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Introduction

The present article is concerned with understanding the distribution of the initial Fourier coefficients of primitive holomorphic cusp forms at primes. Suppose f is such a form of weight k for the group Γ 0 pN q. We further assume that f is non-CM and has trivial nebentypus. The normalized Fourier coefficients of f at infinity are denoted by papnqq ně1 , so that ap1q " 1 and f pzq "

8 ÿ n"1 apnqn k´1 2 epnzq,
where, as usual, epzq denotes e 2πiz and with this normalization, the Ramanujan bound (proved by Deligne [START_REF] Deligne | La conjecture de Weil. I[END_REF]) says ´2 ď appq ď 2 for primes p. Furthermore, the function n Þ Ñ apnq is real-valued and multiplicative. We refer the reader to the text [START_REF] Iwaniec | Topics in classical automorphic forms[END_REF] for background information on holomorphic modular forms. The Sato-Tate conjecture for distribution of the angles θ p , defined by appq " 2 cos θ p , as p runs over primes, which is now a theorem of Clozel, Harris, Shepherd-Barron and Taylor [START_REF] Clozel | Automorphy for some l-adic lifts of automorphic mod l Galois representations[END_REF][START_REF] Taylor | Automorphy for some l-adic lifts of automorphic mod l Galois representations[END_REF][START_REF] Harris | A family of Calabi-Yau varieties and potential automorphy[END_REF], implies, in particular, that any interval of positive measure within r´2, 2s contains infinitely many values of appq. The goal of this article is to obtain bounds for the least prime p such that appq lies in a fixed interval I Ă r´2, 2s. This can be considered as an analogue of Vinogradov's problem of estimating, given a modulus q ě 1, the size of the least quadratic non-residue modulo q (see [START_REF] Burgess | The distribution of quadratic residues and non-residues[END_REF], [START_REF] Vinogradov | On a general theorem concerning the distribution of the residues and non-residues of powers[END_REF]). The quality of our bounds will be measured in terms of the analytic conductor qpf q " N k 2 of the form f (see §2.1), and also separately in term of the weight k of the form, considering the level N to be fixed and in terms of the level N , considering the weight k to be fixed. We restrict our attention to forms with trivial nebentypus in order to clarify the presentation but the methods presented here can be extended to a more general setting.

Let I Ă r´2, 2s. Theorem 1.6 of the paper [START_REF] Lemke Oliver | Effective log-free zero density estimates for automorphic L-functions and the Sato-Tate conjecture[END_REF] of Lemke-Oliver and Thorner implies that there exists a constant A depending only on I such that appq P I for some prime p ď q A . Their method relies on effective log-free zero density estimates for the L-function associated with f , and the Turán power-sum method. The value of the constant A is not stated explicitly in their paper but it is not hard to see that the constant is effective and can be worked out explicitly. However the method is likely to produce quite large values of A. Our aim in the present work is to make the value of A as small as possible for some specific intervals.

We define, when κ is positive and x P r0, 1s:

F px; κq " ż x{p1`xq 0 h κ´1 dh 1 ´h " ÿ kě0 1 κ `k ´x 1 `x ¯κ`k . (1.1)
Note that F p¨; κq is increasing between F p0; κq " 0 and F p1; κq " ş 1{2 0 h κ´1 dh 1´h . We thus define a function G p¨; κq with value in r0, 1s by G py; κq " maxtx P r0, 1s : F px; κq ď 1{yu.

(1.

2)

The function G is non-increasing and we have G py; κq " 1 when y ď 1{F p1; κq and by convention G p8; κq " 0.

We now state our main results which depend crucially on knowledge about the analytic properties of the symmetric power L functions associated to f (see §2.1 for definition). This is likely to change in the future; only small changes would be required in our proofs to reflect any such improvement. Here is the assumption we rely on.

Hypothesis H : The L-function Lps, sym pf qq has analytic continuation to the entire complex plane and it satisfies the bound Lp1{2 `it, sym pf qq ! ε qpsym pf q, sq λ `ε for any ε ą 0.

For holomorphic forms, the automorphy of Lps, sym f q has been known for ď 8 by [START_REF] Gelbart | A relation between automorphic representations of GLp2q and GLp3q[END_REF][START_REF]Functorial products for GL2 ˆGL3 and the symmetric cube for GL2[END_REF]18,[START_REF] Kim | Cuspidality of symmetric powers with applications[END_REF][START_REF] Clozel | Level raising and symmetric power functoriality, II[END_REF][START_REF]Level-raising and symmetric power functoriality, III[END_REF], and has recently been proved for all when N is squarefree by Newton-Thorne [START_REF] Newton | Symmetric power functoriality for holomorphic modular forms[END_REF]. As a result, these L-functions admit holomorphic continuation to the entire complex plane and by the convexity principle, H holds with λ " 1{4 (known as the convexity bound) for ď 8 unconditionally and for all when N is squarefree.

Our results are the following.

Theorem 1.1. For any δ P p0, 2s, let θ 1 pδq " G p2 `δ; δq. The function θ 1 is increasing and we have θ 1 p0`q " 0 and θ 1 p1q " 0.3956 ¨¨¨. Suppose λ 1 ą 0 is an exponent that satisfies the hypothesis H below for " 1, and let ε ą 0. Then for q " N or k 2 sufficiently large, there exists a prime

p ! ε q 2λ 1 1`θ 1 pδq `ε
with appq ď δ.

Remark 1.2. The convexity bound (Phragmén-Lindelöf principle) allows taking λ 1 " 1 4 but better exponents, called subconvex exponents are known in both the weight and the level aspects. For example, one may take λ 1 " 1 6 when N " 1 by a result of Jutila and Motohashi [START_REF] Jutila | Uniform bounds for Hecke L-functions[END_REF]. Theorem 1.3. For any δ P p0, 1s, let θ 2 pδq " G pp1 `δq 2 ; 2δ `δ2 q. The function θ 2 is increasing when δ ď 0.5305 ¨¨¨, and constant equal to 1 afterwards. We have θ 2 p0`q " 0, θ 2 p1{2q " 0.9093 ¨¨¨, θ 2 p1q " 1. Suppose λ 2 ą 0 is an exponent that satisfies the hypothesis H below for " 2, and let ε ą 0. For any δ P r0, 1s, and for q " N or k 2 sufficiently large, there exists a prime

p ! ε q 4λ 2 1`θ 2 pδq `ε with |appq| ď 1 `δ.
Remark 1.4. The convexity bound allows the choice λ 2 " 1 4 and currently this is the best known exponent. Obtaining a subconvex estimate for the symmetric square L-function in the level or the weight aspect is a challenging problem.

It turns out that showing the existence of primes p of small size in terms of the conductor (i.e., weight and level) such that appq ě 0 is rather difficult. By utilizing the fact that hypotheses H holds true for 1 ď ď 5, we are able to show the following result: Theorem 1.5. There is a prime p ! k 24 N 21 such that appq ě 0.

The results above are all obtained using a similar strategy and this is summarized in Theorem 1.11 below. For some specific intervals, however, we obtain better bounds by employing ad hoc techniques using L-functions as we now describe.

Theorem 1.6. For any ε ą 0, there is a prime p " O ε pkN q 1`ε such that appq ă 0.

Corollary.

The least prime such that appq ‰ 0 is ! ε pkN q 1`ε , for any ε ą 0.

Remark 1.7. As the proof of the above theorem shows, the exponent 1 can be replaced by 4λ 2 and any subconvex estimate λ 2 ă 1{4 for the symmetric square L-function will lead to an improvement of the above result.

The next result relates the possibility of the initial coefficients at primes assuming extreme values with the size of Lp1, f q. For q " N k 2 , let γ ´:" lim inf qÑ8 log Lp1, f q log log q , γ `:" lim sup qÑ8 log Lp1, f q log log q .

From the zero-free region of Lps, f q (See [START_REF] Hoffstein | Siegel zeros and cusp forms[END_REF]), the standard techniques yield ´2 ď γ ´ď γ `ď 2.

(1.3) Theorem 1.8. For any δ, ε ą 0, the least prime p such that appq ą γ ´´δ is Opq ε q. Similarly, the least prime p such that appq ă γ ``δ is Opq ε q.

Remark 1.9. The bounds (1.3) seem to be the best known, and any improvement would yield a non-trivial result in Theorem 1.8. The quality of the upper-bound on p, namely Opq ε q, compared to the above results, suggests that improving the bounds (1.3) is a difficult task. Under the Riemann Hypothesis for Lps, f q, one has the bounds plog log qq ´2 ! Lp1, f q ! plog log qq 2 , at least in the case N " 1 (see [START_REF] Lau | A density theorem on automorphic L-functions and some applications[END_REF]Thm. 3] for a precise and stronger statement), which yields conjecturally γ ´" γ `" 0. Furthermore, it is known that these bounds hold for almost all forms (see [START_REF] Lau | Extreme values of symmetric power L-functions at 1[END_REF]Cor. 2] for a precise statement).

Several authors investigated the smallest integer n such that apnq ă 0, see for instance [START_REF] Iwaniec | The first negative Hecke eigenvalue[END_REF], [19], [START_REF] Lau | The first negative coefficients of symmetric square Lfunctions[END_REF] or [START_REF] Matomäki | On signs of Fourier coefficients of cusp forms[END_REF]. It follows from [START_REF] Matomäki | On signs of Fourier coefficients of cusp forms[END_REF] that the least such n is Opq 3{8 q, where q " N k 2 . A closer scrutiny of their proofs reveals that the integer n they produce is either a prime or the square of a prime. Indeed, all the above works make use of the contrast between the sizes of appq and app 2 q forced by the Hecke relation appq 2 ´1 " app 2 q for primes p. Since we aim at localizing only appq's, the coefficients at primes, we cannot rely on such procedures. In fact, the two methods we propose are reverse: from a localization on appq, we show that some polynomial in appq has to be large for many primes p. This polynomial defines the value at p of a new function whose Dirichlet series we approximate with products of Lps, sym f q and it is by using the analytic properties of these latter that we reach a contradiction. To find an integer n such that apnq ă 0, only the analytic properties of Lps, f q are required.

Regarding bounds conditional on the Riemann Hypothesis, Ankeny [START_REF] Ankeny | The least quadratic non residue[END_REF] has proved that for any non-trivial character χ mod q, if the Riemann hypothesis is true for Lps, χq, then the least n such that χpnq ‰ 1 is Opplog qq 2 q. It is not difficult to show that the analogous phenomenon holds in our setting: Theorem 1.10. Assume that for all ě 1, the function Lps, sym f q is entire and satisfies the Riemann hypothesis. Then for any interval I Ď r´2, 2s of positive measure, the least prime p such that appq P I satisfies p ! I plog qq 2 .

Let us now state our general theorem depending on the hypothesis H . Note that this result implies Theorems 1.1, 1.3 and 1.5.

Theorem 1.11 (Generic theorem). Let pb q 1ď ďL be non-negative integers, Let κ ą 0 and F be real, and let I Ă r´2, 2s be such that

$ ' ' & ' ' % @x P r´2, 2s I, ÿ 1ď ďL b U px{2q ě κ ą 0, @x P r´2, 2s, ÿ 1ď ďL b U px{2q ě F, (1.4) 
where U are the Chebyshev polynomials of the second kind. Then, on assuming pH q ďL , the least prime p such that appq P I satisfies

log p log N ď 2 ř b λ 1 `G pκ ´F ; κq `ε, (1.5) 
for any ε ą 0 and N large enough with respect to the weight k and ε; and

log p log k ď 2 ř p ` p qqb λ 1 `G pκ ´F ; κq `ε. (1.6)
for any ε ą 0 and k large enough with respect to the level N and ε. Here p q " 1´p´1q 2 P t0, 1u is the parity of .

The intervals rα, βs for which there is a linear combination with non-negative coefficients of U 1 , . . . , U 8 which takes positive values outside rα, βs delimit a curve in pα, βq, whose exact determination is an interesting question (without the non-negativity condition, the analogue for U 1 , . . . , U 4 was solved in Appendix A of [START_REF] Lemke Oliver | Effective log-free zero density estimates for automorphic L-functions and the Sato-Tate conjecture[END_REF]). Between this curve and the diagonal α " β, Theorem 1.11 yields an upper-bound on log p log q , which gets smaller as one moves away from the diagonal. This is represented in Figure 1, which was obtained by case-by-case analysis of all linear combinations with ř ď8 b ď 42. On the left, darker colors indicate a larger upper-bound.

Theorem 1.11 should be compared with Theorem 1.8 of [START_REF] Lemke Oliver | Effective log-free zero density estimates for automorphic L-functions and the Sato-Tate conjecture[END_REF]. In both cases, we are given an interval I Ă r´2, 2s, and we are looking for the least prime p such that appq P I. In Theorem 1.8 of [START_REF] Lemke Oliver | Effective log-free zero density estimates for automorphic L-functions and the Sato-Tate conjecture[END_REF], the authors obtain an exponent depending on the quality with which the indicator function 1 I can be minorized by a linear combination of U 0 , U 1 , U 2 , . . . . In Theorem 1.11, we obtain an exponent depending on the quality with which the complementary indicator function 1 r´2,2s I is minorized by a linear combination with non-negative coefficients of U 1 , U 2 , . . . . An inconvenient of our method is that there is no clear description of the allowable intervals I. Theorems 1.1-1.5 indicate that, when it can be applied, the method described here yields non-trivial numerical results.

Notation. Our notation is quite standard. We follow the usual practice of denoting by p an arbitrary prime and by ε an arbitrarily small positive real number which need not be the same in every occurrence. For any set X Ă R and maps F : X Þ Ñ C and G : X Þ Ñ r0, 8q, we write F pxq ! Gpxq or F pxq " OpGpxqq if there exists a C ą 0 such that |F pxq| ď CGpxq for all x P X. Sometimes, the implied constant C depends on some parameters and this dependence is shown in the subscript. For example, often the implied constant depends on the parameter ε, an arbitrarily small positive real number and we display this dependence by writing ! ε or O ε . Sometimes, the dependence is not shown when it is clear from the context in order to avoid making the notation too cumbersome. By η, we denote the Mellin transform of a function η:

ηpsq "

ż 8 0 ηptqt s´1 dt. (1.7)
2. Background on modular forms and L-functions 2.1. Symmetric power L-functions. For a primitive form f , as in the introduction, its normalized coefficients a f ppq " appq can be written as appq " α f ppq `βf ppq where, for p N , α f ppq " 1{β f ppq and both are complex numbers of absolute value 1. For each P N, the -th symmetric power L-function of f is defined, for s ą 1, by

Lps, sym f q " ź p ź 0ďjď `1 ´αf ppq ´j β f ppq j {p s ˘´1 ": ÿ ně1 a sym f pnq n s . (2.1)
We have sym 1 f " f and it is convenient to set sym 0 f " 1 so that Lps, sym 0 f q " ζpsq. It is expected from a general conjecture of Langlands [START_REF] Langlands | Problems in the Theory of Automorphic Forms[END_REF] that for every , there is a cuspidal automorphic representation of GL `1pA Q q that corresponds to the L-function Lps, sym f q. For 1 ď ď 8, this was shown in [START_REF] Gelbart | A relation between automorphic representations of GLp2q and GLp3q[END_REF] (for " 2), [START_REF]Functorial products for GL2 ˆGL3 and the symmetric cube for GL2[END_REF] (for " 3), [18, 16] (for " 4) and [START_REF] Clozel | Level raising and symmetric power functoriality, II[END_REF][START_REF]Level-raising and symmetric power functoriality, III[END_REF] (for 5 ď ď 8). When N is squarefree, this has been announced for all ě 0 in [START_REF] Newton | Symmetric power functoriality for holomorphic modular forms[END_REF]. Following [14, Eq.(5.5)]), we define the analytic conductor of Lps, sym f q as qps, sym pf qq " N p|t| `2q `1k ` p q , (

with p q " 1´p´1q 2 being 1 or 0 according as is odd or even, as in the statement of Theorem 1.11.

Once we know that a symmetric power L-function comes form an automorphic representation, the analytic continuation and functional equation for that Lfunctions follows from [START_REF] Godement | Zeta functions of simple algebras[END_REF] and thus the Phragmén-Lindelöf convexity principle (or the approximate functional equation [14, eq. (5.20)]) implies that for 1 ď ď 8, the hypothesis H holds with the value λ " 1{4, even for δ " 0. This is known as the convexity bound. Giving a bound on an L-function that is stronger than the convexity bound is a challenging problem which has been solved in a few cases (see [START_REF] Munshi | The subconvexity problem for L-functions[END_REF] and the references therein) and this is known as the subconvexity problem. Sometimes we are interested in the size of the L-functions in terms of only the size of the variable t, or the weight k or the level N . A result of Jutila and Motohashi [START_REF] Jutila | Uniform bounds for Hecke L-functions[END_REF] says that taking λ 1 " 1{6 is permissible in the weight and the t-aspect. We further define qpsym pf qq :" N k ` p q .

(2.3)

In particular, qpf q " N k 2 and qpsym 2 pf qq " N 2 k 2 . Note that in the weight aspect, qpf q and qpsym 2 pf qq are of the same order. For the coefficients of the symmetric -th power L-function of f , we have the following relation for every prime p:

a sym f ppq " a `p ˘" U pcos θppqq " U pappq{2q " sinpp `1qθppqq sin θppq , (2.4)
where U is the Chebyshev polynomial of second kind, whose properties we recall next.

2.2. Chebyshev polynomials of the second kind. We recall that the Chebyshev polynomial of second kind pU q ě0 are defined by

U 0 " 1, U 1 " 2x, U `1 ´2xU `U ´1 " 0. (2.5)
These polynomials form an orthonormal basis in the space of polynomials on the interval r´1, 1s relative to the Hermitian product xf, gy "

ż 1 ´1 f pxqgpxq 2 π a 1 ´x2 dx. (2.6)
The first few are given by

U 2 " 4x 2 ´1, U 3 " 8x 3 ´4x, U 4 " 16x 4 ´12x 2 `1, U 5 " 32x 5 ´32x 3 `6x, U 6 " 64x 6 ´80x 4 `24x 2 ´1, U 7 " 128x 7 ´192x 5 `80x 3 ´8x, U 8 " 256x 8 ´448x 6 `240x 4 ´40x 2 `1.
The last equality in Eq. (2.4) comes from the relation U n pcos θq " sinppn `1qθq sin θ .

Auxiliary Lemmas

3.1. Convolutions. Lemma 3.1. Assume pH q 1ď ďL . Let L ě 1 be an integer and let pb q 0ď ďL be a collection of non-negative integers. Then, we have the equality

ź p ˆ1 `ř b app q p s ˙" ź 0ď ďL Lps, sym f q b Hpsq,
where H is a function that is holomorphic and bounded by a constant in the region s ě 1 2 `ε for any ε ą 0. Proof. This follows easily by comparing the p-th Euler factors.

We recall that, in the half-plane of absolute convergence, we have

Lps, f q " ź p ˆ1 ´appq p s `1 p 2s ˙´1 " ź p ˆ1 ´αppq p s ˙´1 ˆ1 ´βppq p s ˙´1 (3.1) 
as well as

Lps, sym 2 f q " ź p ˆ1 ´appq 2 ´1 p s `appq 2 ´1 p 2s ´1 p 3s ˙´1 . (3.2) 
3.2. Averages of multiplicative functions. We quote Theorem 21.2 of [START_REF] Ramaré | Comparing Lps, χq with its tructated Euler product and generalization[END_REF] which follows an idea of Wirsing [START_REF] Wirsing | Das asymptotische Verhalten von Summen über multiplikative Funktionen[END_REF].

Lemma 3.2. Let f be a non-negative multiplicative function and κ be a nonnegative real parameter such that The condition on η is obviously satisfied if, as will be the case for us, η is non-negative with support inside the interval r0, 1s. Let L P N ą0 , and assume pH q 1ď ďL . Let pb q 0ď ďL be a collection of non-negative integers. Given a primitive form f pzq " ř ně1 apnqepnzq as in the introduction, let us define a multiplicative function h f by the equality

$ ' ' ' ' & ' ' ' ' % ÿ pě2,νě1 p ν ďQ f `pν ˘log `pν ˘" κQ `OpQ{ logp2Qqq pQ ě 1q, ÿ pě2 ÿ ν, ě1, p ν` ďQ f `p ˘f `pν ˘log `pν ˘! a Q,
ÿ n h f pnq n s " ź p ˆ1 `ř b app q p s
Ṫhen h f is supported on square-free integers and there exists a polynomial P L of degree at most b 0 ´1 such that, for any ε ą 0, we have

ÿ ně1 h f pnqηpn{Xq " XP L plog Xq `O´X 1 2 `ε ź 1ď ďL qpsym pf qq b λ `ε¯( 4.1)
for any compactly supported twice continuously differentiable non-negative function η.

Proof. Let us denote by S the left-hand side of (4.1). By taking Mellin transforms (e.g. p.90 of [START_REF] Iwaniec | Analytic number theory[END_REF]), we get

S " 1 2iπ ż 2`i8 2´i8 X s ηpsq s ÿ ně1 h f pnq n s ds.
The fact that η is twice continuously differentiable ensures us that its Mellin transform verifies ηpsq ! 1{p1 `|s| 2 q uniformly in any closed vertical strip in the half plane s ą 0. Lemma 3.1 gives us an expression for the Dirichlet series ř ně1 h f pnq{n s from which we see that we can shift the line of integration to s " 1 2 `ε obtaining that the error term is at most

O ´X 1 2 `ε ź 1ď ďL qpsym pf qq b λ `ε¯,
by our hypothesis pH q 1ď ďL and the convexity principle. The residue at 1 gives the claimed main term, and the lemma follows readily.

A general Lemma around Vinogradov's trick

Lemma 5.1. Let g be a real-valued multiplicative function supported on the squarefree integers. We assume further that gppq ě F for every prime p, and that for every prime p ď P , we have gppq ě κ ą 0. Let η be a non-negative, continuously differentiable function with support within r0, 1s such that ş 1 0 ηpvqdv " 1. We have, for M " P θ for some θ P r0, 1s, ÿ ně1 µ 2 pnqgpnqη ˆn P M ˙ě p1 `op1qqκ CM P plog M P q κ´1 `1 ´pκ ´F qF pθ; κq where C is given by (3.3) and F is defined in (1.1)

The factor µ 2 pnq is only here to remind the reader that the variable n is restricted to squarefree values. It can be omitted! Proof. We set S " ÿ ně1 gpnqη ˆn P M ˙.

(5.1)

for instance, we may take θ " maxpG pκ ´F ; κq ´ε, 0q. Consider the sum S " ÿ ně1 h f pnqηpn{P M q where M P r1, P s. From the upper and the lower bound of S as given by Lemma 4.1 and 5.1 respectively and noting that b 0 " 0, we obtain,

pP M q 1 2 `ε ź 1ď ďL qpsym pf qq b λ `ε " P M.
Therefore, with M " P θ for some θ P r0, 1s satisfying (6.1), we have

P ! k N 2 ř b λ 1`θ `ε.
This leads to the estimate (1.5) and the other estimate (1.6) is proved in a similar manner.

Let us inspect what this gives to us under the convexity bound for λ " 1{4. Since the quantity 2 ř ě1 b λ takes all the values that are half-positive integers, we may inspect the first of them one by one. As we did above, we focus on the level N .

First case p1{2q

ř ě1 b " 1{2. This is only possible with the choice b 1 " 1, all other b 's being 0. We have ř 1ď ďL b U px{2q " x which is positive when x " appq ą 0. On assuming appq ě δ when p ď P , we see that we may take κ " δ and F " ´2 and get, for N ě N 0 pεq, log P log N ď 2λ 1 1 `G p2 `δ; δq `ε. (

Hence Theorem 1.1.

Second case p1{2q ř ě1 b " 1. This is only possible with the choice b 2 " 1, all other b 's being 0. We have ř 1ď ďL b U px{2q " x 2 ´1 which is positive when x " appq R r´1, 1s. On assuming |appq| ě 1 `δ when p ď P , we see that we may take κ " 2δ `δ2 and F " ´1 and get, for N ě N 0 pεq, log P log N ď 4λ 2 1 `G p1 `2δ `δ2 ; 2δ `δ2 q `ε. (6.3) Hence Theorem 1.3.

Finding non-negative values. Let I " r0, 2s. A numerical computation found the coefficients pb q 0ď ď5 " p0, 0, 3, 5, 4, 1q, which satisfy (1.4) with κ ě 1{3 and F " ´10. Then Theorem 1.5 follows from the bounds (1.5) and (1.6).

Proof of Theorem 1.6

Let η : R `Ñ R `be smooth, compactly supported and such that 1 r0,1s ě η ě 1 r1{3,2{3s , let ε ą 0, and consider T pXq " ÿ n µ 2 pnqapnqηpn{Xq pX ě 1q.

By Lemma 4.1, we get T pXq ! X 1{2 pk 2 N q 1{4`ε . (7.1) Suppose that appq ě 0 for all primes p ď X. If the inequality ÿ n: apnqě1 µ 2 pnqapnqηpn{Xq ě X 1´ε (7.2)

with an absolute constant. To show that the right-hand side of (9.1) is positive for some x " O I pplog qq 2 q, it therefore suffices to show that for all integer ě 1 and all real x ě 1, we have ÿ pďx a sym f ppqp1 ´p x q log p " O px 1{2 log qq.

This is an immediate consequence of the explicit formula [14, eq. (5.33)] (with an additional smoothing, as in [26, eq. (13.28)]) along with classical zero density estimates [START_REF] Iwaniec | Analytic number theory[END_REF]Theorem 5.8].
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 1 Figure 1. Upper-bound on log p log N in Theorem 1.11 for I " rα, βs.
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Recall that ş 1 0 ηpvqdv " 1. We thus find that p1 `op1qqS CκP M plog P M q κ´1 ě 1 `pF ´κq ż θ{p1`θq 0 h κ´1 dh 1 ´h " 1 ´pκ ´F qF pθ, κq. Now the last sum is OpX 1´ε{2 q by Deligne's bound |appq| ď 2 and the negation of (7.2). The first sum can be handled by Rankin-Selberg method (Lemma 4.1) and is " Lp1, sym 2 f qX `OpX 1{2 pk 2 N 2 q 1{4`ε q. Thus we have, using the lower bound Lp1, sym 2 f q " 1{ logpkN q due to Hoffstein and Lockhart [START_REF] Hoffstein | Coefficients of Maass forms and the Siegel zero. With an appendix by Dorian Goldfeld, Hoffstein and Daniel Lieman[END_REF],

Proof of

T pXq " X{ logpkN q `OpX 1{2 pk 2 N 2 q 1{4`ε q `OpX 1´ε{2 q.

(7.4)

One of the equations (7.3) and (7.4) must hold and either, in conjunction with equation (7.1), imply the theorem.

Proof of Theorem 1.8

By equation ( 3) of [30], the Deligne bound |appq| ď 2 and Mertens' theorem (see [START_REF] Iwaniec | Analytic number theory[END_REF]Eq. (2.15)]), we have log Lp1, f q " O ε p1q `ÿ pďq ε appq p , and therefore ÿ

However, if we had appq ă γ ´´δ for p ď q ε , then we would also have

which is a contradiction for q large enough, and therefore there must be a prime p ď q ε such that appq ě γ ´´δ. An identical argument shows the existence of p ď q ε such that appq ď γ ``δ.

Conditional bounds: proof of Theorem 1.10

By the Stone-Weierstrass theorem, the fact that pU q forms a basis of RrXs, and the relation (2.4), we may find L ě 1 and real coefficients b 0 , . . . , b L depending on I, with b 0 ą 0, such that ÿ pďx 1pappq P Iqp1 ´p x q log p ě