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Abstract4

In the context of reliability assessment, estimating a failure probability associated to a rare

event is a common task. To do so, various techniques have been proposed to overcome tradi-

tional crude Monte Carlo which becomes intractable in such a context. Among others, Subset

Simulation is a widely used technique which relies on “splitting” the rare event probability into

a sequence (i.e., a product) of less rare conditional probabilities associated to nested failure

events, easier to estimate. However, this technique relies on simulating samples conditionally

to the failure event by means of Monte Carlo Markov chain algorithms. These algorithms en-

able, at convergence, to simulate according to the target density. However, in practice, it often

produces non-independent and identically distributed (i.i.d.) samples due to the correlation

between Markov chains. In the present work, we propose another way to sample condition-

ally to the nested failure events in order to get i.i.d. samples which can be required (e.g., to

perform dedicated sensitivity analysis). The proposed algorithm relies on a nonparametric fit

of the conditional joint distribution using a combined kernel density estimation for marginals

fitting and the Empirical Bernstein Copula (EBC). Thus, this new method presents some

similarities with “Nonparametric Adaptive Importance Sampling” but addresses the problem

of copula fitting by means of EBC. The proposed algorithm is tested on three toy-cases and

its performances are compared with those obtained from Subset Sampling.
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1. INTRODUCTION6

Reliability analysis of a system is often associated with rare event probability estimation.7

Considering that the system’s performance is modeled by a deterministic scalar function g :8

Dx ⊆ Rd → R, called limit-state function and a critical threshold on the system’s output9

yth ∈ R, one can define the failure domain as Fx := {x ∈ Dx|g(x) ≤ yth}. Uncertain inputs10

are represented by a continuous random vector X ∈ Dx assumed to be distributed according11

to its joint probability density function (PDF) fX. In this context, uncertainty propagation12

consists in composing the random vector X by the function g to get an output variable of13

interest Y = g(X) ∈ R. A usual risk measure in reliability analysis is the failure probability,14

denoted by pf , and defined as the probability that the system exceeds the threshold yth:15

pf := P(g(X) ≤ yth) =

∫
Dx

1Fx(x)fX(x) dx (1)

where 1Fx(·) is the indicator function of the failure domain such that 1Fx(x) = 1 if x ∈ Fx and16

1Fx(x) = 0 otherwise. Rare event problems are usually solved in the so-called standard normal17

space after applying an “iso-probabilistic transformation” which can be either the Rosenblatt18

or the generalized Nataf one (Lebrun, 2013). Additionally, the limit-state function g can be19

viewed as an input-output “black-box” model which can be costly to evaluate (e.g., a complex20

numerical model), making the failure probability estimation nontrivial. When the limit-state21

function is a costly computer model, one can build a surrogate model and use specific active22

learning methods (see, e.g., Moustapha et al. (2022)). However, using surrogate models is not23

always possible for practical engineering applications as they might introduce another level24

of approximation, which can be prohibitive from safety auditing. Moreover, their validation25

as well as their behavior with respect to large input dimension case make also their use quite26

complex (see, e.g., (Marrel et al., 2022).27

Going back to the rare event estimation literature, one can consider two major types28

of techniques for failure probability calculation (Morio and Balesdent, 2015): (i) Geomet-29

ric approaches, such as the first-/second-order reliability method (FORM/SORM) whose aim30

is to approximate the limit-state function by a first-/second-order Taylor expansion at the31

most probable failure point; (ii) Simulation-based techniques such as the crude Monte Carlo32

method. Unfortunately, FORM/SORM methods do not provide a lot of statistical information33
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as they are purely geometric approaches. Meanwhile, estimating a rare event probability by34

crude Monte Carlo becomes rapidly intractable. To overcome this limit, advanced simulation35

techniques have been developed: among others, one can mention several “variance reduction36

methods” such as the non-adaptive and adaptive versions of the Importance Sampling (Ru-37

binstein and Kroese, 2008) (either parametric, using the Cross-Entropy method Kurtz and38

Song (2013), or nonparametric Morio (2011)) and splitting techniques (Cérou et al., 2012)39

such as the Subset Simulation (SS) Au and Beck (2001). In these techniques, the idea is to40

write the rare event pf as a product of larger conditional probabilities, each one of them being41

easier to estimate. To generate intermediary conditional samples, this method uses Markov42

chain Monte Carlo (MCMC) sampling, which presents numerous versions (Papaioannou et al.,43

2015). However, MCMC algorithms are known to be highly tunable algorithms which produce44

non-i.i.d. samples, which consequently, cannot be used for direct statistical estimation (e.g.,45

failure probability or sensitivity indices (Da Veiga et al., 2021).46

The present work proposes a new rare event estimation method, adopting the same sequen-47

tial structure as SS while using a strictly different sampling mechanism to generate conditional48

samples. This method intends to fit the intermediary conditional distributions with a nonpara-49

metric tool called the Empirical Bernstein Copula. Contrarily to SS, the proposed method50

named “Bernstein adaptive nonparametric conditional sampling” (BANCS), generates i.i.d.51

samples of the intermediary conditional distributions. For instance, a practical use of such52

i.i.d. samples can be to estimate dedicated reliability-oriented sensitivity indices (see, e.g.,53

Chabridon et al. (2021); Marrel and Chabridon (2021)).54

In this paper, Section 2 will recall the methodology of subset sampling and probabilistic55

modeling. Then, Section 3 will introduce the BANCS method for rare event estimation.56

Section 4 will apply this method to three toy-cases and analyze the results with respect to SS57

performances. Then, the last section present some conclusions and research perspectives.58

2. BACKGROUND59

2.1. Subset sampling60

Subset sampling splits the failure event Fx into an intersection of k# intermediary events61

Fx = ∩k#
k=1F[k]. Each are nested such that F[1] ⊃ · · · ⊃ F[k#] = Fx. The failure probability is62
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then expressed as a product of conditional probabilities:63

pf = P(Fx) = P(∩k#
k=1F[k]) =

k#∏
k=1

P(F[k]|F[k−1]). (2)

From a practical point of view, the analyst tunes the algorithm by setting the intermediary64

probabilities P(F[k]|F[k−1]) = p0,∀k ∈ {1, . . . , k#}. Then, the corresponding quantiles qp0[1] >65

· · · > qp0[k#] are estimated for each conditional subset samples X[k],N of size N . Note that the66

initial quantile is estimated by crude Monte Carlo sampling on the input PDF fX. Following67

conditional subset samples are generated by MCMC sampling of fX(x|F[k−1]), using as seeds68

initialisation points the n = Np0 samples given by A[k],n = {X(j)
[k−1] ⊂ X[k−1],N |g(X(j)

[k−1]) >69

q̂α[k−1]}nj=1. This process is repeated until an intermediary quantile exceeds the threshold:70

q̂p0[k#] < yth. Finally, the failure probability is estimated by:71

pf ≈ p̂f
SS = p

k#−1
0

1

N

N∑
j=1

1{g(x)≤yth}(X
(j)
[k#],N). (3)

In practice, the subset sample size should be large enough to properly estimate intermediary72

quantiles, which leads Au and Beck (2001) to recommend setting p0 = 0.1. SS efficiency73

depends on the proper choice and tuning of the MCMC algorithm (Papaioannou et al., 2015).74

Our work uses the SS implementation from OpenTURNS1 (Baudin et al., 2017) which integrates75

a component-wise Metropolis-Hastings algorithm. As an alternative to generating samples on76

a conditional distribution by MCMC, one could try to fit this conditional distribution.77

2.2. Multivariate modeling using copulas78

The Sklar theorem (Joe, 1997) affirms that the multivariate distribution of any random79

vector X ∈ Rd can be broken down into two objects:80

1. A set of univariate marginal distributions to describe the behavior of the individual81

variables;82

2. A function describing the dependence structure between all variables, called a copula.83

This theorem states that considering a random vector X ∈ Rd, with its distribution F and its84

marginals {Fi}di=1, there exists a copula C : [0, 1]d → [0, 1], such that:85

F (x1, . . . , xd) = C (F1(x1), . . . , Fp(xd)) . (4)

1https://openturns.github.io/www/index.html
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It allows us to divide the problem of fitting a joint distribution into two independent86

problems: fitting the marginals and fitting the copula. Note that when the joint distribution87

is continuous, this copula is unique. Provided a dataset, this framework allows to combine a88

parametric (or nonparametric) fit of marginals with a parametric (or nonparametric) fit of the89

copula. When the distribution’s dimension is higher than two, one can perform a parametric90

fit using vine copulas (Joe and Kurowicka, 2011), implying the choice of multiple types of91

parametric copulas. Otherwise, nonparametric fit by multivariate kernel density estimation92

(KDE) presents a computational burden as soon as the dimension increases (Chabridon et al.,93

2021). Since univariate marginals are usually well-fitted with nonparametric tools (e.g., KDE),94

let us introduce an effective nonparametric method for copula fitting.95

3. A NEW COPULA-BASED CONDITIONAL SAMPLING METHOD96

3.1. Empirical Bernstein copula97

Copulas are continuous and bounded functions defined on a compact set (the unit hyper-98

cube). Bernstein polynomials allow to uniformly approximate as closely as desired any contin-99

uous and real-valued function defined on a compact set (Weierstrass approximation theorem).100

Therefore, they are good candidates to approximate unknown copulas. This concept was intro-101

duced as empirical Bernstein copula (EBC) by Sancetta and Satchell (2004) for applications in102

economics and risk management. Later on, Segers et al. (2017) offered further asymptotic stud-103

ies. Formally, the multivariate Bernstein polynomial for a function C : [0, 1]d → R on a grid104

over the unit hypercube G :=
{

0
m1

, . . . , m1

m1

}
× · · · ×

{
0
md

, . . . , md

md

}
,m = (m1, . . . ,md) ∈ Nd,105

writes:106

Bm(C)(u) :=

m1∑
t1=0

· · ·
md∑
td=0

C

(
t1
m1

, . . . ,
td
md

) d∏
j=1

Pmj ,tj(uj), (5)

with u = (u1, . . . , ud) ∈ [0, 1]d, and the Bernstein polynomial Pm,t(u) :=
t!

m!(t−m)!
um(1−u)t−m.107

Notice how the grid definition implies the polynomial’s order. When C is a copula, then Bm(C)108

is called “Bernstein copula”. Therefore, the empirical Bernstein copula is an application of the109

Bernstein polynomial in Eq. (5) to the so-called “empirical copula”.110

In practice, considering a sample Xn =
{
x(1), . . . ,x(n)

}
∈ Rnp and the associated ranked111
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sample Rn =
{
r(1), . . . , r(n)

}
, the corresponding empirical copula writes:112

Cn(u) :=
1

n

n∑
i=0

p∏
j=1

1

{
r
(i)
j

n
≤ uj

}
, (6)

with u = (u1, . . . , ud) ∈ [0, 1]d. In the following, the polynomial order is set as equal in each113

dimension: {mi = m}dj=1. Theoretically, the tuning parameter can be optimized to minimize114

an “Mean Integrated Squared Error” (MISE), leading to a bias-variance tradeoff. Formally,115

the MISE of the empirical Bernstein copula Bm(Cn) is defined as follows:116

E
[
∥Bm(Cn)− C∥22

]
=E

[∫
Rd

(Bm(Cn)(u)−C(u)du)2
]
. (7)

Then, Sancetta and Satchell (2004) prove in their Theorem 3 that:117

• Bm(Cn)(u) → C(u) for any uj ∈ ]0, 1[ if md/2

n
→ 0, when m,n → ∞.118

• The optimal order of the polynomial in terms of MISE is: m ≲ mIMSE = n2/(d+4),∀uj ∈119

]0, 1[. The sign ≲ means “less than or approximately”.120

Let us remark that in the special case m = n, also called the “Beta copula” in Segers121

et al. (2017), the bias is very small while the variance gets large. To illustrate the previous122

theorem, Lasserre (2022) represents the evolution of the mIMSE for different dimensions and123

sample sizes (see Fig. 1). In high dimension, the values of mIMSE tend towards one, which is124

equivalent to the independent copula. Therefore, high-dimensional problems should be divided125

into a product of smaller problems on which the EBC is tractable. Provided a large enough126

learning set Xn, KDE fitting of marginals combined with EBC fitting of the copula delivers127

good results even on complex dependence structures. Moreover, EBC provides an explicit128

expression, making a Monte Carlo generation of i.i.d. samples simple. In the following, this129

nonparametric tool is used to fit the intermediary conditional distributions present in subset130

sampling.131

3.2. Bernstein adaptive nonparametric conditional sampling (BANCS) method132

This new method reuses the main idea from SS while employing a different approach to133

generate conditional samples. Instead of using MCMC sampling, the conditional distribution is134

firstly fitted by a nonparametric procedure, before sampling on this nonparametric model. As135
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Figure 1: Evolution of mIMSE for different dimensions and sample sizes.

described in Algorithm 1, conditional sampling is done on a distribution composed by merging136

marginals {F̂i}di=1 fitted by KDE, with a copula Bm(Cn) fitted by EBC. Fig. 2 illustrate the137

nonparametric fit and conditional sampling in BANCS method on a two-dimensional reliability138

problem (later introduced as “toy-case #1”). At iteration k, after estimating the intermediary139

quantile q̂p0[k], a nonparametric model is fitted on A[k+1],n and used to generate the next N -140

sized subset sample X[k+1],N . Note that the BANCS method does not require iso-probabilistic141

transform.142

Figure 2: BANCS on toy-case #1: illustration of nonparametric fit at the first iteration.
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Algorithm 1 Bernstein adaptive nonparametric conditional sampling (BANCS).
▷ Inputs: ◁

fX, joint PDF of the inputs

g(·), limit-state function

yth ∈ R, threshold defining the failure event

N , number of samples per iteration

m ∈ N, parameter of the EBC fitting

p0 ∈ ]0, 1[, empirical quantile order (rarity parameter)

▷ Algorithm: ◁

Set k = 0 and f[0] = fX

Sample X[0],N = {X(j)
[0] }Nj=1

i.i.d∼ f[0]

Evaluate G[0],N = {g(X(j)
[0] )}Nj=1

Estimate the empirical p0-quantile q̂p0

[0] of the set G[0],N

while q̂p0

[k] > yth do

Subsample A[k+1],n = {X(j)
[k] ⊂ X[k],N |g(X(j)

[k] ) > q̂p0

[k]}nj=1

Fit marginals of the subset A[k+1],n by KDE {F̂i}di=1

Fit the copula of the subset A[k+1],n by EBC Bm(Cn)

Build a CDF F̂[k+1](x) = Bm(Cn)(F̂1(x1), . . . , F̂d(xd))

Sample X[k+1],N = {X(j)
[k+1]}Nj=1

i.i.d∼ f̂[k+1]

Evaluate G[k+1],N = {g(X(j)
[k+1])}Nj=1

Estimate the empirical p0-quantile q̂p0

[k+1] of G[k+1],N

Set k = k + 1

Set total iteration number k# = k − 1

Estimate p̂f = (1− p0)
k# · 1

N

∑N
j=1 1{g(X(j)

[k#]
)≥yth}

(X[k#](j))

▷ Outputs: ◁

p̂f , estimate of pf

As discussed in the previous section, EBC fitting is tuned by the Bernstein polynomial143

of order m, implying a bias-variance tread off. In Fig. 2, conditional distributions fitted by144

EBC (blue and brown isolines) seem to present a slight bias since they overlay the quantiles.145

However, reducing this bias implies decreasing the tuning parameter m, until m = 1, which146

is equivalent to an independent copula. Tools to control the goodness of fit of nonparametric147

conditional distributions are also available. As an example, let us consider the fitted condi-148

tional distribution at the first iteration (visible in Fig. 2). Its quantile-quantile plot in Fig. 3149

(left) shows a good fit of the two marginals by KDE. Then, the goodness of fit of copulas can150
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be evaluated by Kendall’s plot, represented in Fig. 3 (right). This fit is also good, even if a151

slight bias is again visible.152
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Figure 3: QQ-plot (left) for KDE on marginals and Kendall plot (right) for EBC on the copula of the conditional

distribution from Fig. 2.

4. NUMERICAL EXPERIMENTS153

In the following analytical numerical experiments, the intermediary probabilities were set154

to p0 = 0.1, allowing a fair comparison with subset sampling. Then, the subset sample size155

is set to N = 104, in order to get a reasonable sample size n = Np0 = 103 to perform the156

nonparametric fitting. EBC tuning is setup to minimize the MISE in Eq. (7): m = 1+n
2

d+4 . In157

order to take into account the variability of the method’s results, each experiment is repeated158

100 times, allowing the computation of a coefficient of variation δ̂ =
σp̂f

µp̂f

. Note that an159

implementation of the BANCS method and the following numerical experiments are available160

in a Git repository2.161

4.1. Toy-case #1: Parabolic reliability problem162

Let us define the parabolic reliability problem, considering the function g1 : R2 → R:163

g1(x) = (x1 − x2)
2 − 8(x1 + x2 − 5), (8)

2https://github.com/efekhari27/icasp14
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with the input random vector X = (X1, X2) following a standard 2-dimensional normal dis-164

tribution. The reliability problem consists in evaluating: pf,1 = P(g1(X) ≤ 0) = 1.31× 10−4.165

4.2. Toy-case #2: Four-branch reliability problem166

Let us define the four-branch reliability problem (originally proposed by Waarts (2000)),

considering the following function g2 : R2 → R:

g2(x) = min


5 + 0.1(x1 − x2)

2 − (x1+x2)√
2

5 + 0.1(x1 − x2)
2 + (x1+x2)√

2

(x1 − x2) +
9√
2

(x2 − x1) +
9√
2

 , (9)

with the input random vector X = (X1, X2) following a standard 2-dimensional normal dis-167

tribution. The reliability problem consists in evaluating: pf,2 = P(g2(X) ≤ 0) = 2.21× 10−4.168

4.3. Toy-case #3: higher-dimensional reliability problem169

Let us define the higher-dimensional reliability problem (proposed by Yun et al. (2018)),170

considering the following function g3 : R7 → R:171

g3(x) = 15.59× 104 − x1x
2
3

2x2
3

x4
2 − 4x5x6x

2
7 + x4(x6 + 4x5 + 2x6x7)

x4x5(x4 + x6 + 2x6x7)
, (10)

with the input random vector X = (X1, . . . , X7), following a product of normal distributions172

defined in Yun et al. (2018). The reliability problem consists in evaluating: pf,3 = P(g3(X) ≤173

0) = 8.10× 10−3.174

4.4. Results analysis175

Results of our numerical experiments are presented graphically (for 2-dimensional prob-176

lems) in Figure 4, and numerically in Table 1. In the same fashion as the previous illustrations,177

the figures represent the intermediary quantiles q̂p0[k] estimated over conditional samples of size178

N = 104. Moreover, samples A[k+1],n exceeding these quantiles are also represented in the179

same color. Notice how the last estimated quantile is set to the problem threshold yth = 0. To180

capture the dispersion of BANCS estimation, 100 repetitions were realized. Let us notice that181

for each toy-case, BANCS well estimates the failure probabilities’ orders of magnitude. Yet the182

numerical values in Table 1 consistently present a positive bias, leading to an overestimated183

10



Figure 4: BANCS sampling steps on toy-case #1 (left) and #2 (right).

failure probability. This bias is partially explained by the EBC tuning choice and could be184

reduced at the expense of a slightly higher variance.185

The variance obtained with the repetitions is quite large. Although, part of it is due to186

the fact that the algorithm might compute a different total number of subsets (e.g., toy-case187

#1 is either solved in four or five subsets). Overall, considering the EBC tuning from Eq. (7),188

BANCS performs worst than SS on toy-cases #1 and #2 but performs as well as SS on the189

toy-case #3. This might be due to the fact that toy-case #3 has a higher input dimension.190

However, one can note that SS coefficient of variation is computed by an approximation,191

tending to underestimate the true coefficient of variation (see e.g., Papaioannou et al. (2015)).192

Table 1: Results of the numerical experiments (subset sample size N = 104, p0 = 0.1).

d preff p̂f
BANCS δ̂BANCS p̂f

SS δ̂SS

Toy-case #1 2 1.31× 10−4 2.67× 10−4 24% 1.30× 10−4 9%

Toy-case #2 2 2.21× 10−4 4.23× 10−4 7% 2.24× 10−4 6%

Toy-case #3 7 8.10× 10−3 9.32× 10−3 15% 8.92× 10−3 6%

11



5. CONCLUSION193

Subset Simulation uses MCMC sampling to generate its intermediary conditional samples.194

However, MCMC algorithms tends to be complex to tune and does not generate i.i.d. condi-195

tional samples. In this work, a new method is proposed, replacing MCMC sampling with a196

simpler procedure. An intermediary conditional distribution is first fitted by a nonparametric197

approach, mixing kernel density estimation for fitting the marginals and Empirical Bernstein198

Copula (EBC) for fitting the copula. Then, the resulting allows to perform direct Monte Carlo199

sampling. This method is named “Bernstein adaptive nonparametric conditional sampling”200

(BANCS) and is applied to three toy-cases (two 2-dimensional and one 7-dimensional) and201

compared with SS.202

The method shows promising results, even though a small positive bias consistently ap-203

pears. This issue results from EBC tuning, creating a bias-variance tradeoff in the copula204

fit. Theoretical works offer optimal tuning, allowing us to find the optimal compromise. In205

our numerical experiments, an empirical estimation of BANCS variance is computed over a206

set of repetitions. BANCS estimated coefficient of variation is higher than SS approximated207

coefficient of variation. This work can be further explored by building an approximation of208

BANCS variance and confidence interval. One major advantage remains that the samples209

generated at each iteration are i.i.d. leading to a possible use of these samples to perform210

global reliability-oriented sensitivity analysis (Marrel and Chabridon, 2021) in order to detect211

and analyze the most influential input variables leading to failure.212

Funding Statement. This study is part of HIPERWIND project which has received funding213

from the European Union’s Horizon 2020 Research and Innovation Programme under Grant214

Agreement No. 101006689.215
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