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Abstract
Offshore wind turbines intend to take a rapidly growing share in the electric mix. The design, installation,

and exploitation of these industrial assets are regulated by international standards, providing generic guidelines.
Constantly, new projects reach unexploited wind resources, pushing back installation limits. Therefore, turbines
are more and more subject to uncertain environmental conditions, making long-term investment decisions riskier.
Fortunately, numerical models of wind turbines can perform accurate multi-physics simulations of such systems in-
teracting with their environment. The challenge is then to propagate the input environmental uncertainties through
such a model and analyze the distribution of model outputs of interest. Since each simulation of this numerical
model is costly, the estimation of output quantities of interest (e.g., mean, variance) must be done with a restricted
number of simulations. To do so, this paper combines kernel herding sampling with Bayesian quadrature to es-
timate the mean fatigue damage,with an application to an offshore wind turbine operating in Teesside, UK. It is
demonstrated theoretically and numerically that this method guarantees fast and accurate convergence. Moreover,
this approach is highly flexible by allowing to subsample directly from a given dataset and being fully distributable
on high-performance computing facilities. Finally, a new Python package was developed and documented to pro-
vide quick open access to this uncertainty propagation method.

Keywords Wind turbine; Uncertainty propagation; Fatigue loads; Bayesian quadrature; Design of experiments;
Active learning

1 Introduction
As a sustainable and renewable energy source, offshore wind turbines (OWT) are likely to take a growing share of
the global electric mix. However, to be more cost-effective, wind farm projects tend to move further from the coast,
exploiting stronger and more regular wind resources. Going further offshore, wind turbines are subject to more
severe and uncertain environmental conditions (i.e., wind and waves). In such conditions, their structural integrity
should be certified. To do so, numerical simulation and probabilistic tools have to be used. In fact, according
to Graf et al. (2016), for new environmental conditions or new turbine models, international standards such as
IEC (2019) from the International Electrotechnical Commission and DNV-GL (2016b) from Det Norske Veritas
recommend performing over 200,000 simulations distributed over a grid. Numerical simulations are computed by a
costly hydro-servo-aero-elastic wind turbine model, making the design process time-consuming. In the following,
the simulated output cyclic loads studied are aggregated over the simulation period to assess the mechanical fatigue
damage at hot spots of the structure. To compute the risks associated with wind turbines throughout their lifespan,
one can follow the steps of the universal framework for the treatment of uncertainties (de Rocquigny et al., 2008)
presented in Fig. 1. After defining the problem (Step A), one can quantify the uncertainties related to site-specific
environmental conditions denoted by the random variable X (Step B). Then, one can propagate them through an
OWT simulation model 𝑔(·) (Step C), and estimate a relevant quantity of interest 𝜓(𝑌 ) = 𝜓(𝑔(X)) (e.g., mean,
quantile, failure probability). A proper estimation of the quantity relies on a good uncertainty model and an efficient
sampling method to estimate the quantity of interest.

The uncertainties related to the OWT environment follow a joint distribution with a complex dependence struc-
ture. This challenging distribution has been fitted with different parametric approaches in the literature (step B in
Fig. 1), mainly using conditional distributions (Vanem et al., 2023), but also vine copulas (Li and Zhang, 2020).
When one has access to data, another way is to directly use the data as empirical representation of input uncertain-
ties.

These uncertainties have then been propagated to fatigue damage (the output), making it random, and to the
associated quantities of interest (step C in Fig. 1). When uncertainty propagation aims at central tendency studies,
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Figure 1: General uncertainty quantification and propagation framework (adapted from Ajenjo (2023))

the methods employed are split into two groups. Methods of the first group rely on numerical integration by
Monte Carlo sampling (Graf et al., 2016), quasi-Monte Carlo sampling (Müller and Cheng, 2018), or deterministic
quadrature rules (Van den Bos, 2020). All these methods estimate the quantity directly on the numerical simulator’s
outputs. Methods of the second group use metamodels (or surrogate models) to emulate the costly numerical model
by a statistical model such as polynomial chaos expansion (Dimitrov et al., 2018; Murcia et al., 2018), Gaussian
processes (Huchet, 2019; Slot et al., 2020; Wilkie and Galasso, 2021), or artificial neural networks (Bai et al.,
2023).

When uncertainty propagation aims at studying the tail of the output distribution (e.g., reliability analysis),
one can estimate a quantile or a failure probability. Failure probabilities were studied, in static reliability analysis
(Zwick and Muskulus, 2015; Slot et al., 2020; Wilkie and Galasso, 2021) or time-dependent reliability analysis
(Abdallah et al., 2019; Lataniotis, 2019). To get a better understanding of the OWT numerical models behavior,
authors have used sensitivity analysis methods (Da Veiga et al., 2021), which determine the most influential inputs
on the damage (step C’ in Fig. 1). Among others, one can cite the application of Spearman’s rank correlation
coefficients and Morris method’s by Velarde et al. (2019); Petrovska (2022), the direct calculation of Sobol’ indices
after fitting a polynomial chaos model by Murcia et al. (2018) and the use of Kullback–Leibler divergence by
Teixeira et al. (2017). Each of those methods brings something different to the analysis.

This paper will focus on central tendency estimation (i.e., 𝜓(X) = E(X)) by: (1) direct sampling on the
numerical model, (2) sampling on a static regression model, or (3) sampling on an active regression model (i.e.,
observations of the numerical model are progressively added to enhance a goal-oriented metamodel). In the specific
context of wind turbines, this paper explores how to study the central tendency study of the fatigue damage output,
by carrying out the uncertainty propagation of a complex input joint distribution through a costly wind turbine
simulator. This work proposes a new approach for given data, fast, and fully-distributable uncertainty propagation
for OWT models. Overall, this paper reviews the methods of Bayesian quadrature and presents its application
on the industrial wind turbines case. In this paper, Section 2 will detail the industrial use-case related to a wind
farm operating in Teesside, UK. Then, Section 3 will introduce different methods for central tendency estimation.
Section 4 will analyze the results of numerical experiments on analytical and industrial cases. Then, the last section
will present discussions and conclusions.

2 Treatment of uncertainties on the Teesside wind farm
An OWT is a complex system interacting with its environment. To simulate the response of this system against a
set of environmental solicitations, multi-physics numerical models are developed. In our case, it is a chain of three
numerical codes executed sequentially. As illustrated in Fig. 2, a simulation over a time period is the sequence
of (1) turbulent wind speed field generation, (2) wind turbine simulation (computing various outputs including
mechanical stress), and (3) post-processing to assess the fatigue damage of the structure.

Figure 2: Diagram of the chained OWT simulation model

2.1 Numerical simulation model
This section describes more precisely the modeling hypotheses considered in this case. Starting from the turbulent
wind field simulator TurbSim (developed by Jonkman (2009) from the National Renewable Energy Laboratory,
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Table 1: Teesside Offshore Wind turbine datasheet
Siemens SWT-2.3–93
Rated power 2.3 MW
Rotor diameter 93 m
Hub height 83 m
Cut-in, cut-out wind speed 4 m/s, 25 m/s

USA) that uses a Kaimal spectrum (Kaimal et al., 1972). To extrapolate the wind speed vertically, the shear is
modeled by a power law. Since the wind field generation shows inherent stochasticity, each 10-minute long sim-
ulation is repeated with different pseudo-random seeds and the average damage over these repetitions is studied.
This question was widely studied by some authors, (e.g., Slot et al. (2020)), who concluded that the six repetitions
recommended by the IEC (2019) are insufficient to properly average this stochasticity. In the following, the simula-
tions are repeated eleven times (allowing direct access to the median value). This number of repetitions was chosen
as a compromise between the general number of simulations and the storage capacity of the generated simulations.

DIEGO (for “Dynamique Intégrée des Éoliennes et Génératrices Offshore1”) is a code developed by EDF R&D
(Kim et al., 2022) to simulate the aero-hydro-servo-elastic behavior of OWTs. It takes the turbulent wind speed
field generated by TurbSim as input and computes the dynamical behavior of the system (including the multiaxial
mechanical stress at different nodes of the structure). For our application, the control system is modeled by the
open-source DTU controller (Hansen and Henriksen, 2013), and no misalignment between the wind and the OWT
is assumed. As for the waves, they are modeled in DIEGO using a JONSWAP spectrum (named after the 1975
Joint North Sea Wave Project). Our study uses a DIEGO model of a Siemens SWT 2.3MW bottom-fixed turbine on
a monopile foundation (see the datasheet in Table 1), currently operating in Teesside, UK (see the wind farm layout
and wind turbine diagram in Fig. 3). Although wind farms are subject to the wake effect, affecting the behavior and
performance of some turbines in the farm, this phenomenon is not considered in the following. To avoid numerical
perturbations and reach the stability of the dynamical system, our simulation period is extended to 1000 seconds
and the first 400 seconds are cropped in the post-processing step. This chained OWT numerical simulation model
has been deployed on an EDF R&D HPC facility to benefit from parallel computing speed up (a single simulation
on one CPU takes around 20 minutes).
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Figure 3: Teesside wind farm layout (left). Monopile OWT diagram (Chen et al., 2018) (right)

2.2 Measured environmental data
During the lifespan of a wind farm project, environmental data is collected at different phases. In order to decide
on the construction of a wind farm, meteorological masts and wave buoys are usually installed on a potential
site for a few years. After its construction, each wind turbine is equipped with monitoring instruments (e.g.,
cup anemometers). In total, five years of wind data have been collected on the turbines which are not affected

1In english, “Integrated Dynamics of Wind Turbines and Offshore Generators”.
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by the wake on this site. Their acquisition system (usually called SCADA, for “Supervisory Control And Data
Acquisition”) have a sampling period of ten minutes. The wave data arise from a buoy placed in the middle of the
farm. This data describes the physical features listed in Table 2.

The farm of Teesside is located close to the coast, making the environmental conditions very different depending
on the direction (see the wind farm layout in Fig. 3). Since measures are also subject to uncertainties, a few checks
were realized to ensure that the data were physically consistent. The truncation bounds defined in Table 2 were
applied since this study is not interested in extreme values but central tendency estimation (i.e., mean behavior).
In addition, a simple trigonometric transform is applied to each directional feature to take into account their cyclic
structure. Finally, the remaining features are rescaled (i.e., using a min-max normalization). The matrix plot of
the transformed data in Fig. 4 is an innovative plot named copulogram. A copulogram is an innovative plot as it
decomposes the data between the effects of the marginals and those of the dependence between features. To do so,
it represents the marginals with univariate kernel density estimation plots (diagonal), and the dependence structure
with scatter plots in the ranked space (upper triangle). On the bottom triangle the scatter plots are set in the physical
space, gathering the effects of the marginals and the dependencies. Since the dependence structure is theoretically
modeled by an underlying copula, this plot is called copulogram, generalizing the well-known “correlogram” to
nonlinear dependencies. It gives a synthetic and empirical decomposition of the dataset.

On Fig. 4, a large sample S (with a size 𝑁 = 104) is randomly drawn from the entire Teesside data (with size
𝑁Teesside = 2 × 105), and plotted in grey. In the same figure, the orange matrix plot is a subsample of the sample
S, selected by kernel herding, a method that will be presented in Section 3. Visually, this orange subsample seems
to match the original sample both in terms of marginal distributions and dependence structure. In the following
study, the large samples S will be considered as an empirical representation of the multivariate environmental
distribution X ∈ DX ⊂ R𝑝 , of density 𝑓X, and called candidate set. Contrarily to parametric approaches which
can be used to describe the joint environmental uncertainty, this method intends to directly subsample from this
large and representative dataset. This technique samples a joint distribution without modeling it. Indeed, a proper
parametric model fit would be challenging for complex dependence structures such as the one plotted on Fig. 4. Li
and Zhang (2020) built a parametric model of a similar multivariate distribution using vine copulas. Alternatively, a
nonparametric approach coupling empirical Bernstein copula fitting with kernel density estimation of the marginals
is introduced in Section 2.3.

Table 2: Description of the environmental data.

Variable Notation Unit Description
Mean wind speed 𝑈 m.s−1 10-min. average horizontal wind speed
Wind turbulence 𝜎𝑈 m.s−1 10-min. wind speed standard deviation
Wind direction \𝑤𝑖𝑛𝑑 deg. 10-min. average wind direction
Significant wave height 𝐻𝑠 m Significant wave height
Peak wave period 𝑇𝑝 s Peak 1-hour spectral wave period
Wave direction \𝑤𝑎𝑣𝑒 deg. 10-min. average wave direction

2.3 Non parametric fit with empirical Bernstein copula
The Sklar theorem (Joe, 1997) states that the multivariate distribution of any random vector X ∈ R𝑝 can be broken
down into two objects:

1. A set of univariate marginal distributions to describe the behavior of the individual variables;

2. A function describing the dependence structure between all variables, called a copula.

This theorem states that considering a random vector X ∈ R𝑝 , with its distribution 𝐹 and its marginals {𝐹𝑖}𝑝𝑖=1,
there exists a copula 𝐶 : [0, 1] 𝑝 → [0, 1], such that:

𝐹 (𝑥1, . . . , 𝑥𝑝) = 𝐶
(
𝐹1 (𝑥1), . . . , 𝐹𝑝 (𝑥𝑝)

)
. (1)

It allows us to divide the problem of fitting a joint distribution into two independent problems: fitting the
marginals and fitting the copula. Additionally, when the joint distribution is continuous, this copula is unique.
Copulas are continuous and bounded functions defined on a compact set (the unit hypercube). Bernstein polyno-
mials allow to uniformly approximate as closely as desired any continuous and real-valued function defined on a
compact set (Weierstrass approximation theorem). Therefore, they are good candidates to approximate unknown
copulas. This concept was introduced as empirical Bernstein copula (EBC) by Sancetta and Satchell (2004) for
applications in economics and risk management. Later on, Segers et al. (2017) offered further asymptotic studies.
Formally, the multivariate Bernstein polynomial for a function 𝐶 : [0, 1] 𝑝 → R on a grid over the unit hypercube
𝐺 :=

{
0
ℎ1
, . . . ,

ℎ1
ℎ1

}
× · · · ×

{
0
ℎ𝑝

, . . . ,
ℎ𝑝

ℎ𝑝

}
, h = (ℎ1, . . . , ℎ𝑝) ∈ N𝑝 , is written as follows:
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Figure 4: Copulogram of the Teesside measured data (𝑁 = 104 in grey), kernel herding subsample (𝑛 = 500
in orange). Marginals are represented by univariate kernel density estimation plots (diagonal), the dependence
structure with scatter plots in the ranked space (upper triangle). Scatter plots on the bottom triangle are set in the
physical space

𝐵h (𝐶) (u) :=
ℎ1∑︁
𝑡1=0

· · ·
ℎ𝑝∑︁
𝑡𝑝=0

𝐶

(
𝑡1
ℎ1

, . . . ,
𝑡𝑝

ℎ𝑝

) 𝑝∏
𝑗=1

𝑃ℎ 𝑗 ,𝑡 𝑗 (𝑢 𝑗 ), (2)

with u = (𝑢1, . . . , 𝑢𝑝) ∈ [0, 1] 𝑝 , and the Bernstein polynomial 𝑃ℎ,𝑡 (𝑢) := 𝑡!
ℎ!(𝑡−ℎ)!𝑢

ℎ (1 − 𝑢)𝑡−ℎ. When 𝐶 is a
copula, then 𝐵m (𝐶) is called “Bernstein copula”. Therefore, the empirical Bernstein copula is an application of
the Bernstein polynomial in Eq. (2) to the so-called “empirical copula”. In practice, considering a sample X𝑛 ={
x(1) , . . . , x(𝑛)

}
∈ R𝑛𝑝 and the associated ranked sample R𝑛 =

{
r(1) , . . . , r(𝑛)

}
, the corresponding empirical

copula is written:

𝐶𝑛 (u) :=
1
𝑛

𝑛∑︁
𝑖=0

𝑝∏
𝑗=1

1


𝑟
(𝑖)
𝑗

𝑛
≤ 𝑢 𝑗

 , u = (𝑢1, . . . , 𝑢𝑝) ∈ [0, 1] 𝑝 . (3)

Provided a large enough learning set X𝑛, the EBC combined with kernel density estimation for the marginals
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fit well the environmental joint distribution related to the dataset in Fig. 4. Moreover, the densities of the EBC
are available in an explicit form, making Monte Carlo or quasi-Monte Carlo generation easy. For a thorough
presentation of this method and theoretical results regarding the EBC tuning, see the manuscript of Lasserre (2022).
Further discussions and numerical experiments on the estimation of nonparametric copula models are presented in
Nagler et al. (2017).

2.4 Fatigue assessment
As described in Fig. 2, a typical DIEGO simulation returns a 10-minute multiaxial stress time series at each node
𝑖 ∈ N of the 1D meshed structure. Since fatigue laws are established for uniaxial stresses, the first step is to compute
one equivalent Von Mises stress time series at each structural node.

However, the foundation and the tower of an OWT are a succession of tubes with various sections connected
by bolted or welded joints. Our work studies the welded joints at the mudline level, identified as a critical area
for the structure. To compute fatigue in this joint, the external circle of the welding ring is discretized for a few
azimuth angles \ ∈ R+ (see the red points in the monopile cross-section on the right in Fig. 5). The equivalent
Von Mises stress time series is then reported on the external welding ring for an azimuth \. According to Li and
Zhang (2020) and our own experience, the most critical azimuth angles are roughly aligned with the main wind and
wave directions (whose distributions are illustrated in Fig. 5). According to these illustrations, the wind and wave
conditions have a very dominant orientation, which is explained by the closeness of the wind farm to the shore.
Then, it is assumed that azimuth angles in these directions will be more solicited, leading to higher fatigue damage.
To assess fatigue damage, rainflow counting (Dowling, 1972) first identifies the stress cycles and their respective
amplitudes (using the implementation of the ASTM E1049-85 rainflow cycle counting algorithm from the Python
package rainflow2). For each identified stress cycle of amplitude 𝑠, the so-called “Stress vs. Number of cycles”
curve (also called the “Wöhler curve”) allows one to estimate the number 𝑁c of similar stress cycles necessary to
reach fatigue ruin:

𝑁c := 𝑊 (𝑠) = 𝑎𝑠−𝑚, 𝑎 ∈ R, 𝑚 ∈ R. (4)

Finally, a usual approach to compute the damage is to consider the fatigue contribution of each stress cycle
identified using Miner’s rule. Damage occurring during a 10-minute operating time is simulated and then scaled
up to the OWT lifetime. More details regarding damage assessment are available in Appendix 5. For a realization
of environmental conditions x ∈ DX, at a structural node 𝑖, an azimuth angle \; 𝑘 stress cycles of respective
amplitude {𝑠 ( 𝑗 )

𝑖, \
(x)}𝑘

𝑗=1 are identified. Then, Miner’s rule (Fatemi and Yang, 1998) defines the damage function
𝑔𝑖, \ (x) : DX → R+ by:

𝑔𝑖, \ (x) =
𝑘∑︁
𝑗=1

1

𝑁
( 𝑗 )
c

=

𝑘∑︁
𝑗=1

1

𝑊

(
𝑠
( 𝑗 )
𝑖, \

(x)
) . (5)

As defined by the DNV standards for OWT fatigue design (DNV-GL, 2016a), the quantity of interest in the
present paper is the “mean global damage” 𝑑𝑖, \ , computed at the node 𝑖, for an azimuth angle \:

𝑑𝑖, \ = E[𝑔𝑖, \ (X)] =
∫
DX

𝑔𝑖, \ (x) 𝑓X (x) dx . (6)

To get a preview of the distribution of this output random variable 𝑔𝑖, \ (X), a histogram of a large Monte Carlo
simulation (𝑁ref = 2000) is represented in Fig. 6 (with a log scale). The log-damage presents a little asymmetry,so
it is unlikely to be normally distributed.
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2https://github.com/iamlikeme/rainflow

6

https://github.com/iamlikeme/rainflow


Global damage (log-scale)0.00

0.05

0.10

0.15

D
en

si
ty Monte Carlo (Nref = 2000)

Arithmetic mean
Normal fitted

Figure 6: Histogram of the log-damage, at mudline, azimuth 45 deg. (Monte Carlo reference sample)

3 Numerical integration procedures for mean damage estimation
3.1 Quadrature rules and quasi-Monte Carlo methods
The present section explores different methods aiming at estimating the expected value of a function against a
probability measure. Considering a measurable space DX ⊂ R𝑝 , 𝑝 ∈ N+, associated with a known Lebesgue
measure `, let us study the approximation of integrals of the form

∫
DX

𝑔(x)d`(x), with 𝑔 the map 𝑔(x) : DX → R.
This problem is equivalent to the central tendency estimation of Y = 𝑔(X), the image of the environmental random
variable X by the damage function 𝑔 (see Eq. (6)). Some authors also named this generic problem probabilistic
integration (Briol et al., 2019). In practice, this quantity of interest is estimated on an 𝑛-sized set of damage
realizations y𝑛 =

{
𝑔(x(1) ), . . . , 𝑔(x(𝑛) )

}
of an input sample X𝑛 =

{
x(1) , . . . , x(𝑛)

}
. Our numerical experiment

framework often implies that the function 𝑔 is costly to evaluate, making the realization number limited. A weighted
arithmetic mean of the realizations

{
𝑔(x(1) ), . . . , 𝑔(x(𝑛) )

}
is called a quadrature rule with a set of unconstrained

weights w𝑛 = {𝑤1, . . . , 𝑤𝑛} ∈ R𝑛:

𝐼` (𝑔) :=
∫
DX

𝑔(x)d`(x) ≈
𝑛∑︁
𝑖=1

𝑤𝑖𝑔(x(𝑖) ). (7)

For a given sample size 𝑛, our goal is to find a set of tuples
{
x(𝑛) , 𝑤𝑖

}𝑛
𝑖=1

(i.e., quadrature rule), giving the best
approximation of our quantity. In the literature, a large panel of numerical integration methods has been proposed
to tackle this problem. In a recent work, Van den Bos (2020) applies a first family of numerical integration meth-
ods based on tensor products of quadrature rules to a similar industrial OWT use case. Unfortunately, the tensor
formulation fails when inputs present a strong dependency structure and will not be studied in this paper. Alter-
natively, sampling methods rely on generating a set of points X𝑛 drawn from the input distribution to compute

the arithmetic mean of their realizations (i.e., uniform weights
{
𝑤𝑖 =

1
𝑛

}𝑛
𝑖=1

). Among them, low-discrepancy se-
quences, also called “quasi-Monte Carlo” sampling (e.g., Sobol’, Halton, Faure sequences) are known to improve
the standard Monte Carlo convergence rate and will be used as a deterministic reference method in the following
numerical experiments (Morokoff and Caflisch, 1995).

3.2 Kernel discrepancy
Quantization of probability measures and quadrature When dealing with probabilistic integration
such as Eq. (7), a quadrature rule is a finite representation of a continuous measure ` by a discrete measure
Z𝑛 =

∑𝑛
𝑖=1 𝑤𝑖𝛿(x(𝑖) ) (weighted sum of Dirac distributions at the design points X𝑛). In the literature, this proce-

dure is also called quantization of a continuous measure `. Overall, numerical integration is a particular case of
probabilistic integration against a uniform input measure. For uniform measures, the Koksma-Hlawka inequality
(Morokoff and Caflisch, 1995) provides a useful upper bound on the absolute error of a quadrature rule:�����∫[0,1]𝑝

𝑔(x)dx − 1
𝑛

𝑛∑︁
𝑖=1

𝑔(x(𝑖) )
����� ≤ 𝑉 (𝑔)𝐷∗

𝑛 (X𝑛). (8)

As explained in Oates (2021), 𝑉 (𝑔) =
∑
𝔲⊆{1,..., 𝑝}

∫
[0,1]𝔲

��� 𝜕𝔲𝑔

𝜕x𝔲 (x𝔲 , 1)
��� dx, quantifies the complexity of the inte-

grand, while 𝐷∗
𝑛 (X𝑛) evaluates the discrepancy to uniformity of the design X𝑛. Therefore, the Koksma-Hlawka

inequality shows that the quadrature rule’s accuracy relies on the good quantization of ` by X𝑛. For a uniform
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target measure `, the star discrepancy is a metric assessing how far from uniformity a sample X𝑛 is. When gen-
eralizing to a non-uniform measure, a good quantization of ` should also lead to a good approximation of the
quantity.

Reproducing kernel Hilbert space and kernel mean embedding To generalize the Koksma-Hlawka
inequality to any probability measure, let us assume that the integrand 𝑔 lives in a specific function space H(𝑘).
H(𝑘) is a reproducing kernel Hilbert space (RKHS), which is an inner product space H(𝑘) of functions 𝑔 : DX →
R. Considering a symmetric and positive definite function 𝑘 : DX × DX → R, later called a “reproducing kernel”
or simply a “kernel”, an RKHS verifies the following axioms:

• The “feature map” 𝜙 : DX → H(𝑘); 𝜙(x) = 𝑘 (·, x) belongs to the RKHS: 𝑘 (·, x) ∈ H (𝑘),∀x ∈ DX.

• The “reproducing property”: ⟨𝑔, 𝑘 (·, x)⟩H(𝑘 ) = 𝑔(x), ∀x ∈ DX,∀𝑔 ∈ H (𝑘).
Note that it can be shown that every positive semi-definite kernel defines a unique RKHS (and vice versa) with
a feature map 𝜙, such that 𝑘 (x, x′) = ⟨𝜙(x), 𝜙(x′)⟩H(𝑘 ) . This framework allows us to embed a continuous or
discrete probability measure in an RKHS, as illustrated in Fig. 7. For any measure `, its kernel mean embedding
(Sejdinovic et al., 2013), also called “potential” 𝑃` (x) in Pronzato and Zhigljavsky (2020), associated with the
kernel 𝑘 is defined as:

𝑃` (x) :=
∫
DX

𝑘 (x, x′)d`(x′). (9)

Respectively, the potential 𝑃Z𝑛 (x) of a discrete distribution Z𝑛 =
∑𝑛
𝑖=1 𝑤𝑖𝛿(x(𝑖) ), 𝑤𝑖 ∈ R associated with the

kernel 𝑘 can be written as:

𝑃Z𝑛 (x) =
∫
DX

𝑘 (x, x′)dZ𝑛 (x′) =
𝑛∑︁
𝑖=1

𝑤𝑖𝑘 (x, x(𝑖) ). (10)

The potential 𝑃` (x) of the targeted measure ` will be referred to as “target potential” and the potential 𝑃Z𝑛 (x)
associated with the discrete distribution Z𝑛 called “current potential” when its support is the design X𝑛. If 𝑃Z𝑛 (x)
is close to 𝑃` (x), it can be interpreted to mean that Z𝑛 is an adequate quantization or representation of ` by the
discrete distribution Z𝑛 (and therefore lead to a good estimation of a quantity such as 𝐼` (𝑔) from Eq. (7)). Potentials
can be computed in closed forms for specific pairs of distribution and associated kernel. Summary tables of some of
these cases are detailed in Briol (2019) (section 3.4), Pronzato and Zhigljavsky (2020) (section 4), and extended in
Fekhari et al. (2023). However, in most cases, the target potentials must be estimated on a large and representative
sample, typically a large quasi-Monte Carlo sample of `.

Definition 1. The energy of a measure ` is defined as the integral of the potential 𝑃` against the measure, which
leads to the following scalar quantity:

Y` :=
∫
DX

𝑃` (x)d`(x) =
∬

D2
X

𝑘 (x, x′) d`(x)d`(x′). (11)

𝑃`

𝑃Z

𝑃` − 𝑃Z


H(𝑘 )

H𝑘

`

Z

Figure 7: Kernel mean embedding of a continuous and discrete probability distribution

Finally, using the reproducing property and writing the Cauchy-Schwarz inequality on the absolute quadrature
error leads to the following inequality, similar to the Koksma-Hlawka inequality Eq. (8) (see Briol et al. (2019)):

����� 𝑛∑︁
𝑖=1

𝑤𝑖𝑔(x(𝑖) ) −
∫
DX

𝑔(x)d`(x)
����� = ���〈𝑔, 𝑃Z𝑛 (x)

〉
H(𝑘 ) −

〈
𝑔, 𝑃` (x)

〉
H(𝑘 )

��� (12a)

=

���〈𝑔, (𝑃Z𝑛 (x) − 𝑃` (x)
)〉

H(𝑘 )

��� (12b)

≤ ∥𝑔∥H(𝑘 )
𝑃` (x) − 𝑃Z𝑛 (x)


H(𝑘 ) . (12c)
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Maximum mean discrepancy A metric of discrepancy and quadrature error is offered by the maximum mean
discrepancy (MMD). This distance between two probability distributions ` and Z is given by the worst-case error
for any function within a unit ball of the Hilbert space H(𝑘), associated with the kernel 𝑘:

MMD𝑘 (`, Z) := sup
∥𝑔∥H(𝑘) ≤1

����∫DX
𝑔(x)d`(x) −

∫
DX

𝑔(x)dZ (x)
���� (13)

According to the inequality in Eq. (12c), MMD𝑘 (`, Z) =
𝑃` − 𝑃Z


H(𝑘 ) , meaning that the MMD fully relies

on the difference of potentials. Moreover, Sriperumbudur et al. (2010) defines a kernel as “characteristic kernel”
when the following equivalence is true: MMD𝑘 (`, Z) = 0 ⇔ ` = Z . This property makes the MMD a metric
on DX. The squared MMD has been used for other purposes than numerical integration: e.g., statistical testing
(Gretton et al., 2006), and global sensitivity analysis (Da Veiga, 2015). It can be written as follows:

MMD𝑘 (`, Z)2 =
𝑃` (x) − 𝑃Z (x)

2
H(𝑘 ) (14a)

=
〈(
𝑃` (x) − 𝑃Z (x)

)
,
(
𝑃` (x) − 𝑃Z (x)

)〉
H(𝑘 ) (14b)

=
〈
𝑃` (x), 𝑃` (x)

〉
H(𝑘 ) − 2

〈
𝑃` (x), 𝑃Z (x)

〉
H(𝑘 ) +

〈
𝑃Z (x), 𝑃Z (x)

〉
H(𝑘 ) (14c)

=

∬
D2

X

𝑘 (x, x′) d`(x)d`(x′) − 2
∬

D2
X

𝑘 (x, x′) d`(x)dZ (x′) +
∬

D2
X

𝑘 (x, x′) dZ (x)dZ (x′).

(14d)

Taking a discrete distribution with uniform weights Z𝑛 = 1
𝑛

∑𝑛
𝑖=1 𝛿(x

(𝑖) ), the squared MMD reduces to:

MMD𝑘 (`, Z𝑛)2 = Y` − 2
𝑛

𝑛∑︁
𝑖=1

𝑃`

(
x(𝑖)

)
+ 1
𝑛2

𝑛∑︁
𝑖, 𝑗=1

𝑘

(
x(𝑖) , x( 𝑗 )

)
. (15)

3.3 Kernel herding sampling
Herein, the MMD is used to quantize the known target measure ` by a design sample X𝑛. For practical reasons,
design construction is done sequentially. Sequential strategies can also be used to learn and validate regression
models for statistical learning (see Fekhari et al. (2023)). Moreover, since each realization is supposed to be
obtained at the same unitary cost, we fix the quadrature weights as uniform during the construction of the design
X𝑛.

Kernel herding (KH), proposed by Chen et al. (2010), is a sampling method that offers a quantization of the
measure ` by minimizing a squared MMD when adding points iteratively. With a current design X𝑛 and its
corresponding discrete distribution with uniform weights Z𝑛 = 1

𝑛

∑𝑛
𝑖=1 𝛿(x

(𝑖) ), a KH iteration can be written as an
optimization problem involving the following criterion over the point x(𝑛+1) ∈ DX:

x(𝑛+1) ∈ arg min
x∈DX

MMD𝑘

(
`,

1
𝑛 + 1

(
𝛿(x) +

𝑛∑︁
𝑖=1

𝛿(x(𝑖) )
))2 . (16)

In the literature, two formulations of this optimization problem can be found. The first one uses the Frank-
Wolfe algorithm (or “conditional gradient algorithm”) to compute a linearization of the problem under the con-
vexity hypothesis (see Lacoste-Julien et al. (2015) and Briol et al. (2015) for more details). The second one is a
straightforward greedy optimization. Due to the combinatorial complexity, the greedy formulation is tractable for
sequential construction. To see this, let us develop the MMD from Eq. (15):

MMD𝑘

(
`,

1
𝑛 + 1

(
𝛿(x) +

𝑛∑︁
𝑖=1

𝛿(x(𝑖) )
))2

= Y` − 2
𝑛 + 1

𝑛+1∑︁
𝑖=1

𝑃`

(
x(𝑖)

)
+ 1
(𝑛 + 1)2

𝑛+1∑︁
𝑖, 𝑗=1

𝑘

(
x(𝑖) , x( 𝑗 )

)
(17a)

= Y` − 2
𝑛 + 1

(
𝑃` (x) +

𝑛∑︁
𝑖=1

𝑃`

(
x(𝑖)

))
(17b)

+ 1
(𝑛 + 1)2

©«
𝑛∑︁

𝑖, 𝑗=1
𝑘

(
x(𝑖) , x( 𝑗 )

)
+ 2

𝑛∑︁
𝑖=1

𝑘

(
x(𝑖) , x

)
− 𝑘 (x, x)ª®¬ . (17c)

In the previously developed expression, only a few terms actually depend on the next optimal point x(𝑛+1) since
the target energy, denoted by Y` , and 𝑘 (x, x) = 𝜎2 are constant (by taking a stationary kernel). Therefore, the
greedy minimization of the MMD can be equivalently written as:

x(𝑛+1) ∈ arg min
x∈DX

{
1

𝑛 + 1

𝑛∑︁
𝑖=1

𝑘

(
x(𝑖) , x

)
− 𝑃` (x)

}
= arg min

x∈DX

{ 𝑛

𝑛 + 1
𝑃Z𝑛 (x) − 𝑃` (x)

}
. (18)
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Remark 1. For the sequential and uniformly weighted case, the formulation in Eq. (18) is almost similar to the
Frank-Wolfe formulation. Our numerical experiments showed that these two versions generate very close designs,
especially as 𝑛 becomes large. Pronzato and Rendas (2021) express the Frank-Wolfe formulation in the sequential
and uniformly weighted case as follows:

x(𝑛+1) ∈ arg min
x∈DX

{
𝑃Z𝑛 (x) − 𝑃` (x)

}
. (19)

Remark 2. In practice, the optimization problem is solved by a brute-force approach on a fairly dense finite subset
S ⊆ DX of candidate points with size 𝑁 ≫ 𝑛 that emulates the target distribution, also called the “candidate set”.
This sample is also used to estimate the target potential 𝑃` (x) ≈ 1

𝑁

∑𝑁
𝑖=1 𝑘

(
x(𝑖) , x

)
.

As explained previously, choosing the kernel defines the function space on which the worst-case function is
found (see Eq. (13)). Therefore, this sampling method is sensitive to kernel choice. A kernel is defined, both
by the choice of its parametric family (e.g., Matérn, squared exponential) and the choice of its tuning. The so-
called “support points” method developed by Mak and Joseph (2018) is a special case of kernel herding that uses
the characteristic and parameter-free “energy-distance” kernel (introduced by Székely and Rizzo (2013)). In the
following numerical experiments, the energy-distance kernel will be compared with an isotropic tensor product of
a Matérn kernel (with regularity parameter a = 5/2 and correlation lengths \𝑖), or a squared exponential kernel
(with correlation lengths \𝑖) defined in Table 3. Since the Matérn and squared exponential kernels are widely
used for Gaussian process regression (Rasmussen and Williams, 2006), they were naturally picked to challenge the
energy-distance kernel. The correlation lengths for the squared exponential and Matérn kernels are set using the
heuristic given in Fekhari et al. (2023), \𝑖 = 𝑛−1/𝑝 , 𝑖 ∈ {1, . . . , 𝑝}.

Table 3: Kernels considered in the following numerical experiments.

Energy-distance 𝑘𝐸 (x, x′) = 1
2 (∥x∥ + ∥x′∥ − ∥x − x′∥)

Squared exponential 𝑘𝐺 (x, x′) = ∏𝑝

𝑖=1 𝑘 \𝑖 (𝑥𝑖 − 𝑥′
𝑖
) 𝑘 \ (𝑥 − 𝑥′) = exp

(
− (𝑥−𝑥′ )2

2\2

)
Matérn (a = 5/2) 𝑘𝑀 (x, x′) = ∏𝑝

𝑖=1 𝑘5/2, \𝑖 (𝑥𝑖 − 𝑥′
𝑖
) 𝑘5/2, \ (𝑥 − 𝑥′) =

(
1 +

√
5
\
|𝑥 − 𝑥′ |

+ 5
3\2 (𝑥 − 𝑥′)2

)
exp

(
−

√
5
\
|𝑥 − 𝑥′ |

)
Fig. 8 represents the covariance structure of the three kernels. One can notice that the squared exponential and

Matérn a = 5/2 kernels are closer to one another than they are to the energy-distance. In fact, as a tends to infinity,
the Matérn kernel tends toward the squared exponential kernel (which has infinitely differentiable sample paths,
see Rasmussen and Williams (2006)). For these two stationary kernels, the correlation length controls how fast
the correlation between two points decreases as their distance from one another increases. Meanwhile, the energy
distance is not stationary (but still positive and semi-definite). Therefore, its value does not only depend on the
distance between two points but also on the norm of each of the points.

Figure 8: Kernel illustrations (left to right: energy-distance, squared exponential, and Matérn 5/2)

To illustrate the sequential sampling of a complex distribution, Fig. 9 shows three nested kernel herding samples
(orange crosses for different sizes 𝑛 ∈ {10, 20, 40}) of a mixture of Gaussian distributions with complex nonlinear
dependencies (with density represented by the black isoprobability contours). In this example, the method seems to
build a parsimonious design between each mode of the distribution. The candidate set (in light grey) was generated
by a large quasi-Monte sample of the underlying Gaussian mixture. In this two-dimensional case, this candidate set
is sufficient to estimate the target potential 𝑃` . However, the main bottleneck of kernel herding is the estimation
of the potentials, which becomes costly in high dimension.
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Figure 9: Sequential kernel herding for increasing design sizes (𝑛 ∈ {10, 20, 40}) built on a candidate set of 𝑁 =

8196 points drawn from a complex Gaussian mixture `

Other approaches take advantage of the progressive knowledge acquired sequentially on 𝑔 to select the fol-
lowing points in the design. These methods are sometimes called “active learning” or “adaptive strategies” (Fuhg.
et al., 2021). Many of them rely on a sequentially updated Gaussian process (or Kriging) metamodel. To solve a
probabilistic integration problem, the concept of Bayesian quadrature is introduced in the following.

3.4 Bayesian quadrature
Gaussian processes for Bayesian quadrature Kernel methods and Gaussian processes present a lot of
connections and equivalences, thoroughly reviewed by Kanagawa et al. (2018). In numerical integration, Gaus-
sian processes have been used to build quadrature rules in the seminal paper of O’Hagan (1991), introducing the
concept of Bayesian quadrature (BQ). Let us recall the probabilistic integration problem 𝐼` (𝑔) =

∫
DX

𝑔(x)d`(x)
(introduced in Eq. (7)). From a general point of view, this quantity could be generalized by composing 𝑔 with an-
other function 𝜓 (e.g., other moments, quantiles, exceedance probabilities). The quantity of interest then becomes,
𝐼` (𝜓(𝑔)), for example when 𝜓 is a monomial, it gives a moment the distribution of the output.

Let us assume, adopting a Bayesian point of view, that b is a stochastic process describing the uncertainty af-
fecting the knowledge about the true function 𝑔. Let b be a Gaussian process (GP) prior with a zero trend (denoted
by 0) to ease the calculation, and a stationary covariance kernel (denoted by 𝑘 (·, ·)). The conditional posterior

b𝑛 := (b |y𝑛) ∼ GP([𝑛, 𝑠2
𝑛) has been conditioned on the function observations y𝑛 =

[
𝑔

(
x(1)

)
, . . . , 𝑔

(
x(𝑛)

)]⊤
computed from the input design X𝑛 and is fully defined by the well-known “Kriging equations” (see e.g., Ras-
mussen and Williams (2006)): {

[𝑛 (x) := k⊤𝑛 (x)K−1
𝑛 y𝑛

𝑠2
𝑛 (x) := 𝑘𝑛 (x, x) − k⊤𝑛 (x)K−1

𝑛 k𝑛 (x)
(20)

where k𝑛 (x) is the column vector of the covariance kernel evaluations [𝑘𝑛 (x, x(1) ), . . . , 𝑘𝑛 (x, x(𝑛) )] and K𝑛 is
the (𝑛 × 𝑛) variance-covariance matrix such that the (𝑖, 𝑗)-element is {K𝑛}𝑖, 𝑗 = 𝑘𝑛 (x(𝑖) , x( 𝑗 ) ).

In BQ, the main object is the random variable 𝐼` (b𝑛). According to Briol et al. (2019), its distribution on R is
the pushforward of b𝑛 through the integration operator 𝐼` (·), sometimes called posterior distribution:

𝐼` (b𝑛) =
∫
DX

(b (x) |y𝑛)d`(x) =
∫
DX

b𝑛 (x)d`(x) . (21)

Fig. 10 provides a one-dimensional illustration of the Bayesian quadrature of an unknown function (dashed
black curve) against a given input measure ` (with corresponding grey distribution at the bottom). For an arbi-
trary design, one can fit a Gaussian process model, interpolating the function observations (black crosses). Then,
multiple trajectories of this conditioned Gaussian process b𝑛 are drawn (orange curves) whilst its mean function,
also called “predictor”, is represented by the red curve. Therefore, the input measure ` is propagated through the
conditioned Gaussian process to obtain the random variable 𝐼` (b𝑛), with distribution represented on the right plot
(brown curve). Again on the right plot, remark how the mean of this posterior distribution (brown line) is closer to
the reference output expected value (dashed black line) than the arithmetic mean of the observations (black line).
This plot was inspired by the paper of Huszár and Duvenaud (2012).

Optimal weights computed by Bayesian quadrature Taking the random process b𝑛 as Gaussian conve-
niently implies that its posterior distribution 𝑎` (b𝑛) is also Gaussian. This comes from the linearity of the infinite
sum of realizations of a Gaussian process. The posterior distribution is described in a closed form through its mean
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Figure 10: Bayesian quadrature on a one-dimensional case

and variance by applying Fubini’s theorem (see the supplementary materials from Briol et al. (2019) for the proof
regarding the variance):

�̄�
BQ
𝑛 := E

[
𝐼` (b𝑛) |y𝑛

]
=

∫
DX

[𝑛 (x)d`(x) =
[∫

DX
k⊤𝑛 (x)d`(x)

]
K−1
𝑛 y𝑛 = 𝑃` (X𝑛)K−1

𝑛 y𝑛, (22)

(
𝜎

BQ
𝑛

)2
:= Var

(
𝐼` (b𝑛)

)
=

∬
DX2

𝑘𝑛 (x, x′)d`(x)d`(x′) = Y` − 𝑃` (X𝑛)K−1
𝑛 𝑃` (X𝑛)⊤. (23)

Where 𝑃` (X𝑛) is the row vector of potentials
[∫

𝑘𝑛 (x, x(1) )d`(x), . . . ,
∫
𝑘𝑛 (x, x(𝑛) )d`(x)

]
, and Y` is given in

Eq. (1). As in the one-dimensional example presented in Fig. 10, the expected value of 𝐼` (b𝑛) expressed in Eq. (22)
is a direct estimator of the quantity of interest Eq. (7). The so-called “Bayesian quadrature estimator” appears to
be a simple linear combination of the observations by taking the row vector of “optimal weights” as:

wBQ := 𝑃` (X𝑛)K−1
𝑛 (24)

For any given sample, an optimal set of weights can be computed, leading to the mean of the posterior distribution.
Remark here that this enhancement depends on the evaluation of the inverse variance-covariance matrix K−1

𝑛 ,
which can present numerical difficulties, either when design points are too close, making the conditioning bad.
Moreover, a prediction interval on the BQ estimator can be computed since the posterior distribution is Gaussian,
with a variance expressed in closed-form in Eq. (23). The expressions in Eq. (22) and Eq. (23) were extended to
Gaussian processes in the case of constant and linear trends in Pronzato and Zhigljavsky (2020). In the following
numerical experiments, the expression with a hypothesis of constant trend 𝛽𝑛 is used, which leads to:

E
[
𝐼` (b𝑛)

]
= 𝛽𝑛 + 𝑃` (X𝑛)K−1

𝑛 (y𝑛 − 𝛽𝑛1𝑛) . (25)

Then, an a posteriori 95% prediction interval around the mean Bayesian estimator is directly given by:

�̄�
BQ
𝑛 ∈

[
�̄�

BQ
𝑛 − 2𝜎BQ

𝑛 , �̄�
BQ
𝑛 + 2𝜎BQ

𝑛

]
. (26)

Variance-based Bayesian quadrature rule The link between the posterior variance and the squared MMD
has been first made by Huszár and Duvenaud (2012) in their Proposition 1: the expected variance in the Bayesian
quadrature Var

(
𝐼` (b𝑛)

)
is the MMD between the target distribution ` and Z𝑛 =

∑𝑛
𝑖=1 w(𝑖)

BQ𝛿(x
(𝑖) ). The proof is

reproduced below (as well as in Proposition 6.1 from Kanagawa et al. (2018)):

Var
(
𝐼` (b𝑛)

)
= E

[ (
𝐼` (b𝑛) − 𝐼Z𝑛 (b𝑛)

)2
]

(27a)

= E

[(〈
b𝑛, 𝑃`

〉
H(𝑘 ) −

〈
b𝑛, 𝑃Z𝑛

〉
H(𝑘 )

)2
]

(27b)

= E
[〈
b𝑛, 𝑃` − 𝑃Z𝑛

〉2
H(𝑘 )

]
(27c)

= ∥𝑃` − 𝑃Z𝑛 ∥
2
H(𝑘 ) (27d)

= MMD𝑘 (`, Z𝑛)2. (27e)

12



Note that the transition from equation (27c) to (27d) relies on the property stating that if b is a standard Gaussian
process then ∀𝑔 ∈ H (𝑘) : ⟨b, 𝑔⟩H(𝑘 ) ∼ N(0, ∥𝑔∥2

H(𝑘 ) ). The method that sequentially builds a quadrature rule
by minimizing this variance is called by the authors “Sequential Bayesian Quadrature” (SBQ). According to the
previous proof, this criterion can be seen as an optimally-weighted version of the kernel herding criterion, as
stated in the title of the paper from Huszár and Duvenaud (2012). Later, Briol et al. (2015) proved the weak
convergence of 𝐼` (b𝑛) towards the target integral. Closer to wind turbines applications, Huchet (2019) and Huchet
et al. (2019) introduced the “Adaptive Kriging Damage Assessment” method: a Kriging-based method for mean
damage estimation that is very close to SBQ. However, This type of method inherits the limits from both KH and
BQ since it searches for optimal design points among a candidate set and computes an inverse variance-covariance
matrix. These numerical operations both scale hardly in high dimension.

Remark 3. Every quadrature method introduced in this section has been built without any observation of the pos-
sibly costly function 𝑔. Therefore, they cannot be categorized as active learning approaches. Contrarily, Kanagawa
and Hennig (2019) presents a set of methods for BQ with transformations (i.e., adding a positivity constraint on
the function 𝑔), which are truly active learning methods.

4 Numerical experiments
This section presents numerical results computed on two different analytical toy-cases, respectively in dimension
2 (toy-case #1) and dimension 10 (toy-case #2), with easy-to-evaluate functions 𝑔(·) and associated input distri-
butions `. Therefore, reference values can easily be computed with great precision. For each toy-case a large
reference Monte Carlo sample (𝑁ref = 108) is taken. This first benchmark compares the mean estimation of toy-
cases given by quasi-Monte Carlo Sobol’ sequences (abbreviation by QMC in the next figures), and kernel herdings
with the three kernels defined in Table 3. Notice that the quasi-Monte Carlo designs are first generated on the unit
cube, then transformed using the generalized Nataf transformation to follow the target distribution (Lebrun and
Dutfoy, 2009). Additionally, the performances of kernel herding for both uniform and optimally-weighted Eq. (25)
estimators are compared.

The kernel-based sampling and BQ methods were implemented in a new open-source Python package named
otkerneldesign3. This development mostly relies on OpenTURNS4, an “Open source initiative for the Treat-
ment of Uncertainties, Risks’N Statistics”, see Baudin et al. (2017). The following numerical experiments are
available in the Git repository named ctbenchmark5.

4.1 Illustration through analytical toy-cases
The toy-cases were chosen to cover a large panel of complex probabilistic integration problems, completing the
ones from Fekhari et al. (2021). To assess the complexity of numerical integration problems, Owen (2003) in-
troduced the concept of the “effective dimension” of an integrand function (number of the variables that actually
impact the integral). The author showed that functions built on sums yield a low effective dimension (unlike func-
tions built on products). In the same vein, Kucherenko et al. (2011) build three classes of integrand sorted by
difficulty depending on their effective dimension:

• class A: problem with a few dominant variables.

• class B: problem without unimportant variables, and important low-order interaction terms.

• class C: problems without unimportant variables, and important high-order interaction terms.

The 10-dimensional “GSobol function” (toy-case #2) with a set of coefficient {𝑎𝑖 = 2}10
𝑖=1 has an effective di-

mension equal to 10 and belongs to the hardest class C from Kucherenko et al. (2011). In the case of the two-
dimensional Gaussian mixture problem, the complexity is carried by the mixture of Gaussian distributions with
highly nonlinear dependencies. Probabilistic integration results are presented in Fig. 11 (toy-case #1) and Fig. 12
(toy-case #2). Kernel herding samples with kernels defined in Table 3 (squared exponential in green, Matérn in
orange, and energy-distance in red), are compared with a quasi-Monte Carlo sample (Sobol’ sequences in grey).
Convergences of the arithmetic means are plotted on the left and MMDs on the right. The respective BQ estimators
of the means are plotted in dashed lines.

Table 4: Analytical toy-cases
Toy-case #1 𝑑𝑖𝑚 = 2 𝑔1 (x) = 𝑥1 + 𝑥2 Gaussian mixture from Fig. 9
Toy-case #2 𝑑𝑖𝑚 = 10 𝑔2 (x) =

∏10
𝑖=1

|4𝑥𝑖−2 |+𝑎𝑖
1+𝑎𝑖 , {𝑎𝑖 = 2}10

𝑖=1 Gaussian N(0.5, I10)

3https://efekhari27.github.io/otkerneldesign/master/index.html
4https://openturns.github.io/www/
5https://github.com/efekhari27/ctbenchmark
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Remark 4. Different kernels are used in these numerical experiments. First, the generation kernel, used by the
kernel herding algorithm to generate designs (with the heuristic tuning defined in Section 3.3). Second, the BQ
kernel allows computation of the optimal weights (arbitrarily set up as a Matérn 5/2 with the heuristic tuning).
Third, the evaluation kernel, which must be common to allow a fair comparison of the computed MMD results
(same as the BQ kernel).

About toy-case #1. KH consistently converges faster than quasi-Monte Carlo in this case, especially for small
sizes in terms of MMD. BQ weights tend to reduce the fluctuations in the mean convergence, which ensures better
performance for any size. Overall, applying the weights enhances to convergence rate.

About toy-case #2. Although quasi-Monte Carlo is known to suffer the “curse of dimensionality”, KH does not
outperform it drastically in this example. In fact, KH with uniform weights performs worse than quasi-Monte Carlo
while optimally-weighted KH does slightly better. Moreover, the results confirm that MMDBQ < MMDunif for
all our experiments. The application of optimal-weights to the quasi-Monte Carlo sample slightly improves the
estimation on this case. Note that the prediction interval around the BQ estimator is not plotted for the sake of
readability.

In these two toy-cases, the MMD is shown to quantify numerical integration convergence well, which illustrates
the validity of the inequality given in Eq. (12c), similar to the Koksma-Hlawka inequality, recalled in Eq. (8).

4.2 Application to the Teesside wind turbine fatigue estimation
Before analyzing the performance of the KH on the industrial application, let us notice that the copulogram Fig. 14
seems to be in line with the global sensitivity analysis presented in Murcia et al. (2018) and Li and Zhang (2020). In
particular, the fact that the scatter plot of mean wind speed vs. turbulence wind speed is the main factor explaining
the variance of the output 𝑌 = 𝑔(X). Judging from these references, the numerical model does not seem to
have high effective dimension, however, the input dependence structure is challenging and the damage assessment
induces strong nonlinearities (see Eq. (4)).

Crude Monte Carlo and kernel herding both subsample directly from a large dataset (previously referred to as
candidate set). Unlike them, quasi-Monte Carlo generates a uniform sample in the unit hypercube, which can then
be transformed according to a target distribution. In our case, this distribution is only known empirically via the
candidate set. Since its dependence structure is complex (see Fig. 4), a parametric model might fit the distribution
poorly (and therefore lead to a poor quasi-Monte Carlo estimation of the quantity). Then, a nonparametric fit
using the empirical Bernstein copula (introduced in Section 2.3) coupled with a kernel density estimation on each
marginal is applied to the candidate set (with the EBC parameter 𝑚 = 100 > 𝑚𝑀𝐼𝑆𝐸 to avoid bias). Subsequently,
quasi-Monte Carlo sampling is applied to this nonparametric model. These two approaches are summarized in
Fig. 13, showing a practical advantage to the subsampling methods.

The results presented are compared in the following to a reference Monte Carlo sample with a confidence in-
terval computed by bootstrap (see Fig. 15). The performance of the KH is good: it quickly converges towards the
confidence interval of the Monte Carlo obtained with the reference sample. In addition, the Bayesian quadrature
estimator also offers a posteriori prediction interval, which can reassure the user. The BQ prediction intervals are
smaller that the ones obtained by bootstrap on the reference Monte Carlo sample. To provide more representative
results, note that a set of scale parameters is computed with a kriging procedure to define the kernel used to com-
pute BQ intervals. Since other methods do not generate independent samples, bootstrapping them is not legitimate.
Contrarily to the other kernel, we observe that the energy-distance kernel presents a small bias with the MC ref-
erence for most of the azimuth angles computed in this experiment. Finally, combining nonparametric fitting with
quasi-Monte Carlo sampling also delivers good results as long as the fitting step does not introduce a bias.

5 Conclusion
Wind energy assets are subject to highly uncertain environmental conditions. Uncertainty propagation through
numerical models is performed to ensure their structural integrity (and energy production). For this case, the
method recommended by the standards (regular grid sampling) is intractable. This can lead, in practice, to poor
uncertainty propagation under the constraint of a simulation budget. This industrial use case induces two practical
constraints. First, active learning methods are hard to set up on such a numerical model, and they restrict the use
of high-performance computers. Second, the input distribution of the environmental conditions presents a complex
dependence structure, hard to model with parametric approaches.

In this paper, the association of kernel herding sampling with Bayesian quadrature for central tendency has
been both explored theoretically and numerically. This method fits with the practical constraints induced by the
industrial use case. Kernel herding sampling subsamples the relevant points directly from a given dataset (here
from the measured environmental data). Moreover, the method is fully compatible with intensive high-performance
computer use. This work provides an MMD-based upper bound on numerical integration absolute error. Kernel
herding and Bayesian quadrature both aim at finding the quadrature rule minimizing the MMD, and therefore the
absolute integration error. The numerical experiments confirmed that the MMD is an appropriate criterion since it
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Figure 11: Analytical benchmark results on the toy-case #1

leads to results being better or equivalent to quasi-Monte Carlo sampling. This numerical benchmark relied on the
Python package, called otkerneldesign, implementing the methods.

The limits of this method are reached when the problem dimension increases considerably. Moreover, it showed
to be sensitive to the choice of the kernel and its tuning (although good practices were offered). From a method-
ological point of view, further interpretation of the impact of the different kernels should be explored. Then, the
kernel herding sampling could be used to estimate quantiles, following the work on randomized quasi-Monte Carlo
for quantiles of Kaplan et al. (2019). Kernel herding could also be used to quantize conditional distributions, using
the conditional kernel mean embedding concept reviewed by Klebanov et al. (2020). Regarding the industrial use
case, the next step is to realize a reliability analysis by considering another group of random variables (related to
the wind turbine). Among other ideas, our upcoming work could explore a reliability-oriented sensitivity analy-
sis by adapting recent kernel-based sensitivity indices (Marrel and Chabridon, 2021) to the sensitivity of a failure
probability.
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Figure 12: Analytical benchmark results on the toy-case #2

Figure 13: Sampling techniques used for the industrial use case

Appendix A: Multiaxial fatigue damage
This section discusses the damage assessment defined by the standard DNV-GL (2016a). Damage assessment can
be divided into four steps:
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Figure 14: Copulogram of the kernel herding design of experiments with corresponding outputs in color (log-scale)
on the Teesside case (𝑛 = 103). The highest values are in red while the lowest values are in blue. Marginals
are represented by histograms (diagonal), the dependence structure with scatter plots in the ranked space (upper
triangle). Scatter plots on the bottom triangle are set in the physical space.

1. Compute the equivalent Von Mises stress time series;

2. Identify the stress cycles using rainflow counting;

3. Define the Stress - Number of cycles curve corresponding to the material;

4. Compute the damage using Miner’s rule.

Since stress is multiaxial in the local coordinate system, the equivalent Von Mises stress is computed, turning
a multiaxial stress into an equivalent uniaxial stress. This first step is necessary since fatigue laws are mostly
established for uniaxial stresses. The following expression gives the Von Mises stress for a Cauchy stress tensor:

𝜎VM =

√︂
1
2

[
(𝜎11 − 𝜎22)2 + (𝜎22 − 𝜎33)2 + (𝜎33 − 𝜎11)2] + 3

(
𝜎2

12 + 𝜎2
23 + 𝜎2

31

)
. (28)

Note that in the mechanical model, the hypothesis of “plane strain” is considered, meaning that the Cauchy stress
tensor 𝜎 can be written as below:

𝜎 =
©«
𝜎11 𝜎12 0
𝜎21 𝜎22 0
0 0 𝜎33

ª®¬ , (29)

which simplifies the expression of the Von Mises stress:

𝜎VM =

√︂
1
2

[
(𝜎11 − 𝜎22)2 + (𝜎22 − 𝜎33)2 + (𝜎33 − 𝜎11)2] + 3𝜎2

12. (30)
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Figure 15: Mean estimation convergence (at the mudline, azimuth \ = 45 deg.) on the Teesside case

After computing the equivalent Von Mises stress time serie, one can identify the fatigue loading cycles. The
usual method to identify fatigue stress cycles is rainflow counting (Dowling, 1972). Fatigue stress cycles are only
defined by their amplitude (also called “range”), regardless of their mean value or their chronology. Rainflow
counting returns a list of stress ranges identified denoted by 𝑠 in what follows. The “Stress - Number of cycle”
curve (also called “Wöhler curve”) allows one to estimate the number of similar stress cycles necessary to reach a
fatigue ruin for a defined stress cycle amplitude. A well admitted simplification of the Wöhler curve is to consider
it as log-linear on two parts. The Wöhler curve is generally defined as:

log(𝑁c) = log(𝑎) − 𝑚 log(𝑠). (31)

One can therefore introduce the following function for each segment of the Wöhler curve:

𝑁c = 𝑊 (𝑠) =
{

𝑎1𝑠
−𝑚1 , for 𝑠 ∈ [𝑠min, 𝑠e]

𝑎2𝑠
−𝑚2 , for 𝑠 ∈ [𝑠e, 𝑠max]

Where 𝑁c is the predicted number of cycles to failure for stress range 𝑠, 𝑚 is the negative inverse slope of the
Wöhler curve, log(𝑎) is the intercept of log N-axis by the Wöhler curve, 𝑠min is the minimal (resp. maximal) stress
range identified by the rainflow counting, and 𝑠e is the stress range axis of the intersection of the two log-lines
formed by the Wöhler curve. Also interpreted as the endurance limit of the material. Note that, according to the
standards DNV-GL (2016a), the Wöhler curve is altered for welded joints by taking into account the weld plate’s
thickness. In our case the considered Wöhler curve is defined by values given in the second line from Table 5, i.e.:

𝑁c = 𝑊 (𝑠) =


𝑎1
(
𝑠( 𝑡

𝑡ref
)ℎ

)−𝑚1
, for 𝑠 ∈ [𝑠min, 𝑠e]

𝑎2
(
𝑠( 𝑡

𝑡ref
)ℎ

)−𝑚2
, for 𝑠 ∈ [𝑠e, 𝑠max]

(32)

With 𝑡ref the reference thickness (for tubular welded joints 𝑡ref = 25 mm); 𝑡 the plate thickness, and ℎ the thickness
exponent.

Damage is a physical measure of the structure’s fatigue. An approach to compute the damage, is to consider the
fatigue contribution of each stress cycle according to the Wöhler curve. Miner’s rule defines a damage by summing
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Table 5: Wöhler curve numeric values for tubular joints (source: DNV-GL (2016a))
Environment 𝑚1 𝑙𝑜𝑔(𝑎1) 𝑚2 𝑙𝑜𝑔(𝑎2) ℎ

Air 3.0 12.48 5.0 16.13 0.25
Seawater with cathodic protection 3.0 12.18 5.0 16.13 0.25
Seawater free corrosion 3.0 12.03 3.0 12.03 0.25

the fatigue contributions of the stress cycles:

𝑦 =

𝑘∑︁
𝑗=1

1

𝑁
( 𝑗 )
c

=

𝑘∑︁
𝑗=1

1
𝑊

(
𝑠 ( 𝑗 )

) (33)

When using Miner’s rule, an alternative is to use bins to classify the stress ranges as an histogram. Our intuition
is that choosing a number of bins too small will lead to a poor approximation of the damage. DNV-GL (2016a)
standards recommend to use at least 20 bins for damage computation. Few tests were performed on a defined
simulation model, for a fixed input stress time serie. A reference damage was computed by applying the Miner’s
rule to all stress range identified by rainflow counting ({𝑛𝑖 = 1}𝑘

𝑖=1). Then, for various numbers of bins, stress
ranges were classified and Miner’s rule applied to these classes. The conclusion is that this method leads to a
relative error around 1% for 500 bins.
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