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HOPF ALGEBRAS AND ALTERNATING MULTIPLE ZETA

VALUES IN POSITIVE CHARACTERISTIC

BO-HAE IM, HOJIN KIM, KHAC NHUAN LE, TUAN NGO DAC, AND LAN HUONG PHAM

Abstract. In [32] we presented a systematic study of algebra structures of

multiple zeta values in positive characteristic introduced by Thakur as ana-

logues of classical multiple zeta values of Euler. In this paper we construct
algebra and Hopf algebra structures of alternating multiple zeta values intro-

duced by Harada, extending our previous work. Our results could be considered

as an analogue of those of Hoffman [28] and Racinet [42] in the classical set-
ting. The proof is based on two new ingredients: the first one is a direct and

explicit construction of the shuffle Hopf algebra structure, and the second one

is the notion of horizontal maps.
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1. Introduction

1.1. Classical setting.

Let N = {1, 2, . . . } be the set of positive integers. The multiple zeta values
(MZV’s for short) are infinite sum defined by

ζ(n1, . . . , nr) =
∑

0<k1<···<kr

1

kn1
1 kn2

2 . . . knr
r
,

for ni ∈ N with nr ≥ 2 for convergence. Here r and w := n1 + · · ·+ nr are said to
be the depth and weight of the presentation ζ(n1, . . . , nr), respectively. In the 18th
century, Euler [20] studied MZV’s for depth 1 and 2 cases. After two centuries, Za-
gier [54] studied the general MZV’s, initiating extensive works connected to various
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fields in mathematics and physics, including number theory, K-theory, knot theory,
and higher energy physics (see for example [9, 17, 18, 27, 35, 30, 38, 44]).

There exist more general objects called colored multiple zeta values. Letting
N ∈ N be a positive integer and ΓN be the group of N -th roots of unity, we define
colored multiple zeta values by

ζ

(
ε1 . . . εr
n1 . . . nr

)
=

∑
0<k1<···<kr

εk11 . . . εkrr
kn1

1 . . . knr
r

for εi ∈ ΓN and ni ∈ N with (nr, εr) 6= (1, 1) for convergence. These objects were
first systematically studied by Arakawa-Kaneko, Deligne, Goncharov and Racinet
(see [5, 6, 15, 17, 22, 23, 42]). Since then they have been also studied by a lot of
mathematicians and physicists, including Broadhurst [7, 8], Hoffman [29], Kaneko-
Tsumura [34], and Zhao [55] in various fields of mathematics and physics. For N = 1
we recover MZV’s. For N = 2 the colored multiple zeta values are also known as
alternating multiple zeta values (AMZV’s for short) or Euler sums.

The main goal of the theory of colored multiple zeta values is to find all linear
and algebraic relations among colored multiple zeta values over a suitable coefficient
field. It led to several important conjectures formulated by Ihara-Kaneko-Zagier
[30], Zagier [54] and Hoffman [27]. We will explain below Ihara-Kaneko-Zagier’s
conjecture and refer the reader to the excellent book [11] for more details about
Zagier and Hoffman’s conjectures.

For MZV’s (the case N = 1) Ihara-Kaneko-Zagier [30] introduced the double
shuffle relations and regularization. Roughly speaking, they used Hoffman’s alge-
bra h (see [28]) and subalgebras h0 ⊂ h1 ⊂ h which are related to the MZV’s, and
presented two different algebra structures (h1, ∗) and (h,�). These structures can
be extended to Hopf algebra structures (see for example the work of Hoffman [28]).
By regularization one gets the double shuffle relations by ‘comparing’ two products
in the level of MZV’s. Double shuffle relations and regularization produce linear re-
lations among MZV’s, and Ihara-Kaneko-Zagier conjectured that these relations are
enough to understand all of the linear relations among MZV’s (see [30, Conjecture
1]).

For colored multiple zeta values the previous works of Ihara-Kanako-Zagier and
Hoffman were extended by Racinet in [42]. However, we warn the reader that as
mentioned in loc. cit., for general N the double shuffle relations and regularization
fail to exhaust all the linear relations among colored multiple zeta values.

1.2. Positive characteristic setting.

1.2.1. MZV’s and AMZV’s in positive characteristic.

Carlitz [12] and Thakur [45, 49] defined the zeta and multiple zeta values in
positive characteristic via the function fields analogy (see [33, 39, 52]). Let q be a
power of prime p and Fq be a finite field of order q. We use the following notations:

A = Fq[θ] the ring of polynomials in the variable θ over Fq,
A+ the set of monic polynomials in A,

K = Fq(θ) the field of fractions of A (with the rational point ∞),

K∞ = Fq((1/θ)) the completion of K at ∞,

v∞ the discrete valuation on K associated to the place ∞,
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normalized as v∞(θ) = −1,

| · |∞ = q−v∞(·) the corresponding absolute value on K.

Carlitz [12] defined the Carlitz zeta values ζA(n) for n ∈ N as

ζA(n) :=
∑
a∈A+

1

an
∈ K∞.

Note that this definition is an analogue of the classical zeta values ζ(n) =
∑
k∈N

1
kn .

Extending this, Thakur [45] defined the multiple zeta value in positive characteristic
for tuples s = (s1, . . . , sr) ∈ Nr as

ζA(s) =
∑ 1

as11 . . . asrr
.

Here the sum is over all tuples of monic polynomials with decreasing degree, i.e.,
(a1, . . . , ar) ∈ Ar+ with deg(a1) > · · · > deg(ar). One can see the analogy between
the classical MZV’s and MZV’s in positive characteristic. We define the depth and
weight of ζA(s) by r and w(s) := s1 + · · ·+ sr respectively. Note that Carlitz zeta
values are MZV’s of depth one. Thakur showed some of their properties including
non-vanishing [46], sum-shuffle relations [48], etc. For further references on the
MZV’s in positive characteristic, see [3, 4, 21, 24, 36, 37, 41, 45, 47, 48, 49, 50, 53].

In [25] Harada introduced the notion of alternating multiple zeta values in pos-
itive characteristic. Let s = (s1, . . . , sr) ∈ Nr and ε = (ε1, . . . , εr) ∈ (F∗q)r, we
define

ζA

(
ε
s

)
=
∑ εdeg a1

1 . . . εdeg ar
r

as11 . . . asrr
∈ K∞.

Here, the sum is over all tuples of monic polynomials with decreasing degree as
MZV’s, i.e., (a1, . . . , ar) ∈ Ar+ with deg(a1) > · · · > deg(ar). We define the depth

and weight of ζA

(
ε
s

)
in a similar manner, that is, r is the depth and w(s) =

s1 + · · ·+ sr is the weight.

In loc. cit., Harada also showed some fundamental properties of AMZV’s which
hold for MZV’s including non-vanishing, sum-shuffle relations, period interpretation
and linear independence.

1.2.2. Zagier-Hoffman’s conjectures for AMZV’s in positive characteristic.

The primary objective of the theory of MZV’s and AMZV’s in positive charac-
teristic is to comprehend all of their K-linear relations as in the classical setting.
The positive characteristic version of Zagier-Hoffman’s conjectures for MZV’s is
suggested by Todd [51] and Thakur [49]. The algebraic part of these conjectures
was solved by the fourth author [40] using ingredients of Chen [14], Thakur [48, 49]
and Todd [51]. The transcendental part was solved for the small weight cases by
the fourth author in [40] by applying Anderson’s theory of motives [1, 10, 26], as
well as Anderson-Brownawell-Papanikolas criterion [2] as a tool for transcendence.

In [31], by discovering a deep link among AMZV’s and alternating Carlitz mul-
tiple polylogarithms, we solved both the MZV’s and AMZV’s version of the Zagier-
Hoffman’s conjectures in positive characteristic. We mention that the latter is much
harder than the former (see [31, §0.3] for a detailed discussion).
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More precisely, we show that

dimK AZw = s(w)

where AZw is the vector space spanned by the AMZV’s in the positive characteristic
of weight w over K, and s(w) is a Fibonacci-like sequence defined by

s(w) =


1 if w = 0,

(q − 1)qw−1 if 1 ≤ w ≤ q − 1,

(q − 1)(qw−1 − 1) if w = q,

(q − 1)
∑q−1
i=1 s(w − i) + s(w − q) if w > q.

Further, we give an explicit basis over K of AZw. Unlike the MZV’s case, this
basis consists of linear combinations of AMZV’s, not AMZV’s. This crucial point
has been observed in the classical setting by Charlton [13] and Deligne [15].

1.2.3. Algebraic structures of MZV’s in positive characteristic.

In our recent paper [32] we addressed a question raised by a referee of a previous
paper [40] by the fourth author investigating the algebraic structure of MZV’s in
positive characteristic. It turns out1 that in 2016, Shuji Yamamoto [49] gave a
construction of the word algebra for the shuffle product, and Shi [43] equipped
it with a conjectural Hopf algebra structure, but left some axioms for the Hopf
algebra open (see [43, Conjecture 3.2.2 and 3.2.11]). Following this, Thakur wrote
to Deligne, and he [16] responded with a helpful letter in 2017. In it, Deligne stated
that he had never seen such a construction before and advised on how to proceed
with proving and investigating it.

Conjecture 1.1. The set of MZV’s in positive characteristic can be equipped with
a shuffle Hopf algebra structure.

In [32] we proved Conjecture 1.1:

Theorem 1.2 ([32, Theorem B]). Conjecture 1.1 is true.

Further, based on the previous link among AMZV’s and alternating Carlitz mul-
tiple polylogarithms introduced in [31], we deduced a Hopf algebra of MZV’s for
the stuffle product (see [32, §9]).

1.3. Main results and key ingredients.

1.3.1. Main results.

In this paper we present a systematic study of algebraic structures of AMZV’s
in positive characteristic, and hence extend our previous work for MZV’s. It could
be considered as an analogue of Hoffman’s and Racinet’s results mentioned above
in the classical setting.

Let us stress that the extension from the setting of MZV’s to that of AMZV’s
is highly nontrivial. This fact is somewhat expected as in [31] we have encountered
a similar problem while extending the proof of Zagier-Hoffman’s conjectures for
MZV’s to that for AMZV’s.

Roughly speaking, in the case of MZV’s, if we consider the corresponding word
algebra denoted by C (see §3.2), then there is only one letter of fixed weight n

1We are thankful to Thakur for his assistance with event orders.
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which is denoted by xn. Consequently, it follows that there is also a unique and
canonical way to define the coproducts ∆(xn) so that the compatibility for x1 and
xn is satisfied for all n ∈ N (see §3.3). Unfortunately, when we work with AMZV’s,
the situation is much more complicated. Although it is not difficult to define the
word algebra D of AMZV’s and to show that it is associative, the definition of a
coproduct is far from evident. The main issue is that in D there are q − 1 letters
of fixed weight, and there are no canonical ways to define coproducts for letters by
using the compatibility for letters of weight 1 and other letters. To move forward
we would need some new ideas.

1.3.2. Key ingredients.

The solution that we give here differs from that for the MZV’s case at some
crucial points and requires two new ingredients.

The first new ingredient is giving direct and explicit formulas for the coproduct
∆ (see §6.1). We do not define it by the recursive induction on weight as it is the
case for MZV’s.

The second new ingredient is introducing so-called horizontal maps which allow
us to deal with letters of the same weight (see §5.2). In particular, if some property
is verified for a word beginning with a specific letter, says x, then by using horizontal
maps we are able to deduce this property for all words beginning with a letter of
the same weight as x.

With these tools we prove that the coproduct verifies all the desired properties
so that the word algebra D of AMZV’s is indeed a connected graded Hopf algebra.

1.3.3. Generalization for colored MZV’s in positive characteristic.

We now give some comments about our results.

First, as mentioned above we have discovered a connection among AMZV’s and
the counterpart of Carlitz multiple polylogarithms in our previous work [31, §1].
Using this connection we could define another Hopf algebra structure on D called
the stuffle Hopf algebra of AMZV’s which extends [32, §9]. As the extension can be
done without difficulty, we leave it to the reader as an exercise.

Second, our construction of the Hopf algebra structure for the word algebra D
of AMZV’s can be extended in a straightforward manner to the word algebra DN

of colored MZV’s for all N ∈ N. More precisely, the letters of DN consist of xn,ε
where n ∈ N and ε is an N -th root of unity in Fq. However, we warn the reader
that in general, colored MZV’s do not belong to K∞ but only to a finite extension
of K∞.

1.3.4. Plan of the manuscript.

The structure of this paper is as follows.

• In §2 we review some notions on the Hopf algebra. Our presentation is
identical to that given in [32].
• In §3, we recall the word algebra C of MZV’s (called the composition space

in [32]) and the shuffle Hopf algebra structure of C. Then we review main
results of loc. cit and state all necessary results that we will need in this
paper so that the reader could read it easily without referring to [32].
• In §4 we review the definitions and basic properties of the AMZV’s in

positive characteristic introduced by Harada [25].
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• In §5 we introduce the word algebra or composition space D of AMZV’s
and equip it with the shuffle algebra structure. We then define horizontal
maps in §5.2. Finally, using these maps we prove that D is an algebra
(i.e., the associativity) and that there exists a shuffle map for AMZV’s (see
Theorem 5.9 and Theorem 5.11).
• In §6 we define the coproduct on D. This definition differs from that on
C as it is direct, explicit and does not use any induction on weight. Using
horizontal maps we prove the compatibility and coassociativity results (see
Theorem 6.5 and Theorem 6.8, respectively), establishing the main theorem
of this paper (see Theorem 6.9 for a precise statement):

Theorem 1.3. The word algebra D of AMZV’s equipped with the shuffle product
and the above coproduct is a connected graded Hopf algebra of finite type over Fq.

Acknowledgments. We would like to thank Dinesh Thakur for his interest and
guidance with literature and for helpful discussions. Bo-Hae Im was supported
by Basic Science Research Program through the National Research Foundation of
Korea (NRF) funded by grant funded by the Korea government (MSIT) (NRF-
2023R1A2C1002385). KN. Le and T. Ngo Dac were partially supported by the
Excellence Research Chair “L-functions in positive characteristic and applications”
financed by the Normandy Region. T. Ngo Dac and LH. Pham were partially sup-
ported by the Vietnam Academy of Science and Technology (VAST) under grant
no. CTTH00.02/23-24 “Arithmetic and Geometry of schemes over function fields
and applications”.

2. Review on Hopf algebra

We give a brief review on basic notions of Hopf algebras, referring to our previous
paper [31, §2] on the Hopf algebra structure of MZV’s in positive characteristic.

2.1. Hopf algebra.

Let k be a field. From now on, tensor products are taken over k. Let H be
a k-vector space, and ι : H ⊗ H → H ⊗ H be the transposition map, defined as
ι(x⊗ y) = y ⊗ x and to be linear.

Definition 2.1. An algebra over k is a triple (H,m, u) consisting of a k-vector
space H together with k-linear maps m : H ⊗H → H called the multiplication and
u : k → H called the unit such that the following diagrams are commutative:

(1) associativity

H ⊗H ⊗H H ⊗H

H ⊗H H

m⊗id

id⊗m m

m

(2) unitary

H ⊗ k H ⊗H k ⊗H

H

id⊗u

m

u⊗id

where the diagonal arrows are canonical isomorphisms.
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The algebra is said to be commutative if the following diagram is commutative:

H ⊗H H ⊗H

H

m

ι

m

Coalgebra over k is dual to the algebra over k, obtained by reversing the arrows.

Definition 2.2. A coalgebra over k is a triple (H,∆, ε) consisting of a k-vector
space H together with k-linear maps ∆: H → H ⊗ H called the coproduct and
ε : H → k called the counit such that the following diagrams are commutative:

(1) coassociativity

H ⊗H ⊗H ⊗H

H ⊗H H

∆⊗id

id⊗∆ ∆

∆

(2) counitary

H ⊗ k H ⊗H k ⊗H

H

id⊗ε ε⊗id

∆

where the diagonal arrows are canonical isomorphisms.

The coalgebra is said to be cocommutative if the following diagram is commutative:

H ⊗H H ⊗H

H

ι

∆∆

Definition 2.3. A bialgebra over k is a 5-tuple (H,m, u,∆, ε) consisting of an
algebra (H,m, u) over k and a coalgebra (H,∆, ε) over k which are compatible, i.e.,
the following diagrams are commutative:

(1) product and coproduct

H ⊗H H H ⊗H

H ⊗H ⊗H ⊗H H ⊗H ⊗H ⊗H

∆⊗∆

m ∆

id⊗ι⊗id

m⊗m

(2) unit and coproduct

H H ⊗H

k k ⊗ k

∆

u

canonical

u⊗u

(3) counit and product

H H ⊗H

k k ⊗ k

ε ε⊗ε

m

canonical
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(4) unit and counit

k k

H

id

u ε

Definition 2.4. A Hopf algebra over k is a bialgebra (H,m, u,∆, ε) over k together
with a k-linear map S : H → H called antipode such that the following diagram is
commutative:

H ⊗H H ⊗H

H k H

H ⊗H H ⊗H

S⊗id

m

ε

∆

∆

u

id⊗S
m

We note that there exist a bialgebra which does not admit an antipode (see [11,
Exercise 3.83] for an example).

2.2. Graded Hopf algebras.

We recall the notions of connected graded bialgebras.

Definition 2.5.

(1) A bialgebra (H,m, u,∆, ε) over k is said to be graded if one can write H as a
direct sum of k-subspaces

H =

∞⊕
n=0

Hn,

such that for all integers r, s ≥ 0, we have

m(Hr ⊗Hs) ⊆ Hr+s and ∆(Hr) ⊆
⊕
i+j=r

Hi ⊗Hj .

A graded bialgebra is said to be connected if H0 = k.
(2) A graded Hopf algebra is a Hopf algebraH whose underlying bialgebra is graded

and the antipode S satisfies S(Hn) ⊆ Hn.
(3) A graded Hopf algebra is said to be connected if H0 = k.
(4) A graded Hopf algebra is said to be of finite type if Hn is a k-vector space of

finite dimension.

The following proposition shows that a connected graded bialgebra automatically
admits an antipode, thus it is always a Hopf algebra.

Proposition 2.6. Let (H,m, u,∆, ε) be a connected graded bialgebra over k.

(1) For each element x ∈ Hn with n ≥ 1, we have

∆(x) = 1⊗ x+ x⊗ 1 +
∑

x(1) ⊗ x(2),

where
∑
x(1) ⊗ x(2) ∈

⊕
i,j>0
i+j=n

Hi ⊗ Hj. Moreover, the counit ε vanishes on Hn

for all n ≥ 1.
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(2) We continue the notation as in (1) and define recursively a k-linear map S : H →
H given by

S(x) =

{
x if x ∈ H0,

−x−
∑
m(S(x(1))⊗ x(2)) if x ∈ Hn with n ≥ 1.

Then H is a graded Hopf algebra whose antipode is S.

Proof. See [19, Lemma 2.1]. �

3. Review of shuffle Hopf algebra of MZV’s

We briefly review some results of our previous work [32] on algebra structures of
MZV’s in positive characteristic.

3.1. Alphabet.

Let I be a countable set and A = {xn}n∈I be a set of variables indexed by I,
equipped with weights w(xn) ∈ N. The set A will be called an alphabet and its
elements will be called letters. A word over the alphabet A is a finite string of
letters. In particular, the empty word will be denoted by 1. The depth depth(a)
of a word a is the number of letters in the string of a, so that depth(1) = 0. The
weight of a word is the sum of the weights of its letter and we put w(1) = 0. Let 〈A〉
denote the set of all words over A. We endow 〈A〉 with the concatenation product
defined by the following formula:

xi1 . . . xin · xj1 . . . xjm = xi1 . . . xinxj1 . . . xjm .

Let Fq〈A〉 be the free Fq-vector space with basis 〈A〉. The concatenation product
extends to Fq〈A〉 by linearity. For a letter xa ∈ A and an element a ∈ Fq〈A〉, we
write simply xaa instead of xa · a. For each nonempty word a ∈ 〈A〉, we can write
a = xaa− where xa is the first letter of a and a− is the word obtained from a by
removing xa.

3.2. Alphabet and shuffle algebra associated to MZV’s.

We recall the alphabet associated to MZV’s as given in [32, §4.2]. The set I will
be N and we denote by Σ = {xn}n∈N with weight w(xn) = n the alphabet attached
to MZV’s. We put C = Fq〈Σ〉, i.e., the free Fq-vector space with basis 〈Σ〉.

For positive integers r, s and for all positive integers i, j such that i+ j = r + s,
we put

∆i
r,s =

{
(−1)r−1

(
i−1
r−1

)
+ (−1)s−1

(
i−1
s−1

)
if (q − 1) | i,

0 otherwise.
(3.1)

Then we define recursively two products on C as Fq-bilinear maps

� : C× C −→ C and � : C× C −→ C

by setting 1 � a = a � 1 = a, 1� a = a� 1 = a and

a � b = xa+b(a− � b−) +
∑

i+j=a+b

∆j
a,bxi(xj � (a− � b−)),

a� b = xa(a− � b) + xb(a� b−) + a � b
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for any nonempty words a, b ∈ 〈Γ〉. We call � the diamond product and � the
shuffle product. The unit u : Fq → C is given by sending 1 to the empty word. One
of the main results of [32] reads as follows (see [32, Theorem A]):

Theorem 3.1. The spaces (C, �) and (C,�) are commutative Fq-algebras.

3.3. Shuffle Hopf algebra associated to MZV’s.

We briefly recall the coproduct as in [32, §7.1]

∆ : C→ C⊗ C.

We first define it on 〈Σ〉 by induction on weight and extend by Fq-linearity to C.
We put

∆(1) := 1⊗ 1, ∆(x1) := 1⊗ x1 + x1 ⊗ 1.

Let w ∈ N and we suppose that we have defined ∆(u) for all words u of weight
w(u) < w. We now give a formula for ∆(u) for all words u with w(u) = w. For such
a word u with depth(u) > 1, we put u = xuv with w(v) < w. Since xu and v are
both of weight less than w, we have already defined

∆(xu) = 1⊗ xu +
∑

au ⊗ bu, ∆(v) =
∑

av ⊗ bv.

Then we set

∆(u) := 1⊗ u +
∑

(au . av)⊗ (bu � bv).

Our last task is to define ∆(xw). We know that

x1 � xw−1 = xw + x1xw−1 + xw−1x1 +
∑

0<j<w

∆j
1,w−1xw−jxj

where all the words xw−jxj have weight w and depth 2 and all ∆j
1,w−1 defined as

in (3.1) belong to Fq. Therefore, we set

∆(xw) := ∆(x1)�∆(xw−1)−∆(x1xw−1)−∆(xw−1x1)−
∑

0<j<w

∆j
1,w−1∆(xw−jxj).

By induction on weight, we can check that ∆ preserves the grading.

Next, the counit ε : C→ Fq is defined by putting ε(1) = 1 and ε(u) = 0 otherwise.
We proved (see [32, Theorem B]):

Theorem 3.2. The connected graded bialgebra (C,�, u,∆, ε) is a connected graded
Hopf algebra over Fq.

3.4. Some properties of the coproduct.

In this section we collect some properties of the coproduct that will be useful in
the sequel.

Lemma 3.3. For all words u ∈ C, we have

∆(u) = 1⊗ u +
∑

au ⊗ bu, where au 6= 1.

Proof. See [32, Lemma 7.1]. �
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Lemma 3.4. Let u and v be two nonempty words in 〈Σ〉. Suppose that

∆(u) = 1⊗ u +
∑

u(1) ⊗ u(2), and ∆(v) = 1⊗ v +
∑

v(1) ⊗ v(2).

Then

∆(u � v) = 1⊗ (u � v) +
∑

(u(1) � v(1))⊗ (u(2) � v(2)).

Proof. See [32, Lemma 8.5]. �

Finally, there is a useful formula for ∆(xn) for xn ∈ Σ that we briefly explain
below.

Lemma 3.5. Let n ∈ N. Then we have

(1) for all j < n,

∆j
1,n =

{
1 if (q − 1) | j
0 otherwise.

(2) ∆n
1,n = 0.

Proof. The result is straightforward from the definition of ∆j
1,n. See [32, Lemma 8.1].

�

Next, we introduce the bracket operator by the following formula: for any a =
xi1 . . . xim ∈ 〈Σ〉,

(3.2) [a] := (−1)m∆i1
1,w(a)+1 · · ·∆

im
1,w(a)+1xi1 � · · ·� xim .

As a matter of convention, we also agree that [1] = 1. Then we showed (see [32,
Theorem C]):

Proposition 3.6. We keep the above notation. Then for all n ∈ N, we have

∆(xn) = 1⊗ xn +
∑

r∈N,a∈〈Σ〉
r+w(a)=n

(
r + depth(a)− 2

depth(a)

)
xr ⊗ [a].

4. Alternating multiple zeta values

We recall some notions on MZV’s and AMZV’s in positive characteristic, refer-
ring to [25, 31, 32].

Letting s = (s1, . . . , sn) ∈ Nn and ε = (ε1, . . . , εn) ∈ (F×q )n, we set s− :=

(s2, . . . , sn) and ε− := (ε2, . . . , εn). A positive array

(
ε
s

)
is an array of the form(

ε
s

)
=

(
ε1 · · · εn
s1 · · · sn

)
.

We recall the power sums studied by Thakur [48]. For d ∈ Z and for s =
(s1, . . . , sn) ∈ Nn we introduce

Sd(s) =
∑

a1,...,an∈A+

d=deg a1>···>deg an≥0

1

as11 . . . asnn
∈ K
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and

S<d(s) =
∑

a1,...,an∈A+

d>deg a1>···>deg an≥0

1

as11 . . . asnn
∈ K.

We also recall the following analogues of the power sums after Harada [25]. For a

positive array

(
ε
s

)
=

(
ε1 . . . εn
s1 . . . sn

)
, we introduce

Sd

(
ε
s

)
=

∑
a1,...,an∈A+

d=deg a1>···>deg an≥0

εdeg a1
1 . . . εdeg an

n

as11 . . . asnn
∈ K

and

S<d

(
ε
s

)
=

∑
a1,...,an∈A+

d>deg a1>···>deg an≥0

εdeg a1
1 . . . εdeg an

n

as11 . . . asnn
∈ K.

One verifies easily the following formulas:

Sd

(
ε
s

)
= εdSd(s),

Sd

(
1 . . . 1
s1 . . . sn

)
= Sd(s1, . . . , sn),

S<d

(
1 . . . 1
s1 . . . sn

)
= S<d(s1, . . . , sn),

Sd

(
ε
s

)
= Sd

(
ε1

s1

)
S<d

(
ε−
s−

)
.

In [25] Harada introduced the alternating multiple zeta value (AMZV) in positive
characteristic by setting

ζA

(
ε
s

)
:=
∑
d≥0

Sd

(
ε
s

)
=

∑
a1,...,an∈A+

deg a1>···>deg an≥0

εdeg a1
1 . . . εdeg an

n

as11 . . . asnn
∈ K∞.

Then he proved several fundamental properties of these values. In particular, it is
shown that the product of two AMZV’s can be expressed as a linear combination
with coefficients in Fq of AMZV’s. To do so, we first recall Chen’s formula in [14].
For integers a, b with b ≥ 0, we recall the binomial number defined by(

a

b

)
:=
a(a− 1) . . . (a− b+ 1)

b!
.

It should be remarked that
(
a
b

)
= 0 if b > a ≥ 0. Then refining the work of

Thakur [48], Chen [14, Theorem 3.1] showed that for positive integers r, s and for
all d ∈ N,

Sd(r)Sd(s) = Sd(r + s) +
∑

i+j=r+s

∆j
r,sSd(i, j),

where the coefficients ∆j
r,s are defined as in (3.1).

As a direct consequence of Chen’s formula, we obtain
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Lemma 4.1. Let α, β be two elements in F∗q , and let r, s be two positive integers.
Then for all d ∈ N, we have

Sd

(
α
r

)
Sd

(
β
s

)
= Sd

(
αβ
r + s

)
+

∑
i+j=r+s

∆j
r,sSd

(
αβ 1
i j

)
,

where the indices i, j are positive integers.

Proof. See for example [25, Lemma 2.3]. �

5. Shuffle algebra of AMZV’s

In the following sections §5 and §6 we construct the Hopf shuffle algebra of
AMZV’s and note that the extension from the setting of MZV’s to that of AMZV’s
is not straightforward as we have explained in the introduction. The key ingredient
of our construction is the notion of so-called horizontal maps that we introduce
in this section. These maps will allow us to deal with letters of the same weight
(see §5.2). In the following section, we will give direct and explicit formulas for the
coproduct and then prove that such formulas verify all desired properties.

5.1. Alphabet and shuffle algebra associated to AMZV’s.

We put I = {(n, ε) : n ∈ N, ε ∈ F∗q}. Let Γ = {xn,ε}n∈N,ε∈F∗q be the alphabet

associated to AMZV’s indexed by I (see §3.1 for notation). We define the weights
by w(xn,ε) = n. We define D := Fq〈Γ〉 to be the free Fq-vector space with basis 〈Γ〉.

Inspired by §3 we define recursively two products on D as Fq-bilinear maps

� : D×D −→ D and � : D×D −→ D

by setting 1 � a = a � 1 = a, 1� a = a� 1 = a and

a � b = xa+b,αβ(a− � b−) +
∑

i+j=a+b

∆j
a,bxi,αβ(xj,1 � (a− � b−)),

a� b = xa,α(a− � b) + xb,β(a� b−) + a � b

for any nonempty words a, b ∈ 〈Γ〉 with a = xa,αa−, b = xb,βb−. We call � the
diamond product and � the shuffle product.

Proposition 5.1. The diamond product and the shuffle product on D are commu-
tative.

Proof. Let a, b ∈ 〈Γ〉 be two arbitrary words. It suffices to show that

a � b = b � a and a� b = b� a.

We proceed the proof by induction on depth(a) + depth(b). If one of a or b is the
empty word, then (5.1) holds trivially. We assume that (5.1) holds when depth(a)+
depth(b) < n with n ∈ N and n ≥ 2. We need to show that (5.1) holds when
depth(a) + depth(b) = n.

Indeed, assume that a = xa,αa−, b = xb,βb−, we have

a � b = xa+b,αβ(a− � b−) +
∑

i+j=a+b

∆j
a,bxi,αβ(xj,1 � (a− � b−)),

b � a = xb+a,βα(b− � a−) +
∑

i+j=b+a

∆j
b,axi,βα(xj,1 � (b− � a−)).
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It follows from the induction hypothesis that a−�b− = b−�a−, hence a�b = b�a.
On the other hand, we have

a� b = xa,α(a− � b) + xb,β(a� b−) + a � b,
b� a = xb,β(b− � a) + xa,α(b� a−) + b � a.

It follows from the induction hypothesis and the above arguments that a− � b =
b� a−, a� b− = b− � a and a � b = b � a, hence a� b = b� a. This proves the
proposition. �

5.2. Horizontal maps.

In this section, we introduce horizontal maps which are crucial in the sequel. For
each element α ∈ F∗q , we consider the Fq-linear map

ϕα : C −→ D,

which maps the empty word 1 ∈ 〈Σ〉 to the empty word 1 ∈ 〈Γ〉 and maps a
nonempty word xi1xi2 . . . xin to xi1,αxi2,1 . . . xin,1. For all nonempty words a ∈ 〈Σ〉
with a = xaa−, we get

ϕα(a) = ϕα(xa)ϕ1(a−) = xa,αϕ1(a−).

As w(ϕα(a)) = w(a) for all α ∈ F∗q and a ∈ C, we call these maps horizontal maps.
We note that they are all injective.

Lemma 5.2. Let a, b be two words in 〈Σ〉. Then we have

ϕ1(a � b) = ϕ1(a) � ϕ1(b) and ϕ1(a� b) = ϕ1(a)� ϕ1(b).

Proof. The proof can be done by induction on depth(a) + depth(b). We omit the
details. �

As a direct consequence, ϕ1 is a homomorphism of algebras from (C, �) to (D, �)
(resp. from (C,�) to (D,�)).

Notation 5.3. Since ϕ1 is injective, from now on for a ∈ C we write a ∈ D instead
of ϕ1(a) ∈ D.

Further, we extend the horizontal map as follows:

ϕα : D→ D; 1 7→ 1, u 7→ xu,αεu−

for nonempty words u ∈ 〈Γ〉 with u = xu,εu−. This is a natural extension under the
identification of a ∈ C and ϕ1(a) ∈ D. We note that if u ∈ 〈Γ〉 is a nonempty word
written as u = xu,εu−, then for all α ∈ F∗q ,

ϕα(u) = ϕα(xu,ε)u−.

Under this extension, the above lemma holds for a, b ∈ 〈Γ〉.

Lemma 5.4. Let α, β be elements of F∗q , and let a, b be nonempty words in 〈Σ〉.
We have

ϕα(a) � ϕβ(b) = ϕαβ(a � b).

Further, for nonempty words a, b ∈ 〈Γ〉,

ϕα(a) � ϕβ(b) = ϕαβ(a � b).
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Proof. Consider the horizontal maps defined on 〈Σ〉. We write a = xaa−, b = xbb−
with xa, xb ∈ Σ and a−, b− ∈ 〈Σ〉. From Lemma 5.2, we have

ϕαβ(a � b) = ϕαβ

(
xa+b(a− � b−) +

∑
i+j=a+b

∆j
a,bxi(xj � (a− � b−))

)
= xa+b,αβ(a− � b−) +

∑
i+j=a+b

∆j
a,bxi,αβ(xj � (a− � b−))

= xa,αa− � xb,βb−
= ϕα(a) � ϕβ(b).

The proof for the horizontal maps on 〈Γ〉 is parallel. Let a = xa,ε1a−, b = xb,ε2b−
with xa,ε1 , xb,ε2 ∈ Γ and a−, b− ∈ 〈Γ〉. From Lemma 5.2 and its following remark,
we have

ϕαβ(a � b) = ϕαβ

(
xa+b,ε1ε2(a− � b−) +

∑
i+j=a+b

∆j
a,bxi,ε1ε2(xj � (a− � b−))

)
= xa+b,αβε1ε2(a− � b−) +

∑
i+j=a+b

∆j
a,bxi,αβε1ε2(xj � (a− � b−))

= xa,αε1a− � xb,βε2b−
= ϕα(a) � ϕβ(b).

This proves the lemma. �

We end this section by noting that horizontal maps are associative. More pre-
cisely, we prove

Lemma 5.5. Let α, β ∈ F∗q . For any word a ∈ 〈Γ〉, we have

ϕαβ(a) = ϕα(ϕβ(a)).

Proof. The proof is straightforward from the definition of horizontal maps. �

5.3. Associativity.

In this subsection, we first show that the diamond product is associative over Γ
(see Proposition 5.6), and then prove the associativity of the diamond product and
the shuffle product on D (see Proposition 5.8).

Proposition 5.6. Let xa,α, xb,β , xc,γ be letters in Γ. Then we have

(xa,α � xb,β) � xc,γ = xa,α � (xb,β � xc,γ).

Proof. From Lemma 5.4, we have

(xa,α � xb,β) � xc,γ = (ϕα(xa) � ϕβ(xb)) � ϕγ(xc)

= ϕαβ(xa � xb) � ϕγ(xc)

= ϕαβγ((xa � xb) � xc),
xa,α � (xb,β � xc,γ) = ϕα(xa) � (ϕβ(xb) � ϕγ(xc))

= ϕα(xa) � ϕβγ(xb � xc)
= ϕαβγ(xa � (xb � xc)).
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From the associativity of the diamond product on C (see Theorem 3.1), we have
(xa � xb) � xc = xa � (xb � xc). This proves the proposition. �

Next, we define recursively a product on D as a Fq-bilinear map

. : D×D −→ D

by setting 1 . a = a . 1 = a and

a . b = xa,α(a− � b)

for any nonempty words a, b ∈ 〈Γ〉 with a = xa,αa−. We call . the triangle product.
The triangle product is neither commutative nor associative, as one verifies at once.

Lemma 5.7. For all words a, b ∈ 〈Γ〉 with a = xa,αa−, b = xb,βb−, we have

(1) a � b = (xa,α � xb,β) . (a− � b−).
(2) a� b = a . b + b . a + a � b.

Proof. We have

a � b = xa+b,αβ(a− � b−) +
∑

i+j=a+b

∆j
a,bxi,αβ(xj � (a− � b−))

= xa+b,αβ . (a− � b−) +
∑

i+j=a+b

∆j
a,b(xi,αβxj) . (a− � b−)

=

xa+b,αβ +
∑

i+j=a+b

∆j
a,bxi,αβxj

 . (a− � b−)

= (xa,α � xb,β) . (a− � b−).

This proves part (1). Part (2) is straightforward from the commutativity of the
shuffle product (see Proposition 5.1). This completes the proof. �

We now ready to prove the main result of this subsection.

Proposition 5.8. The diamond product and the shuffle product on D are associa-
tive.

Proof. Let a, b, c ∈ 〈Γ〉 be arbitrary words. It suffices to show that

(a � b) � c = a � (b � c) and (a� b)� c = a� (b� c).

We proceed the proof by induction on depth(a) + depth(b) + depth(c). If one of a, b
or c is the empty word, then (5.3) holds trivially. We assume that (5.3) holds when
depth(a) + depth(b) + depth(c) < n with n ∈ N and n ≥ 3. We need to show that
(5.3) holds when depth(a) + depth(b) + depth(c) = n.

We first show that (a � b) � c = a � (b � c). Assume that a = xa,αa−, b = xb,βb− =
c = xc,γc−. From Lemma 5.7, we have

(a � b) � c

=

xa+b,αβ(a− � b−) +
∑

i+j=a+b

∆j
a,bxi,αβ(xj � (a− � b−))

 � c
= xa+b,αβ(a− � b−) � c +

∑
i+j=a+b

∆j
a,bxi,αβ(xj � (a− � b−)) � c
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= (xa+b,αβ � xc,γ) . ((a− � b−)� c−)

+
∑

i+j=a+b

∆j
a,b(xi,αβ � xc,γ) . ((xj � (a− � b−))� c−).

For all i, j ∈ N with i+ j = a+ b, it follows from the induction hypothesis that

(xi,αβ � xc,γ) . ((xj � (a− � b−))� c−)

= (xi,αβ � xc,γ) . (xj � ((a− � b−)� c−))

=

xi+c,αβγ +
∑

i1+j1=i+c

∆j1
i,cxi1,αβγxj1

 . (xj � ((a− � b−)� c−))

= xi+c,αβγ . (xj � ((a− � b−)� c−))

+
∑

i1+j1=i+c

∆j1
i,cxi1,αβγxj1 . (xj � ((a− � b−)� c−))

= xi+c,αβγ(xj � ((a− � b−)� c−))

+
∑

i1+j1=i+c

∆j1
i,cxi1,αβγ((xj1 � xj)� ((a− � b−)� c−))

= (xi+c,αβγxj) . ((a− � b−)� c−)

+
∑

i1+j1=i+c

∆j1
i,cxi1,αβγ(xj1 � xj) . ((a− � b−)� c−)

=

xi+c,αβγxj +
∑

i1+j1=i+c

∆j1
i,cxi1,αβγ(xj1 � xj)

 . ((a− � b−)� c−)

= ((xi,αβxj) � xc,γ) . ((a− � b−)� c−).

Thus

(a � b) � c
= (xa+b,αβ � xc,γ) . ((a− � b−)� c−)

+
∑

i+j=a+b

∆j
a,b((xi,αβxj) � xc,γ) . ((a− � b−)� c−)

=

(xa+b,αβ � xc,γ) +
∑

i+j=a+b

∆j
a,b(xi,αβxj � xc,γ)

 . ((a− � b−)� c−)

= ((xa,α � xb,β) � xc,γ) . ((a− � b−)� c−).

On the other hand, from Proposition 5.1 and the above arguments, we deduce that

a � (b � c) = (b � c) � a
= ((xb,β � xc,γ) � xa,α) . ((b− � c−)� a−)

= (xa,α � (xb,β � xc,γ)) . (a− � (b− � c−)).

It follows from Proposition 5.6 that (xa,α�xb,β)�xc,γ = xa,α�(xb,β�xc,γ). Moreover,
it follows from the induction hypothesis that (a− � b−)� c− = a− � (b− � c−).
We thus conclude that (a � b) � c = a � (b � c).

Next, we show that (a� b)� c = a� (b� c). From Lemma 5.7, we have

(a� b)� c = (a . b + b . a + a � b)� c
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= (a . b)� c + (b . a)� c + (a � b)� c

= ((a . b) . c + c . (a . b) + (a . b) � c)
+ ((b . a) . c + c . (b . a) + (b . a) � c)
+ ((a � b) . c + c . (a � b) + (a � b) � c)

= (a . b) . c + (a . b) � c + (b . a) . c + (b . a) � c + (a � b) . c

+ (c . (a . b) + c . (b . a) + c . (a � b)) + (a � b) � c
= (a . b) . c + (a . b) � c + (b . a) . c + (b . a) � c + (a � b) . c

+ c . (a� b) + (a � b) � c
and

a� (b� c) = a� (b . c + c . b + b � c)
= a� (b . c) + a� (c . b) + a� (b � c)
= (a . (b . c) + (b . c) . a + a � (b . c))

+ (a . (c . b) + (c . b) . a + a � (c . b))

+ (a . (b � c) + (b � c) . a + a � (b � c))
= (b . c) . a + a � (b . c) + (c . b) . a + a � (c . b) + (b � c) . a

+ (a . (b . c) + a . (c . b) + a . (b � c)) + a � (b � c)
= (b . c) . a + a � (b . c) + (c . b) . a + a � (c . b) + (b � c) . a

+ a . (b� c) + a � (b � c).

We now compare the above expansions. We have showed that (a�b)�c = a�(b�c).
On the other hand, we have

c.(a�b) = xc,γ(c−�(a�b)) and (c.b).a = xc,γ(c−�b).a = xc,γ((c−�b)�a).

From the induction hypothesis and commutativity of shuffle product, one deduces
that c . (a� b) = (c . b) . a. Similarly, one deduces that (a . b) . c = a . (b� c).

We have

(a . b) � c = xa,α(a− � b) � c = (xa,α � xc,γ) . ((a− � b)� c−),

a � (c . b) = a � xc,γ(c− � b) = (xa,α � xc,γ) . (a− � (c− � b)).

From the induction hypothesis and commutativity of shuffle product, one deduces
that (a . b) � c = a � (c . b).

We have

(b . a) . c = xb,β(b− � a) . c

= xb,β((b− � a)� c)
and

(b . c) . a = xb,β(b− � c) . a

= xb,β((b− � c)� a).

From the induction hypothesis and commutativity of shuffle product, one deduces
that (b . a) . c = (b . c) . a.

It follows from the induction hypothesis and that

(a � b) . c =

xa+b,αβ(a− � b−) +
∑

i+j=a+b

∆j
a,bxi,αβ(xj � (a− � b−))

 . c

= xa+b,αβ(a− � b−) . c +
∑

i+j=a+b

∆j
a,bxi,αβ(xj � (a− � b−)) . c
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= xa+b,αβ((a− � b−)� c) +
∑

i+j=a+b

∆j
a,bxi,αβ((xj � (a− � b−))� c)

= xa+b,αβ((a− � b−)� c) +
∑

i+j=a+b

∆j
a,bxi,αβ(xj � ((a− � b−)� c))

= xa+b,αβ . ((a− � b−)� c) +
∑

i+j=a+b

∆j
a,bxi,αβxj . ((a− � b−)� c)

=

xa+b,αβ +
∑

i+j=a+b

∆j
a,bxi,αβxj

 . ((a− � b−)� c)

= (xa,α � xb,β) . ((a− � b−)� c)

and

a � (b . c) = a � xb,β(b− � c) = (xa,α � xb,β) . (a− � (b− � c)).

From the induction hypothesis, one deduces that (a � b) . c = a � (b . c). Similarly,
one deduces that (b . a) � c = (b � c) . a.

From the above arguments, we conclude that (a � b) � c = a � (b � c). This
completes the proof. �

As for C, we define the unit u : Fq → D, sending 1 ∈ Fq to an empty word 1 ∈ D.
Then, as a direct consequence of Proposition 5.1 and Proposition 5.8, we obtain
the following result.

Theorem 5.9. The spaces (D, �) and (D,�) are commutative Fq-algebras.

The following proposition summarizes several properties of different products .,
� and � that are shown above and will be useful in the sequel.

Proposition 5.10. For all nonempty words a, b, c ∈ 〈Γ〉, we have

(1) (a . b) . c = a . (b� c),
(2) (a . b) � c = a � (c . b) = (a � c) . b.

5.4. Shuffle map for AMZV’s in positive characteristic.

For each d ∈ Z, we define the following two Fq-linear maps

S<d : D→ K∞ and ζA : D→ K∞,

both of which map the empty word 1 ∈ D to 1 ∈ K∞, and the word xs1,ε1 . . . xsr,εr

to S<d

(
ε1 · · · εn
s1 · · · sn

)
and ζA

(
ε1 · · · εn
s1 · · · sn

)
respectively, identifying presenta-

tions

S<d(xs1,ε1 . . . xsr,εr ) = S<d

(
ε1 · · · εn
s1 · · · sn

)
,

ζA(xs1,ε1 . . . xsr,εr ) = ζA

(
ε1 · · · εn
s1 · · · sn

)
.

Theorem 5.11. For a, b ∈ D and d ∈ Z we have

S<d(a� b) = S<d(a)S<d(b).

ζA(a� b) = ζA(a)ζA(b).
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Proof. The � product is defined to satisfy this equation. We can check that the �
follows the inductive steps for product of power sums and ζA as follows.

When any of a and b is the empty word, the theorem holds trivially. Let a =
xa,αa− and b = xb,βb− be nonempty words. We proceed the proof by induction
on depth(a) + depth(b). Following the proof of [25, Lemma 2.5] and applying
Lemma 4.1,

S<d(a)S<d(b) =
∑
m<d

Sm(xa,α)S<m(a−)S<m(b) +
∑
m<d

Sm(xb,β)S<m(a)S<m(b−)

+
∑
m<d

Sm(xa,α)Sm(xb,β)S<m(a−)S<m(b−)

=
∑
m<d

Sm(xa,α)S<m(a−)S<m(b) +
∑
m<d

Sm(xb,β)S<m(a)S<m(b−)

+
∑
m<d

Sm(xa+b,αβ)S<m(a−)S<m(b−)

+
∑
m<d

∆j
a,b

∑
i+j=a+b

Sm(xi,αβxj)S<m(a−)S<m(b−).

This is parallel to the recursive definition of �. Proof is the same for ζA. �

6. Shuffle Hopf algebra of AMZV’s

In §5 we have defined the shuffle algebra structure of AMZV’s. This section is
devoted to the construction of the Hopf algebra structure of AMZV’s. In §6.1 we
present the coproduct for the word algebra D. In §6.2 we prove the compatibility
of the coproduct in Theorem 6.5. Unlike the MZV’s case, the proof of this theorem
uses the induction on depth instead of that on weight. Then in §6.3 we prove the
coassociativity of the coproduct in Theorem 6.8. Putting all together we get the
main result of this paper (see Theorem 6.9).

6.1. Coproduct.

This section is inspired by our previous work [32, §8]. We will introduce the
coproduct

∆ : D→ D⊗D.

First, we define the coproduct of depth one. We put

∆(1) := 1⊗ 1, ∆(x1,ε) := 1⊗ x1,ε + x1,ε ⊗ 1

for all ε ∈ F∗q .
Further, we define the coproduct of depth one as follows.

Definition 6.1. For all n ∈ N and ε ∈ F∗q , we set

∆(xn,ε) = 1⊗ xn,ε +
∑

r∈N,a∈〈Σ〉
r+w(a)=n

(
r + depth(a)− 2

depth(a)

)
xr,ε ⊗ [a].

Here we recall that [a] is given as in (3.2) and we identify a ∈ Σ with ϕ1(a) ∈ Γ.
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Next, we define the coproduct for words of depth greater than one. Let n ∈ N with
n > 1 and we suppose that we have defined ∆(u) for all words u of depth(u) < n.
We now give a formula for ∆(u) for all words u with depth(u) = n. For such a
word u, we put u = xu,εv with depth(v) = n− 1 < n. Since xu,ε and v are both of
depth strictly less than n, we have already defined

∆(xu,ε) = 1⊗ xu,ε +
∑

au,ε ⊗ bu,ε, and ∆(v) =
∑

av ⊗ bv,

with au,ε ∈ Γ and bu,ε, av, bv ∈ 〈Γ〉. Then we set

∆(u) := 1⊗ u +
∑

(au,ε . av)⊗ (bu,ε � bv)

= 1⊗ u +
∑

(au,εav)⊗ (bu,ε � bv).

Here the last equality holds as au,ε ∈ Γ.

We end this section by proving the following result:

Proposition 6.2. For any nonempty word u ∈ 〈Γ〉, we have

∆ (ϕε(u)) = (ϕε ⊗ Id) (∆(u)) + (Id⊗ϕε − ϕε ⊗ Id)(1⊗ u).

Proof. Note that for a = xaa− ∈ 〈Γ〉, b ∈ 〈Γ〉 and ε ∈ F∗q ,

ϕε(a) . b = xa,ε(a− � b) = ϕε(a . b).

We mention that this does not hold when a = 1.

We first consider the case where depth(u) = 1, i.e., u belongs to Γ. We put
u = xn,α with n ∈ N and α ∈ F∗q . Thus ϕε(u) = xn,εα = ϕεα(xn).

Recall that (see Proposition 3.6)

∆(xn) = 1⊗ xn +
∑

r∈N,a∈〈Σ〉
r+w(a)=n

(
r + depth(a)− 2

depth(a)

)
xr ⊗ [a].

Therefore, Definition 6.1 can be written as

∆ (u) = ∆ (ϕα(xn))

= (ϕα ⊗ Id) (∆(xn)− 1⊗ xn) + (Id⊗ϕα) (1⊗ xn)

= (ϕα ⊗ Id) (∆(xn)) + (Id⊗ϕα − ϕα ⊗ Id) (1⊗ xn) .

Similarly,

∆ (ϕε(u)) = ∆ (ϕεα(xn))

= (ϕεα ⊗ Id) (∆(xn)− 1⊗ xn) + (Id⊗ϕεα) (1⊗ xn)

= (ϕεα ⊗ Id) (∆(xn)) + (Id⊗ϕεα − ϕεα ⊗ Id) (1⊗ xn) .

By Lemma 5.5, we conclude that for u = xn,α,

∆ (ϕε(u)) = (ϕε ⊗ Id) (∆(u)) + (Id⊗ϕε − ϕε ⊗ Id)(1⊗ u).

Next, suppose that u = xu,αv ∈ 〈Γ〉 with depth(u) ≥ 2. Let ∆(xu) = 1 ⊗ xu +∑
au ⊗ bu, and ∆(v) =

∑
av ⊗ bv. We have au ∈ Σ, bu ∈ 〈Σ〉 with au 6= 1 by

Lemma 3.3, and av, bv ∈ 〈Γ〉. We have seen that

∆(xu,α) = 1⊗ xu,α +
∑

au,α ⊗ bu.
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By definition,

∆(u) = 1⊗ u +
∑

(au,α . av)⊗ (bu � bv)

= 1⊗ u +
∑

(au,αav)⊗ (bu � bv).

The last equality follows from the fact that depth(au,α) = 1.

Since ϕε(u) = xu,εαv and ∆ (ϕε(xu,α)) = 1⊗ ϕε(xu,α) +
∑
ϕε(au,α)⊗ bu,

∆ (ϕε(u)) = ∆ (ϕε(xu,α)v)

= 1⊗ ϕε(u) +
∑

(ϕε(au,α)av)⊗ (bu � bv)

= 1⊗ ϕε(u) +
∑

ϕε (au,αav)⊗ (bu � bv).

Thus we get

∆ (ϕε(u)) = (ϕε ⊗ Id) (∆(u)) + (Id⊗ϕε − ϕε ⊗ Id)(1⊗ u).

�

6.2. Compatibility.

6.2.1. Compatibility for letters.

We want to prove the following result (for MZV’s, see [32, Proposition 7.5]):

Proposition 6.3. Let u, v ∈ N and α, β ∈ F∗q . Then

∆(xu,α � xv,β) = ∆(xu,α)�∆(xv,β).

Proof. Let

∆(xu) = 1⊗ xu +
∑

au ⊗ bu, ∆(xv) = 1⊗ xv +
∑

av ⊗ bv.

By Proposition 6.2, we have

∆(xu,α) = 1⊗ xu,α +
∑

au,α ⊗ bu, ∆(xv,β) = 1⊗ xv,β +
∑

av,β ⊗ bv,

where au,α = ϕα(au) and av,β = ϕβ(av). Here we recall that au and av are of
depth 1.

Since xu,α � xv,β = xu,αxv,β + xv,βxu,α + ϕαβ(xu � xv) (by Lemma 5.4),

∆ (xu,α � xv,β) =1⊗ xu,αxv,β +
∑

au,α ⊗ (bu � xv,β) +
∑

(au,αav,β)⊗ (bu � bv)

+ 1⊗ xv,βxu,α +
∑

av,β ⊗ (bv � xu,α) +
∑

(av,βau,α)⊗ (bv � bu)

+ ∆(ϕαβ(xu � xv)).

On the other hand,

∆(xu,α)�∆(xv,β) =1⊗ (xu,α � xv,β) +
∑

au,α ⊗ (bu � xv,β)

+
∑

av,β ⊗ (bv � xu,α) +
∑

(au,α � av,β)⊗ (bu � bv).

By expanding � in each tensorand and canceling, the proposition holds when

∆(ϕαβ(xu � xv)) = 1⊗ ϕαβ(xu � xv) +
∑

(au,α � av,β)⊗ (bu � bv)

= 1⊗ ϕαβ(xu � xv) + (ϕαβ ⊗ Id)
(∑

(au � av)⊗ (bu � bv)
)
.
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By Proposition 6.2, the proposition is reduced into

∆(xu � xv) = 1⊗ (xu � xv) +
∑

(au � av)⊗ (bu � bv),

which is a special case of Lemma 3.4. �

6.2.2. Compatibility for words of arbitrary depth.

Lemma 6.4. Let u, v ∈ 〈Γ〉. Then u � v can be presented as the sum of words
whose depths are all less than or equal to depth(u) + depth(v).

Proof. We proceed with the induction on the total depth depth(u) + depth(v).

The lemma is trivial when u or v is trivial. If u = xu,α and v = xv,β , then the
lemma is also immediate from the expression

u� v = xu+v,αβ + xu,αxv,β + xv,βxu,α +
∑

i+j=u+v

∆j
u,vxi,αβxj .

So we assume that depth(u),depth(v) ≥ 1 with at least one of u and v has depth> 1.

Now assume the lemma holds for all a, b ∈ 〈Γ〉 such that depth(a) + depth(b) <
depth(u) + depth(v). Let u = xu,αu−, v = xv,βv−. Then

xu,αu− � xv,βv− = xu+v,αβ(u− � v−) + xu,α(u− � v) + xv,β(u� v−)

+
∑

i+j=u+v

∆j
u,vxi,αβ(xj � u− � v−)

From the induction hypothesis, the first three terms can be presented as a sum
of words with depths less than or equal to depth(u) + depth(v). For each j, xj �
u− = u− � xj can be presented as a sum of words whose depths are less than
or equal to depth(u) from the induction hypothesis. Therefore, xi(xj � u− � v−)
can be presented as sum of words with depth depth(u) + depth(v). This proves the
lemma. �

The proof of the compatibility of ∆ and � for 〈Γ〉 is parallel to that for 〈Σ〉.

Theorem 6.5. Let u, v ∈ 〈Γ〉. Then ∆ and � are compatible for u, v, that means

∆(u� v) = ∆(u)�∆(v).

Note that the theorem is immediate when u or v is trivial. Also, depth(u) =
depth(v) = 1 case is shown in Proposition 6.3. Before proving this theorem, we
need some preparatory results.

Lemma 6.6. Let u = xu,αu−, v = xv,βv− be two words in 〈Γ〉, whose depths are
≥ 1. Assume that ∆ and � are compatible for all words a, b ∈ 〈Γ〉 with depth(a) +
depth(b) < depth(u) + depth(v). Further, we suppose that ∆(xuu− � xvv−) =
∆(xuu−)�∆(xvv−).

Then we have

∆(u� v) = ∆(u)�∆(v).

Proof. Let

∆(xu) = 1⊗ xu +
∑

au ⊗ bu, ∆(xv) = 1⊗ xv +
∑

av ⊗ bv,

∆(u−) =
∑

au− ⊗ bu− , ∆(v−) =
∑

av− ⊗ bv− ,
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with xu, xv, au, av ∈ Σ, bu, bv ∈ 〈Σ〉 and au− , bu− , av− , bv− ∈ 〈Γ〉. We have

∆(xu,α) = 1⊗ xu,α +
∑

au,α ⊗ bu,

∆(xv,β) = 1⊗ xv,β +
∑

av,β ⊗ bv,

where au,α = ϕα(au), av,β = ϕβ(av). Note that

∆(xu,αu−) = 1⊗ xu,αu− +
∑

au,αau− ⊗ (bu � bu−),

∆(xv,βv−) = 1⊗ xv,βv− +
∑

av,βav− ⊗ (bv � bv−).

Therefore, we have

∆(u)�∆(v) = ∆(xu,αu−)�∆(xv,βv−)

(6.1)

=
(

1⊗ xu,αu− +
∑

au,αau− ⊗ (bu � bu−)
)
�

(
1⊗ xv,βv− +

∑
av,βav− ⊗ (bv � bv−)

)
=1⊗ (xu,αu− � xv,βv−) +

∑
av,βav− ⊗ (xu,αu− � bv � bv−)

+
∑

au,αau− ⊗ (xv,βv− � bu � bu−) +
∑

(au,αau− � av,βav−)⊗ (bu � bv � bu− � bv−).

On the other hand, from Lemma 5.4 and Lemma 5.7

u� v = u . v + v . u + ϕαβ(xuu− � xvv−),

thus we have

∆(u� v) = S1 + S2 + S3(6.2)

where

S1 = ∆(u . v) = ∆(xu,α(u− � v)),

S2 = ∆(v . u) = ∆(xv,β(v− � u)),

S3 = ∆(ϕαβ(xuu− � xvv−))

= (ϕαβ ⊗ Id)∆(xuu− � xvv−) + (Id⊗ϕαβ − ϕαβ ⊗ Id)(1⊗ (xuu− � xvv−)).

We calculate S1 and S2. Since depth(u−) + depth(v) < depth(u) + depth(v), the
induction hypothesis yields

∆(u− � v) = ∆(u−)�∆(xv,βv−)

=
(∑

au− ⊗ bu−
)
�

(
1⊗ xv,βv− +

∑
av,βav− ⊗ (bv � bv−)

)
=
∑

au− ⊗ (bu− � xv,βv−) +
∑

(au− � av,βav−)⊗ (bv � bu− � bv−),

so

S1 = 1⊗ (xu,α(u− � v)) +
∑

au,αau− ⊗ (bu � bu− � xv,βv−)

+
∑

au,α(au− � av,βav−)⊗ (bu � bv � bu− � bv−).

A similar calculation yields

S2 = 1⊗ (xv,β(u� v−)) +
∑

av,βav− ⊗ (bv � bv− � xu,αu−)

+
∑

av,β(av− � au,αau−)⊗ (bu � bv � bu− � bv−).
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What we want to show is that two equations (6.1) and (6.2) coincide, that is,
X := ∆(u� v)−∆(u)�∆(v) = 0.

First, we collect the terms of the form 1⊗�. The equation for the right tensorands
of such terms in X is

xu,α(u− � v) + xv,β(u� v−) + ϕαβ(xuu− � xvv−)− (xuu− � xvv−)− u� v

= xu,α(u− � v) + xv,β(u� v−) + ϕαβ(xuu− � xvv−)− (xuu− � xvv−)

− u . v− v . u− u � v
= −(xuu− � xvv−)

by Lemma 5.4, that is, the terms of the form 1⊗� in X are collected as

−1⊗ (xuu− � xvv−).

Next we collect the terms of the form
∑

� ⊗ (bu � bv � bu− � bv−). For fixed
indices, the equation for the left tensorands of such terms in X is

au,α(au− � av,βav−) + av,β(av− � au,αau−)− (au,αau− � av,βav−)

= −ϕαβ(auau− � avav−),

by expanding the shuffle product of the third term and reducing it. That is, the
terms of such a form in X are collected as

−(ϕαβ ⊗ Id)
∑

(auau− � avav−)⊗ (bu � bv � bu− � bv−).

Some of the remaining terms cancel each other. One can check that

X =(ϕαβ ⊗ Id)∆(xuu− � xvv−)− 1⊗ (xuu− � xvv−)

− (ϕαβ ⊗ Id)
∑

(auau− � avav−)⊗ (bu � bv � bu− � bv−),

which vanishes when
(6.3)

∆(xuu− �xvv−) = 1⊗ (xuu− �xvv−) +
∑

(auau− �avav−)⊗ (bu� bv� bu−� bv−).

Recall the assumption of the lemma, ∆(xuu− � xvv−) = ∆(xuu−)�∆(xvv−).
Expanding this by using definitions of �, � and calculating, we can conclude the
desired Equation (6.3). Thus the lemma holds. �

Proposition 6.7. Let xuu, xvv be two words in 〈Γ〉, whose first letters are with
trivial character 1 ∈ F∗q . If ∆ and � are compatible for all words a, b ∈ 〈Γ〉 with
depth(a) + depth(b) < depth(xuu) + depth(xvv), then

∆(xuu� xvv) = ∆(xuu)�∆(xvv).

The proof closely follows that of [32, Proposition 7.4], with the only difference
being that the induction step is now based on depth rather than weight induction.
For the sake of clarity, we include a complete proof.

Note that the proof is valid for u = 1 or v = 1 cases. In those cases, some sum
presentation is vacuous, i.e., if u = 1, the indexed set {(au, bu)} is the empty set in
the sum presentation of ∆(u) = 1⊗ u +

∑
au ⊗ bu.

Proof of Proposition 6.7. By the definition of the � and Lemma 5.7, we have

xuu� xvv

(6.4)
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= (xuu) . (xvv) + (xvv) . (xuu) + (xuu) � (xvv)

= xv(xuu� v) + xu(u� (xvv)) + (xu � xv) . (u� v)

= xv(xuu� v) + xu(u� (xvv)) + xu+v(u� v) +
∑

i+j=u+v

∆j
u,vxi(xj � u� v).

Therefore, we get

∆(xuu� xvv)−∆(xuu)�∆(xvv)(6.5)

=∆(xv(xuu� v)) + ∆(xu(u� xvv)) + ∆(xu+v(u� v))

+
∑

i+j=u+v

∆j
u,v∆(xi(xj � u� v))−∆(xuu)�∆(xvv).

We calculate each term on the right hand side to conclude that this vanishes.
We put

∆(u) = 1⊗ u +
∑

au ⊗ bu, and ∆(v) = 1⊗ v +
∑

av ⊗ bv.

Also for all j ∈ N, we put

∆(xj) = 1⊗ xj +
∑

aj ⊗ bj .

In particular,

∆(xu) = 1⊗ xu +
∑

au ⊗ bu, and ∆(xv) = 1⊗ xv +
∑

av ⊗ bv.

The first term ∆(xv(xuu� v)).

From the definition of ∆,

∆(xuu) = 1⊗ xuu +
∑

au ⊗ (bu � u) +
∑

(au . au)⊗ (bu � bu).(6.6)

As depth(xuu) + depth(v) < depth(xuu) + depth(xvv), by the induction hypothesis
we obtain

∆(xuu� v) =∆(xuu)�∆(v)

=1⊗ ((xuu)� v) +
∑

au ⊗ (bu � u� v) +
∑

av ⊗ ((xuu)� bv)

+
∑

(au . au)⊗ (bu � bu � v) +
∑

(au � av)⊗ (bu � u� bv)

+
∑

((au . au)� av)⊗ (bu � bu � bv).

Thus

∆(xv(xuu� v)) =1⊗ xv(xuu� xv) +
∑

av ⊗ (bv � (xuu)� v)(6.7)

+
∑

(av . au)⊗ (bu � bv � u� v)

+
∑

(av . (au . au))⊗ (bu � bv � bu � v)

+
∑

(av . av)⊗ (bv � (xuu)� bv)

+
∑

(av . (au � av))⊗ (bu � bv � u� bv)

+
∑

(av . ((au . au)� av))⊗ (bu � bv � bu � bv).

The second term ∆(xu(u� (xvv)).
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Similarly, we get

∆(xu(u� (xvv)) =1⊗ xu(u� xvv) +
∑

au ⊗ (bu � u� (xvv))(6.8)

+
∑

((au . av)⊗ (bu � bv � u� v)

+
∑

(au . (av . av))⊗ (bu � bv � u� bv)

+
∑

(au . au)⊗ (bu � bu � (xvv))

+
∑

(au . (au � av))⊗ (bu � bu � bv � v)

+
∑

(au . (au � (av . av))⊗ (bu � bv � bu � bv).

The third term ∆(xu+v(u� v)).

We put

∆(u� v) = 1⊗ (u� v) +
∑

au�v ⊗ bu�v.

As depth(u)+depth(v) < depth(xuu)+depth(xvv), the induction hypothesis implies
that

∆(u� v) = ∆(u)�∆(v) =
(

1⊗ u +
∑

au ⊗ bu
)
�

(
1⊗ v +

∑
av ⊗ bv

)
.

Thus

1⊗ (u� v) +
∑

au�v ⊗ bu�v =
(

1⊗ u +
∑

au ⊗ bu
)
�

(
1⊗ v +

∑
av ⊗ bv

)
=1⊗ (u� v) +

∑
au ⊗ (bu � v)

+
∑

av ⊗ (u� bv) +
∑

(au � av)⊗ (bu � bv),

which implies

(6.9)
∑

au�v⊗bu�v =
∑

au⊗(bu�v)+
∑

av⊗(u�bv)+
∑

(au�av)⊗(bu�bv).

Thus we have

∆(xu+v(u� v)) =1⊗ (xu+v(u� v)) +
∑

au+v ⊗ (bu+v � u� v)(6.10)

+
∑

(au+v . au�v)⊗ (bu+v � bu�v).

The fourth terms ∆(xi(xj� u� v)) for all 0 ≤ i, j ≤ u+ v with i+ j = u+ v.

As depth(u) + depth(xj) < depth(xuu) + depth(xvv), we have ∆(xj � u) =
∆(u�xj) = ∆(u)�∆(xj) by induction hypothesis. Further by Lemma 6.4, xj� u
can be represented as the sum of words with depth less than or equal to depth(xju).
Thus ∆(xj�u�v) = ∆(xj�u)�∆(v) = ∆(xj)�∆(u)�∆(v) = ∆(xj)�∆(u�v)
by the induction hypothesis again.

Therefore,

∆(xj � u� v) =∆(xj)�∆(u� v)

=
(

1⊗ xj +
∑

aj ⊗ bj
)
�

(
1⊗ (u� v) +

∑
au�v ⊗ bu�v

)
=1⊗ (xj � u� v) +

∑
aj ⊗ (bj � u� v)

+
∑

au�v ⊗ (xj � bu�v) +
∑

(aj � au�v)⊗ (bj � bu�v).
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This leads to

∆(xi(xj � u� v)) =1⊗ (xi(xj � u� v)) +
∑

ai ⊗ (bi � xj � u� v)(6.11)

+
∑

(ai . aj)⊗ (bi � bj � u� v)

+
∑

(ai . au�v)⊗ (bi � xj � bu�v)

+
∑

(ai . (aj � au�v))⊗ (bi � bj � bu�v).

The last term ∆(xuu)�∆(xvv).

Note that ∆(xuu) is given by (6.6). A parallel calculation gives

∆(xvv) = 1⊗ xvv +
∑

av ⊗ (bv � v) +
∑

(av . av)⊗ (bv � bv).

Thus

∆(xuu)�∆(xvv)

(6.12)

=
(

1⊗ xuu +
∑

au ⊗ (bu � u) +
∑

(au . au)⊗ (bu � bu)
)

�

(
1⊗ xvv +

∑
av ⊗ (bv � v) +

∑
(av . av)⊗ (bv � bv)

)
=1⊗ (xuu� xvv)

+
∑

av ⊗ ((xuu)� bv � v) +
∑

(av . av)⊗ ((xuu)� bv � bv)

+
∑

au ⊗ (bu � u� (xvv)) +
∑

(au � av)⊗ (bu � bv � u� v)

+
∑

(au � (av . av))⊗ (bu � u� bv � bv)

+
∑

(au . au)⊗ (bu � bu � (xvv)) +
∑

((au . au)� av)⊗ (bu � bu � bv � v)

+
∑

((au . au)� (av . av))⊗ (bu � bu � bv � bv).

Plugging the equations (6.7), (6.8), (6.10), (6.11), (6.12) into (6.5) yields

∆(xuu� xvv)−∆(xuu)�∆(xvv) = S0 − S1 − S2 − Su − Sv + S3 + S4.

Here the sums S0, S1, S2, S3, S4, Su and Sv are given as follows:

S0 =1⊗ xv(xuu� v) + 1⊗ xu(u� (xvv)) + 1⊗ xu+v(u� v)

+
∑

i+j=u+v

∆j
u,v1⊗ xi(xj � u� v)− 1⊗ ((xuu)� (xvv)).

S1 =
∑

(au � av)⊗ (bu � bv � u� v)−
∑

(au . av)⊗ (bu � bv � u� v)

−
∑

(av . au)⊗ (bu � bv � u� v).

S2 =
∑

((au . au)� (av . av))⊗ (bu � bu � bv � bv)

−
∑

(au . (au � (av . av)))⊗ (bu � bu � bv � bv)

−
∑

(av . ((au . au)� av)⊗ (bu � bu � bv � bv).

S3 =
∑

au+v ⊗ (bu+v � u� v) +
∑

i+j=u+v

∆j
u,v

∑
ai ⊗ (bi � xj � u� v)
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+
∑

i+j=u+v

∆j
u,v

∑
(ai . aj)⊗ (bi � bj � u� v).

S4 =
∑

(au+v . au�v)⊗ (bu+v � bu�v) +
∑

i+j=u+v

∆j
u,v

∑
(ai . au�v)⊗ (bi � xj � bu�v)

+
∑

i+j=u+v

∆j
u,v

∑
(ai . (aj � au�v))⊗ (bi � bj � bu�v),

and

Su =
∑

(au � (av . av))⊗ (bu � bv � u� bv)−
∑

(au . (av . av))⊗ (bu � bv � u� bv)

−
∑

(av . (au � av))⊗ (bu � bv � u� bv),

Sv =
∑

((au . au)� av)⊗ (bu � bv � bu � v)−
∑

(au . (au � av))⊗ (bu � bv � bu � v)

−
∑

(av . (au . au))⊗ (bu � bv � bu � v).

We claim that

(1) S0 = 0.
(2) S1 − S3 = 0.
(3) S2 + Su + Sv − S4 = 0.

If these claims are true, the proposition is also true.

We prove three claims below. The claim (1), S0 = 0, is immediate from (6.4).

We show the claim (2). We will show that

S1 = S3 =
∑

(au � av)⊗ (bu � bv � u� v).

With Lemma 5.7, we have

S1 =
∑

(au � av)⊗ (bu � bv � u� v)−
∑

(au . av)⊗ (bu � bv � u� v)

−
∑

(av . au)⊗ (bu � bv � u� v)

=
∑

(au � av − au . av − av . au)⊗ (bu � bv � u� v)

=
∑

(au � av)⊗ (bu � bv � u� v).

Now we calculate S3. Recall xu � xv = xu+v +
∑
i+j=u+v ∆j

u,vxixj . Lemma 3.4
gives that

∆(xu � xv) = 1⊗ (xu � xv) +
∑

(au � av)⊗ (bu � bv),

so

1⊗ xu+v +
∑

au+v ⊗ bu+v

+
∑

i+j=u+v

∆j
u,v

(
1⊗ xixj +

∑
ai ⊗ (bi � xj) +

∑
(ai . aj)⊗ (bi � bj)

)
=1⊗ (xu � xv) +

∑
(au � av)⊗ (bu � bv),

therefore

∑
au+v ⊗ bu+v +

∑
i+j=u+v

∆j
u,v

∑
ai ⊗ (bi � xj) +

∑
i+j=u+v

∆j
u,v

∑
(ai . aj)⊗ (bi � bj)

(6.13)
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=
∑

(au � av)⊗ (bu � bv).

We conclude that

S3 =
∑

au+v ⊗ (bu+v � u� v)

+
∑

i+j=u+v

∆j
u,v

∑
ai ⊗ (bi � xj � u� v) +

∑
i+j=u+v

∆j
u,v

∑
(ai . aj)⊗ (bi � bj � u� v)

=
∑

(au � av)⊗ (bu � bv � u� v)

and thus S1 = S3 as desired.

We now show the claim (3). Precisely, we show that

S2 + Su + Sv = S4 =
∑

((au � av) . au�v)⊗ (bu � bv � bu�v).

We have

S2 =
∑

((au . au)� (av . av))⊗ (bu � bu � bv � bv)

−
∑

(au . (au � (av . av)))⊗ (bu � bu � bv � bv)

−
∑

(av . ((au . au)� av)⊗ (bu � bu � bv � bv)

=
∑

((au . au)� (av . av)− au . (au � (av . av))− av . ((au . au)� av))

⊗ (bu � bu � bv � bv)

=
∑

((au . au) � (av . av))⊗ (bu � bu � bv � bv).

Here the last equality is from Lemma 5.7 and Proposition 5.10 as

(au . au)� (av . av)

= (au . au) . (av . av) + (av . av) . (au . au) + (au . au) � (av . av)

= au . (au � (av . av)) + av . ((au . au)� av)) + (au . au) � (av . av).

By Lemma 5.7 and Proposition 5.10 again,

Su =
∑

(au � (av . av))⊗ (bu � bv � u� bv)−
∑

(au . (av . av))⊗ (bu � bv � u� bv)

−
∑

(av . (au � av))⊗ (bu � bv � u� bv)

=
∑

(au � (av . av)− au . (av . av)− av . (au � av))⊗ (bu � bv � u� bv)

=
∑

(au � (av . av))⊗ (bu � bv � u� bv),

and

Sv =
∑

((au . au)� av)⊗ (bu � bv � bu � v)−
∑

(au . (au � av))⊗ (bu � bv � bu � v)

−
∑

(av . (au . au))⊗ (bu � bv � bu � v)

=
∑

((au . au) � av)⊗ (bu � bv � bu � v).

With the equations for S2, Su, Sv and (6.9), again we can apply Lemma 5.7 and
Proposition 5.10 to have

S2 + Su + Sv =
∑

((au � av) . au�v)⊗ (bu � bv � bu�v).
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We now consider the term S4. We have

S4 =
∑

(au+v . au�v)⊗ (bu+v � bu�v) +
∑

i+j=u+v

∆j
u,v

∑
(ai . au�v)⊗ (bi � xj � bu�v)

+
∑

i+j=u+v

∆j
u,v

∑
(ai . (aj � au�v))⊗ (bi � bj � bu�v)

=
∑

(au+v . au�v)⊗ (bu+v � bu�v) +
∑

i+j=u+v

∆j
u,v

∑
(ai . au�v)⊗ (bi � xj � bu�v)

+
∑

i+j=u+v

∆j
u,v

∑
((ai . aj) . au�v)⊗ (bi � bj � bu�v)

=
∑

((au � av) . au�v)⊗ (bu � bv � bu�v).

Here the second equality follows from Proposition 5.10. The third one is a direct
consequence of (6.13). This proves S2 + Su + Sv = S4 as claimed.

Now Proposition 6.7 is proven with the claims (1), (2), and (3), as

∆(xuu� xvv)−∆(xuu)�∆(xvv) = S0 − S1 − S2 − Su − Sv + S3 + S4

= S0 − (S1 − S3)− (S2 + Su + Sv − S4)

= 0.

�

Proof of Theorem 6.5. By combining Lemma 6.6 and Proposition 6.7 we conclude
that, if Theorem 6.5 holds for all words (a, b) ∈ 〈Γ〉×〈Γ〉 with depth(a)+depth(b) <
n for some n ∈ N then the theorem holds for all words (xuu, xvv) such that
depth(xuu) + depth(xvv) = n, and thus for (xu,αu, xv,βv) such that depth(xu,αu) +
depth(xv,βv) = n, for all u, v ∈ N and α, β ∈ F∗q . Since the theorem holds for the
initial cases (1, b) and (a, 1) for all a, b ∈ 〈Γ〉 with the arbitrary depths, the theorem
holds for all u, v ∈ 〈Γ〉. �

6.3. Coassociativity.

Next we want to prove:

Theorem 6.8. Let u ∈ 〈Γ〉. Then we have

(Id⊗∆)∆(u) = (∆⊗ Id)∆(u).

Proof. The proof is formed into two parts as follows:

• Part (1): if the coassociativity holds for u = xuv, then coassociativity holds
for u = xu,εv, for v ∈ 〈Γ〉 with depth(v) ≥ 0, and

• Part (2): if the coassociativity holds for all u with depth(u) ≤ n, then the
coassociativity holds for u = xuv for u ∈ N and depth v = n.

Note that the initial case (i.e., when u = xu,ε) is established by the coassociativity
in C and Part (1).

For Part (1), we assume that (Id⊗∆)∆(xuv) = (∆⊗ Id)∆(xuv). Let

∆(xu) = 1⊗ xu +
∑

au ⊗ bu, ∆(v) =
∑

av ⊗ bv.

Here au ∈ Σ, bu ∈ 〈Σ〉, and av, bv ∈ 〈Γ〉. Thus

∆(xuv) = 1⊗ xuv +
∑

auav ⊗ (bu � bv),
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and

(Id⊗∆)∆(xuv) = 1⊗ 1⊗ xuv +
∑

1⊗ auav ⊗ (bu � bv) +
∑

auav ⊗∆(bu � bv),

(∆⊗ Id)∆(xuv) = 1⊗ 1⊗ xuv +
∑

∆(auav)⊗ (bu � bv).

Then the induction hypothesis that is the coassociativity for xuv is equivalent to

∑
1⊗ auav ⊗ (bu � bv) +

∑
auav ⊗∆(bu � bv) =

∑
∆(auav)⊗ (bu � bv).

(6.14)

Now let u = xu,εv. We have

∆(xu,ε) = 1⊗ xu,ε +
∑

au,ε ⊗ bu
where au,ε = ϕε(au). By definition, we have

∆(u) = 1⊗ u +
∑

au,εav ⊗ (bu � bv).

One can calculate

(Id⊗∆)∆(u) =1⊗∆(u) +
∑

au,εav ⊗∆(bu � bv)

= 1⊗ 1⊗ u +
∑

1⊗ au,εav ⊗ (bu � bv) +
∑

au,εav ⊗∆(bu � bv),

(∆⊗ Id)∆(u) =1⊗ 1⊗ u +
∑

∆(au,εav)⊗ (bu � bv)

=1⊗ 1⊗ u +
∑

(ϕε ⊗ Id)∆(auav)⊗ (bu � bv)

+
∑

1⊗ au,εav ⊗ (bu � bv)−
∑

1⊗ auav ⊗ (bu � bv).

Thus the coassociativity holds for xu,εv if∑
(ϕε ⊗ Id)∆(auav)⊗ (bu � bv) =

∑
au,εav ⊗∆(bu � bv) +

∑
1⊗ auav ⊗ (bu � bv),

which is obtained by applying ϕε ⊗ Id⊗ Id on Equation (6.14). This proves that
the coassociativity for xuv implies the coassociativity for xu,εv.

We now prove Part (2). Let n ≥ 1. We assume that the coassociativity holds for
all words with depth ≤ n. Let u = xt,εt with depth ≤ n. We write

∆(xt,ε) = 1⊗ xt,ε +
∑

at,ε ⊗ bt, and ∆(t) =
∑

at ⊗ bt.

where at,ε ∈ Γ and bt,ε, at, bt ∈ 〈Γ〉. Then

∆(xt,εt) = 1⊗ xt,ε +
∑

at,εat ⊗ (bt � bt),

and the coassociativity for xt,εt is reduced into∑
(∆(at,εat)− 1⊗ at,εat)⊗ (bt � bt) =

∑
at,εat ⊗ (∆(bt)�∆(bt)).(6.15)

As a special case, let t = 1. Then ∆(t) = 1⊗ 1, and∑
(∆(at,ε)− 1⊗ at,ε)⊗ bt =

∑
at,ε ⊗∆(bt).

Now assume u = xuxv,βv with depth n+ 1. Say

∆(xu) = 1⊗ xu +
∑

au ⊗ bu,

∆(xv) = 1⊗ xv +
∑

av ⊗ bv, so ∆(xv,β) = 1⊗ xv,β +
∑

au,β ⊗ bv,

∆(v) =
∑

av ⊗ bv,
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where au, av ∈ Σ, bu, bv ∈ 〈Σ〉, av, bv ∈ 〈Γ〉, and au,β = ϕβ(au). Then,

∆(xv,βv) = 1⊗ xv,βv +
∑

av,βav ⊗ (bv � bv).

It follows that

∆(xuxv,βv) = 1⊗ xuxv,βv +
∑

au ⊗ (bu � xv,βv) +
∑

auav,βav ⊗ (bu � bv � bv),

thus

(Id⊗∆)∆(xuxv,βv)

=1⊗ 1⊗ xuxv,βv +
∑

1⊗ au ⊗ (bu � xv,βv) +
∑

1⊗ auav,βav ⊗ (bu � bv � bv)

+
∑

au ⊗∆(bu � xv,βv) +
∑

auav,βav ⊗∆(bu � bv � bv),

(∆⊗ Id)∆(xuxv,βv)

=1⊗ 1⊗ xuxv,βv +
∑

∆(au)⊗ (bu � xv,βv) +
∑

∆(auav,βav)⊗ (bu � bv � bv),

so what we want to show is that∑
1⊗ au ⊗ (bu � xv,βv) +

∑
1⊗ auav,βav ⊗ (bu � bv � bv)(6.16)

+
∑

au ⊗∆(bu � xv,βv) +
∑

auav,βav ⊗∆(bu � bv � bv),

=
∑

∆(au)⊗ (bu � xv,βv) +
∑

∆(auav,βav)⊗ (bu � bv � bv).

Note that, by Equation (6.15) we have∑
1⊗ au ⊗ (bu � xv,βv) +

∑
au ⊗∆(bu � xv,βv)−

∑
∆(au)⊗ (bu � xv,βv)

=
∑

au ⊗∆(bu � xv,βv)−
(∑

(∆(au)− 1⊗ au)⊗ bu
)
� (1⊗ 1⊗ xv,βv)

=
∑

au ⊗∆(bu � xv,βv)−
(∑

au ⊗∆(bu)
)
� (1⊗ 1⊗ xv,βv)

=
∑

au ⊗ (∆(bu)�∆(xv,βv))−
∑

au ⊗ (∆(bu)� (1⊗ xv,βv))

=
∑

au ⊗ (∆(bu)� (∆(xv,βv)− 1⊗ xv,βv))

=
∑

au ⊗ (∆(bu)� (av,βav ⊗ (bv � bv)))

so Equation (6.16) is equivalent to∑
∆(auav,βav)⊗ (bu � bv � bv)(6.17)

=
∑

1⊗ auav,βav ⊗ (bu � bv � bv) +
∑

auav,βav ⊗∆(bu � bv � bv)

+
∑

au ⊗ (∆(bu)� (av,βav ⊗ (bv � bv))) .

From now on, tracing the indices is important. When needed, we use the notation∑
u which stands for the sum over the pairs (au, bu), and similarly

∑
(v,β),

∑
v, etc.

We now fix au, bu. The last two terms of (6.17) become∑
auav,βav ⊗ (∆(bu)�∆(bv)�∆(bv)) +

∑
au ⊗ (∆(bu)� (av,βav ⊗ (bv � bv)))

= (1⊗∆(bu))�
(∑

auav,βav ⊗ (∆(bv)�∆(bv)) +
∑

au ⊗ av,βav ⊗ (bv � bv)
)

= (au ⊗ 1⊗ 1) ·
(

(1⊗∆(bu))�
(∑

av,βav ⊗ (∆(bv)�∆(bv)) +
∑

1⊗ av,βav ⊗ (bv � bv)
))
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= (au ⊗ 1⊗ 1) ·
(

(1⊗∆(bu))�
(∑

∆(av,βav)⊗ (bv � bv)
))

.

Recall that · is the concatenation. The last equality is from the induction hypothesis,
Equation (6.15). Equation (6.17) becomes

∑
∆(auav,βav)⊗ (bu � bv � bv)

(6.18)

=
∑

1⊗ auav,βav ⊗ (bu � bv � bv) +
∑

(au ⊗ 1⊗ 1) ·
(

(1⊗∆(bu))�
(∑

∆(av,βav)⊗ (bv � bv)
))

.

Next we fix au, av,β , av. So the corresponding b’s are also fixed. Let

∆(au) = 1⊗ au +
∑
(1)

c(1) ⊗ d(1), ∆(av,βav) =
∑
(2)

c(2) ⊗ d(2).

Then, we have

∆(auav,βav) = 1⊗ auav,βav +
∑

(1),(2)

c(1)c(2) ⊗ (d(1) � d(2)).

The summand of
∑

∆(auav,βav)⊗ (bu � bv � bv) for fixed au, av,β , av is1⊗ auav,βav +

 ∑
(1),(2)

c(1)c(2) ⊗ (d(1) � d(2))

⊗ (bu � bv � bv).

Plugging this and the sum representation of ∆(av,βav) into the equation (6.18)
yields

∑
u,(v,β),v

 ∑
(1),(2)

c(1)c(2) ⊗ (d(1) � d(2))

⊗ (bu � bv � bv)

−
∑

auc(2) ⊗ (∆(bu)� (d(2) ⊗ bv � bv)).

Finally, we fix au, av,β , av, c(2). The corresponding summands are∑
(1)

c(1)c(2) ⊗ (d(1) � d(2))⊗ (bu � bv � bv)− auc(2) ⊗ (∆(bu)� (d(2) ⊗ bv � bv)).

By direct calculations, we get∑
(1)

c(1)c(2) ⊗ (d(1) � d(2))⊗ (bu � bv � bv)− auc(2) ⊗ (∆(bu)� (d(2) ⊗ bv � bv))

=

∑
(1)

c(1) ⊗ d(1) ⊗ bu − au ⊗∆(bu)

� (1⊗ d(2) ⊗ bv � bv)

 · (c(2) ⊗ 1⊗ 1),

whose inner sum is reduced to∑
(1)

c(1) ⊗ d(1) ⊗ bu − au ⊗ 1⊗∆(bu) = (∆(au)− 1⊗ au)⊗ bu − au ⊗ 1⊗∆(bu).

Now we can apply Equation (6.15) for the sum of the summand over au to have∑
u

(∆(au)⊗ bu − 1⊗ au ⊗ bu − au ⊗ 1⊗∆(bu)) = 0,

that is, Equation (6.18) is true. Thus the induction step is proved.
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From the coassociativity of C, we have the coassociativity for u ∈ Σ, and then for
u ∈ Γ by Part (1). By applying Parts (2) and (1) repeatedly, we can cover arbitrary
depth of u ∈ 〈Γ〉. Hence this completes the proof. �

6.4. Hopf algebra structure on D.

Let the counit ε : D→ Fq defined as ε(1) = 1; ε(u) = 0 otherwise.

We already checked that (D,�, u,∆, ε) is a bialgebra by Theorem 5.9, Theo-
rem 6.5, and Theorem 6.8. By induction it is easily verified that � and ∆ preserve
the weight, and the weight zero subset is isomorphic to Fq. Therefore, (D,�, u,∆, ε)
is a connected graded bialgebra. By Theorem 2.6, we have the following theorem.

Theorem 6.9. (D,�, u,∆, ε) is a connected graded Hopf algebra of finite type
over Fq.
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École Norm. Sup. (4), 38(1):1–56, 2005.
[18] V. Drinfeld. On quasitriangular quasi-Hopf algebras and on a group that is closely connected

with Gal(Q/Q). Algebra i Analiz, 2(4):149–181, 1990.
[19] R. Ehrenborg. On posets and Hopf algebras. Adv. Math., 119(1):1–25, 1996.
[20] L. Euler. Meditationes circa singulare serierum genus. Novi commentarii academiae scien-

tiarum Petropolitanae, 140–186, 1776.
[21] O. Gezmis and F. Pellarin. Trivial multiple zeta values in Tate algebras. International Math-

ematics Research Notices, to appear, rnab104, 2021.
[22] A. Goncharov. Multiple polylogarithms and mixed tate motives. arXiv:math/0103059v4,

2001.



36 B.-H. IM, H. KIM, K. N. LE, T. NGO DAC, AND L. H. PHAM

[23] A. Goncharov. Galois symmetries of fundamental groupoids and noncommutative geometry.

Duke Math. J., 128(2):209–284, 2005.

[24] D. Goss. Basic Structures of function field arithmetic, volume 35 of Ergebnisse der Mathe-
matik und ihrer Grenzgebiete (3). Springer-Verlag, Berlin, 1996.

[25] R. Harada. Alternating multizeta values in positive characteristic. Math. Z., 298(3-4):1263–

1291, 2021.
[26] U. Hartl and A. K. Juschka. Pink’s theory of Hodge structures and the Hodge conjectures over
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