the references therein. For x irrational, not much else is known. When x ∈ Q however, the map s → L(φ, s, x) has an analytic continuation to C minus a possible simple pole at s = 1. This meromorphic continuation has a functional equation relating (s, a/q) to (1 -s, -ā/q) for N | q and aā ≡ 1 (mod q) [36, eqs. (A.10)-(A. [START_REF] Bruggeman | Period functions for Maass wave forms and cohomology[END_REF])] (a more complicated relation holds in cases when N q). We note that one important special case is s = 1 2 ± s φ , where s φ is the Laplace eigenvalue associated with φ. It was shown by

Lewis and Zagier that the map x → L(φ, 1 2 + s φ , x) extends to R and enjoys distinctive analytic properties, which generalize in a way those of the Eichler-Shimura map, see [START_REF] Bruggeman | Quantum Maass forms[END_REF][START_REF] Bruggeman | Period functions for Maass wave forms and cohomology[END_REF][START_REF] Lewis | Period functions for Maass wave forms[END_REF]. In general, for Re(s) > 1/2, it seems possible to extend L(φ, s, x) to a continuous function of x ∈ R outside a set of zero Lebesgue measure by arguments similar to the case Re(s) = 1 (see [START_REF]On quantum modular forms of non-zero weights[END_REF]), but this breaks down at Re(s) = 1/2.

We are interested in the central values

L φ (x) := L(φ, 1/2, x) (x ∈ Q).
In the situation when φ is associated to a holomorphic cusp form f of weight k, meaning that φ(z) = y k/2 f (z), then there is a constant c f such that (1.1)

L φ (x) = c f ∞ x f (z)(z -x) k/2-1 dz.
In particular, for k = 2, the value L φ (x) is essentially the modular symbol x f associated to f . On the other hand, by orthogonality relations, the central L-value of the multiplicative twist

(1.2) L(f ⊗ χ, s) = ∞ n=1 a(n) n s-1/2 χ(n)
by a primitive Dirichlet character χ (mod q) can be expressed in terms of a weighted average of a/q f with a varying over classes mod q (see Proposition 8.1). In turn, when f is of weight 2 and is associated to an elliptic curve, then it is expected that the value L(f ⊗ χ, 1/2) encodes geometric information on the underlying elliptic curve, in particular its rank, see [START_REF] Mazur | Arithmetic conjectures suggested by the statistical behaviour of modular symbols[END_REF]Proposition 2.2]. Motivated by conjectures about elliptic curves, Mazur and Rubin [START_REF] Mazur | Arithmetic conjectures suggested by the statistical behaviour of modular symbols[END_REF] were led to conjecture, among other phenomena, that the multisets (1.3) D φ (q) := L φ (a/q) (log q) 1/2 : a ∈ (Z/qZ) × become distributed as q → ∞ according to a centered normal law, when φ is a weight 2 form associated to an elliptic curve [START_REF] Mazur | Arithmetic conjectures suggested by the statistical behaviour of modular symbols[END_REF]Conjecture 4.3]. We believe that this holds in general for any Maaß form.

Conjecture 1.1 (Additive twists conjecture). Let φ be a Hecke-Maaß cusp form for Γ 0 (N ). Then the multisets D φ (q) become asymptotically normally distributed as q → ∞.

Regarding this conjecture, the furthest achievement so far is a power-saving estimate for the second moment [START_REF] Blomer | The second moment theory of families of L-functions[END_REF], which lies at the edge of current known techniques in analytic number theory. On average over q, however, the corresponding statement is now known for forms φ which are associated with a holomorphic form, by Petridis and Risager [START_REF]Arithmetic statistics of modular symbols[END_REF] and the second named author [START_REF]Central values of additive twists of cuspidal L-functions[END_REF]. Theorem 1.2 (Additive twists on average for holomorphic forms, [START_REF]Central values of additive twists of cuspidal L-functions[END_REF]). Let f be a holomorphic Hecke cusp form of integer weigt k for Γ discrete co-finite with cusps, and φ(z) = (Im z) k/2 f (z). Then the multi-sets L φ (a/q) (log q) 1/2 : a ∈ (Z/qZ) × , q ≤ Q , become asymptotically normally distributed as q → ∞.

The proofs rely on certain twisted Eisenstein series introduced by Goldfeld [START_REF] Goldfeld | The distribution of modular symbols, Number theory in progress[END_REF], [START_REF]Zeta functions formed with modular symbols, Automorphic forms, automorphic representations, and arithmetic[END_REF] whose analytic properties (poles, growth on vertical lines, etc.) are studied using analytic properties of automorphic resolvent operators (a technique pionnered by Petridis-Risager [START_REF] Petridis | Modular symbols have a normal distribution[END_REF]). The holomorphicity seems to be crucial in the key automorphic completion-step, which enables one to express the non-automorphic Eisenstein series of Goldfeld in terms of automorphic Poincaré series (we refer [START_REF]Central values of additive twists of cuspidal L-functions[END_REF]Section 2] for more details on the method of proofs). More precisely, one does a contour shift in the integral representation (1.1) using crucially that the integrand is holomorphic. In return the methods apply to general Fuchsian groups of the first kind.

In the two special cases k = 2 and N = 1, another proof of Theorem 1.2 was obtained respectively by Lee-Sun [START_REF] Lee | Dynamics of continued fractions and distribution of modular symbols[END_REF] and by Bettin and the first named author [START_REF] Bettin | Limit laws for rational continued fractions and value distribution of quantum modular forms[END_REF]. Both proofs ultimately rely on the "quantum modularity" property of L φ in these two cases, in the sense of Zagier [START_REF] Zagier | Quantum modular forms[END_REF], by which we mean that for any γ ∈ Γ 0 (N ), the map (1.4)

h γ : x → L φ (γx) -χ(γ)L φ (x)
extends to a map on R {γ -1 ∞} which is constant when k = 2 [37, Section 1.3], and Hölder-continuous with a uniform exponent for N = 1 [6, Lemma 9.3]. It was also shown in [START_REF] Bettin | On the reciprocity law for the twisted second moment of Dirichlet L-functions[END_REF] that this property holds when φ is a certain non-holomorphic Eisenstein series of level 1, for which L φ (x) is the Estermann function. This raises the question of the regularity of h γ in general.

Statement of results: regularity and growth of h γ in general.

In the present paper we study the analytic properties of the maps h γ in the general context of a Maaß form on a Fuchsian group of the first kind. Let Γ ⊂ SL(2, R) be a Fuchsian group of the first kind with cusps, and let φ be a Maaß form of weight k ∈ Z ≥0 and multiplier χ for Γ. The precise definition will be presented in Section 2 below. Let C(Γ) ⊂ R ∪ {∞} be the set of cusps of Γ. For any γ ∈ Γ, we consider the map h γ : C(Γ) {∞, γ -1 ∞} → C given by h γ (x) := L φ (γx) -χ(γ) sgn(x -γ -1 ∞) k L φ (x).

Theorem 1.3 (Regularity of h γ ).

The map h γ extends to a (1/2 -ε)-Hölder continuous function of x in R {γ -1 ∞}.

Theorem 1.4 (Growth of h γ ). If λ φ denotes the eigenvalue of φ and s φ (1 -s φ ) = λ φ , then there exist constants A ± , B ± , C ∈ C such that, as |x| → ∞, there holds

h γ (x) = χ(γ)(A ± |x -x 0 | s φ + B ± |x -x 0 | 1-s φ + C) + O φ,ε,γ (|x| -1+ε
), (λ φ = 1/4).

If λ φ = 1/4, this estimate holds with the term involving B ± replaced by

B ± |x -x 0 | 1/2 log |x -x 0 |. We have A ± = B ± = 0 if φ is cuspidal.
Before the present work, Theorems 1.3 and 1.4 were known in essentially two cases:

-For forms of weight 2, the map h γ is constant. This is a well-known property of modular symbol, see [START_REF] Mazur | Arithmetic conjectures suggested by the statistical behaviour of modular symbols[END_REF]Lemma 1.2.(iii)]. -When φ is associated to a holomorphic form of even weight, this was proved in [6, Lemma 9.3] in the special case Γ = SL(2, Z) and in [START_REF] Nordentoft | A note on additive twists, reciprocity laws and quantum modular forms[END_REF]Theorem 4.4] in full generality. In these cases, the maps h γ are bounded. -When φ is the central Eisenstein series of level 1, this was proved in [4, Lemma 10] using a functional equation for the associated Dirichlet series.

In all other cases, Theorems 1.3 and 1.4 are new. Compared with these earlier works, the main point of Theorem 1.3 is that it does not require holomorphicity, nor does it use the functional equation for the associated L-function. In particular it does not require the presence of Hecke involutions. 1.3. Normal distribution for SL(2, Z). When Γ = SL(2, Z), it was shown in [START_REF] Bettin | Limit laws for rational continued fractions and value distribution of quantum modular forms[END_REF] using dynamical methods that a statement of the kind given by Theorem 1.3 yields the limiting distribution for the multisets D φ (q) on average over q. We will deduce the following, which proves the averaged version of Conjecture 1.1 for Γ = SL(2, Z). Theorem 1.5 (Additive twists on average for SL(2, Z)). Let φ be a Maaß cusp form for Γ = SL(2, Z). Then the multisets L φ (a/q) (log q) 1/2 : a ∈ (Z/qZ) × , q ≤ Q become distributed, as Q → ∞, to a centered normal law.

The cuspidality hypothesis is not essential to the method, however the non-cuspidal Maaß forms for SL(2, Z) are essentially spanned by an Eisenstein series, and for this series we can reduce to the case of the Estermann function treated in [6, section 9.2].

Given a finite orthogonal family (φ j ) of Hecke-Maaß cusp forms for SL(2, Z), we obtain more generally the joint convergence to independent normal distributions of the values (L φj (a/q)) j , see Corollary 7.7 below.

On the other hand, we believe the restriction to Γ = SL(2, Z) to be artificial. More precisely, we conjecture the following.

Conjecture 1.6. The statement of Theorem 1.5 holds when Γ is replaced by an arbitrary Fuchsian group of the first kind with cusps, and φ is a Maaß cusp form for Γ of integer weight.

As we have mentioned already, this conjecture is known when φ is associated with a holomorphic form. At the present time we lack a proper analogue of the methods of [START_REF] Bettin | Limit laws for rational continued fractions and value distribution of quantum modular forms[END_REF][START_REF] Lee | Dynamics of continued fractions and distribution of modular symbols[END_REF] which would allow to handle the general case. This is the subject of work in progress of Bettin, Lee and the first named author. 1.4. Arithmetic applications. In the special case where φ is a Hecke-Maaß form and Γ = Γ 0 (N ) is a congruence group, the additive twists L φ (x) are connected to the central values of the twisted L-functions L(φ, χ, 1/2) using orthogonality of characters (known as the Birch-Stevens formula) alluded to above. Here

L(φ, χ, s) = n≥1 λ φ (n)χ(n) n s , (Re s > 1),
and elsewhere by meromorphic continuation, where χ is a Dirichlet character and λ φ (n) = a(n) √ n denotes the n-th Hecke eigenvalue of φ. Using this connection we get a number of applications to twisted L-functions of Theorems 1.3 and 1.4 1.4.1. Reciprocity formulae. In an unpublished preprint [START_REF] Conrey | The mean-square of Dirichlet L-functions[END_REF], Conrey proved a certain "reciprocity relation" for twisted second moments of Dirichlet L-functions relating the following two quantities;

(1.5)

χ mod p |L(χ, 1/2)| 2 χ( ) χ mod |L(χ, 1/2)| 2 χ(-p),
where L(χ, s) = n≥1 χ(n)n -s for Re s > 1 and elsewhere by analytic continuation. The results were later extended by Young [START_REF] Young | The reciprocity law for the twisted second moment of Dirichlet L-functions[END_REF] and Bettin [4]. This can be seen as the GL 2 × GL 1 -case (with the GL 2 -form being an Eisenstein series) of the phenomena of spectral reciprocity investigated in [1], [START_REF] Blomer | Twisted moments of L-functions and spectral reciprocity[END_REF], [START_REF] Blomer | A spectral reciprocity formula and non-vanishing for L-functions on GL(4) × GL(2)[END_REF]. The quantum modularity results we obtain resolve completely the GL 2 × GL 1 (over Q) case and we obtain a relation of the type

χ mod p τ (χ)L(φ, χ, 1/2)χ( ) χ mod N τ (χ)L(φ, χ, 1/2)χ(-p),
where φ is a (GL 2 ) Hecke-Maaß newform of level N . We refer to Theorem 8.3 (cuspidal case) and Theorem 8.4 (Eisenstein case) for the exact statements. In the special case of φ being cuspidal of level 1, we get the following result.

Corollary 1.7. Let φ be a Hecke-Maaß cuspidal newform for Γ = SL(2, Z) whose Fourier coefficients satisfy a φ (-n) = φ a φ (n) with φ ∈ {±1}. Then for any pair of primes 0 < p < and any choice of sign ±, we have

2 p -1 * ,± χ mod p τ (χ)L(φ, χ, 1/2)χ( ) (1.6) ∓ 2 -1 * ,± χ mod τ (χ)L(φ, χ, 1/2)χ(p) = M φ,± + O φ,ε ((p/ ) 1-ε + p θ-1+ε ),
where

M φ,± = -φ L(φ, 1/2), ± = +, 0, ± = -,
and θ = 7 64 is the best bound towards the Ramanujan-Petersson conjecture for Maaß forms due to Kim and Sarnak [START_REF] Kim | Functoriality for the exterior square of GL 4 and the symmetric fourth of GL 2[END_REF]. Here the decorations on the sums means that we restrict to primitive characters with χ(-1) = ±1, and L(φ, s) denotes the (standard) L-function of φ.

Remark 1.8. When φ is not cuspidal, a similar statement holds with an altered right-hand side. Choosing φ to be the Eisenstein series

E * 1,1 (z, 1 
2 ) defined in Section 6.2 below, we find that a(n) = d(n), the divisor function, for n > 0, and therefore, for all χ (mod p) primitive,

τ (χ)L(φ, χ, 1/2) = τ (χ)L(χ, 1/2) 2 = i a √ p |L(χ, 1/2)| 2
where a ∈ {0, 1} depends on χ(-1). In this way we can deduce a form Conrey's reciprocity formula [START_REF] Conrey | The mean-square of Dirichlet L-functions[END_REF] alluded to above (1.5).

1.4.2. Wide moments of Dirichlet twists. In the case of φ a Hecke-Maaß cuspform of level 1, we not only obtain the normal distribution result for the additive twists in Theorem 1.5, but furthermore a convergence of moments (see Proposition 7.9). Using the Birch-Stevens relations this implies certain new moment calculations for the twisted L-functions L(φ, χ, 1/2) which have not been obtained by the standard "approximate functional equation"-approach. This fits into the framework of wide moments of families of GL 1 -twists of automorphic L-functions as in [START_REF]Wide moments of L-functions I: Twists by class group characters of imaginary quadratic fields[END_REF], [START_REF]Wide moments of L-functions II: Dirichlet L-functions[END_REF], [START_REF]High moments of the Estermann function[END_REF], [42, Corollary 1.9] (see also Section 8 below for more background). We state here the moment calculation in the simplest version and refer to Corollary 8.5 for the most general statement. Corollary 1.9. Let φ be a Hecke-Maaß cusp form for Γ = SL(2, Z) and n ∈ 2N ≥0 . Then we have as

Q → ∞ 0<c≤Q 1 ϕ(c) n-1 χi mod c, 1≤i≤n: χ1•••χn=1 n i=1 ν φ (χ i )L(φ, χ i , 1/2) = P (log Q)Q 2 + O φ,n (Q 2-δ ), (1.7)
for some δ > 0, where P is a degree n/2 polynomial with leading coefficient

2 n/2 (n/2)!L(sym 2 φ, 1) n/2 .
Here 1 denotes the principal character (of the relevant modulus suppressed in the notation), and the factors ν φ (χ) are certain local weights essentially of size c 1/2 for χ mod c.

We refer to Corollary 8.5 and equation (8.4) for precise expressions of ν φ (χ). When χ (mod c) is primitive, then we simply have ν φ (χ) = τ (χ).

Remark 1.10. Assuming the Lindelöf bound L(φ, χ, 1/2) φ,ε c ε for χ mod c, together with the Ramanujan-Petersson conjecture λ φ (n) φ,ε n ε one gets the "trivial" bound O φ,ε (Q n+1+ε ) for the left-hand side of (1.7) (using also the bound ν φ (χ) ε c 1/2+ε coming from (8.5) which is essentially sharp). Thus we see that for n > 1, there is massive cancellation in the sum. In particular, it appears to be very hard to obtain such a result using an "approximate functional equation"-approach (as in e.g. [START_REF] Blomer | The second moment theory of families of L-functions[END_REF]).

1.5. Structure of the paper. In Section 2, we set the background and main definitions of the automorphic forms we will deal with. In Section 3, we establish the quantum modularity for the discrepancy function h γ associated with Eichler integrals. In Section 4, we investigate the behaviour at infinity of h γ for the Eichler integrals. In Section 5, we transfer the quantum modularity and behaviour at infinity, from the Eichler integrals, to the actual central L-values, which will prove Theorems 1.3 and 1.4. In Section 6, we apply our main results to a few examples in congruence groups: Hecke-Maaß cusp forms, and real-analytic Eisenstein series. In Section 7, we deduce the convergence in law in Theorem 1.5. In Section 8, we deduce the arithmetic applications to reciprocity formulae (Corollary 1.7) and wide moments (Corollary 1.9). Appendix A contains two lemmas about hypergeometric functions which are used in Section 5. Y and Y X. The letter ε denotes an arbitrarily small quantity, which may differ between occurences.

Background

2.1. Maaß forms. For a detailed account of the following material we refer to [START_REF]Spectral methods of automorphic forms[END_REF]Chapter 2], [START_REF] Duke | The subconvexity problem for Artin L-functions[END_REF]Section 4] as well as the classical sources [START_REF] Roelcke | Das Eigenwertproblem der automorphen Formen in der hyperbolischen Ebene. I, II. (The eigenvalue problem of automorphic forms in the hyperbolic plane. I. II)[END_REF], [START_REF] Selberg | Harmonic analysis and discontinuous groups in weakly symmetric Riemannian spaces with applications to Dirichlet series[END_REF], [START_REF] Katok | Fuchsian groups[END_REF]. Fix Γ ⊂ SL(2, R) a discrete, co-finite subgroup with a cusp at ∞, a character χ : Γ → C trivial on all parabolic elements of Γ and an integer k ∈ Z ≥0 . Denote by C(Γ) ⊂ P 1 (R) the cusps of Γ (also known as the "limiting set of Γ"), and for x ∈ C(Γ) let Γ x be the stabiliser of x. For x ∈ C(Γ), a scaling matrix σ x for x is any matrix which satisfies σ -1

x Γ x σ x = {( 1 Z 1 )}. We assume σ ∞ = id (this can always be ensured by conjugating Γ by a diagonal element).

Let k ∈ Z ≥0 . We denote by A(Γ, χ, k) the vector space of all weight k automorphic forms of Γ with nebentypus χ, i.e. smooth maps φ : H → C satisfying:

(H 1 ) For all γ ∈ Γ and z ∈ H, φ(γz) = u γ (z)φ(z), where (2.1) u γ (z) = j γ (z) k χ(γ), j γ (z) = j(γ, z) |j(γ, z)| = cz + d |cz + d| .
Notice that if -id ∈ Γ then we must have the compatibility condition χ(-1) = (-1) k for A(Γ, χ, k) to be non-trivial. We borrow the analytic notations from [START_REF] Duke | The subconvexity problem for Artin L-functions[END_REF]. Let

(2.2) R k = k 2 + (z -z) ∂ ∂z , Λ k = k 2 + (z -z)
∂ ∂z be respectively the weight k level raising and level lowering operator, as defined in [18, eqs. (4.3)

-(4.4)]. These define maps R k : A(Γ, χ, k) → A(Γ, χ, k + 2), Λ k : A(Γ, χ, k) → A(Γ, χ, k -2).
The weight k Laplacian is defined by

∆ k = -R k-2 Λ k - k 2 1 - k 2 = -Λ k+2 R k + k 2 1 + k 2 = y 2 ∂ 2 ∂x 2 + ∂ 2 ∂y 2 -iky ∂ ∂x .
For k ∈ Z ≥0 and s ∈ C, we define an operator

(2.3) Q s,k : A(Γ, χ, k) → A(Γ, χ, k),
as in [18, eq. (4.65)] by

(Q s,k φ)(z) = Γ(s -k/2) Γ(s + k/2) (Λ -k+2 • • • Λ k-2 Λ k φ)(-z),
where we put z) which is the usual reflection operator. The operator Q s,k preserves the eigenspace of ∆ k with eigenvalue s(1 -s), and is an involution for s ∈ k/2 + Z ≤0 . Similarly, we define Q s,k for negative k using the raising operators.

Q s,k = 0 if s ∈ k/2 + Z ≤0 . Notice that for k = 0 we have (Q s,0 φ)(z) = φ(-
We [14, p. 106], and if φ comes from a holomorphic form then φ = 0. Note that when k is odd, φ depends on the choice of sign of t φ in the definition of Q s φ ,k . The above conditions imply [START_REF] Duke | The subconvexity problem for Artin L-functions[END_REF][START_REF]Spectral methods of automorphic forms[END_REF] that at any cusp x ∈ C(Γ) we have the Fourier expansion

say that φ ∈ A(Γ, χ, k) is a Maaß form if it satisfies (H 2 ) For all x ∈ C(Γ), φ(σ x z) = o(e 2πy ) as y = Im z → ∞. (H 3 ) φ is an eigenfunction of ∆ k with eigenvalue λ φ = s φ (1 -s φ ) = 1/4 + t 2 φ with Re s φ ≥ 1/2 and s φ = 1/2 + it φ . (H 4 ) φ is an eigenfunction of the operator Q s φ ,k with eigenvalue φ ∈ {±1, 0} 1 . If k = 0 then φ is the sign of the Maaß form
(2.4) φ(σ x z) = φ x (Im z) + n =0 a x (n)e(n Re z)W k 2 sgn(n),it φ (4π|n| Im z),
where W α,β : R >0 → C is the weight α-Whittaker function with parameter β, i.e. the unique solution W to

d 2 W dy 2 + - 1 4 + α y + 1/4 -β 2 y 2 W = 0,
satisfying W (y) ∼ y α e -y/2 as y → ∞ (with α, β fixed). In particular we have W 0,it (4πy) = 2y 1/2 K it (2πy) where K s (y) denotes the K-Bessel function. The constant term φ x (y) (with y = Im z above) is given by

(2.5) φ x (y) = A x y s φ + B x y 1-s φ , s φ = 1/2 A x y 1/2 + B x y 1/2 log y, s φ = 1/2.
We will say that φ is cuspidal at the cusp x meaning that φ x (y) = 0. Finally we say that φ is a Maaß cuspform if it is cuspidal at all cusps x ∈ C(Γ).

From [START_REF] Duke | The subconvexity problem for Artin L-functions[END_REF]Corollary 4.4] we know that Maaß forms arise in two ways :

-If Re(s φ ) < 1 and s φ = 1 2 , then φ is obtained from repeated applications of level-raising or lowering operators from a weight 0 or 1 Maaß form, depending on the parity of k, -Otherwise s φ = /2 with ≡ k (mod 2), and φ is then associated, through level-raising or lowering operators, to a form ψ of weight for which z → y -k/2 ψ(z) is holomorphic. In this case, we necessarily have B x = 0 in (2.5). We will abbreviate throughout a(n) = a ∞ (n). Moreover, we have by [18, eq. (4.70

)] (2.6) a(-n) = φ Γ(s φ + k 2 ) Γ(s φ -k 2 ) a(n).
For s φ = /2 with ≡ k (mod 2), this says that a(-n) = 0 for n > 0.

We will assume the following bound.

(H 5 ) The Fourier coefficients a(n) in (2.4) at x = ∞ satisfy (2.7) 1≤n≤X |a(n)| φ,ε X 1/2+ε .
1 This letter φ will always be written with a subscript indicating the corresponding form, to avoid confusion with the notation ε for an arbitrary small number.

This condition is automatic when φ is cuspidal at ∞. This is obtained by Cauchy-Schwarz combined with a straightforward modification of [START_REF]Spectral methods of automorphic forms[END_REF]Theorem 3.2]. We will use the following rough but uniform bounds on φ.

Lemma 2.1. For all x, x , η ∈ R and 0 < y 1, we have (2.4). This is a generalization of the original Eichler integrals [START_REF] Eichler | Eine Verallgemeinerung der Abelschen Integrale[END_REF] which were associated to cuspidal holomorphic forms and had s = (k -1)/2. This kind of integrals originate from Riemann's memoir [START_REF] Riemann | Ueber die Anzahl der Primzahlen unter einer gegebenen Grösse[END_REF]. The special case x = 0 was considered by Hecke [START_REF] Hecke | Über die Bestimmung Dirichletscher Reihen durch ihre Funktionalgleichung[END_REF] to establish the functional equation of Hecke L-function of holomorphic cusp forms. The idea of studying the analytic properties in the variable x is due to Eichler [START_REF] Eichler | Eine Verallgemeinerung der Abelschen Integrale[END_REF] and led to the development of the Eichler-Shimura isomorphism; see [START_REF] Diamantis | Period polynomials, derivatives of L-functions, and zeros of polynomials[END_REF] for references.

|φ(x + iy)| ε y -1/2-ε , (2.8) |φ(x + iy) -φ(x + iy)| ε y -1/2-ε min(1, |x-x | y ), (2.9) |φ(x + iy) -φ(x + iy) -φ(x + η + iy) + φ(x + η + iy)| ε y -1/2-ε min(1, |x-x | y ) min(
Here we will need to study the value at s = 1/2, whose existence we first deduce from analytic continuation.

Proposition 2.2. The Eichler integral E(φ, x, s) admits meromorphic continuation to the entire complex plane with possible poles contained in {1/2 + s φ , 3/2 -s φ }. If Re(s φ ) ≥ 1, then the only possible pole is at 1/2 + s φ .

Proof. By the Fourier expansion of φ at x, we know that

φ(x + iy) = φ x (Im(σ -1 x (x + iy))) + g x (x + iy) = φ x (c x y -1 ) + g x (y),
for a certain constant c x , where g x (y) A y A for all A > 0 as y → 0. Let ψ : (0, ∞) → R be smooth and decreasing with ψ(y) = 1 for y < 1 and ψ(y) = 0 for y > 2. Then

s → ∞ 0 (φ(x + iy) -φ ∞ (y) -ψ(y)φ x (c x y -1
))y s-1/2 dy y extends to an entire function due to the rapid decay of the integrand as y → 0. Finally we see that for Re s > 1/2 + Re s φ , we have by partial integration:

∞ 0 ψ(y)φ x (c x y -1 )y s-1/2 dy y = - ∞ 0 ψ (y)F x (y)dy,
where F x is the antiderivative of y → φ x (c x y -1 )y s-3/2 , which is of the form

A s-1/2-s φ y s-1/2-s φ + B s-3/2+s φ y s-3/2+s φ , s φ = 1/2 A (s-1) 2 y s-1 ((s -1) log y -1) + B s-1 y s-1 , s φ = 1/2,
for certain constants A, B which may depend on x and φ. This defines meromorphic continuation to the entire complex plane with possible poles only at s ∈ {1/2 + s φ , 3/2 -s φ }. When Re(s φ ) ≥ 1, then φ is associated with a holomorphic form, and we have already noted in this case that necessarily B = 0, and therefore there is no pole at 3/2 -s φ .

Quantum modularity for the Eichler integral

For all x ∈ C(Γ), define E φ (x) := E(φ, x, 1/2).

Theorem 3.1. The map E φ is a quantum modular form for Γ with multiplier u γ , in the sense that for all γ ∈ Γ, the map (1) .

(3.1) h E γ (x) := E φ (γx) -j γ (x) k χ(γ)E φ (x), initially defined for x ∈ C(Γ) {∞, γ -1 ∞} extends to a (1/2 -ε)-Hölder continuous function on R {γ -1 ∞}. More precisely, for x, x ∈ [γ -1 ∞ -ε, γ -1 ∞ + ε], we have (3.2) h E γ (x) -h E γ (x ) ε,φ,γ |x -x | 1/2-ε (1 + |x| + |x |) O φ
Note that for γ and x fixed, j γ (x) k depends only on the parity of k. Note also that h E γ = 0 for all γ ∈ Γ ∞ , so that Theorem 3.1 is trivial in this case.

Throughout the rest of this section, we let γ ∈ Γ Γ ∞ ,

x 0 = γ -1 ∞,
and we let I ⊂ R {x 0 } be a closed interval, not necessarily bounded.

3.1.

A geometric proof of quantum modularity. We will start by considering the special case where φ = iR 0 ϕ is of weight 2, cuspidal, with trivial nebentypus, meaning that ϕ is a Maaß cusp form of weight 0 for Γ and R 0 is the weight 0 raising operator. In this case one can give a pleasant geometric interpretation of the discrepancy function h γ = h E γ . This argument should furthermore serve to give some intuition before reading the somewhat technical proof in the general case, in Section 3.2 below.

The starting point is the following alternative representation of the Eichler integral in the case of weight 2:

E φ (x) = 2i ∞ x ∂ ∂z ϕ(z)dz,
which follows directly from the definition of the raising operator R 0 . By a change of variable z ↔ γz we get the following expression for the discrepancy function

h γ (x) = 2i x0 x ∂ ∂z ϕ(z)dz -2i ∞ x ∂ ∂z ϕ(z)dz
for γ / ∈ Γ ∞ (the stabilizer of ∞) and x ∈ C(Γ) {∞, x 0 }. The key idea is now that one can apply Stoke's Theorem to express the difference of these two line integrals (over infinite geodesics) to a surface integral over a surface of finite hyperbolic volume. More precisely, for x, x 0 ∈ R we denote by F x,x0 the hyperbolic triangle with vertices ∞, x, x 0 . Recall that the geodesic between two points on the boundary is exactly a Euclidean semi-circle through the two endpoint (if one of the points is ∞ this is vertical line), see Figure 1. We apply [START_REF] Duke | Geometric invariants for real quadratic fields[END_REF]Lemma 2] to the 1-form ∂ ∂z ϕ(z)dz on the hyperbolic surface F γx,γ∞ observing that [19, Lemma 2] easily extends to general discrete and cofinite subgroups Γ as our 1-form is sufficiently regular at the cusps of Γ. This gives

x0 x i ∂ ∂z ϕ(z)dz + x ∞ i ∂ ∂z ϕ(z)dz + ∞ x0 i ∂ ∂z ϕ(z)dz = λ ϕ 2 Fx,x 0 ϕ(z)dµ 0 (z),
where dµ(x + iy) = dxdy y 2 is the hyperbolic measure and λ ϕ = λ φ is the Laplace eigenvalue. This yields the following geometric expression

(3.3) h γ (x) = -2i ∞ x0 ∂ ∂z ϕ(z)dz + λ ϕ Fx,x 0 ϕ(z)dµ 0 (z).
Notice that the first term is independent of x. Now we see that for x, x ∈ I (i.e. bounded away from

x 0 = γ -1 ∞) h γ (x) -h γ (x ) = λ ϕ Fx,x 0 ϕ(z)dµ 0 (z) - F x ,x 0 ϕ(z)dµ 0 (z) ≤ |λ ϕ | ϕ ∞ • area(F x,x0 F x ,x0 ),
where A B denotes the symmetric difference between the sets A and B, area denotes the hyperbolic area, and ||ϕ|| ∞ is the sup norm of ϕ (which is finite by cuspidality). The key point is now the following elementary hyperbolic geometric estimate, see Figure 2.

Lemma 3.2. For x, x ∈ I, we have

area(F x,x0 F x ,x0 ) γ,I |x -x | 1/2 .
More precisely, for x, x ∈ [x 0 -ε, x 0 + ε], we have

(3.4) area(F x,x0 F x ,x0 ) ε,γ |x -x | 1/2 (1 + |x| + |x |) -1/2 .
Proof. First of all we observe that by the Gauß Defect Theorem [29, Theorem 1.3] we have area(F x,x0 ) = area(F x ,x0 ) = π. The symmetric difference F x,x0 F x ,x0 is the union of the two sets

A 1 := F x ,x0 F x,x0 ∩ F x ,x0 , A 2 := F x,x0 F x ,x0 ∩ F x,x0 ,
as illustrated in Figure 2 (and similar for the other configurations of x, x , x 0 ). Clearly we may assume that x 0 is not between x and x , for otherwise |x -x | ε 1 and the claimed bound is trivial. Thus we can restrict to the case x ≥ x > x 0 + ε. The three angles of the hyperbolic triangles

A i are 0, 0, π -θ with 0 ≤ θ = θ x,x ≤ π 2 such that cos θ = 2|x-x0| |x -x0| -1
, and thus by the Gauß Defect Theorem area(A 1 ) = area(A 2 ) = θ.

By the classical fact that sin

x x ∈ [ 2 π , 1) for 0 ≤ x ≤ π 2 , we conclude 4θ 2 π 2 ≤ 1 -(cos θ) 2 = (sin θ) 2 ≤ θ 2 .
This implies by the definition of θ and since x > x > x 0 that

θ 2 ||x -x 0 | -|x -x 0 || |x -x 0 | |x -x 0 | 2 |x -x ||x -x 0 | |x -x 0 | 2 |x -x | |x -x 0 | . Now (3.4) follows by taking square roots since x -x 0 ε,γ 1 + |x| + |x |.
Thus we conclude that for x, x ∈ [x 0 -ε, x 0 + ε], we have

h γ (x) -h γ (x 0 ) ε,γ |λ ϕ | ϕ ∞ |x -x | 1/2 (1 + |x| + |x |) -1/2 ,
which is a more precise version of Theorem 3.1 in this special case. We end this section with a philosophical remark. As noted the vertical geodesics from x to i∞ have infinite hyperbolic length, which is responsible for the fact that the Eichler integral E φ (x) itself is not continuous in x. However when considering the discrepancy h E γ we can transform this using Stoke's Theorem into an integral over a hyperbolic triangle bounded by such infinite geodesics, which has finite hyperbolic area. This is a geometrical version of the idea of "going up in regularity" underlying the notion of quantum modular forms [START_REF] Zagier | Quantum modular forms[END_REF].

3.2. Quantum modularity in the general case. In this section we will prove the Hölder continuity of h E γ on I. Let δ ∈ (0, 1 2 d(x 0 , I)), where d(x 0 , I) denotes the distance from x 0 to I. For all x ∈ I and 0 < y ≤ δ, we define (3.5)

µ x (y) := 1 - y 2 ((x-x0)/2) 2 -1/2 , ν x (y) := x-x0 2 -sign(x -x 0 ) ( |x-x0| 2 ) 2 -y 2 .
With this definition, the points x 0 +ν x (y)+iy and x-ν x (y)+iy both lie on the geodesic half-circle connecting x 0 and x. We also recall the definition of u γ in (2.1)

The following simple bounds will be used repeatedly: for x, x ∈ I, δ ≥ ε and 0 < y ≤ δ, we have

|µ x (y) -1| ε y 2 , |µ x (y) -µ x (y)| ε |x -x |y 2 , (3.6) |ν x (y)| ε y 2 , |ν x (y) -ν x (y)| ε |x -x |y 2 . (3.7)
The following lemma gives a good bound for an integral near a cusp which, as we will show later, corresponds to the least regular contribution to h E γ . Lemma 3.3. For x ∈ I and 0 < y ≤ δ, we have

(3.8) |u γ (x)φ(x + iy) -u γ (x -ν x (y) + iy)φ(x -ν x (y) + iy)µ x (y)| = O ε,φ (y 1/2-ε ),
and the map

(3.9) x → H(x) := δ 0 u γ (x)φ(x + iy) -u γ (x -ν x (y) + iy)φ(x -ν x (y) + iy)µ x (y) dy y F x,x0 x x 0 Figure 1. Hyperbolic triangle with vertices x, x 0 , ∞ x x x 0 A 2 A 1 Figure 2. Symmetric difference of F x,x0 and F x ,x0
defines a (1/2 -ε)-Hölder continuous function on I. More precisely, the bound

(3.10) H(x) -H(x ) = O I,ε,φ,γ |x -x | 1/2-ε + |x -x |
holds uniformly for x, x ∈ I.

Proof. In the following proof, we allow all implicit constants to depend on I, ε, φ and γ. Note first that u γ is constant in a some neighborhood I + of I, say u γ (x) = u 0 γ ∈ R for all x ∈ I. Moreover, or any x ∈ I and 0 < y 1, we have

(3.11) u γ (x + iy) -u 0 γ y.
We complement this with the bounds (2.8), (2.9), (3.6) and (3.7). Along with the triangle inequality, this yields the bounds (3.8).

We deduce that the integrand in (3.9) is O(y -1/2-ε ) and the integral in (3.9) is well-defined. Let δ ∈ (0, δ) be such that x + ν x (y) ∈ I + for all (x, y) ∈ I × (0, δ ), which implies that u γ (x + ν x (y)) = u 0 γ for 0 < y < δ . In the following computations, let us abbreviate

ν = ν x (y), ν = ν x (y), µ = µ x (y), µ = µ x (y).
By the triangle inequality, for x, x ∈ I, we have

|H(x) -H(x )| ≤ δ 0 |F 0 (y; x, x )| dy y ,
where

F 0 (y; x, x ) := u 0 γ (φ(x + iy) -φ(x + iy)) -u γ (x -ν + iy)φ(x -ν + iy)µ + u γ (x -ν + iy)φ(x -ν + iy)µ .
By taking successive differences, we write

F 0 (y; x, x ) = 1≤j≤6 F j (y; x, x ),
where

F 1 (y; x, x ) := u 0 γ (φ(x + iy) -φ(x + iy) -φ(x -ν + iy) + φ(x -ν + iy)), F 2 (y; x, x ) := u 0 γ (φ(x -ν + iy) -φ(x -ν + iy)), F 3 (y; x, x ) := (u γ (x -ν + iy) -u 0 γ )(φ(x -ν + iy) -φ(x -ν + iy)), F 4 (y; x, x ) := u γ (x -ν + iy)(φ(x -ν + iy) -φ(x -ν + iy))(1 -µ ), F 5 (y; x, x ) := u γ (x -ν + iy)φ(x -ν + iy)(µ -µ), F 6 (y; x, x ) := (u γ (x -ν + iy) -u γ (x -ν + iy))φ(x -ν + iy)µ.
We bound each integral

D j := δ 0 |F j (y; x, x )| dy y separately.
-By (2.10) and the first bound in (3.7), we have F 1 (y; x, x )

y 1/2-ε min(1, |x-x | y
), and so

D 1 |x -x | 1/2-ε .
-By (2.9) and the second bound in (3.7), we obtain F 2 (y; x, x )

y 1/2-ε |x -x |, so that D 2 |x -x | .
-By (2.9) again, and (3.11), we obtain

F 3 (y; x, x ) y -1/2-ε min(1, |x-x | y
), and so

D 3 |x -x | 1/2-ε .
-By (2.9), the second bound in (3.7) and the first bound in (3.6), we have F 4 (y; x, x )

y 1/2-ε |x -x |, therefore D 4 |x -x | .
-By (2.8) and the second bound in (3.6), we get F 5 (y; x, x )

y 3/2-ε |x -x |, so that D 5 |x -x | .
-Finally, for all a, a ∈ I + , we have

|u γ (a + iy) -u γ (a + iy)| |arg(a + iy) -arg(a + iy)| y |a -a | ,
so that, by (2.8), the second bound in (3.7) and the bound µ 1, we obtain F 6 (y; x, x )

y 1/2-ε |x -x |, and so D 6 |x -x | . We conclude that |H(x) -H(x )| ≤ 1≤j≤6 D j |x -x | 1/2-ε + |x -x | as claimed.
Proof of Theorem 3.1. For Re s > 1 and x ∈ I ∩ C(Γ), we recall the definition (2.11), and we abbreviate in this proof E(x, s) = E(φ, x, s). We consider

(3.12) ∆(x, s) := u 0 γ E(x, s) -|j(γ, x)| 2s-1 E(γx, s).
We recall that u γ (x) = u 0 γ for all x ∈ I. Since δ < 1 2 d(x 0 , I), for each x ∈ I, the line Im(z) = δ intersects the geodesic connecting x and x 0 at two distinct points. For all x ∈ I, we let η(x) > 0 be the smaller solution to

(3.13) Im(γ -1 (γx + iη(x))) = δ.
Note that η defines a smooth map on I, which is bounded and non-zero. We have explicitely

η(x) = |ν x (δ)| c 2 δ = 1 2c 2 δ 1 -1 -(2δ/ |x -x 0 |) 2 .
We deduce in particular

|η(x)| , |η (x)| ε (x -x 0 ) -2 , (x ∈ I).
By inserting the integral (2.11) in the definition of ∆(x, s), and splitting the two integrals respectively at y = δ or y = η(x), we obtain for x ∈ I ∩ C(Γ) the decomposition

(3.14) ∆(x, s) = ∆ 0 (x, s) -∆ c (x, s) + ∆ ∞ (x, s),
where

∆ 0 (x, s) := u 0 γ δ 0 φ(x + iy)y s-1/2 dy y -|j(γ, x)| 2s-1 η(x) 0 φ(γx + iy)y s-1/2 dy y , ∆ c (x, s) := u 0 γ δ 0 φ ∞ (y)y s-1/2 dy y -|j(γ, x)| 2s-1 η(x) 0 φ ∞ (y)y s-1/2 dy y , ∆ ∞ (x, s) := u 0 γ ∞ δ (φ(x + iy) -φ ∞ (y))y s-1/2 dy y -|j(γ, x)| 2s-1 ∞ η(x) (φ(γx + iy) -φ ∞ (y))y s-1/2 dy y .
By the explicit expression (2.5), the map

∆ c (x, •) can be analytically continued to C {1/2 -s φ , s φ -1/2}.
For some constants c 1 , c 2 , c 3 depending on φ, γ and I, we evaluate for all x ∈ I ∩ C(Γ),

∆ c (x, 1/2) = c 1 + c 2 η(x) s φ + c 3 η(x) 1-s φ .
Since η is smooth and non-zero on I, we deduce that the map ∆ c (•, 1/2) extends to a smooth function on I, and

(3.15) |∆ c (x, 1/2) -∆ c (x , 1/2)| I,γ,φ,ε |x -x | (1 + |x| + |x |) κ+ε with κ = max{0, 2(Re(s φ ) -1)} ∈ R ≥0 .
The integrals in ∆ ∞ are uniformly convergent for bounded s ∈ C, since the maps y → φ(t + iy) -φ ∞ (y), for t ∈ {x, γx}, have exponential decay at ∞. Since the Fourier expansion (2.4) is uniformly convergent for Im(z) > ε for any ε > 0, and η is non-zero on I, we deduce by dominated convergence that ∆ ∞ (•, 1/2) also extends to a smooth function on I. Moreover, letting φ 1 (x+iy) := ∂ ∂x φ(x+iy), we have φ 1 (x+iy) φ,ε y -3/2+ε , and thus

d dx ∆ ∞ (x, 1/2) = u 0 γ ∞ δ φ 1 (x + iy) dy y -j(γ, x) -2 ∞ η(x) φ 1 (γx + iy) dy y + η (x) η(x) φ(γx + iη(x)) I,γ,φ,ε |x -x 0 | 1 + |x| . (3.16)
We obtain by integration

|∆ ∞ (x, 1/2) -∆ ∞ (x , 1/2)| I,γ,φ,ε |x -x | (1 + |x| + |x |).
We focus on ∆ 0 (x, s). For Re(s) > 1, we change variables in the second integral, getting

∆ 0 (x, s) = u 0 γ x+iδ x φ(z)(Im z) s-1/2 ds(z) -|j(γ, x)| 2s-1 γx+iη(x) γx φ(z)(Im z) s-1/2 ds(z) = u 0 γ x+iδ x φ(z)(Im z) s-1/2 ds(z) -|j(γ, x)| 2s-1 γ -1 (γx+iη(x)) x φ(γz)(Im γz) s-1/2 ds(z) = x+iδ x u γ (x)φ(z)(Im z) s-1/2 ds(z) - γ -1 (γx+iη(x)) x u γ (z)φ(z)(Im z) s-1/2 j(γ, x) j(γ, z) 2s-1 ds(z). (3.17)
Here the integrals with respect to the SL(2, R)-invariant Poincaré metric ds(z) = (dx 2 + dy 2 ) 1/2 /y are taken along geodesics. In the penultimate integral, we have written u γ (x) = u 0 γ in anticipation of using of Lemma 3.3. We parametrize both integrals according to Im z, which runs in both cases over (0, δ) by our definition (3.13).

The integral x+iδ x

is over a straight line, and the second integral

γ -1 (γx+iη(x)) x is over a portion of geodesic connecting x with γ -1 ∞ = x 0 . By construction of ν x in (3.5), this is precisely the set {x -ν x (y) + iy, y ∈ (0, δ)}.
Moreover, a quick computation yields ds(z) = µ x (y) dy/y. We deduce

∆ 0 (x, s) = δ 0 u γ (x)φ(x + iy) -u γ (x -ν x (y) + iy)φ(x -ν x (y) + iy)µ x (y) j(γ, x) j(γ, z) 2s-1 y s-1/2 dy y .
We write |j(γ, x)/j(γ, z)| 2s-1 = 1 + ξ s,x (y), where (3.18) ξ s,x (y) y for fixed x, γ and bounded s. Correspondingly, for all x ∈ I ∩ C(Γ) we obtain

∆ 0 (x, s) = δ 0 (u γ (x)φ(x + iy) -u γ (x -ν x (y) + iy)φ(x -ν x (y) + iy)µ x (y))y s-1/2 dy y - δ 0 u γ (x -ν x (y) + iy)φ(x -ν x (y) + iy)µ x (y)ξ s,x (y)y s-1/2 dy y .
The bound (3.18), combined with (2.8), ensures that the second integral here converges uniformly on compact subsets of {Re(s) > 0}. The bound (3.8) from Lemma 3.3 yields the same conclusion for the first integral. This gives the analytic continuation of ∆ 0 (x, •) on {Re(s) > 0}, and the expression

∆ 0 (x, 1/2) = δ 0 (u γ (x)φ(x + iy) -u γ (x -ν x (y) + iy)φ(x -ν x (y) + iy)µ x (y)) dy y ,
which we recognize as the quantity H(x) defined in (3.9 

|∆(x, 1/2) -∆(x , 1/2)| I,γ,φ,ε |x -x | 1/2-ε + |x -x | (1 + |x| + |x |) max(1,2(Re(s φ )-1))+ε .
However, we see from the definition (3.12) and Proposition 2.2 that for x ∈ I ∩ C(Γ),

∆(x, 1/2) = u γ (x)E(x, 1/2) -E(γx, 1/2) = -h E γ (x).

This gives the desired extension of h E

γ to a (1/2 -ε)-Hölder continuous function on I for any ε > 0, and the claimed bound on the difference.

Generalized quantum modularity with conjugation.

For the applications to reciprocity formulas which we will consider in Section 8 below in the case of the Hecke groups Γ = Γ 0 (q), we will need the action of Fricke involutions, and in the case of non-real nebentypus, it will be handy to generalize slightly the definition of quantum modularity. Given a matrix γ ∈ GL(2, R) we consider the following operation on functions f :

H → C (3.19) (γf )(z) := f (γ(-z)).
We extend this definition "to the boundary" as follows: let Γ be a Fuchsian group as in our setting (Section 2), and γ ∈ Γ be such that we have γ(-x) ∈ C(Γ) for all x ∈ C(Γ). Then given a map f :

C(Γ)\{∞} → C, we define (γf )(x) := f (γ(-x)), for x ∈ C(Γ)\{-γ -1 ∞}. Theorem 3.4. Let γ ∈ SL(2, R) and let φ ∈ A(Γ, χ, k) satisfy hypotheses (H 1 )-(H 5
) from Section 2, and assume additionally that (γφ

)(z) = ηj γ (z) k φ(z) for some η ∈ C. Then E(φ, x) is quantum modular for γ in the sense that (3.20) h E γ (x) = E φ (γ(-x)) -ηj γ (x) k E φ (x), initially defined for x ∈ C(Γ)\{∞, -γ -1 ∞}, extends to a (1/2 -ε)-Hölder continuous map R\{-γ -1 ∞} → C.
Proof. The proof is identical to that of Theorem 3.1, starting from the difference 

∆(x, s) := ηj γ (x) k E(x, s) -|j(γ, x)| 2s-1 E(γ(-x), s).
ρ g (u(g , •)) • u(g, •) = u(gg , •), for all g, g ∈ G. Then we say that f ∈ C[Y ] is modular for the pair (G, ρ) with multiplier u if ρ g (f )(y) = u(g, y)f (y),
for all g ∈ G and y ∈ Y . Notice that the cocycle condition is forced from the previous equation since ρ preserves the ring structure. Furthermore, let Y 0 be some (possibly discrete) subset of Y . Then we say that a map

f ∈ C[Y 0 ] is quantum modular for (G, ρ) with multiplier u g if h g (y) := ρ g (f )(y) -u(g, y)f (y),
is "more regular" than f itself, i.e. h g can be extended to a continuous (or smooth, or analytic) function on some intermediate space

Y 0 ⊂ Y ⊂ Y . Let H = H ∪ R ∪ {∞} and consider the group G = PGL 2 (R) × Z/2Z acting on C[H]
where PSL 2 (R) acts by precomposition with the inverse of the associated linear fractional transformation (in order to insure that it is a left action), -1 0 0 1 acts by precomposition with z → -z and the generator c of Z/2Z acts by composition with conjugation. One can check that this is indeed a well-defined group action. Now let G q ⊂ G be the subgroup generated by Γ 0 (q) together with the element

( 0 1 q 0 , c) ∈ G,
which acts as the operator W q using the notation (3.19) with W q = 0 -1 q 0

the Fricke matrix of level q. One can now check that the following defines a cocycle for G q with the representation ρ :

G q → End Ring (C[H]) u(W q , z) := ηj Wq (z) k , u(γ, z) := χ(γ)j γ -1 (z) k , for γ ∈ Γ 0 (q), (3.21)
where η ∈ C satisfies |η| = 1 and χ : Γ 0 (q) → C × is a character (here the only relation one has to check is W q γ = γ W q for γ ∈ SL 2 (R) and W q 2 = 1). In particular, we will see in Section 6.1 that if φ is a Hecke-Maaß newform of level q, weight k and nebentypus χ φ , then we automatically have that W q φ = η φ (j Wq ) k φ for some η φ ∈ C of absolute norm 1. Thus in the just described formalism, Theorem 3.1 and Theorem 3.4 can be interpreted as saying that

E(φ, •) : C(Γ 0 (q))\{∞} = Q → C,
is quantum modular for the group G q together with its obvious representation where the multiplier is as in (3.21) (with η = η φ and χ = χ φ ).

4. Behaviour of h E γ at ∞ For our prospective applications, it will be of importance to have some information of the behaviour of h E γ near ∞ and γ -1 ∞.

Theorem 4.1.

There exist numbers A ± , B ± depending on φ such that the following holds. Let γ ∈ Γ Γ ∞ , and

x 0 := γ -1 ∞. If s φ = 1/2, then (4.1) h E γ (x) = χ(γ) A ± |x -x 0 | s φ + B ± |x -x 0 | 1-s φ -i k E φ (x 0 ) + O φ,γ,ε (|x| -1+ε ) as x → ±∞.
If s φ = 1/2, the asymptotic formula holds upon replacing the term involving

B ± by B ± |x -x 0 | 1/2 log |x -x 0 |.
The numbers A ± , B ± are obtained from the coefficients A, B in (2.5) through

(4.2) A ± = AΥ k,±1 (s φ ), B ± = BΥ k,±1 (1 -s φ ), (s φ = 1/2).
where Υ k,± (s φ ) satisfy equation (4.16) below. When s φ = 1/2, we have

(4.3) A ± = AΥ k,±1 ( 1 2 ) + BΥ k,±1 ( 1 2 ), B ± = BΥ k,±1 ( 1 2 ), (s φ = 1/2).
We insist that in this statement, it is understood that the bottom left coefficient of γ is positive, or otherwise the ill-defined factor χ(γ) must be replaced by χ(γ) sgn(c) k .

We deduce the following asymptotic expansion close to γ -1 ∞.

Corollary 4.2. Let the notations be as in Theorem 4.1, and let c > 0 denote the bottom left coefficient of γ.

Then if s φ = 1/2, we have

h E γ (γ -1 ∞ -c -2 δ) = -(∓1) k A ± |δ| -s φ + B ± |δ| s φ -1 -i k E(γ∞) + O φ,γ,ε (|δ| 1-ε ) as δ → 0 ± .
If s φ = 1/2, the analogous formula holds with the term involving B ± replaced by A geometric proof in a special case. As for quantum modularity we will begin with a geometric proof in the special case where φ = iR 0 ϕ with ϕ a Maaß cusp form of weight 0, trivial multiplier and now assumed to be of level 1 (i.e. Γ = PSL(2, Z)). We will consider the behavior of h S = h E S where S = 0 -1 1 0 . In this case the proof boils down to an elementary geometric lemma, which in words states that as |x| → ∞, the majority of the area of F x,0 is near the cusp at ∞ (see Figure 3). 

B ± |δ| -1/2 log(1/ |δ|).
area(F x,0 ∩ {z ∈ H : Im z ≤ Y }) ≤ 2 min(Y /|x|, 1/2).
Proof. Clearly we can assume x > 0. Now the result follows from the following calculation

area(F x,0 ∩ {z ∈ H : Im z ≤ Y }) = 2 min(x/2,Y ) 0 x- √ x 2 -v 2 0 dudv v 2 = 2 min(x/2,Y ) 0 1 x + √ x 2 -v 2 dv ≤ 2 min(x/2, Y )x -1 .
Using the expression (3.3) for h S in this case, we write

h S (x) = -2i ∞ 0 ∂ ∂z ϕ(z)dz + λ ϕ Fx,0∩{z∈H:Im z≤Y } ϕ(z)dµ 0 (z) + λ ϕ Fx,0∩{z∈H:Im z>Y } ϕ(z)dµ 0 (z), with Y = 2 π log |x|. For Im z > 2 π log |x|, we have ϕ(z) ϕ e -π 2 Im z e -log |x| = |x| -1 ,
using the exponential decay of the Whittaker function. Now using that area(F x,0 ) = π as well as Lemma 4.3, we conclude that

h S (x) = -2i ∞ 0 ∂ ∂z ϕ(z)dz + O ϕ log |x| |x| as x → ±∞
. This is exactly Theorem 4.1 in our case (even with an improved error-term).

Finally we notice that by Fourier expanding it can easily be seen shown that

-2i ∞ 0 ∂ ∂z ϕ(z)dz = γ ϕ (1/2)L(ϕ, 1/2), ϕ = -1 0, ϕ = 1,
,

where γ ϕ (s) = 2 3/2 (2π) -s Γ s+1+itϕ 2 Γ s+1-itϕ 2 , L(ϕ, s) = n>0 a(n)n 1/2-
s is the standard L-function associated to ϕ, and ϕ is the eigenvalue of ϕ under the involution Q s φ ,0 . We will see in Section 5.2 this fact in greater generality. 4.2. Proof in the general case. The rest of this section is devoted to the proof of Theorem 4.1. We allow all implicit constants to depend on φ, γ and ε, possibly in addition to other parameters indicated in subscript. Let x ∈ C(Γ) be given, and

x 0 := γ -1 ∞, Y := |x| ε .
We may assume that x = x 0 . It suffices to prove the theorem for x ∈ C(Γ), since we have shown that h E γ is continuous. We take a representative γ = a b c d with c > 0. For r, r ∈ C(Γ), let G(r, r ) denote the geodesic going from r to r in

H. Let Z = G(x, x 0 ), L r := G(r, ∞),
so that L r is follows a vertical half-line upwards. Finally, we denote the truncations

Z ± , L ± r
where Z + is the portion of Z located in {Im z ≥ Y }, and Z -consists of the two portions of Z located in {Im z ≤ Y }. Similarly, L + r is the portion of L r starting from r+iY upwards, and L - r is the segment [r, r+iY ]. For Re(s) > 1, we consider the integrals

G(x, s) := Z u γ (z)φ(z)(Im z) s-1/2 ds(z), V φ (t) := G(±1,0) (u/ |u|) k φ ∞ (|t| Im u) ds(u), (t ∈ R {0}, ± = sgn(t)). (4.4) Proposition 4.4.
(1) The map G(x, •) extends to a meromorphic function in {Re(s) > 0}, which is analytic at

1/2. (2) We have G(x, 1/2) = E φ (γx). (3) As |x| → ∞, we have (4.5) G(x, 1/2) = χ(γ)(V φ (x -x 0 ) -i k E(x 0 )) + u γ (x)E(x) + O(|x| -1+ε ).
Proof. To prove the first assertion, we change variables, and write

G(x, s) = x0 x φ(γz)(Im z) s-1/2 ds(z) = ∞ γx φ(z)(Im γ -1 z) s-1/2 ds(z) = ∞ γx φ ∞ (Im z)(Im γ -1 z) s-1/2 ds(z) (4.6) + ∞ γx (φ(z) -φ ∞ (Im z)) (Im γ -1 z) s-1/2 - (Im z) s-1/2 |j(γ -1 , γx)| 2s-1 ds(z) (4.7) + E(γx, s) |j(γ -1 , γx)| 2s-1 . (4.8)
We note that j(γ -1 , γx) = j(γ, x) -1 , but we will not use this at this point. The meromorphic extension and regularity at 1/2 of the third summand (4.8) is a consequence of Proposition 2.2. Next, by the exponential decay of φ(z) -φ ∞ (Im z) for large Im z, and since

(Im γ -1 z) s-1/2 - (Im z) s-1/2 |j(γ -1 , γx)| 2s-1 = ( j(γ -1 , γz) 2s-1 -j(γ -1 , γx) 2s-1 )(Im z) s-1/2 = O x ((Im z) s+1/2 )
as Im z → 0, we deduce that the second integral (4.7) converges uniformly with respect to s on compacts of {Re(s) > 0}, and is therefore an analytic function of s in the same region. It obviously vanishes at s = 1/2.

Finally we focus on the first integral (4.6). Writing z = γx + iy, we have

Im γ -1 z = y |j(γ -1 , γx + iy)| 2 = y j(γ, x) -2 + (cy) 2 . Since j(γ, x) = c(x -x 0 ), we deduce ∞ γx φ ∞ (Im z)(Im γ -1 z) s-1/2 ds(z) = ∞ 0 φ ∞ (y) y j(γ, x) -2 + (cy) 2 s-1/2 dy y = |x -x 0 | s-1/2 ∞ 0 φ ∞ y c 2 |x -x 0 | y 1 + y 2 s-1/2 dy y .
Given the shape of φ ∞ in (2.5), we deduce that for Re(s) > 1, the integral (4.6) is a linear combination of

g τ (s) := ∞ 0 y τ +s-1/2 (1 + y 2 ) s-1/2
dy y for τ ∈ {s φ , 1 -s φ }, and its derivative with respect to τ . But for Re(s) > 1 2 + |Re(τ )|, we have by [25, 8.380.3]

g τ (s) = Γ( s+τ -1/2 2 )Γ( s-τ -1/2 2 ) 2Γ(s -1/2) .
Thus, both g τ and d dτ g τ extend meromorphically to C, are regular at s = 1/2 and vanish there. This finishes the proof of the first item. Evaluating at s = 1/2, the terms (4.6) and (4.7) vanish and we are left with G(x, 1/2) = E(γx) as announced in the second item.

To prove the asymptotic estimate (4.5), we split Z = Z + + Z -, and write accordingly

G(x, s) = G + (x, s) + G -(x, s).
It is clear that G + (x, •) is defined and holomorphic on C, since the integration path Z + is compact in H. We write

G + (x, s) = Z + u γ (z)(φ(z) -φ ∞ (Im z))(Im z) s-1/2 ds(z) + Z + u γ (z)φ ∞ (Im z)(Im z) s-1/2 ds(z).
We recall that Z + is contained in {Im z ≥ Y } and Y → ∞. By the Fourier expansion (2.4) at ∞ and the exponential decay of the Whittaker function, we deduce that |φ(z) -φ ∞ (Im z)| Y -A for any fixed A > 0. Using the triangle inequality and a rough estimate of the hyperbolic length of Z + , it follows that for |s| 1, we have

Z + u γ (z)(φ(z) -φ ∞ (Im z))(Im z) s-1/2 ds(z) = O A (Y -A |x|) = O(|x| -2 ).
by picking A large enough in terms of ε. Evaluating at s = 1/2, we deduce (4.9)

G + (x, 1/2) = O(|x| -2 ) + Z + u γ (z)φ ∞ (Im z)(Im z) s-1/2 ds(z).
On the other hand, we let µ, ν be shorthands for µ x (y) and ν x (y). We insist that these depend on y. By parametrizing Z -, we have

G -(x, s) = Y 0 u γ (x -ν + iy)φ(x -ν + iy)y s-1/2 µ dy y - Y 0 u γ (x 0 + ν + iy)φ(x + ν + iy)y s-1/2 µ dy y = G - 1 (x, s) -G - 2 (x, s), say. We split G - 1 (x, s) = 5 i=1 G i (x, s),
where

G 1 (x, s) := Y 0 (u γ (x -ν + iy)φ(x -ν + iy)µ -u γ (x)φ(x + iy))y s-1/2 dy y , G 2 (x, s) := u γ (x)E(x, s) = u γ (x) ∞ 0 (φ(x + iy) -φ ∞ (y))y s-1/2 dy y , G 3 (x, s) := -u γ (x) ∞ Y (φ(x + iy) -φ ∞ (y))y s-1/2 dy y , G 4 (x, s) := Y 0 (u γ (x) -u γ (x -ν + iy)µ)φ ∞ (y)y s-1/2 dy y , G 5 (x, s) := Y 0 u γ (x -ν + iy)φ ∞ (y)y s-1/2 dy y .
All five terms here are meromorphic on {Re(s) > 0} and analytic at s = 1/2: For G 1 , this follows from the bounds (2.8), (3.6) and (3.7). For G 2 , this follows from Proposition 2.2. For G 3 , this follows from uniform convergence. For G 4 and G 5 , this follows from the bound φ ∞ (y)

y σ+ε as y → 0, where σ = 1 -Re(s φ ) > 0 if Re(s φ ) > 1 or σ = Re(s φ ) > 0 if s φ ≡ k 2 (mod 1
). Here we used the fact that in the latter case we have B ∞ = 0 in (2.5).

We now use the more precise bounds, valid for y ≤ Y ,

(4.10) |µ -1| x -2 y 2 , |ν| |x| -1 y 2 ,
and

(4.11) |u γ (x -ν + iy) -u γ (x)| e ik arctan(y/(x-x0-ν)) -1 |x| -1 y.
Using these bounds along with (2.8) and (2.9), we obtain

(u γ (x -ν + iy)φ(x -ν + iy)µ -u γ (x)φ(x + iy)) y 1/2+ε |x| -1 , (0 ≤ y ≤ Y ),
and therefore

G 1 (x, 1 2 ) = O(|x| -1+ε ).
Concerning G 3 , using the bound φ(x + iy) -φ ∞ (y) = O A (y -A ) for any fixed A > 0, we deduce

G 3 (x, 1 2 ) = O A (Y -A ) = O(|x| -1 )
by picking A large enough in terms of ε. We bound G 4 by using again (4.10) and (4.11), obtaining

G 4 (x, 1 2 ) Y 0 y 1-Re(s φ ) |x| -1 dy |x| -1+ε .
Finally, we have G 2 (x, 1 2 ) = u γ (x)E(x), and leaving G 5 (x, 1 2 ) unevaluated for now, we conclude the analytic continuation of G - 1 (x, •) and the expression (4.12)

G - 1 (x, 1 2 ) = u γ (x)E(x) + Y 0 u γ (x -ν + iy)φ ∞ (y)µ dy y + O(|x| -1+ε ).
We evaluate G - 2 (x, s) in a similar way, except for the terms involving u γ . First we notice that for y > 0, the quantity

u γ (x 0 + iy) = χ(γ)(i sgn(c)) k is independent of y. Then we bound |u γ (x 0 + ν + iy) -u γ (x 0 + iy)| e ik arctan(ν/y) -1 |ν| /y y |x| -1 .
Using this bound in place of (4.11), we may reproduce the above computations, to the effect that G - 2 (x, •) extends to a meromorphic function on {Re(s) > 0} which is analytic at 1/2, and

(4.13) G - 2 (x, 1 2 ) = χ(γ)i k E(x 0 ) + Y 0 u γ (x 0 + ν + iy)φ ∞ (y)µ dy y + O(|x| -1+ε
).

The map G -(x, •) therefore extends meromorphically to {Re(s) > 0} since G - 1 and G - 2 do. Summing our two estimates (4.12) and (4.13), and by parametrizing again Z -, we get

(4.14) G -(x, 1 2 ) = u γ (x)E(x) -χ(γ)i k E(x 0 ) + Z - u γ (z)φ ∞ (Im z) ds(z) + O(|x| -1+ε ).
By summing the estimates (4.9) and (4.14), we deduce

G(x, 1 2 ) = u γ (x)E(x) -χ(γ)i k E(x 0 ) + Z u γ (z)φ ∞ (Im z) ds(z) + O(|x| -1+ε ).
There remains to evaluate the last integral. To do this we change variables z = |x -x 0 | u + x 0 . This sends the geodesic circle Z = G(x, x 0 ) to G(η, 0), where η = sgn(x -x 0 ), and matches the corresponding geodesic lengths. We also have Im z = |x -x 0 | Im u, and since we assumed c > 0, we get u γ (z) = χ(γ)(u/ |u|) k . We deduce as claimed

Z u γ (z)φ ∞ (Im z) ds(z) = χ(γ) G(η,0) u |u| k φ ∞ (|x -x 0 | Im u) ds(u).
Comparing the second and third items of the previous proposition, we have

h E γ (x) = E(γx) -u γ (x)E(x) = χ(γ)(V φ (x -x 0 ) -i k E(x 0 )) + O(|x| -1+ε
).

The asymptotic formula (4.1) follows using the expression (4.4) for V φ (x -x 0 ) and (2.5) for φ ∞ .

For k ∈ Z, η ∈ {±1} and τ ∈ C, Re(τ ) > 0, define

(4.15) Υ k,η (τ ) := G(η,0) (u/ |u|) k (Im u) τ ds(u).
The expressions (4.2) and (4.3) are clear from the definition of V ∞ and Υ k,η . To finish the proof of Theorem 4.1, we describe Υ k,η (τ ) in terms of Γ-functions. Lemma 4.5. We have

(4.16) Υ k,η (τ ) = e πi(2-η)k/4 2πΓ(τ ) 4 τ Γ( τ +1+k/2 2 )Γ( τ +1-k/2 2 )
.

Proof of Lemma 4.5. Assume first η = 1. In the integral (4.15), we let u = e iθ/2 cos(θ/2) with θ ∈ [0, π], so that Im u = 1 2 sin(θ), u/ |u| = e iθ/2 and (Im u) ds(u) = 1 2 dθ. This gives

Υ k,1 (τ ) = 2 -τ π 0 e ikθ/2 (sin θ) τ -1 dθ.
By equations (3.631.1) and (3.631.8) of [START_REF] Gradshteyn | Table of integrals, series, and products[END_REF], the stated result follows for η = 1.

When η = -1, then we change variables u ← -1/u in (4.15). This sends G(-1, 0) to G(1, 0), changes (u/ū) k to (-1) k (u/ū) -k and leaves Im u, ds(u) unchanged. We deduce Υ k,-1 (τ ) = (-1) k Υ -k,1 (τ ), and by using the formula above for η = 1 we get the stated result.

Proof of Corollary 4.2. Let x 1 := γ∞ and

x = δ -1 + x 1 .
This is defined so that

γ -1 ∞ -c -2 δ = γ -1 x.
We have also j(γ -1 , x) = -cx + a = -cδ -1 , and therefore

u γ (γ -1 x) = u γ -1 (x) = χ(γ)(-sgn(δ)) k .
We deduce

h E γ (γ -1 ∞ -c -2 δ) = E(x) -u γ -1 (x)E(γ -1 x) = -χ(γ)(-sgn(δ)) k h E γ -1 (x).
As δ → 0 with sgn(δ) = ±, we have x → ±∞, therefore Theorem 4.1 applies and yields the announced estimate.

For future reference, we list the special cases (4.17)

Υ 0,± ( 1 2 ) = π 3/2 Γ(3/4) 2 , Υ 1,± ( 1 2 ) = η+i √ 2 π, Υ 2,± ( 1 2 ) = iη 4π 3/2 Γ(1/4) 2 , Υ 0,± Υ0,± ( 1 2 ) = -π 2 -log 2, Υ 2,± Υ2,± ( 1 2 ) = π 2 -log 2 -2.
They are obtained using the values listed in [25, 8.366 

h E γ (x) = η A ± |x + x 0 | s φ + B ± |x + x 0 | 1-s φ -i k E φ (-x 0 ) + O φ,γ,ε (|x| -1+ε ).
We omit the proof, since it is identical to Theorem 4.1, starting instead from the integral

G(x, s) := G(x,-x0) ηj k γ (z)φ(z)(Im z) s-1/2 ds(z).
Theorem 4.6 will be useful when studying reciprocity laws in Section 8. This will involve the action under the Fricke involution.

Quantum modularity for the central value of the twisted L-function

In this section, we prove an analogue of Theorem 3.1 for the following twisted Dirichlet series :

-If s φ ≡ k 2 (mod 1), then we let (5.1)

L ± (φ, x, s) := n>0 a(n) cos(2πnx) |n| 1/2-s , (± = +), i n>0 a(n) sin(2πnx) |n| 1/2-s , (± = -).
-If s φ ≡ k 2 (mod 1), then we let Since W α,β (y) y 1/2-Re(β)+ε (see [18, eq. (4.19)]), the integral certainly converges absolutely for Re(s) > |Re(β)|. In particular, it is always regular at s = 1/2. At this particular point, we have by [25, (7.611.1)]

(5.4)

Ω β (α, 1 2 ) = π 3/2 2 α cos(πβ)Γ( 3 4 -1 2 α + 1 2 β)Γ( 3 4 -1 2 α -1 2 β) .
In the rest of this section, β is fixed. Mellin integrals of W α,β have been studied in [18, section 8] (see also [56, section 12]), and we will return to these works below in Remark 5.2. We are interested in the quantity (5.5) s), which will appear later as a certain determinant.

∆ β (α, s) := ( 1 2 + α + β)( 1 2 + α -β)Ω β (-α -1, s)Ω β (α, s) + Ω β (-α, s)Ω β (α + 1,
Proposition 5.1. The map ∆ β (α, •) extends to a meromorphic function on C. It is independent of α, and

∆ β (α, s) = 4 s Γ(s + β)Γ(s -β).
In particular, ∆ β (α, s) = 0. The special case s = 1/2 of Proposition 5.1 can be checked directly from the explicit expression (5.4).

Proof. By analyticity, we may assume that Re(s) > |Re(β)|, and also that s ∈ α+ 1 2 +Z. By equations (7.621.3) and (9.131.1) of [START_REF] Gradshteyn | Table of integrals, series, and products[END_REF], we have for Re(s) > |Re(β)| the equality (5.6)

Ω β (α, s) = Γ(s + β)Γ(s -β) Γ(s -α + 1 2 ) F (s -β, s + β; s -α + 1 2 ; 1 2 ). Letting (a, b, c) := (s -β, s + β, s -α + 1 2 ), we then have s + α + 1 2 = a + b -c, 1 2 + α + β = b -c, 1 2 + α -β = a -c
, and we eventually arrive at

∆ β (α, s) = Γ(a) 2 Γ(b) 2 Γ(a + b -c + 1)Γ(c + 1) (c -a)(c -b)F (a, b; c + 1; 1 2 )F (a, b; a + b -c + 1; 1 2 ) + c(a + b -c)F (a, b; c; 1 2 )F (a, b; a + b -c; 1 2
) . An identity between hypergeometric functions, which we have stated and proved in Lemma A.2 in the appendix, allows us to deduce ∆ β (α, s) = 2 a+b Γ(a)Γ(b), which is the claimed equality.

Remark 5.2. In [START_REF] Duke | The subconvexity problem for Artin L-functions[END_REF], section 8, integrals closely related to Ω β (α, s) are studied. A minor mistake in the computations there was recently corrected in [START_REF]Explicit calculations with Eisenstein series[END_REF], section 12. With the notation from [56, section 12], we find for k ∈ Z ≥0 that

Ω β (k/2, s) = π -1/2 4 s-1 (Φ + k (s, β) + Φ - k (s, β)), Ω β (-k/2, s) = π -1/2 4 s-1 Γ(β + 1-k 2 ) Γ(β + 1+k 2 ) (Φ + k (s, β) -Φ - k (s, β)).
Then a quick computation shows that Proposition 5.1 at α = k/2 is essentially equivalent to the equality

p + k (s, β)p - k+2 (s, β) -p + k+2 (s, β)p - k (s, β) = 2 Γ(β + 1+k 2 ) Γ(β + 1-k 2 )
.

Notice the right-hand side is independent of s. The sequences of polynomials (p ± k ) satisfy a recurrence relation, see [56, eq. (12.2)]. It would be interesting to know if one can show the above relation, and therefore Proposition 5.1 for α = k/2, by induction on k instead of the arguments presented here.

As we will see, the quantity ∆ β (α, s) arises from the computation of the discriminant in a 2 × 2 linear system (5.10) below, which is somewhat analogous to a Wronskian: the second row arises from Mellin integrals of Whittaker functions similar to the first row, but to which a level-raising operator was applied. It would be interesting to know if a more direct argument could be used. Our early attempts were unsuccessful.

5.2.

Relation with the period integral. In the setting described in Section 2, we let let φ be a Maaß form for Γ of weight k and eigenvalue s φ . In this section, we relate the twisted L-functions (5.1)-(5.2) to the Eichler integral (2.11). This can be seen as a generalization of computations done in Sections A.3 and A.4 of [START_REF] Kowalski | Rankin-Selberg L-functions in the level aspect[END_REF].

Recall the definition (2.2) of the raising and lowering operators. We will require two different forms related to φ. When 1 2 ≤ Re(s φ ) < 1 and s φ = 1/2, let (5.7)

ψ := R k φ.
This is a weight k + 2 Maaß form for Γ with the same eigenvalue s φ and nebentypus χ as φ. In particular, it follows from Proposition 2.2 and Theorem 3.1 that for all x ∈ C(Γ), the map E(ψ, x, •) extends to a meromorphic function on C which is regular at 1/2, and that the map E ψ (x) = E(ψ, x, 1/2) is such that for all γ ∈ Γ, the difference h E γ (ψ; x) := E ψ (γx) -j γ (x) k+2 χ(γ)E ψ (x) extends to a (1/2 -ε)-Hölder continuous function of x on R {γ -1 ∞}. Note that since j γ (x) ∈ {±1}, we obviously have (5.8)

h E γ (ψ; x) = E ψ (γx) -j γ (x) k χ(γ)E ψ (x).
When φ is associated to a holomorphic form, say Re(s φ ) = /2 with 1 ≤ ≤ k, ≡ k (mod 2), then we let (5.9)

f := Λ +2 • • • Λ k-2 Λ k φ
be the underlying Maaß form of weight , same eigenvalue s φ = /2 and same nebentypus as φ. The map z → y -/2 f (z) is holomorphic of weight , see [18, p. 507]. Similarly as above, it follows from Proposition 2.2 and Theorem 3.1 that the map

E f (x) = E(f, x, 1/2) is such that for all γ ∈ Γ, the difference h E γ (f ; x) = E f (γx) -j γ (x) k χ(γ)E f (x) extends to a (1/2 -ε)-Hölder continuous function on R {γ -1 ∞}.
Here we have used that k and have the same parity.

We will pass through the intermediate object

U ± (φ, x, s) := n =0 sgn(n)=± a(n) e(nx) |n| 1/2-s ,
defined and analytic in {Re(s) > 1}. This is for convenience only, and we will switch soon thereafter to L ± itself.

Lemma 5.3. For Re(s) > 1, the following holds:

-If s φ ≡ k 2 (mod 1), then

(5.10) (4π) s-1/2 E(φ, x, s) = Ω it φ ( k 2 , s)U + (φ, x, s) + Ω it φ (-k 2 , s)U -(φ, x, s), (4π) s-1/2 E(ψ, x, s) = -Ω it φ ( k 2 + 1, s)U + (φ, x, s) + (s φ + k 2 )(1 -s φ + k 2 )Ω it φ (-k 2 -1, s)U -(φ, x, s). -If s φ = k/2, then (5.11) (2π) s-1/2 E(φ, x, s) = 2 k/2 Γ( k 2 + s - 1 
2 )U + (φ, x, s). Proof. Consider first the case s φ ≡ k 2 (mod 1). For Re(s) > 1 we have

E(φ, x, s) = n =0 a(n) e(nx) ∞ 0 W k/2 sgn(n),it φ (4π |n| y)y s-1/2 dy y = n =0 a(n) e(nx)(4π |n|) 1/2-s ∞ 0 W k/2 sgn(n),it φ (y)y s-1/2 dy y = (4π) 1/2-s n =0 a(n) e(nx) |n| 1/2-s Ω it φ ( k 2 sgn(n), s).
This gives the first claimed equation.

To prove the second claimed equation, we recall the action of R k on the Fourier expansion described by [18, eqs. (4.25)-(4.26)], frow which we obtain for all z ∈ C

ψ(z) = ψ ∞ (y) + n =0 a ψ (n) e(nx)W ( k 2 +1) sgn(n),it φ (4π |n| y),
where

a ψ (n) = -a(n) (n > 0), (s φ + k 2 )(1 -s φ + k 2 )a(n) (n < 0)
. We deduce that (5.12) x,s). On the other hand, by the above computations applied to ψ instead of φ, we deduce (5.13)

U + (ψ, x, s) = -U + (φ, x, s), U -(ψ, x, s) = (s φ + k 2 )(1 -s φ + k 2 )U -(φ,
(4π) s-1/2 E(ψ, x, s) = Ω it φ ( k 2 + 1, s)U + (ψ, x, s) + Ω it φ (-k 2 -1, s)U -(ψ,
x, s). Grouping (5.12) and (5.13) proves the second claimed equation and completes the proof when φ is not associated with a holomorphic form.

Assume that s φ = k/2, with k ≥ 1. Then we have the explicit expression [18, eq. (4.21)]

W k 2 , k-1 2 (y) = y k/2 e -y/2 ,
from which we deduce in the larger region of absolute convergence Re(s) > 0 that

E(φ, x, s) = (4π) s-1/2 2 k/2+s-1/2 Γ( k 2 + s -1 2 ) n>0 a(n) e(nx)n 1/2-s .
This gives our second claim.

Lemma 5.4. The maps L ± (φ, x, •) extend to meromorphic functions on the domain {Re(s) > 0}, which are regular at 1/2.

More precisely, the following holds:

-If s φ ≡ k 2 (mod 1), then for some constants c ± φ and c ± ψ , we have (5.14)

L ± (φ, x, 1/2) = c ± φ E(φ, x, 1/2) + c ± ψ E(ψ, x, 1/2)
, where ψ was defined in (5.7).

-If s φ = /2 for 1 ≤ ≤ k, ≡ k (mod 2), then for some constant c ± φ , we have

(5.15) L(φ, x, 1/2) = c f E(f, x, 1/2),
where f was defined in (5.9).

The constants c ± φ , c ± ψ , c ± f depend only on s φ and k. They are given in (5.18) and (5.21) below.

Proof. First we assume s φ ≡ k 2 (mod 1). Let β = it φ , which satisfies Re(β) ∈ [0, 1/2). Note that

(s φ + k 2 )(1 -s φ + k 2 ) = ( 1+k 2 + β)( 1+k 2 -β).
With this notation, the system of equations from Lemma 5.3 has discriminant ∆ β ( 1 2 , s), where ∆ β was defined in (5.5). Since it does not vanish by Proposition 5.1, we have the existence of functions g ± φ holomorphic on {Re(s) > 0} such that for Re(s) > 1,

(5.16) U ± (φ, x, s) = ∆( k 2 , s) -1 (g ± φ (s)E(φ, x, s) + g ± ψ (s)E(ψ, x, s
)), and this identity between meromorphic functions holds for Re(s) > 0 by analytic continuation. More precisely, we have by Cramer's rule

g + φ (s) = (4π) s-1/2 Ω it φ (-k 2 -1, s)(s φ + k 2 )(1 -s φ + k 2 ), g + ψ (s) = -(4π) s-1/2 Ω it φ (-k 2 , s), g - φ (s) = (4π) s-1/2 Ω it φ ( k 2 + 1, s), g - ψ (s) = (4π) s-1/2 Ω it φ ( k 2 , s
). Now, by the hypothesis (H 4 ) and computing the action of Q sk on the Fourier expansion [18, equation (4.70)], we have for all n > 0 that

a(n) = φ Γ(s φ -k 2 ) Γ(s φ + k 2 ) a(-n).
We deduce, for all x ∈ C(Γ),

(5.17)

U + (φ, -x, s) = φ Γ(s φ -k 2 ) Γ(s φ + k 2 ) U -(φ, x, s).
Therefore, we have

L ± (φ, x, s) = 1 2 U + (φ, x, s) ± φ Γ(s φ -k 2 ) Γ(s φ + k 2 ) U -(φ, x, s) ,
we deduce that for any x ∈ C(Γ), the map L ± (φ, x, •) also extends to Re(s) > 0. By Proposition 5.1, we have ∆( k 2 , 1/2) = 0, therefore both sides of (5.16) are regular at 1/2. The relation (5.14) follows with

c ± * = (2∆( k 2 , 1/2)) -1 g + * (1/2) ± φ Γ(s φ -k 2 ) Γ(s φ + k 2 ) g - * (1/2) , ( * ∈ {φ, ψ}).
The coefficients here are expressed using (5.4) and the functional equation of the Γ function as

g ± φ ( 1 2 ) = π 3/2 2 1∓k/2 cosh(πt φ )Γ( 1±k 4 + i t φ 2 )Γ( 1±k 4 -i t φ 2 ) , g ± ψ ( 1 2 ) = ∓π 3/2 2 1∓k/2 cosh(πt φ )Γ( 3±k 4 + i t φ 2 )Γ( 3±k 4 -i t φ 2 )
.

Along with the explicit expression for ∆( k 2 , 1/2) from Proposition 5.1, and upon using the complement and duplication formula for the Euler Γ function, this yields (5.18)

c ± φ = √ π2 -1-k/2 Γ( 1+k 4 + i t φ 2 )Γ( 1+k 4 -i t φ 2 ) 1 ± φ cos( π 2 ( 1+k 2 + it φ )) sin( π 2 ( 1+k 2 -it φ )) , c ± ψ = √ π2 -1-k/2 Γ( 3+k 4 + i t φ 2 )Γ( 3+k 4 -i t φ 2 ) -1 ± φ sin( π 2 ( 1+k 2 + it φ )) cos( π 2 ( 1+k 2 -it φ ))
.

Note that the quotients of cos, sin on the right-hand sides simplify somehow when k ∈ 2Z ≥0 , for then we have

(5.19) cos( π 2 ( 1+k 2 + it φ )) sin( π 2 ( 1+k 2 -it φ )) = sin( π 2 ( 1+k 2 + it φ )) cos( π 2 ( 1+k 2 -it φ )) = (-1) k/2 , (k even).
Next, we assume s φ = /2 for some integer 1 ≤ ≤ k of the same parity as k. Then, by definition, we have L(φ, x, s) = U + (φ, x, s). By the action of the level-lowering operator Λ k on the Fourier expansion [18, eqs. (4.27), (4.28) and (4.30)], we deduce that for n > 0,

a f (n) = (-1) (k-)/2 Γ( k- 2 + 1)Γ( k+ 2 ) Γ( ) a φ (n).
Hence, for Re(s) > 1

L(φ, x, s) = U + (φ, x, s) = (-1) (k-)/2 Γ( ) Γ( k- 2 + 1)Γ( k+ 2 ) U + (f, x, s).
Since f has eigenvalue s f = s φ = /2 and weight , we can apply (5.11) to obtain

L(φ, x, s) = c f (s)E(f, x, s),
where

(5.20) c f (s) := (-1) (k-)/2 (2π) s-1/2 Γ( ) 2 /2 Γ( 2 + s -1 2 )Γ( k- 2 + 1)Γ( k+ 2 )
.

This shows the claimed analytic extension of L(φ, x, •), and the equation (5.15) with (5.21)

c f = c f (1/2) = (-1) (k-)/2 Γ( ) 2 /2 Γ( 2 )Γ( k- 2 + 1)Γ( k+ 2 )
. Remark 5.5. In the holomorphic case s φ = /2, another option would be to compute directly the Eichler integral E(φ, x, s) from the Fourier expansion of φ, instead of passing through the original form f . This raises two difficulties. The first is that the explicit expression for the Whittaker function

W k 2 , - 1 
2
is more involved, see [25, (9.237.3)], although still elementary. The second difficulty is that E φ (x) vanishes completely if k -≡ 2 (mod 4). Indeed one way to see this is the following: use the formulas (9.237.3) and (8.970.1) of [START_REF] Gradshteyn | Table of integrals, series, and products[END_REF] to reduce to proving that F n, (v) := n m=0 n m Γ( /2+m) Γ( +m) v m vanishes at v = -2 for odd n; by (8.380.1) ibid., we have F n, (v) = Γ( /2) -1 1 0 (1 + vt) n (t(1 -t)) /2-1 dt, which obviously vanishes at v = -2 for odd n by changing t to 1 -t. Therefore, we cannot avoid having to switch to a lowered or raised form in that case.

In practical situations, the formulas [18, (4.25)-(4.30)] provide all the information one needs to translate data from φ to f . 5.3. Quantum modularity for the twisted central L values. By Lemma 5.4, we may now define (5.22) L φ (x) := L(φ, x, 1/2) or L ± φ (x) := L ± (φ, x, 1/2), depending on whether s φ ≡ k 2 (mod 1) or not. We recall that ψ or f were defined in terms of φ in (5.7) or (5.9). Theorem 5.6. When s φ ≡ k 2 (mod 1), the maps L ± φ (•) are quantum modular forms for Γ with multiplier u γ in the same sense as in Theorem 3.1, meaning that for all γ ∈ Γ, the map (1) .

(5.23) h ± γ (x) := L ± φ (γx) -j γ (x) k χ(γ)L ± φ (x), initially defined for x ∈ C(Γ) {∞, γ -1 ∞} extend to a (1/2 -ε)-Hölder continuous function on R {γ -1 ∞}. More precisely, for x, x ∈ [γ -1 ∞ -ε, γ -1 ∞ + ε], we have h ± γ (x) -h ± γ (x ) I,γ,φ,ε |x -x | 1/2-ε (1 + |x| + |x |) O φ
The analogous statement holds for the map L φ (•) when s φ ≡ k 2 (mod 1). Proof. Assume first that s φ ≡ k 2 (mod 1). By the relation (5.14) and linearity, we deduce (5.24)

h ± γ (x) = c ± φ h E γ (φ; x) + c ± ψ h E γ (ψ;
x), where h E γ (φ; x) satisfies (3.1) and h E γ (ψ; x) satisfies (5.8). By Theorem 3.1, both extend to (1/2 -ε)-Hölder continuous functions of x to R {γ -1 ∞}, which proves our claim in the case where φ is not associated to a holomorphic form.

The proof in the case Re(s φ ) = /2 is similar, invoking (5.15) in place of (5.14).

From Theorems 5.6 and 4.1, it is straightforward to obtain the asymptotic behaviour of h + γ and h - γ as x → ∞ or x → γ -1 ∞. However, the constants involved do not seem to admit a particularly simple expression in terms of φ ∞ or L ± (x 0 ), so we refrain from carrying this out here.

Similarly as for Theorems 3.4 and 4.6, we obtain the following asymptotic behaviour on the generalized period function h E γ define in (3.20). Theorem 5.7. Let γ ∈ SL(2, R) and let φ be as above. Assume that for some η ∈ C, we have (γφ)(z) = ηj γ (z) k φ(z) for all z ∈ H. Then the analogue of Theorem 5.6 holds for the period functions defined for x ∈ C(Γ) {∞, -γ -1 ∞} by

h ± γ (x) := L ± φ (γ(-x)) -ηj γ (x) k L ±(-1) k φ (x), (s φ ≡ k 2
(mod 1)), (5.25)

h γ (x) := L φ (γ(-x)) -ηj γ (x) k L φ (x), (s φ ≡ k 2 (mod 1)).
Note the change of sign ± in the first case, which, as we will see, is ultimately due to the conjugation.

Proof. We first note that c f ∈ R. Therefore the second equality immediately follows from (5.15). Next, when k is even, we see from (5.19) and from the fact that t φ ∈ R ∪ iR, that c ± φ , c ± ψ are real numbers. Therefore, the first equality follows by linearity from (5.14) and Theorem 3.4 when k is even.

When k is odd, then as remarked in [18, p. 508], we have t φ ∈ R always. Then a simple computation shows that

c ± φ = c ∓ φ , c ± ψ = c ∓ ψ . By (5.14) we deduce h ± γ (x) = c ∓ φ h E γ (φ, x) + c ∓ ψ h E γ (ψ,
x), and our claim follows from Theorem 3.4.

Functional equation for the additive twist.

In this section only, we assume that φ is cuspidal at ∞, in other words φ ∞ ≡ 0.

We state a functional equation relating, for instance in the non-holomorphic case s φ ≡ k 2 (mod 1),

(5.26) L ± (φ, x, s) and L ±(-1) k (φ, -x, s), where x ∈ C(Γ) {∞} is any cusp equivalent to ∞, and given γ ∈ Γ with x = γ∞, -x is by definition

-x = γ -1 ∞ (x = γ∞).
This depends modulo 1 only the class of γ in Γ ∞ \Γ/Γ ∞ . Note, as in Theorem 5.7, the change of sign in (5.26) when k is odd. The content of this section is not strictly related to quantum modularity, but it is convenient to include it at this point. Define

(5.27)

η := -χ(γ)i k , ν ± := (-1) k 2 - 1∓ φ 4 , (s φ ≡ k 2 (mod 1)), ν f := (-1) (k-)/2 , (s φ = 2 ≡ k 2 (mod 1)).
If c = 0 denotes the bottom-left coefficient of a matrix γ ∈ Γ such that x = γ∞, we let

Λ ± (φ, x, s) = |c| π s Γ s + it φ 2 + 1 ∓ φ (-1) k 4 Γ s -it φ 2 + 1 ∓ φ 4 L ± (φ, x, s), (s φ ≡ k 2 (mod 1)), Λ f (φ, x, s) = |c| 2π s Γ(s φ -1 2 + s)L(φ, x, s), (s φ = 2 ≡ k 2 (mod 1)).
Proposition 5.8. With the above notations, for any cusp x ∈ C(Γ) {∞} equivalent to ∞, we have

Λ ± (φ, x, s) = ην ± Λ ±(-1) k (φ, -x, 1 -s) if s φ ≡ k 2 (mod 1)
, and otherwise

Λ f (φ, x, s) = ην f Λ f (φ, -x, 1 -s).
The special case χ = 1 is Proposition 3.3 of [START_REF]Central values of additive twists of cuspidal L-functions[END_REF], see also Lemma 1.2.(iv) of [START_REF] Mazur | Arithmetic conjectures suggested by the statistical behaviour of modular symbols[END_REF] for an expression in terms of modular symbols. The special case when φ is a certain Eisenstein series of weight 0 is the functional equation of the Estermann function [START_REF] Estermann | On the Representations of a Number as the Sum of Two Products[END_REF], which we mention below in Section 6.2. We focus on the non-holomorphic case s φ ≡ k 2 (mod 1), the complementary case being similar and comparatively simpler. The proof is based on the argument of Hecke [START_REF] Hecke | Über die Bestimmung Dirichletscher Reihen durch ihre Funktionalgleichung[END_REF] in the case of holomorphic forms. The functional equation is deduced from the corresponding one for Eichler integrals, but thereafter one needs to prove a similar functional equation for integrals of Whittaker functions of the shape (5.3).

The case k = 0 of Proposition 5.8 was proved in [36, Appendix A], see equations (A.12) and (A.13). This uses explicit expressions for the integrals Ω it φ (0, s) in (5.4), which we do not have for more general k.

The computations we need for general k are done in [START_REF] Duke | The subconvexity problem for Artin L-functions[END_REF]Section 8]. They correspond to the local functional equation at a real infinite place for the L function of an automorphic representation of GL(2), which was worked out in [31, Chapter 5]; see also [START_REF] Godement | Notes on Jacquet-Langlands' theory, CTM, Class. Top. Math[END_REF]].

Here we sketch a more classical argument which passes through properties of hypergeometric functions. This circumvents the induction over k carried out in [START_REF] Duke | The subconvexity problem for Artin L-functions[END_REF]. We start by the functional equation for Eichler integrals. Lemma 5.9. For any x ∈ C(Γ) equivalent to ∞, with denominator c, we have

E(φ, x, s) = ηc 1-2s E(φ, -x, 1 -s), where η = χ(γ)i k .
Proof. Recall the expression (2.11) and the fast decay of φ near the cusps. Let x ∈ C(Γ) and γ ∈ Γ be such that x = γ∞. We write c = c γ > 0. For z = γ -1 ∞ + iy, y > 0, we have j(γ, z) = icy. For those values of z, we deduce u γ (z) = χ(γ)i k . Hence, for any s ∈ C,

E(φ, x, s) = ∞ γ∞ φ(z)(Im z) s-1/2 ds(z) = ∞ γ -1 ∞ φ(γz)(Im γz) s-1/2 ds(z) = χ(γ)i k ∞ γ -1 ∞ φ(z) |j(γ, z)| 1-2s (Im z) s-1/2 ds(z) = χ(γ)i k c 1-2s E(φ, x, 1 -s).
The previous Lemma can be applied to ψ = R k φ, formally replacing k with k + 2. This yields

E(ψ, x, s) = -ηc 1-2s E(φ, -x, 1 -s)
with the same value η = χ(γ)i k as in Lemma 5.9. We write, as in Section 5.2, ,x,s). By Lemma 5.9, using the value of η defined there, we find 

L ± (φ, x, s) = c ± φ (s)E(φ, x, s) + c ± ψ (s)E(ψ
L ± (φ, x, s) = ηc 1-2s c ± φ (s)E(φ, -x, 1 -s) -c ± ψ (s)E(ψ, -x, 1 -s) .
Ψ ± (s) = ν ± π 2s-1 Γ( 1-s-it φ 2 + 1∓ φ (-1) k 4 )Γ( 1-s+it φ 2 + 1∓ φ 4 ) Γ( s+it φ 2 + 1∓ φ (-1) k 4 )Γ( s-it φ 2 + 1∓ φ 4
) where ν ± was defined in (5.27). Then we have

c ± φ (s) = Ψ ±,φ (s)c ±(-1) k φ (1 -s), c ± ψ (s) = -Ψ ±,φ (s)c ±(-1) k ψ (1 -s).
Proof. This statement is precisely the local functional equation at the real infinite place for the representation of Γ\ GL(2, A Q ) associated with φ [START_REF] Jacquet | Automorphic forms on GL[END_REF]Theorem 5.15]. We give here a proof in classical terms which relies on computations involving hypergeometric functions. These computations are carried out in the appendix.

Recall the definition (5.3). For s, β ∈ C with 0 ≤ Re(β) < 1 2 and Re(s) > |Re(β)|, and k ∈ Z, let

F ± k (s, β) := 1 Γ(s -β)Γ(s + β) -Ω β (-k 2 , s) ± Γ( 1-k 2 + β) Γ( 1+k 2 + β) Ω β ( k 2 , s) .
Lemma 5.11. The following identity between meromorphic functions of s holds:

F ± k (s, β) = -(-1) k/2-(1∓1)/4) Γ( 1-s+β 2 + 1∓1 4 )Γ( 1-s-β 2 + 1∓(-1) k 4 ) Γ( s+β 2 + 1∓(-1) k 4 )Γ( s-β 2 + 1∓1 4 ) F ±(-1) k k (1 -s, β).
Proof. First note that

F ± k (s, -β) = F ±(-1) k k (s, β).
This is a restatement of [18, eq. (8.34)]; it follows from the invariance of Ω β (α, s) by β ← -β and by the complement formula. We now use Lemma A.3 and the functions G ± , Q ± defined therein. By (5.6), we have

F ± k (s, β) = - 1 Γ(s + 1-k 2 ) Γ(s + 1-k 2 ) Γ(s + 1+k 2 ) F (s -β, s + β; s + 1+k 2 ; 1 2 ) ∓ Γ( 1-k 2 + β) Γ( 1+k 2 + β) F (s -β, s + β; s + 1-k 2 ; 1 2 ) = - 1 Γ(s + 1-k 2 ) G ∓ (s -β, s + β, s + 1-k 2 ).
We then compute

F ± k (s, β) F ± k (1 -s, -β) = Γ(1 -s + 1-k 2 ) Γ(s + 1-k 2 ) G ∓ (s -β, s + β, s + 1-k 2 ) G ∓ (1 -s + β, 1 + s -β, 1 -s + 1-k 2 ) = Γ(1 -s + 1-k 2 ) Γ(s + 1-k 2 ) Q ∓ (s -β, s + β, s + 1-k 2 ).
Using the explicit expression from Lemma A.3 with n = k -1, we get

Q ∓ (s -β, s + β, s + 1-k 2 ) = (-1) k 2 2s-1 Γ(1 -s + β)Γ(1 -s -β) Γ( 1+k 2 -s)Γ( 3-k 2 -s) 1 ∓ cos(π(β + k 2 )) cos(π(s + k 2 ))
, and therefore

F ± k (s, β) F ± k (1 -s, -β) = (-1) k 2 2s-1 Γ(1 -s -β)Γ(1 -s + β) Γ( 1 2 -s + k 2 )Γ( 1 2 + s -k 2 ) 1 ∓ cos(π(β + k 2 )) cos(π(s + k 2 )
) and the claimed formula follows by the complement and duplication formulas for the Γ function.

We turn to the proof of Lemma 5.10. Note that Ψ ±,ψ (s) = -Ψ ±,φ (s), therefore it suffices to show either of the two formulas. We prove the second. From the definition of c ± ψ (s), we have

c ± ψ (s) = π s-1/2 4Γ(s + it φ )Γ(s -it φ ) -Ω it φ (-k 2 , s) ± φ Γ( 1-k 2 + it φ ) Γ( 1+k 2 + it φ ) Ω it φ ( k 2 , s) .
We express this as

c ± ψ (s) = 1 4 π s-1/2 F ± φ k (s, it φ ), which yields c ± ψ (s) c ±(-1) k ψ (1 -s) = π 2s-1 F ± φ k (s, it φ ) F ±(-1) k φ k (1 -s, it φ )
.

Using the previous lemma concludes the proof.

When s φ = /2 ≡ k/2 (mod 1), we do not reproduce the proof since it is similar and much simpler, since we have in that case the explicit expression (5.20).

Examples

In this section and the following ones, we will be interested in applications in which the group Γ is an arithmetic group, and more precisely a Hecke congruence subgroup Γ 0 (q) (see [29, p. 44]). This is our primary motivation for the above results.

Let q ∈ Z >0 , and denote by Γ 0 (q) the Hecke congruence subgroup of level q. The associated set of cusps is given by C(Γ 0 (q)) = Q ∪ {∞}.

Let φ ∈ A(Γ 0 (q), χ, k). If s φ ≡ k 2 (mod 1), then we have already defined in (5.1) and ( 5.22) the central Lvalue L ± φ (x). If s φ ≡ k 2 (mod 1) with k ≥ 2, on the other hand, we have merely defined by (5.2) and (5.22) the single value L φ (x) = U + (φ, x, 1/2). We now take advantage of the fact that the symmetry := -1 0 0 1 normalizes Γ 0 (q), and more precisely, if γ = a b c d ∈ Γ 0 (q), then γ = a -b -c d ∈ Γ 0 (q). This easily implies that the map

x → L φ (-x)
satisfies the same quantum modularity relation as L φ in Theorem 5.6. The same is therefore true for the maps (6.1) x)) which are the even, resp. the odd part of L φ (•). Thus L ± φ (x) is now defined in all cases, and clearly satisfies Theorem 5.6. Moreover, we check that, setting

L ± φ (x) := 1 2 (L φ (x) ± L φ (-
h ± γ (x) := L ± φ (γ(-x)) -ηj γ (x) k L ±(-1) k φ (x),
we have

h ± γ (x) = 1 2 h γ (x) + h γ (-x) .
Here we recall our convention that we pick the representative of γ in PSL(2, R) with c γ ≥ 0 in the notation j γ (x), and in particular j γ (z) = cz -d (with c ≥ 0). Therefore, under the hypotheses of Theorem 5.7, the equation (5.25) also holds when s φ ≡ k/2 (mod 1) with the definition (6.1).

6.1. Hecke-Maaß cuspidal newforms. We will now review the theory of newforms. We refer to [29, Section 8.5], [28, Section 6.6] for a more detailed account. Let χ be a Dirichlet character modulo q and define a character of Γ 0 (q) by a b c d → χ(d), which we also denote by χ (by slight abuse of notation). In this arithmetic setup we have a huge family of commuting linear operators acting on the space of automorphic functions A(Γ 0 (q), χ, k) for each k ∈ Z ≥0 . These are the Hecke operators [18, eq. (6.1)] defined for n ≥ 1 as

T n φ(z) = 1 n 1/2 ad=n χ(a) 0≤b<d φ az + b d .
A Maaß cuspform φ ∈ A(Γ 0 (q), χ, k) is called a Hecke-Maaß cuspform if it is an eigenvector for all Hecke operators T n with (n, q) = 1 and normalized so that a(1) = 1. We furthermore, say that φ ∈ A(Γ 0 (q), χ, k)

with k ≥ 0 is a Hecke-Maaß cuspidal newform if it is not of the form R k-2 • • • R u(dz),
for a Hecke-Maaß form u ∈ A(Γ 0 (q ), χ, ) of level q < q with dq |q and weight ≥ 0 congruent to k modulo 2. Notice in particular that if χ is a primitive Dirichlet character modulo q then all Hecke-Maaß forms φ ∈ A(Γ 0 (q), χ, k) with k = 0, 1 are new. Furthermore, if φ is Hecke-Maaß cuspidal newform not of weight 0 nor 1 then φ is holomorphic, meaning that φ(z) = y k f (z) for some cuspidal holomorphic Hecke newform f ∈ S k (Γ 0 (q), χ) of level q, weight k and nebentypus χ.

It is a consequence of 'multiplicity one' [18, p. 520] that a Hecke-Maaß cuspidal newform φ is automatically an eigenfunction for all Hecke operators T n with n ≥ 1. Let λ φ (n) denote the Hecke eigenvalues of φ meaning that T n φ = λ φ (n)φ for n ≥ 1. It follows from the properties of the Hecke operators that we have the Hecke relation [29, (6.24)

] (6.2) λ φ (mn) = d|(m,n) µ(d)χ φ (d)λ φ (m/d)λ φ (n/d),
for all m, n ≥ 1 (here it is crucial that φ is assumed to be a newform). In particular n → λ φ (n) is (weakly) multiplicative. The Fourier coeffcients at ∞ of φ can be written as

a φ (n) = λ φ (n)n -1/2 ,
which implies that for x ∈ C(Γ 0 (q))\{∞} = Q, we have

L ± (φ, x, s) = n≥1 λ φ (n) cos(2πnx) i sin(2πnx) n -s .
Here the definition is given by (6.1) or by (5.22) depending on whether s ≡ k 2 (mod 1) or not. One has the trivial point-wise bound λ φ (n) n 1/2 , which arises from the bound |a(n)| 1. This last bound holds in the general setting for Γ as discussed in Section 2 (see [START_REF]Spectral methods of automorphic forms[END_REF]Theorem 3.2]). The Ramanujan-Petersson conjecture predicts that λ φ (n) ε n ε for any ε > 0. This is a theorem due to Deligne [START_REF] Deligne | La conjecture de Weil. I[END_REF] in the case where s φ = k 2 , which means that φ(z) = y k/2 f (z) with f ∈ S k (Γ 0 (q), χ) a holomorphic Hecke cuspform. In general it is known by work of Kim and Sarnak [START_REF] Kim | Refined estimates towards the Ramanujan and Selberg conjectures[END_REF] 

that |λ φ (n)| ≤ d(n)n 7/64 .
Consider the involution W q,k : A(Γ 0 (q), χ, k) → A(Γ 0 (q), χ, k), defined by

(W q,k φ)(z) := |z| -z k φ(1/(qz)).
Notice that W q,k is not linear but skew-linear. It can be shown that W q,k commutes with the Hecke operators and satisfies

(6.3) W q,k+2 K k = K k W q,k ,
By multiplicity one we conclude that for any Hecke-Maaß form φ, we have

W q,k φ = η φ φ,
for some η φ of absolute norm 1. In the terminology of Section 3.3 this means that a Hecke-Maaß form is automorphic of weight k for the group G q generated by Γ 0 (q) and W q where W q = 0 -1 q 0 , is the Fricke matrix of level q. Thus we conclude from Theorem 5.6 and Theorem 5.7 that the central values L ± φ (x) = L ± (φ, x, 1/2) define (generalized) quantum modular forms, meaning that

h ± γ (x) := L ± φ (γx) -j γ (x) k χ(γ)L ± φ (x), for γ ∈ Γ 0 (q), as well as h ± Wq (x) := L ± φ (1/qx) -η φ (-sgn(x)) k L ±(-1) k φ (x), initially defined for x ∈ Q/{γ -1 ∞} (resp. x ∈ Q/{0}) extends to a (1/2 -ε)-Hölder continuous function on R/{γ -1 ∞} (resp. x ∈ R/{0}).
For applications to reciprocity formulae, we will need precise information on the discrepancy function h ± Wq as follows.

Proposition 6.1. For φ a Hecke-Maaß cuspidal newform of weight k with s φ ≡ k/2 (mod 1), we have as

x → ∞ h ± Wq (x) = -η φ φ L(φ, 1/2) + O φ,ε (|x| -1+ε ), ± = + O φ,ε (|x| -1+ε ), ± = -,
for k = 0, and

h ± Wq (x) = -η φ φ sinh(πt φ )+i φ cosh(πt φ ) L(φ, 1/2) + O φ,ε (|x| -1+ε ), ± = +, O φ,ε (|x| -1+ε ), ± = - for k = 1.
For φ a Hecke-Maaß cuspidal newform of weight k with s φ = k/2 (i.e. holomorphic), we have

h ± Wq (x) = -i k η φ L(φ, 1/2) + O φ,ε (|x| -1+ε ), ± = + O φ,ε (|x| -1+ε ), ± = -.
Proof. We proceed by using Lemma 5.4 combined with Theorem 4.6. Implied constants are allowed to depend on φ and ε. If s φ = k/2 (meaning that φ(z) = y k/2 f (z) for f ∈ S k (Γ 0 (q), χ) a holomophic cupsidal Hecke newform) then we have

h ± Wq (x) = -i k η φ c f (E φ (0) ± E φ (0)) 2 + O(|x| -1+ε ).
Using Lemma 5.4 in reverse, we get the wanted in the holomorphic case. Similarly we have for k ∈ {0, 1} and s φ ≡ k/2 (mod 1)

h ± Wq (x) = -i k η φ c ±(-1) k φ E φ (0) -i k+2 η ψ c ±(-1) k ψ E ψ (0) + O(|x| -1+ε ) (6.4) = -i k η φ c ±(-1) k φ E φ (0) -c ±(-1) k ψ E ψ (0) + O(|x| -1+ε ), (6.5) 
using that η φ = η ψ which follows from (6.3). Recall that (5.18). Consider the matrix

L ± φ (x) = c ± φ E φ (x) + c ± ψ E ψ (x), with c ± φ , c ± ψ defined as in
C φ := c + φ c + ψ c - φ c - ψ , which has determinant c + φ c - ψ -c - φ c + ψ = σ 1 + φ T 1 -1 -φ T 2 -σ 1 -φ T 1 -1 + φ T 2 = -2σ φ (T 1 + T 2 ), (6.6) 
where

σ = π2 -2-k Γ( 1+k 4 + i t φ 2 )Γ( 1+k 4 -i t φ 2 )Γ( 3+k 4 + i t φ 2 )Γ( 3+k 4 -i t φ 2 )
, and

T 1 = cos( π 2 ( 1+k 2 + it φ )) sin( π 2 ( 1+k 2 -it φ )) , T 2 = sin( π 2 ( 1+k 2 + it φ )) cos( π 2 ( 1+k 2 -it φ ))
.

Since

T 1 + T 2 = 2 cos(πit φ ) sin(π( k+1 2 -it φ ))
, we conclude that C φ is invertible (since it φ / ∈ 1/2 + Z). Now by simple linear algebra we get that

c ± φ E φ (x) -c ± ψ E ψ (x) = c ± φ c - ψ + c - φ c ± ψ c + φ c - ψ -c - φ c + ψ L + φ (x) - c + φ c ± ψ + c ± φ c + ψ c + φ c - ψ -c - φ c + ψ L - φ (x).
For x = 0 we have (6.8) this yields

L - φ (0) = -L - φ (-0) = 0, and L + φ (0) = L(φ, 1/2), where L(φ, s) = n≥1 λ φ (n)n -s denotes the (standard) L-function of φ. Using that c ± φ c - ψ + c - φ c ± ψ = σ 1 ± φ T 1 -1 -φ T 2 + σ 1 -φ T 1 -1 ± φ T 2 (6.7) = σ(-2(1 ± T 1 T 2 ) + φ (T 1 -T 2 )(1 ∓ 1)),
c ± φ E φ (0) -c ± ψ E ψ (0) = c ± φ c - ψ + c - φ c ± ψ c + φ c - ψ -c - φ c + ψ L(φ, 1/2) = 2(1 ± T 1 T 2 ) -φ (T 1 -T 2 )(1 ∓ 1) 2 φ (T 1 + T 2 ) L(φ, 1/2).
For k = 0, we have T 1 = T 2 = 1 and for k = 1

T 1 = -tan( π 2 it φ ), T 2 = cot( π 2 it φ ).
Plugging this in gives the wanted.

6.2. Eisenstein series. Let q 1 , q 2 ∈ Z >0 and χ i (mod q i ) be primitive characters, and k ∈ {0, 1} be such that (-1) k = χ 1 χ 2 (-1). For Re(s) > 1 define the twisted Dirichlet series

D χ1,χ2 (x, s) := n≥1 (χ 1 * χ 2 )(n) e(nx)n -s .
When x ∈ Q, orthogonality of additive characters yields an expression of D χ1,χ2 (x, s) as a linear combination of the Estermann function D 1,1 (x, s), which is known [START_REF] Estermann | On the Representations of a Number as the Sum of Two Products[END_REF] to have a meromorphic continuation to C which is analytic on C {1}. We deduce that the map s → D χ1,χ2 (x, s) extends to a meromorphic function of s which is analytic on C {1}, and also at 1 if x ∈ Z. When χ 1 = χ 2 = 1, this is Estermann's function [START_REF] Estermann | On the Representations of a Number as the Sum of Two Products[END_REF]. We are interested in the central value

D χ1,χ2 (x) := D χ1,χ2 (x, 1/2).
Theorem 6.2. The map D χ1,χ2 (•) is a quantum modular form of weight k for the Hecke congruence group Γ 0 (q 1 q 2 ) with nebentypus χ(( * * * d )) := χ 1 χ 2 (d), in the sense that for all γ = ( * * c d ) ∈ Γ 0 (q 1 q 2 ) with c = 0, the map

h γ (x) := D χ1,χ2 (γx) -sgn(cx + d) k χ 1 χ 2 (d)D χ1,χ2 (x) initially defined on Q {-d/c}, extends to a (1/2 -ε)-continuous function of x ∈ R {-d/c}.
Proof. For Re(s) > 1 and z ∈ H, define as in [56, Section 3.2] the Eisenstein series (6.9)

E χ1,χ2 (z, s) := 1 2 c,d∈Z (c,d)=1 (q 2 y) s χ 1 (c)χ 2 (d) |cq 2 z + d| 2s cq 2 z + d |cq 2 z + d| k .
It is proved in Section 3.2 ibid. that E χ1,χ2 (•, s) is a Maaß form for the Hecke congruence group Γ 0 (q 1 q 2 ), of weight k, nebentypus χ(( * * * d )) := χ 1 χ 2 (d), and eigenvalue s. Moreover, it is proved in [56, Proposition 4.2] that the modified series (6.10)

E * χ1,χ2 (z, s) := (q 2 /π) s i -k τ (χ 2 ) Γ(s + k 2 )L(2s, χ 1 χ 2 )E χ1,χ2 (z, s)
extends to a meromorphic function of s ∈ C which is regular at s = 1/2. Define φ = E * χ1,χ2 (z, 1/2). By [56, Proposition 4.1] evaluated at s = 1/2 (see the proof of Proposition 4.1 ibid.), we have the Fourier expansion (2.4) with

a(n) = (χ 1 * χ 2 )(n) √ n (n > 0).
This is λ χ1,χ2 (n, 1/2) in the notations of [56, eq. (4.2)]. We deduce that (5.22). Theorem 5.6 yields the desired conclusion.

D χ1,χ2 (x) = U + φ (x) = 1 2 (L + φ (x) + L - φ (x)) in the notation
The behaviour at infinity of h γ can be spelled out using the expression [56, eq. (4.1)] for the coefficients A φ , B φ in (2.5). We have explicitely

B φ = 1, (q 1 = q 2 = 1), 0 (otherwise) 
,

A φ =      γ 0 -log(4π), (q 1 = q 2 = 1), q 2 i k √ πτ (χ2) Γ( 1+k 
2 )L(1, χ 2 ), (q 1 = 1 < q 2 ), 0, (q 1 , q 2 > 1). Proposition 6.3. As x → ±∞, we have an asymptotic expansion of the shape

h γ (x) = χ(γ) A ± |x -x 0 | 1/2 + B ± |x -x 0 | 1/2 log |x -x 0 | + C + O χ1,χ2,γ,ε (|x| -1+ε ).
When k = 0, the coefficients are given in terms of A φ , B φ by

A ± = 1 ∓ i 2 A φ - 1 ± i 2 π 2 + 1 ∓ i 2 log 2 B φ , B ± = 1 ∓ i 2 B φ , C = -χ 2 (-1)D χ1,χ2 (-x 0 ).
When k = 1, the coefficients are

A ± = √ π ±1 + i 2 , B ± = 0, C ± = -D χ1,χ2 (x 0 ).
Proof. In the proof, implied constants are allowed to depend on χ j , γ and ε. Assume first k = 0. Then we use the expression

U + (φ, x, 1 2 ) = (∆ 0 (0, s)) -1 (g + φ ( 1 2 )E φ (x) + g + ψ ( 1 
2 )E ψ (x)) given at (5.16). In our case, we find

g + φ ( 1 2 ) = 2π 3/2 Γ(1/4) 2 , g + ψ ( 1 2 ) = -π 3/2 Γ(3/4) 2 .
In particular, we deduce

h γ (x) = √ π 1 Γ(1/4) 2 h E γ (φ, x) - 1 2Γ(3/4) 2 h E γ (ψ, x) .
By [18, eq. (4.29)], the coefficients A ψ , B ψ in the cuspidal expansion (2.5) for ψ = R 0 φ satisfy

A ψ = 1 2 A φ + B φ , B ψ = B φ .
By Theorem 4.1, we deduce as x → ±∞ the asymptotic formula

h γ (x) = χ(γ) A ± |x -x 0 | 1/2 + B ± |x -x 0 | 1/2 log |x -x 0 | + C + O(|x| -1+ε ),
where the coefficients are

C = - √ π 1 Γ(1/4) 2 E φ (x 0 ) + 1 2Γ(3/4) 2 E ψ (x 0 ) , B ± = Υ 0,± (1/2) Γ(1/4) 2 - Υ 2,± (1/2) 4Γ(3/4) 2 B φ , A ± = Υ 0,± Γ(1/4) 2 - Υ 2,± (1/2) 4Γ(3/4) 2 A φ + Υ 0,± (1/2) Γ(1/4) 2 - Υ 2,± (1/2) 2Γ(3/4) 2 - Υ 2,± (1/2) 4Γ(3/4) 2 B φ .
Using the expressions (4.17), we get

A ± = 1 ∓ i 2 A φ - 1 ± i 2 π 2 + 1 ∓ i 2 log 2 B φ , B ± = 1 ∓ i 2 B φ .
Moreover, using the expressions (5.10), (5.17) and (5.4), we find

C = -φ U + (-x 0 ).
By [56, Proposition 4.1, eq. (4.

2)], we have φ = χ 2 (-1), which gives the claimed value of C . In the complementary case k = 1, we have B = 0 necessarily. By (5.15), we express

U + (φ, x, 1 2 ) = L φ (x) = 1 √ 2π E φ (x)
, and therefore

h γ (x) = 1 √ 2π h E γ (φ, x).
By Theorem 4.1 and the expression (4.17), we obtain

h γ (x) = χ(γ) √ π ±1 + i 2 |x -x 0 | 1/2 -L φ (x 0 ) + O(|x| -1+ε
).

Similarly, we can consider the action of the Fricke involution W q as defined in the previous section on the Eisenstein series φ = E * χ1,χ2 (z, 1/2). Consider the operator (6.11)

(Xf )(z) = f (-z),
for f : H → C. Then W q is the composition of X with the usual action of the Fricke matrix 0 -1 q 0 . Using the definition of the Eisenstein series (6.9) one sees directly that (6.12)

XE χ1,χ2 (z, s) = χ 2 (-1)E χ1,χ2 (z, s),
where E χ1,χ2 (z, s) denotes the uncompleted newform Eisenstein series. Combining this with the calculations of [56, Section 9.2] and the functional equation [START_REF]Explicit calculations with Eisenstein series[END_REF]Proposition 4.2], one gets for s = 1/2

W q E χ1,χ2 (z, 1/2) = X χ 1 (-1) z |z| k E χ2,χ1 (z, 1/2) (6.13) = (-1) k χ 1 (-1)χ 2 (-1) z |z| k E χ2,χ1 (z, 1/2) (6.14) = q 1/2 2 τ (χ 1 )L(1, χ 1 χ 2 ) q 1/2 1 τ (χ 2 )L(1, χ 1 χ 2 ) z |z| k E χ1,χ2 (z, 1/2). (6.15)
By linearity and taking into account the conjugation in (6.11), we deduce

W q E * χ1,χ2 (z, 1/2) = (-1) k τ (χ 1 )τ (χ 2 ) (q 1 q 2 ) 1/2 j Wq (z) k E * χ1,χ2 (z, 1/2).
This implies that D χ1,χ2 (•) defines a generalized quantum modular form in the sense of Theorem 5.7, with the value η being

η χ1,χ2 = (-1) k τ (χ 1 )τ (χ 2 ) (q 1 q 2 ) 1/2 ,
which indeed does satisfy |η χ1,χ2 | = 1 as should be the case. We have the following behaviour at infinity. Proposition 6.4. The map

h Wq (x) := D χ1,χ2 (1/(q 1 q 2 x)) -η χ1,χ2 sgn(x) k D χ1,χ2 (x)
satisfies, as x → ±∞, the asymptotic expansion

h Wq (x) = η χ1,χ2 A ± |x| 1/2 + B ± |x| 1/2 log |x| + C + O χ1,χ2,ε (|x| -1+ε ),
with A ± , B ± as in Proposition 6.3 and

C = -χ 2 (-1)L(χ 1 , 1/2)L(χ 2 , 1/2), k = 0, -L(χ 1 , 1/2)L(χ 2 , 1/2), k = 1.
Proof. We proceed by using Theorem 5.4 combined with Theorem 4.6 noting that

D χ1,χ2 (0) = L(χ 1 , 1/2)L(χ 2 , 1/2).

The Estermann function. The Estermann function [21]

D(x) := D 1,1 (x),
is a particular case, which was studied in [START_REF] Bettin | On the reciprocity law for the twisted second moment of Dirichlet L-functions[END_REF]. As a consequence of Proposition 1 of [START_REF] Bettin | On the reciprocity law for the twisted second moment of Dirichlet L-functions[END_REF], the map

h D (x) := D(-1/x) -D(x)
extends to a (1/2 -ε)-Hölder-continuous function on R {0}. Theorem 5.6 recovers this statement by a different proof.

Regarding asymptotic formulas, in [4, Corollary 9] (see also [START_REF] Bettin | Limit laws for rational continued fractions and value distribution of quantum modular forms[END_REF], the formula above (9.10)), it is shown that for x ∈ Q, x → 0 with sgn(x) = ±1,

h D (x) = A ± |x| -1/2 + B ± |x| -1/2 log |x| -D(0) + O(x),
with

A ± = - 1 ± i 2 (γ -log(8π)) - -1 ± i 2 π 2 , B ± = 1 ± i 2 .
It is easy to check that this matches the expansion given by Proposition 6.3. Then we have R(x, s) = 1 4 D 1,χ4 (x, s) for Re(s) > 1, which gives the holomorphic continuation to C {1} of R(x, •). Let R(x) := R(x, 1 2 ). Then by Theorem 6.2, the map R is a quantum modular form of weight 1 for Γ 0 (4). Since Γ 0 (4) is generated by {( 1 1 1 ), ( 1 4 1 )}, this amounts to saying that the map h R (x) := R( x 4x+1 ) -sgn(x + 1 4 )R(x) extends to a (1/2 -ε)-Hölder continuous map on R {-1/4}.

More precisely, in this case, the spectral parameter s φ = 1/2 is half the weight k = 1, so φ is related to a holomorphic form of weight 1. By applying Lemma 5.4 in the second case with = k = 2, we deduce

R(x) = 1 4 √ 2π E(φ, x).
We have also φ ∞ (y) = ( √ π/2)y 1/2 , so that upon applying Theorem 4.1 and computing Υ 1,± ( 1 2 ), we obtain

h R (x) = π 16 (±1 + i) |x + 1/4| 1/2 -iR(-1/4) + O ε (|x| -1+ε ) as x → ±∞.
Similarly since R(•) has real nebentypus, we get that h W4 (x) := R( -1 4x ) -i sgn(x)R(x), originally defined for x ∈ Q × extends to a (1/2 -ε)-Hölder contuous map in R × . Here W 4 = 0 -1 4 0 is the Fricke matrix of level 4. Furthermore, we have

h W4 (x) = π 16 (1 ∓ i) |x| 1/2 - 1 4 ζ(1/2)L(1/2, χ 4 ) + O ε (|x| -1+ε ),
as x → ±∞ using that η 1,χ4 = -i.

Normal distribution in the cuspidal case

In this section, we work with the full modular group and consider cuspidal forms:

Γ = SL(2, Z), φ ∞ ≡ 0.
If we assume that φ is a Hecke-Maaß cusp form then the coefficients a(n) are real numbers, cf. [18, eq. (6.6)]. Using Theorem 5.6, we can answer completely the question of the asymptotic statistical distribution of the values of L φ (x) as x runs over the set of rationals of denominators at most Q, and Q → ∞. This generalizes the case G = SL(2, Z) of [42, Theorem 1.1] and [6, Theorem 2.3], which were concerned with holomorphic forms (see [START_REF]Arithmetic statistics of modular symbols[END_REF]Theorem 1.11], [START_REF] Lee | Dynamics of continued fractions and distribution of modular symbols[END_REF]Theorem C] for related results for congruence groups).

Given Q ≥ 1, we let

Ω Q := {x ∈ Q ∩ (0, 1), den(x) ≤ Q},
where den(x) denotes the reduced denominator of x, with den(0) = 1. Define

P Q , E Q , V Q
to be the uniform probability measure over Ω Q , and the associated expectation and variance. , and for x ∈ Q {0} and φ a Maaß cusp form, define g ± φ (x) := -h S (φ, x) = L ± φ (x) -L ± φ (-1/x). By Theorem 5.6, this map extends to a (1/2 -ε)-Hölder continuous function on R {0}. By Theorem (4.1) and (5.24), the maps g ± φ admit limits at 0 on both sides, and at ±∞, which implies that h ± φ is bounded. By Euclid's algorithm and the 1-periodicity of L ± φ , we deduce

L ± φ (x) = r j=1 g ± φ ((-1) j-1 T j-1 x) + L ± φ (0),
where T : (0, 1) → [0, 1), T x = {1/x} is the Gauss map, and r ≥ 0 is the least integer such that T j x = 0.

In particular, the boundedness of g ± along with the worst-case estimate for the complexity of the Euclidean algorithm [START_REF] Knuth | The art of computer programming[END_REF]Corollary L,p. 360] immediately implies the following rough but useful bound. Lemma 7.1. For x ∈ Q, we have L ± φ (x) = O(1 + log(den(x))). We now consider r ∈ N, φ 1 , . . . , φ r distinct cuspidal Hecke-Maaß forms. Note that L + φj (x) ∈ R and L - φj (x) ∈ iR. Define the non-normalized vector (7.1)

V(x) = V φ1,...,φr (x) := L + φ1 (x), i -1 L - φ1 (x), . . . , L + φr (x), i -1 L - φr (x) ∈ R 2r , (den(x) > 1)
where we set V ± φ (0) = 0. Our aim is to show that V ± φ (x) converges, under a suitable normalization, to an 2r-dimensional Gaussian random vector. We consider the linear form on C 2r defined at

t = (t + 1 , t - 1 , . . . , t + r , t - r ) ∈ C 2r by the value L(t; x) := V(x)t T = 1≤j≤r t + j L + φj (x) + t - j i -1 L - φj (x) , x ∈ Ω Q , We define Ψ(t) := E Q exp L(t, x) .
Proposition 7.2. For some δ, t 0 > 0, and some maps U, V holomorphic on B := {t ∈ C 2r , |t j | < t 0 }, the estimate

(7.2) Ψ(t) = exp U (t) log Q + V (t) + O(Q -δ )
holds for t ∈ B. The implied constant may depend on (φ j ). Moreover, for some row vector µ ∈ C r and some d × d symmetric non-negative matrix Σ, we have

(7.3) Ψ(t) = exp (tµ T ) log Q + 1 2 tΣt T log Q + O(Q -δ + O( t 3 log Q + t + Q -δ ) .
Proof. We apply Theorem [6, Theorem 3.1] with m ← 2, d ← 2r, and the maps φ j , j ∈ {1, 2} given by φ j (x) = g + φ1 ((-1) j-1 x), i -1 g - φ1 ((-1) j-1 x), . . . ∈ R 2r . By Theorem 5.6, the map φ j is (1/2 -ε)-Hölder continuous, and by Theorem 4.1 and the relation (5.24), it is bounded. Moreover, by (3.2), for all n ≥ 1 and x, x ∈ [0, 1] we have

g ± φj (1/(n + x)) -g ± φj (1/(n + x )) = g ± φj (-n -x) -g ± φj (-n -x ) ε n C |x -x | 1/2-ε
for some C = C(φ j ), and similarly for g ± φj (-1/(n + x)). Therefore, the hypotheses (1)-( 3) of [6, Theorem 3.1] are satisfied with κ 0 = 1/2 -ε, α 0 = 3, λ 0 = 1 2 min{1/C(φ 1 ), . . . , 1/C(φ j )}. This yields the claimed estimate for t ∈ B ∩ R 2r . The holomorphicity of U, V and the fact that (7.2) holds throughout B comes from the boundedness of φ j , as in [START_REF] Baladi | Euclidean algorithms are Gaussian[END_REF]. The estimate (7.3) follows from a Taylor expansion at t = 0.

By reasonning similarly as [6, eqs. (9.7)-(9.9)], we have (7.4)

µ (φj ) = lim Q→∞ E Q (V(x)) log Q , Σ (φj ) = lim Q→∞ E Q (V(x) T V(x)) log Q .
Our next task is to evaluation these two quantities. 

E Q (L ± φ (x)) = O φ (Q -1/3 ), (7.5) E Q (L ± φ (x) 2 ) = ±L(sym 2 φ, 1) log Q + b φ,± + O φ (Q -δ ), (7.6) E Q (L ± φ (x)L ± ψ (x)) = c φ,ψ,± + O φ,ψ (Q -δ ) if φ = ψ. (7.7)
Here L(sym 2 φ, s) is the symmetric square L-function of φ [START_REF]Spectral methods of automorphic forms[END_REF]Chapter 8.2].

The value L(sym 2 φ, 1) can be expressed in terms of the appropriate Petersson inner product φ, φ , see [30, eq. (5.101)] for details. Note that L ± φ (x) 2 = ±|L ± φ (x)| 2 , since in our case a(n) ∈ R for all n. Note also that E Q (L + φ (x)L - ψ (x)) = 0 because of the symmetry x ← -x. The value c φ,ψ,+ could be expressed in terms of the Rankin-Selberg L-value L(φ × ψ, 1) and the constants in the functional equation, but we will not use it.

When φ is associated to a holomorphic form, Proposition 7.3 corresponds, up to the size of the error terms, to the first few cases m + n ≤ 2 of Theorem 5.10 of [START_REF]Central values of additive twists of cuspidal L-functions[END_REF]. An analogous estimate, but for fixed denominator, is established in [START_REF] Blomer | The second moment theory of families of L-functions[END_REF]Chapter 9]. The argument is very different and much more difficult. We cannot, however, quote them in a straightforward way, due to the coprimality condition on the denominator. This is likely to change in the near future [START_REF] Wu | The fourth moment of Dirichlet L-functions at the central value[END_REF].

Assuming Proposition 7.3 for a moment, we readily deduce the computation of the first and second moment of the random vector V φ1,...,φr (x), and therefore the values of µ and Σ in (7.4).

Corollary 7.4. Let φ 1 , . . . , φ r be distinct Hecke-Maaß cusp forms of level 1. Then (7.8) µ (φj ) = (0, . . . , 0),

Σ (φj ) = Diag(σ 2 1 , σ 2 1 , σ 2 2 , σ 2 2 , . . . , σ 2 r , σ 2 r ),
where σ j = L(sym 2 φ j , 1).

Proof. This is immediate for µ using (7.5). The coefficients of the matrix Σ are indexed by pairs (φ j , ±). The coefficient of indices ((φ, ε 1 ), (ψ, ε 2 )) is given by

lim Q→∞ E Q (i (ε1+ε2-2)/2 L ε1 φ (x)L ε2 ψ (x)) log Q .
By (7.6), this is L(sym 2 φ, 1) if (φ, ε 1 ) = (ψ, ε 2 ), which corresponds to diagonal elements, and otherwise this is 0.

The proof of Proposition 7.3 starts with the following approximate functional equations.

Lemma 7.5. For some numbers µ ± φ,ψ and some smooth functions V ± : R + → C, we have

L ± φ (x)L ± ψ (x) = ± m,n≥1 λ φ (m)λ ψ (n) √ mn C ± m,n (x) + µ ± φ,ψ C ± m,n (x) V ± πmn den(x) 2 .
Here C + m,n (x) = cos(2πmx) cos(2πnx), C - m,n (x) = sin(2πmx) sin(2πnx), and writing x = a/q in lowest terms, we have x = -d/q (mod 1) (ad ≡ 1 (mod q)).

Moreover the functions V ± can be chosen to satisfy, for any fixed a ∈ N and A > 0,

(V ± ) (a) (y) a,A,φ y -a (1 + y) -A . Moreover µ ± φ,ψ = 1 if φ = ψ.
Proof. This is obtained by an argument identical to [18, Lemma 9.1], specialized at s = 1/2, see also Theorem 5.3 and Proposition 5.4 of [START_REF] Iwaniec | Analytic number theory[END_REF].

Taking expectations of the periodic exponential will give rise to Ramanujan sums.

Lemma 7.6. Given a map f : N → C and m, n ∈ Z, we have

E Q (C ± m,n (x)f (den(x))) = 1 2 |Ω Q | η∈{-1,1} η (1∓1)/2
q,d≥1 qd≤Q dµ(q)1 d|m-ηn f (qd).

Proof. This easily follows from [30, eq. (3.2)].

Proof of Proposition 7.3. All implied constants in the proof will be allowed to depend on φ, ψ and ε. First note that we have E Q (L - φ (x)) = 0 by symmetry x ← -x. Consider s ∈ C with Re(s) > 1. Writing out the central L-value and using Lemma 7.6, we have

E Q (L + (φ, x, s)) = 1 |Ω Q | d,q≥1 dq≤Q d 1-s µ(q) n≥1 λ(nd)n -s .
We expand λ(nd) using the Hecke relations (6.2), to get

E Q (L + (φ, x, s)) = 1 |Ω Q | dq≤Q r|d d 1-s µ(q)µ(r)χ(r)λ(d/r) n≥1 r|n λ(n/r)n -s = L(φ, s) |Ω Q | rdq≤Q r 1-2s d 1-s µ(q)µ(r)χ(r)λ(d).
At this point we may set s = 1/2 and bound trivially 

rdq≤Q d 1/2 µ(q)µ(r)χ(r)λ(d) Q 3/
(L + φ (x)) Q -1/2+θ+ε Q -1/3 . We switch to the computation of E Q (L + φ (x)L + ψ (x)
), the case of L - φ (x)L - ψ (x) being similar. We first motivate the upcoming arguments. Using the functional equation and orthogonality, we expect

E Q (L + φ (x)L + ψ (x)) ≈ 1 Q 2 q≤Q m n mn Q 2 q|m-n λ φ (m)λ ψ (n) ≈ 1 Q 2 m n mn Q 2 λ φ (m)λ ψ (n)τ Q (m -n), where M N Q 2 and τ Q (h) := 1 * 1 [1,Q] (h).
Considering m ≤ n and m fixed, the sum over (n, q) is an instance of the shifted convolution of λ ψ with a modified divisor function τ Q , for which we have very good error terms using Voronoï summation with Dirichlet's hyperbola method, as we will do here. This was used for instance in [START_REF] Pitt | On an analogue of Titchmarsh's divisor problem for holomorphic cusp forms[END_REF]Lemma 8.1]. If we wanted an estimate for a single large q, as in the conjectures of Mazur-Rubin [40, section 4], then we would be faced with the shifted convolution of λ φ with λ ψ with a large shift, which is much more delicate [9, chapter 9].

First we smooth out the sharp cutoff on the denominator of x in the expectation E Q . To do this, we let Y = Q δ for some fixed δ ∈ (0, 1/10] to be set later, and we bound, using Lemma 7.1,

1 |Ω Q | x∈Ω Q Q(1-Y -1 )≤den(x)≤Q L + φ (x)L + ψ (x) (log Q) 2 Y -1 . Let W 0 : R → R + be such that 1 [0,1-Y -1 ] ≤ W 0 ≤ 1 [0,1] and W (j) 0 ∞ j Y j . We get E Q (L + φ (x)L + ψ (x)) = E Q (L + φ (x)L + ψ (x)W 0 (den(x)/Q)) + O(Q ε Y -1 ).
Denoting for convenience V = V + and µ = µ + φ,ψ , we have by Lemma 7.6

E Q (L + φ (x)L + ψ (x)W 0 (den(x)/Q)) = 1 + µ 2 |Ω Q | ± q,d≥1 dµ(q)W 0 qd Q m,n≥1 d|m±n λ φ (m)λ ψ (n) √ mn V πmn (qd) 2 .
The condition qd ≤ Q was dropped due to redundance with the support of W 0 . The diagonal ± = -1, m = n contributes

D Q := 1 + µ 2 |Ω Q | q≥1 ϕ(q)W 0 q Q n≥1 λ φ (n)λ ψ (n) n V πn 2 q 2 ,
where ϕ(q) = d|q dµ(q/d) is the Euler totient function. By the complex analytic properties of the Rankin-Selberg convolution φ × ψ [30, Chapters 5.11-5.12], we have, for some sufficiently small δ > 0,

n≥1 λ φ (n)λ ψ (n) n V πn 2 q 2 = Res u=0 q 2 π u V (u)L(φ × ψ, 1 + 2u) + O(q -δ )
Here V (u) is the Mellin transform of V , and by [30, eq. (5.13)], we have Res u=0 (• • • ) = P (log q), where P (X) is either:

-a degree 1 polynomial with leading coefficient L(sym 2 φ, 1), if ψ = φ, -a constant polynomial with value L(φ × ψ, 1) if ψ = φ. Summing this over q, d, we find

D Q = 1 + µ 2 P (log Q) -1 + O(Y Q -δ ).
Introducing a partition of unity as in e.g. [9, Lemma 2.27], we have

E Q (L + φ (x)L + ψ (x)) = D Q + O(Q ε Y -1 + (log Q) 4 sup |A ± (Q 1 , D, M, N )|), where A ± (Q 1 , D, M, N ) := 1 |Ω Q | q,d≥1 W q Q 1 W d D W 0 qd Q dµ(q)× × m,n≥1 d|m±n =0 λ φ (m)λ ψ (n) √ mn W m M W n N V πmn (qd) 2 ,
the function W is smooth and supported inside [1/2, 2], and the supremum is over

(7.9) Q 1 , D, M, N 1, M ≤ N, Q 1 D Q, M N Q 2 .
We focus on A + , the case A -being similar. We have by the triangle inequality

A + (• • • ) D Q 2 M 1/2 q Q1 d D m M |λ φ (m)| n≡-m (mod d) λ ψ (n) √ n W n N V πmn (qd) 2 .
We estimate the sum over n by Voronoï summation [9, Lemma 2.21], getting

n≡-m (mod d) λ ψ (n) √ n W n N V πmn (qd) 2 = ω d √ N ± r|d 1 r n≥1 λ ψ (n)S(m, ∓n; r) W ±,N (n/r 2 ),
where S(m, ∓n; r) is the Kloosterman sum [30, eq. (1.56)] and by [9, Lemma 2.23] we have

W ±,N (y) N Q ε × Q -100 , (y ≤ Q ε /N ), (N y) -2ϑ-ε (y ≤ Q ε /N ).
Using the Weil's bound for Kloosterman sums [START_REF] Iwaniec | Analytic number theory[END_REF]Corollary 11.12], we get 

n≡-m (mod d) λ ψ (n) √ n W n N V πmn (qd) 2 Q -10 + Q ε √ N d r|d 1 √ r n Q ε r 2 /N |λ ψ (n)| (n, r)
n Q ε r 2 /N (n, r) r 2 nN 4ϑ Q ε r 2 N .
Combining these estimates by Cauchy's inequality, we get

n≡-m (mod d) λ ψ (n) √ n W n N V πmn (qd) 2 Q -10 + Q ε 1 d √ N r|d r 3/2 Q ε d/N ,
and summing this over m, d and q, we conclude our first bound (7.10)

A + (Q 1 , D, M, N ) Q -2+ε Q 1 D 5/2 M 1/2 N -1/2 .
The same bound holds for A -. This bound will be acceptable for D smaller than N 2/3 , however the smooth average over d allows for a more effective estimate as soon as D > √ N by switching divisors. We arrange

A + (D, Q 1 , M, N ) D Q 2 M 1/2 q Q1 m M |λ φ (m)| |B(m, q)| , where B(m, q) := n λ ψ (n) √ n W n N n≡-m (mod d) W d D d D W 0 qd Q V πmn (qd) 2 . Changing d ← (m + n)/d, we get B(m, q) = d ≥1 n≥1 n≡-m (mod d ) λ ψ (n) √ n W 2 n N ,
where

W 2 (x) := W (x)W m + N x d D m + N x d D W 0 • • • V • • • .
Note that here we have used the fact that m + n = 0. The support condition here implies d ≤ 8N/D for any non-zero term in the sum. The Leibniz differentiation rule yields

W (j) 2 (x) ε,j Q ε Y j .
Having this at hand, we may now apply Voronoï summation as above and bound trivially the dual sum. We get

|B(m, q)| Y O(1) Q ε d N/D d /N Y O(1) Q ε N D -3/2 .
Summing over m and q and using (2.7), we obtain our second bound (7.11)

A + (D, Q 1 , M, N ) Y O(1) Q -2+ε Q 1 D -1/2 M 1/2 N.
The same bound holds for A -, since we have removed the diagonal m = n. Under the constraints (7.9), we have

Q -2 min(Q 1 D 5/2 M 1/2 N -1/2 , Q 1 D -1/2 M 1/2 N ) ≤ min(D 3/2 N -1 , D -3/2 N 1/2 ) ≤ Q -1/4 .
Therefore, we deduce

E Q (L + φ (x)L + ψ (x)) = D Q + O ε (Q ε (Y -1 + Y O(1) Q -1/4
)), and by choosing the exponent δ > 0 of Y = Q δ sufficiently small in terms of the implicit constant in O( 1 

Distributional result: normal distribution.

We can now use the estimates (7.3) and Corollary 7.4 in the classical Levy continuity theorem, we obtain the convergence of V ± (x) to a complex Gaussian law. We recall the values σ j := L(sym 2 φ j , 1) > 0 and the matrix Σ defined in Corollary 7.4. Corollary 7.7. Given a measurable set R ⊂ R 2r with measure 0 boundary, we have

P Q V(x) log den(x) ∈ R → P(N (0, Σ) ∈ R) (Q → ∞),
where N (0, Σ) represents a random centered Gaussian vector in R 2r with covariance matrix Σ.

Proof. By partial summation, it suffices to prove the same limiting statement for

P Q V(x) √ log Q ∈ R .
This is an immediate consequence of Proposition 7.2 and Levy's continuity theorem, see e.g. [52, corollary 2.8].

With more work, we could obtain an error term of the shape O(1/ √ log Q), with an application of a multidimensional version of the Berry-Esseen theorem. We haven't, however, found a ready-to-use statement in the litterature, therefore we restrict to a quantitative statement.

We believe that this statement holds without the extra average over q:

Conjecture 7.8. In the context and notations of Corollary 7.7, we have 

V(a/q) √ log q : a ∈ (Z/qZ → P(N (0, Σ) ∈ R) (q → ∞). 7 
E Q 1≤j≤r L + φj (x) kj L - φj (x) j = P (log Q) + O(Q -δ ).
The implied constant may depend on (φ j ), (k j ) and ( j ). When k j and j are even for all j, then P has degree 1 2 j (k j + j ) and leading coefficient

1≤j≤r m kj m j σ kj + j j , m k := (k -1)!! = k! 2 k/2 (k/2)! .
If at least one of the exponents k j , j is odd, then P has degree strictly less than 1 2 j (k j + j ). Proof. See [START_REF] Hwang | On convergence rates in the central limit theorems for combinatorial structures[END_REF] for a proof when r = 1. The general case is analogous.

Arithmetic applications

Let φ be a Hecke-Maaß newform (not necessarily cuspidal) of level q, weight k and nebentypus χ φ . Then we will be studying the following twisted L-functions;

(8.1) L(φ, χ, s) := n≥1 λ φ (n)χ(n)n -s ,
where λ φ (n) are the Hecke-eigenvalues of φ (normalized so that the Ramanujan-Petersson conjecture predicts λ φ (n) ε n ε ) and χ is a primitive Dirichlet character mod c. This Dirichlet series admits analytic continuation and functional equation relating s ↔ 1 -s (see e.g. [9, Section 2.2] in the case of prime conductor c = p not dividing q). If (c, q) = 1, then this is exactly the finite part of the L-function of the automorphic representation π φ ⊗ χ, where π φ is the automorphic representation corresponding to φ. In this case we will use the notation L(φ ⊗ χ, s). These L-functions have been studied in many contexts from the analytic point of view and have many interesting algebraic aspects as well (e.g. if φ is holomorphic of weight 2 corresponding to an elliptic curve), see [9, Section 1.2], [START_REF] Iwaniec | Analytic number theory[END_REF]Chapter 14.8] and the references therein. In the monograph [START_REF] Blomer | The second moment theory of families of L-functions[END_REF] the full power of the approximate functional equation-approach is explored including deep input from spectral theory and algebraic geoemtry. In particular they show how one can use a second moment computation for the family {L(φ, χ, 1/2) : χ mod p}, with a power saving as p → ∞ to obtain non-vanishing for a positive proportion using mollification (among other applications).

In this section we will show some surprising applications of the above results to the family of L-functions (8.1). On the one hand, we will obtain certain reciprocity formulas for the twisted second moment of (8.1) generalizing [START_REF] Conrey | The mean-square of Dirichlet L-functions[END_REF], [START_REF] Bettin | On the reciprocity law for the twisted second moment of Dirichlet L-functions[END_REF], [START_REF] Nordentoft | A note on additive twists, reciprocity laws and quantum modular forms[END_REF]. They can be seen as the simplest incarnations of spectral reciprocity formulas, see [1], [START_REF] Blomer | Twisted moments of L-functions and spectral reciprocity[END_REF], [START_REF] Blomer | A spectral reciprocity formula and non-vanishing for L-functions on GL(4) × GL(2)[END_REF]. The second application are to certain computations of wide moments as have been explored in other contexts [START_REF]High moments of the Estermann function[END_REF], [42, Corollary 1.9], [START_REF]Wide moments of L-functions I: Twists by class group characters of imaginary quadratic fields[END_REF], [START_REF]Wide moments of L-functions II: Dirichlet L-functions[END_REF].

The starting point for each of the two applications is the Birch-Stevens formula which relates additive and multiplicative twists. Proof. The proof is a straightforward adaption of the proof of [42, Proposition 6.1] recalling that we have the Hecke relations (6.2) since φ is assumed to be a newform.

We will make a few comments on the arithmetic weights ν. Note that if χ is primitive modulo c then the arithmetic weight is simply given by ν(φ, χ * , c/c(χ)) = τ (χ). In particular the weight is of absolute norm c 1/2 in this case. In general, if we have λ φ (n) ε n θ+ε then one gets the following bound If we restrict to prime conductor and level 1, we get the following more pleasant form. for ε > 0, where θ = 7 64 is the best bound towards the Ramanujan-Petersson conjecture for Maaß forms due to Kim and Sarnak [START_REF] Kim | Functoriality for the exterior square of GL 4 and the symmetric fourth of GL 2[END_REF].

8.2. Applications to reciprocity formulae. The starting point is the following unpublished paper of Conrey [START_REF] Conrey | The mean-square of Dirichlet L-functions[END_REF]Theorem 10], in which a reciprocity relation satisfied by twisted second moment of Dirichlet L-functions was discovered. Here the terminology "reciprocity" refers to the cosmetic similarity with quadratic reciprocity; one relates the arithmetics of the seemingly unrelated finite fields F q and F for primes q = . In the case of Conrey, the reciprocity relation relates the following two objects χ mod q |L(χ, 1/2)| 2 χ( ) χ mod |L(χ, 1/2)| 2 χ(-q), (8.7) for primes q = . The results were later refined by Young [START_REF] Young | The reciprocity law for the twisted second moment of Dirichlet L-functions[END_REF] and Bettin [4]. This can be seen as the simplest example of a spectral reciprocity-relation. Another example being the GL 3 × GL 2 -relation due to Blomer and Khan [START_REF] Blomer | Twisted moments of L-functions and spectral reciprocity[END_REF] taking the following shape;

f level q L(F ⊗ f, 1/2)L(f, 1/2)λ f (p) f level p L(F ⊗ f, 1/2)L(f, 1/2)λ f (q),
where f runs over an orthonormal basis of Hecke-Maaß forms of level q (resp. p), λ f (n) is the n-th Hecke eigenvalue of f and F is a (fixed) GL 3 -automorphic form.

The left-hand side of (8.7) can be seen as the twisted first moment of a twisted Eisenstein series. The second named author [START_REF] Nordentoft | A note on additive twists, reciprocity laws and quantum modular forms[END_REF] extended this result to general cuspidal holomorphic cusp forms of even weight using a connection to quantum modularity. In this paper we have extended the quantum modularity to general GL 2 -forms, and this implies the following reciprocity relation in the cuspidal case. Here L(φ, s) denotes the (standard) L-function of φ.

Proof. By Proposition 8.1, the left hand side of (8.8) is exactly h Wq (-c 2 /c 1 ). Now the result follows directly from Proposition 6.1.

Similarly in non-cuspidal case of Eisenstein series we get the following reciprocity relation for products of Dirichlet L-functions extending [START_REF] Bettin | On the reciprocity law for the twisted second moment of Dirichlet L-functions[END_REF]. Theorem 8.4. Let χ i mod q i be primitive Dirichlet characters with χ 1 (-1)χ 2 (-1) = (-1) k , k ∈ {0, 1}. Then for any pair of integers 0 < c 1 < c 2 satisfying (c 1 , c 2 ) = (c 1 c 2 , q) = 1 where q = q 1 q 2 , we have where ν(•, •, •) is a finite Euler product defined as in (8.4), A ± , B ± as in Proposition 6.3 and C = -χ 2 (-1)L(χ 1 , 1/2)L(χ 2 , 1/2), k = 0, -L(χ 1 , 1/2)L(χ 2 , 1/2), k = 1, and η χ1,χ2 = (-1) k τ (χ 1 )τ (χ 2 ) (q 1 q 2 ) 1/2 .

Here L(χ, s) denotes the Dirichlet L-function of a Dirichlet character χ.

Proof. Again by Proposition 8.1, the left hand side of (8.9) is exactly h Wq (-c 2 /(qc 1 )). Now the result follows directly from Proposition 6.4 using that L(E * χ1,χ2 , χ, s) = L(χ 1 χ, s)L(χ 2 χ, s).

In the special case cuspidal Maaß forms of level 1 and where c 1 , c 2 are prime, we get the simplified version Corollary 1.7 stated in the introduction using Corollary 8.2. 8.3. Wide moments of automorphic L-functions. We will now use Proposition 8.1 to obtain asymptotic calculations of certain wide moments of automorphic L-functions. These moments calculations are new and go beyond what has been obtained with the approximate functional equation-approach. We note that these moment calculations are derived using quite surprising input: dynamics of the Gauß map combined with quantum modularity of additive twists (which we have seen is a very general and non-arithmetic phenomena).

These moment evaluations fit into the a general philosophy of wide moments and distribution of automorphic periods as described in [START_REF]Wide moments of L-functions I: Twists by class group characters of imaginary quadratic fields[END_REF] and [START_REF]Wide moments of L-functions II: Dirichlet L-functions[END_REF] (see also [START_REF]High moments of the Estermann function[END_REF]). The starting point is that for many natural families of automorphic L-functions {L(π ⊗ χ, 1/2) : χ ∈ G}, are "well behaved" in some suitable limit. Here π is an automorphic representation of GL n (A F ) and G is some finite group of Hecke characters of some number field F . In [START_REF]Wide moments of L-functions I: Twists by class group characters of imaginary quadratic fields[END_REF] the setting is that π = BC F/Q (π 0 ) is the base change to F of a (fixed) cuspidal automorphic representation π 0 of GL 2 (A Q ), G = Cl F are class group characters of F , where F is an imaginary quadratic field of discriminant tending to infinity. In [START_REF]Wide moments of L-functions I: Twists by class group characters of imaginary quadratic fields[END_REF] one has π = ψ a Dirichlet character and G = {Dirichlet characters modulo p} as p → ∞.

In this language we can reinterpret Proposition 8. L i (χ i ).

The righthand side is what we call the wide moment of L 1 , . . . , L m . As a corollary of Proposition 7.9 we obtain the following wide moment calculation. 

1. 6 .

 6 Notation. We use indistinctively the symbols X = O(Y ) and X Y to indicate the existence of a constant C > 0 such that |X| ≤ CY . The value of C may depend at most on variables which are either indicated in subscript, as in e.g. X ε Y , or mentioned in the immediate context. The symbol X Y means X

Remark 3 . 5 .

 35 The above notion of quantum modularity can be put into the following general framework. Consider a structured space (e.g. a topological space, manifold) Y , a group G and a representation ρ : G → Aut(C[Y ]) where C[Y ] denotes the ring of (set theoretic) maps Y → C with pointwise addition and multiplication. Let u : G → C[Y ] be a cocycle for the pair (G, ρ) in the sense that
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 3 Figure 3. The hyperbolic triangle F x,0 for large x
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 43 We have for any Y ≥ 1:

(5. 2 ) 5 . 1 .

 251 L(φ, x, s) := n>0 a(n) e(nx). This corresponds to the Maaß, respectively holomorphic cases studied in [36, Appendices A.3 and A.4]. Using the assumption (2.7), the right-hand sides in both definitions are defined and analytic with respect to s in {Re(s) > 1}. Properties of a Mellin integral of the Whittaker function. For any α ∈ C and β ∈ C, 0 ≤ Re(β) < 1/2, we define (5.3) Ω β (α, s) := ∞ 0 W α,β (y)y s-1/2 dy y .

  Proposition 5.8 is therefore an immediate consequence of the following lemma. Lemma 5.10. Define(5.28) 

  The representation function as sums of two squares. Let r(n) := |{(a, b) ∈ Z 2 , n = a 2 + b 2 }|. Itis classically known (see [30, eq. (1.51)]) that r(n) = 1 4 (1 * χ 4 )(n) where χ 4 is the non-trivial Dirichlet character modulo 4. For x ∈ Q and Re(s) > 1, define R(x, s) := n≥1 r(n) e(nx) n s .

7. 1 .

 1 Distributional result: characteristic function. Let S = -1 1

7. 2 .Proposition 7 . 3 .

 273 Computation of the first and second moment. Let φ and ψ be Hecke-Maaß cusp forms of level 1, normalized so that a φ (1) = a ψ (1) = 1, and ε 1 , ε 2 ∈ {±1}. Then for some δ > 0 and some b φ,± , c φ,ψ,± ∈ C, we have

  ), we get (7.6) with b φ,+ = P (0) -1 in case ψ = φ, and c φ,ψ,+ = 1+µ + φ,ψ 2 if ψ = φ. The analogous computation for L - φ (x) 2 yields an estimate with a possibly different constant term b φ,-and leading coefficient P (0) = -L(sym 2 φ, 1).

8. 1 .Proposition 8 . 1 ./2 3 ,

 1813 The Birch-Stevens formula. The central values of additive twists of holomorphic cusp forms of weight 2 are known as modular symbols, introduced by Birch and Manin[START_REF] Birch | Elliptic curves over Q: A progress report, 1969 Number Theory Institute[END_REF][START_REF] Yu | The periods of modular forms and p-adic Hecke series[END_REF]. Modular symbols have been used extensively in the study of the arithmetics of L-functions due to the Birch-Stevens formula. Let φ be a Hecke-Maaß newform (not neccesarily cuspidal) of level q, weight k ∈ Z ≥0 and neben-typus χ φ . Then for χ a Dirichlet character mod c, we haveν(φ, χ * , c/c(χ))L(f, χ * , 1/2) = a∈(Z/cZ) × χ(a)(L + (φ, a/c, 1/2) + L -(φ, a/c, 1/2)), (8.2)andL ± (φ, a/c, 1/2) = 2 ϕ(c) χ mod c χ(-1)=±1 ν(φ, χ * , c/c(χ))L(φ, χ * , 1/2)χ(a), (8.3)where χ * mod c(χ) denotes the unique primitive character that induces χ and the arithmetic weight ν defined by(8.4) ν(φ, χ, n) := τ (χ) n1n2n3=n χ φ (n 1 )χ(n 1 )µ(n 1 )χ(n 2 )µ(n 2 )λ φ (n 3 )n 1with τ (χ) the Gauß sum of χ. If φ = E * χ1,χ2is the newform Eisenstein series from (6.10), then we haveλ φ (n) = (χ 1 * χ 2 )(n) = d|n χ 1 (d)χ 2 (n/d),and we simply write ν(φ, χ, n) = ν(χ 1 * χ 2 , χ, n).

(8. 5 )

 5 ν(φ, χ * , c/c(χ)) ε c(χ) 1/2 (c/c(χ)) 1/2+ε (c/c(χ)) θ ε c 1/2+θ+ε , which is O ε (c 1/2+ε) assuming the Ramanujan-Petersson conjecture. Finally we observe that we can express ν(φ, χ, n) in terms of a triple convolution as followsτ (χ) • [(χ φ χµ) * (χµ) * (λ φ | • | 1/2 )](n).

Corollary 8 . 2 .- 1 χ

 821 Let φ be a Hecke-Maaß newform of level 1 and let p a prime number. ThenL ± (φ, a/p, 1/2) = 2 p mod p primitive, χ(-1)=±1 τ (χ)L(φ, χ, 1/2)χ(a) + O φ,ε (p θ-1+ε),(8.6) 

Theorem 8 . 3 .

 83 Let φ be a Hecke-Maaß cuspidal newform of level q, weight k, nebentypus χ φ , sign φ , and Fricke eigenvalue η φ . Assume that either s φ = k/2, or k ∈ {0, 1}. Then for any pair of integers0 < c 1 < c 2 with (c 1 , c 2 ) = (c 1 c 2 , q) = 1 and a sign ±, we have 2 ϕ(c 1 ) χ mod c1 χ(-1)=±1 ν(φ, χ * , c 1 /c(χ))L(φ, χ * , 1/2)χ(c 2 ) (8.8) ∓ 2(-1) k η φ ϕ(qc 2 ) χ mod qc2 χ(-1)=±(-1) k ν(φ, χ * , qc 2 /c(χ))L(φ, χ * , 1/2)χ(c 1 ) = M φ,± + O φ,ε ((c 1 /c 2 ) 1-ε ),where ν(•, •, •) is a finite Euler product defined as in(8.4) andM φ,± = φ L(φ, 1/2), k = 0, ± = +, -η φ φ sinh(πt φ )+i φ cosh(πt φ ) L(φ, 1/2), k = 1, s φ = 1/2, ± = +, -i k η φ L(φ, 1/2),s φ = k/2, ± = + 0, else.

1 ϕ(c 2 )

 2 χ mod c2 ν(χ 1 * χ 2 , χ * , c 2 /c(χ))L(χ 2 χ * , 1/2)L(χ 1 χ * , 1/2)χ(c 1 ) (8.9) -(-1) k η χ1,χ2 ϕ(qc 1 ) χ mod qc1 ν(χ 1 * χ 2 , χ * , qc 1 /c(χ))L(χ 1 χ * , 1/2)L(χ 2 χ * , 1/2)χ(-c 2 ) = η χ1,χ2 A ± (c 2 /c 1 ) 1/2 + B ± (c 2 /c 1 ) 1/2 log(c 2 /c 1 ) + C + O χ1,χ2,ε ((c 1 /c 2 ) 1-ε ),

  ⊗ χ, 1/2)χ(a), a ∈ G,

  1 as follows; letG = {Dirichlet characters modulo c}, G ∼ = (Z/cZ) × .Then the Fourier transform ofχ mod c → ν(φ, χ * , c/c(χ))L(φ, χ * , 1/2),is equal to the central values of the additive twist L-function(Z/cZ) × a → L(φ, a/c, 1/2) = L + (φ, a/c, 1/2) + L -(φ, a/c, 1/2).The well behavedness of the Fourier transform in this context is exactly Proposition 7.9; we can calculate all (even, mixed) moments of the additive twists of level 1 Maaß forms! Now it is an easy exercise in Fourier theory that given function L i : G → C with Fourier transforms L i for 1 ≤ i ≤ m, we have (8.10) a∈ G m i=1 L i (a) = 1 |G| m-1 χ1,...,χm∈G: χ1•••χm=1 m i=1

  Re s > 1 by the exponential decay of the Whittaker function in

	(2.10)						1, |η| y ).
	Proof. The bound (2.8) follows at once from the Fourier expansion (2.4) and the exponential decay of the Whit-
	taker function. Similarly, the bound (2.9) follows from (2.8) if |x-x | > y, and otherwise we bound |e(nx) -e(nx )|
	|n(x -x )| in the Fourier expansion and conclude again by the Fourier decay of the Whittaker function. Finally,
	the bound (2.10) follows from (2.8) and (2.9) if |x -x | > y or η > y, and otherwise we write
	|e(nx) -e(nx ) -e(n(x + η)) + e(n(x + η)| = |(e(nx) -e(nx ))(1 -e(nη))|	n 2 η(x -x )
	and use the same argument as above.				
	2.2. The Eichler integral. For x ∈ C(Γ) {∞}, we define	
	(2.11)	E(φ, x, s) :=	0	∞	(φ(x + iy) -φ ∞ (y))y s-1/2 dy y	,
	which converges absolutely for					

  ). Lemma 3.3 shows that ∆ 0 (•, 1/2) extends to a (1/2ε)-Hölder continuous function on I for any ε > 0. Since we had shown earlier that ∆ ∞ (•, 1/2) and ∆ c (•, 1/2) are smooth on I, we deduce by (3.14) that ∆(•, 1/2) extends to a (1/2 -ε)-Hölder continuous function on I. Moreover, the bounds (3.15), (3.16) and (3.10), we get

  Theorem 4.1 admits an extension to the period function h γ which was introduced in Section 3.3. We recall the notation(3.19) and the definition(3.20). Assume that γφ = ηj k γ φ for some η ∈ C. Then with the same notation as in Theorem 4.1, we have

	Theorem 4.6.

].

4.3. Behaviour at infinity for generalized quantum modular forms.

  Since |Ω Q | Q 2 ,we deduce our first claim (7.5) since E Q

2+θ+ε , by virtue of the bound λ(d) d θ+ε , where θ ≤ 7/64 is a bound towards the Ramanujan-Petersson conjecture.

  1/2 r 2 nN

2ϑ . We use the Rankin-Selberg bound n≤X |λ(n)| 2 X, the bound ϑ ≤ 7/64 < 1/4 and the elementary bound

  .4. Moment calculations. Using the complex moments estimate in Proposition 7.2, and the computation of the first two moments in Corollary 7.4, we readily deduce an estimate with power-saving for all moments, see [2, eq. (2.12)].

Proposition 7.9. Let φ 1 , . . . , φ r be distinct Hecke-Maaß cusp forms, k 1 , . . . , k r , 1 , . . . , r ∈ N >0 . Then there exists δ > 0 and a polynomial P such that
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Corollary 8.5. Let φ 1 , . . . , φ r be distinct Hecke-Maaß cusp forms of level 1, k 1 , . . . , k r , 1 , . . . , r ∈ 2N ≥0 and put n = j (k j + j ). Then we have as

ν j (ψ j, )L(φ j , ψ * j, , 1/2)

for some δ > 0, where P is a degree n/2 polynomial with leading coefficient

Here the decorations on the sums mean restricting to characters with χ(-1) = ±1, 1 denotes the principal character (of the relevant modulus suppressed in the notation), and the weights are given by

where χ * mod c(χ) denotes the primitive character inducing the Dirichlet character χ, and ν(•, •, •) is the finite Euler product defined in (8.4).

Proof. This follows directly by combining Proposition 7.9, the Birch-Stevens formula (8.3) and the Fourier theoretic fact (8.10). A.1. Computation of a determinant. In this section we provide the proof for a certain identity between hypergeometric functions, which was used in the proof of Proposition 5.1.

Lemma A.1. For a, b, c ∈ C, c ∈ Z and |z| < 1, we have the equality

where z c is understood to be the principal value. By [25, 9.103.1-3], the left-hand side can be rewritten as

Both U = A and U = B satisfy the equation

see e.g. (9.153.1) of [START_REF] Gradshteyn | Table of integrals, series, and products[END_REF], so that W (z) is a Wronskian determinant. We deduce

Therefore, for some C ∈ C independent of z, we have W (z) = Cz c-1 (1-z) c-a-b , which gives the equality (A.1) for |z -1/2| < 1/2, up to a factor C/c. This equality holds for all |z| < 1 by analytic continuation. We then see that C = c by letting z = 0.

Lemma A.2. For a, b, c ∈ C, c ∈ Z, we have

Proof. By [25, 9.131.2] with γ ← a + b -c and z ← 1/2, we have

and the similar identity with c replaced by c -1. We insert this in the left-hand side of (A.2). Since

2 ) cancel out, and so the left-hand side of (A.2) is equal to

By Lemma A.1 at z = 1/2, the quantity inside the parentheses is equal to 2 a+b-c .

A.2. Computations relative to the functional equation. In this section, we prove an identity for a quotient of hypergeometric functions, which was used in the proof of Lemma 5.11. First define

can be expressed in terms of elementary functions and Γ functions. More precisely, letting n = a + b -2c, we have

.

Proof. We have

Thus, letting

By [25, (9.131.2) and (9.131.1)], the functions ω j are related by

and therefore

where

By a straightforward computation using the complement formula, we obtain Expressing this in terms of n = a + b -2c yields our formula as claimed.