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Abstract

The main objective of this paper is to estimate optimally Sobol’ indices at any
order when a unique input/output i.i.d. sample is available. Our approach stands on
three main ingredients: semi-parametric estimation theory, high-order kernel esti-
mation (inspired by the paper [13]), and mirror-type transformations as introduced
in [2, 33]. We propose two different estimators. We prove that these estimators
are asymptotically normal and efficient. Furthermore, we illustrate their numerical
properties on standard examples.

Keywords: Global sensitivity analysis; Sobol’ indices; Given-data estimation; Kernel
estimation; One-step estimation; Asymptotic properties.

AMS subject classification: 62G05, 62G08, 62G20.

1 Introduction
The use of complex computer models to simulate and analyse natural systems in physics,
engineering and other fields is now commonplace. These models usually depend on many
input variables, and it is thus crucial to understand which input parameter or which set
of input parameters have an influence on the output. This is the purpose of sensitivity
analysis, which has become an essential tool for systems modelling and policy support
(see, e.g., [34]). Global sensitivity analysis methods consider the input vector as random
and propose a measure of the influence, in terms of output fluctuations, of each subset of
its components. We refer to the seminal book [35] for an overview on global sensitivity
analysis or to [8] for a synthesis of recent trends in this field. Among the different measures
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of global sensitivity analysis, variance-based measures are probably the most commonly
used. The so-called Sobol’ indices, introduced in [30] and later revisited in the framework
of sensitivity analysis in [36, 37], is based on the Hoeffding decomposition of the variance
[21]. More precisely, for the output Y of a computer code Y = G(V1, . . . , Vp) where the
inputs Vi are assumed to be mutually independent, the closed Sobol’ index of Y with
respect to a subset of inputs X of dimension d is defined by

SX = Var(E[Y |X])
Var(Y ) = E[E[Y |X]2] − E[Y ]2

Var(Y ) .

Generally, in practice the explicit computation of SX is out of reach. One of the main
tasks in sensitivity analysis is thus to provide statistical estimators of SX having good
asymptotic properties (consistency, asymptotic distribution, asymptotic efficiency...). In
recent years a myriad of different estimators have been proposed, we refer to [8, Chapter
4] for a full review. A practical statistical method widely used to construct estimators is
based on spectral analysis of the input/output functional relationship and Parseval formu-
lae. We refer to [39] for a basic description of the method and to [8, Chapter 4] for more
recent references. It should be noted that the asymptotic properties of these methods have
been little studied, as they are based on the theory of non-linear (quadratic) functional
estimation. Away from the spectral methods, two families of estimation methods are of
particular interest because of the possibility of studying the asymptotic properties of the
estimators produced.
The first family of methods is based on the so-called Pick Freeze (PF) design of ex-
periments. The basic idea is to evaluate G repeatedly for input values, fixing those of
the vector X, and then to calculate a Monte Carlo estimate of SX from this particular
sampling. The main advantage is that only minimal assumptions are required to derive
consistency and central limit theorems. In particular, assumptions of integrability but not
regularity on G are necessary (see for example [15, 22]). As an illustration, to estimate at
rate

√
n a single Sobol’ index, one needs a design of experiments of size 2n. This implies

that estimating all the p first-order indices corresponding to d = 1 involves a sample of
size (p + 1)n. Notice that recently, this cost has been reduced to 2n [40, 17]. The main
drawback of this estimation method is that it requires a specific experimental design. In
particular, it cannot be used in the case where we only have a classical i.i.d. (vanilla)
sample of n input/output observations.
The second class of methods relies on local averaging and tackles this limitation. Among
them are kernel estimators, which have been thoroughly studied for the case d = 1
[9, 7, 32, 38, 20] with central limit theorems and asymptotic efficiency as soon as G
satisfies regularity assumptions. Closely related are nearest neighbor approaches, which
have been studied by several authors (see, e.g., [12, 26, 27, 10, 18, 11]). For instance in
[11], the authors propose a plug-in estimator with statistical consistency for any d and a
central limit theorem with rate

√
n for d ⩽ 3 if, again, regularity assumptions hold. In

parallel, [4] consider a variant which is consistent for any d but no rate of convergence is
provided. When d = 1, a central limit theorem for estimators based on ranks (i.e. nearest
neighbors on the right) is also proved in [14].
In a nutshell, on the one hand, the class of PF estimators allows to estimate Sobol’ indices
at rate

√
n for any d with minimal assumptions on G but requires a sample with highly
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specific structure. On the other hand, local-averaging estimators can handle a vanilla
n-sample but need some regularity assumptions on the model and

√
n-parametric rate

of convergence is proved only for d ⩽ 3 (nearest neighbors method). In this paper, we
propose and study a more general local-averaging estimator and show that the rate

√
n

holds for any d.
In our work, we build an optimal estimator. In that view, we correct a plug-in estimator
using a high-order kernel and a mirror-type transformation. The correction improves
the initial estimator by correcting the bias (see, e.g., [31, 29]), in line with techniques
used to improve an estimator in the frame of semi-parametric inference. We refer to
[42, Chapter 25] for an exhaustive overview of this theory. As a matter of fact, in our
frame, the nonparametric part is the unknown regression function. It is handled by using
a very specific kernel estimator. More precisely, on the one hand, we make use of high-
order kernels in order to obtain

√
n rate of convergence, following recent approaches of

nonparametric regression (see for example [41]). Note that a high-order kernel has a
non-zero negative part thus is not a probability density. Its use allows to kill the bias
in the interior of the domain. On the other hand, to remove boundary effects inherent
to the kernel estimation procedure, we adapt recent mirror-type transformations [2, 33].
We propose and study two variants for the mirror transformation. In both cases, we
show that the proposed estimators satisfy a central limit theorem with the optimal rate
and minimal variance. Up to our knowledge, this general optimality result is new in the
frame of the estimation of Sobol’ indices of any order when using only a vanilla n-sample.
Notice that the order one case is tackled in [7] by using another estimator based on
classical kernel estimation jointly with a spectral approach. Note finally that our results
are closely related to the ones developed in [13] where the boundary issue is tackled using
truncation leading to the estimation of a pruned version of SX .
The paper is organized as follows. The setting and the notation are introduced in Section
2. Then, considering two different mirror-type transformations, we present in Section 3
two kernel-based regression estimators. Section 4 is devoted to the statement of our main
results, namely central limit theorems and asymptotic efficiency. A comparison study of
asymptotic estimation variance with existing methods is provided in Section 5. Section
6 presents several numerical illustrations of our estimation procedure. The proofs are
postponed to Appendix A. Moreover, extended numerical studies discussing numerical
stability of high-order kernels can be found on the following link https://hal.science/
hal-04052837.

2 Setting

2.1 Model and purpose
The output Y is obtained from a regression model (generally computed by a numerical
code or a machine learning estimated model), and is regarded as a function G of the
vector of random inputs (Vi)i=1,...,p:

Y = G(V1, . . . , Vp),

where the function G is defined on a compact subset of Rp, p ⩾ 2 and is real-valued.
Classically we assume that the Vi’s are independent random variables and that Y ∈ L2(R):
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global sensitivity analysis is then performed using Hoeffding decomposition [1, 42] which
leads to standard Sobol’ indices introduced below [36].
For any u ⊊ {1, . . . , p}, u ̸= ∅ we denote X = (Vi)i∈u a group of inputs with cardinality
|u| = d < p. The first-order Sobol’ index of output Y associated to the d-dimensional
vector X is defined as

SX = Var(E[Y |X])
Var(Y ) = E[E[Y |X]2] − E[Y ]2

Var(Y ) . (1)

For the specific case u = {i0} with i0 ∈ {1, . . . , p}, that is for X = Vi0 , Si0 = SX is the
first-order Sobol’ index associated to the input Vi0 . In addition, the total Sobol’ index
associated to Vi0 writes

Stot,i0 = 1 − SV∼i0 (2)
where V∼i0 = (V1, · · · , Vi0−1, Vi0+1, · · · , Vp).
Our goal is to estimate SX from a n-sample (Xj, Yj)j=1,...,n of the pair (X, Y ) with joint
distribution P . Since E[Y ] and Var(Y ) can naturally be estimated with classical empirical
moments, we focus here on the estimation in (1) of

T = E[E[Y |X]2]. (3)

2.2 Notation and assumptions
In this section, we give the general assumptions made in the paper.
(A1) The support of (V1, . . . , Vp) is [0, 1]p. We assume that X is absolutely continuous

with respect to the Lebesgue measure on [0, 1]d with density function fX .
One actually only needs to assume that the support of (V1, . . . , Vp) is of the form [B1, C1]×
· · · × [Bp, Cp] where Bi < Ci for all i ∈ {1, . . . , p}, but for simpler notation here we only
consider [0, 1]p.
(A2) ∃ δ > 0 such that infx∈[0,1]d fX(x) ⩾ δ for some δ > 0.

(A3) E[Y 4] < ∞ and σ2(x) = Var(Y |X = x) is bounded on [0, 1]d.
Note that under Assumption (A3) the regression function m(·) = E[Y |X = ·] exists and
is bounded on the support of X by Cauchy-Schwartz inequality. Furthermore, we define
the function g := fXm.
For any integer d, we introduce the following multi-index notation. For any β = (β1, . . . , βd) ∈
(R>0)d, let ⌊β⌋ be the largest integer stricly lower than β: ⌊β⌋ = (⌊β1⌋, . . . , ⌊βd⌋) =: γ ∈
Nd. In addition, we introduce

|γ| = γ1 + · · · + γd , γ! = γ1! . . . γd!, and vβ = vβ1
1 . . . vβd

d for any v ∈ Rd .

For α > 0 let Cα([0, 1]d) be the set of functions ϕ : [0, 1]d → R that have derivatives up to
order ⌊α⌋ and for which partial derivative of order ⌊α⌋ is α− ⌊α⌋-Hölder. Namely, there
exists Cϕ > 0 such that, for any x and x′ ∈ [0, 1]d, one has∣∣∣∣∂βϕ

∂xβ
(x) − ∂βϕ

∂xβ
(x′)

∣∣∣∣ ⩽ Cϕ ∥x− x′∥α−⌊α⌋
∞ (4)

for any β ∈ Nd such that β = ⌊α⌋ where (∂β · /∂xβ) stands for the partial derivative of
order β and ∥·∥∞ for the supremum norm on [0, 1]d.
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(A4) The density fX of X belongs to Cα([0, 1]d) for some α > 0.

(A5) The regression function m belongs to Cα([0, 1]d).

Notice that, if the model G belongs to Cα, then Assumption (A5) is satisfied.

(A6) Let k : [0, 1] → R be a univariate kernel such that ∥k∥∞ < ∞ and
∫ 1

0 k(u)du = 1.
We assume that k is of order (⌊α⌋ + 1) which means that

∫ 1
0 u

ℓk(u)du = 0 for
any ℓ ∈ N such that 0 < ℓ ⩽ ⌊α⌋ and

∫ 1
0 u

⌊α⌋+1k(u)du ̸= 0. Furthermore, we
define the multivariate kernel K : [0, 1]d → R as: K(u) = ∏d

k=1 k(uk) for any u =
(u1, . . . , ud) ∈ [0, 1]d. Finally, we define Kh(u) = K(u/h)/hd = ∏d

k=1 k(uk/h)/hd for
any u = (u1, . . . , ud) ∈ [0, 1]d.

Observe that
∫

[0,1]d u
βK(u)du = 0 for any β ∈ Nd such that 0 < |β| ⩽ ⌊α⌋ and∫

[0,1]d u
βK(u)du ̸= 0 for some β such that |β| = ⌊α⌋ + 1.

(A7) The sequence (hn)n∈N of bandwidths is positive and such that hn → 0 as n → ∞.

In the rest of the paper, C denotes a generic constant (deterministic and finite) which
may vary from line to line.

3 Estimation procedure and preliminary results
In this section, we propose an estimator of T based on two main ingredients: (a) estimation
based on the efficient influence function of T (see, e.g., [3, 13, 42]) and (b) mirror-type
kernel estimators (see, e.g., [2, 33]).
Let us first exhibit the general form of the estimator of T considered in this paper:

Tn = 1
n

n∑
i=1

(2Yi −mn(Xi))mn(Xi). (5)

Here, mn is an estimator of the regression function m of Y on X (with properties to be
discussed later), and (Xi, Yi)1⩽i⩽n are independent copies of (X, Y ).
Such a form can actually be justified and inferred from a heuristic based on efficient
influence functions. Indeed, let P be the set of probability distributions on [0, 1]d × R
satisfying Assumptions (A2), (A3), (A4) and (A5). Then we know from [13] that

(x, y) 7→ (2y −m(x))m(x) − E[E[Y |X]]

is the efficient influence function of T under the nonparametric model P (see [24] for
detailed computations). Thus, if the probability distribution of (X, Y ) is in P and if m
is known, we can state, from [42, Equation (25.22)], that the estimator

Tn = 1
n

n∑
i=1

(2Yi −m(Xi))m(Xi) (6)

is asymptotically efficient with optimal variance equal to Var ((2Y −m(X))m(X)). Un-
fortunately, the estimator in (6) is only an oracle, as m is unknown in our case and needs
then to be estimated, but this explains the intuition behind our focus on (5). As for the
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choice of the estimator of m, since we assume that the domain of the inputs is compact,
the crucial point is to handle possible boundary effects. To do so, in [13] the authors
estimate a truncated version of T defined as T trunc,ε = E[E[Y |X]21X∈(ε,1−ε)d ]. Even if
T trunc,ε → T as ε → 0 under mild assumptions, the practical tuning of the parameter ε
depends on the unknown function G and its choice has a large impact, see Figure 7 in the
numerical experiment section. Here, we therefore prefer the use of plugging mirror-type
kernel estimators for m(·) in (6). Mirror-type transformations have been used, e.g., in
[2, 33] in the framework of density estimation. In the following, we adapt these works
to propose two nonparametric estimators of m, denoted as m̂ and m̃. We then prove
that both estimators T̂n and T̃n satisfy a central limit theorem with optimal asymptotic
variance Var ((2Y −m(X))m(X)).

3.1 A mirror-type kernel estimator for the regression function
To estimate the regression function m, we consider a leave-one-out kernel estimator to-
gether with a mirror-type transformation introduced in [2] to bypass boundary issues.
More precisely, the regression function estimator is defined as follows:

m̂n,hn,i(Xi) =
∑

j ̸=i YjKhn ◦ AXi
(Xj −Xi)∑

j ̸=i Khn ◦ AXi
(Xj −Xi)

1
∑

j ̸=i
Khn ◦AXi

(Xj−Xi )̸=0 (7)

for a bandwidth hn > 0, a mirror-type transformation A, and a kernel Khn satisfying
Assumption (A6) presented in Section 2.2. Then, (6) is adapted as

T̂n,hn = 1
n

n∑
i=1

(2Yi − m̂n,hn,i(Xi))m̂n,hn,i(Xi) . (8)

As for the mirror-transformation, for x ∈ [0, 1]d, one may consider for instance

Ax :
{ Rd → Rd

u = (u1, . . . , ud) 7→ (a1(x1)u1, . . . , ad(xd)ud) (9)

with ai(s) := 1 − 21( 1
2 ,1](s) ∈ {−1, 1}, see Figure 1 for an illustration. Observe that

A = {Ax, x ∈ [0, 1]d} is a finite subset of GLd(R) (where GLd(R) is the general linear
group on R), A = {A1, . . . , Aκ}, with cardinality κ = 2d. Moreover, it satisfies

(i) for any ℓ = 1, . . . , κ, |det(Aℓ)| = 1;

(ii) Mirror property:

∀x ∈ [0, 1]d, x+ A−1
x ([0, 1/2]d) ⊂ [0, 1]d. (10)

The Cα([0, 1]d) regularity assumption can be relaxed to piecewise regularity as soon as
the number k of pieces is finite. The cardinality of A is then increased to κ = (2k)d.
Let f̂n,hn,i be the leave-one-out estimator of the density function fX based on the (n− 1)-
sample (X1, · · · , Xi−1, · · · , Xi+1, · · · , Xn):

f̂n,hn,i(x) = 1
n− 1

∑
j ̸=i

Khn ◦ Ax(Xj − x). (11)

The following lemmas establish classical controls on the bias and on the variance of f̂n,hn,i

for all i ∈ {1, · · · , d}. The proofs are postponed to Appendix A.1.
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Figure 1: Mirror-type transformation with d = 2, for x = (1/3, 3/4), and for y =
(2/3, 1/5).

Lemma 3.1. Under Assumptions (A1), (A4), and (A6), for all i ∈ {1, · · · , d},
∥∥∥E [

f̂n,hn,i

]
− fX

∥∥∥
∞

=
∥∥∥E [

f̂n,hn,1
]

− fX

∥∥∥
∞

= O
(
hα

n

)
· (12)

To control the variance, one needs to define a supplementary assumption.

(A8) Assume that the family of functions

F = {Kh,x : y ∈ [0, 1]d 7→ Kh(y − x) ∈ R, h > 0, x ∈ [0, 1]d} (13)

is a uniformly bounded Vapnik-Chervonenkis (VC)-class of functions, i.e. there exists
positive numbers A, B, and v such that, for all K ∈ F , ∥K∥∞ < ∞ and the ε-
covering number N (F , L2(Q), ε) of F for the L2(Q)-distance satisfies

N (F , L2(Q), ε) ⩽
(
AB

ε

)v

for every probability measure Q on [0, 1]d and for every ε ∈ (0, B).

Lemma 3.2. Let δn ∈ (0, 1). Under Assumptions (A1), (A6), and (A8), there exists a
constant C > 0 such that we have, with probability 1 − δn,

∥∥∥f̂n,hn,i − E
[
f̂n,hn,i

]∥∥∥2

∞
⩽ C

log( 1
hn

) + log( 2
δn

)
nhd

n

(14)

for all i ∈ {1, · · · , d}.
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Remark 3.3. Choosing hn = n−1/(2α+d) and δn = 1/n in Lemmas 3.1 and 3.2, we get the
following bound with probability 1 − 1/n:∥∥∥f̂n,hn,i − fX

∥∥∥
∞

⩽ C
√

log(n)n−α/(2α+d)

which corresponds to the optimal nonparametric rate up to the log factor.
Now, we can control the mean integrated squared error of f̂n,hn,i together with its infimum.
Corollary 3.4. Under Assumptions (A1), (A2), (A4), (A6), and (A8), one has, for
all i ∈ {1, · · · , d},

E
[∫

[0,1]d
(f̂n,hn,i(x) − fX(x))2dx

]
= o(n−1/2) (15)

and
1

infx∈[0,1]d
∣∣∣f̂n,hn,i(x)

∣∣∣ = OP(1) (16)

as soon as nh2d
n → ∞ and nh4α

n → 0 as n → ∞.
Assuming hn = n−γ with γ > 0, the conditions nh2d

n →∞ and nh4α
n →0 lead to 1/(4α) <

γ < 1/(2d) and α > d/2. The proof of Corollary 3.4 is postponed to Appendix A.1.

3.2 An alternative regression estimator
This alternative estimator is based on the mirror-image kernel density estimator in [33],
introduced as a generalization to dimension d ⩾ 2 of the estimator in [28]. More precisely,
we consider the following transformations: for any z ∈ [0, 1],

m−1(z) = −z, m0(z) = z, and m1(z) = 2 − z,

and, for any a ∈ {−1, 0, 1}d and x ∈ [0, 1]d, the d-dimensional vector
Ma(x) = (ma1(x1), · · · ,mad(xd)).

Then, let

f̃n,hn,i(x) = 1[0,1]d(x) 1
(n− 1)

∑
j ̸=i

∑
a∈{−1,0,1}d

K̃hn

(
Ma(Xj) − x

)
, (17)

and

g̃n,hn,i(x) = 1[0,1]d(x) 1
(n− 1)

∑
j ̸=i

Yj

∑
a∈{−1,0,1}d

K̃hn

(
Ma(Xj) − x

)
. (18)

Here, the bandwidth hn > 0 and the multivariate kernel K̃ satisfy Assumption (A′5)
stated below. Now we propose the following regression function estimator:

m̃n,hn,i(Xi) = g̃n,hn,i(Xi)
f̃n,hn,i(Xi)

(19)

if f̃n,hn,i(Xi) ̸= 0 and 0 otherwise. The associated plug-in estimator then becomes:

T̃n,hn = 1
n

n∑
i=1

(2Yi − m̃n,hn,i(Xi))m̃n,hn,i(Xi). (20)

The assumptions on fX and g are strengthened as follows.
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Figure 2: Mirror-image transformation with d = 2 in red. In the left-hand side of the
figure, a data-point in [0, 1]d (in green) and its 8 mirror-images (in orange). A kernel is
fitted over all points of the augmented dataset (orange areas). The darker orange regions
correspond to the regions where several kernels overlap. In the right-hand side of the
figure, the data-point (in green) and the restriction to [0, 1]d of the augmented dataset (in
green).

(A′4) The density function fX ∈ Cα([0, 1]d) for some α > 0. Its derivatives of order β,
with 0 < β ⩽ ⌊α⌋, vanish near the boundary.

The assumptions on K are listed below.
(A′5) Let k̃ : [−1, 1] → R be a univariate kernel such that

∥∥∥k̃∥∥∥
∞
< ∞ and

∫ 1
−1 k̃(u)du = 1.

We assume that k is of order (⌊α⌋ + 1) which means that
∫ 1

−1 u
ℓk̃(u)du = 0 for any

ℓ ∈ N such that 0 < ℓ ⩽ ⌊α⌋ and
∫ 1

−1 u
⌊α⌋+1k̃(u)du ̸= 0. Furthermore, we define

the multivariate kernel K̃ : [−1, 1]d → R as: K̃(z) = ∏d
k=1 k̃(uk). Finally, we define

K̃h(u) = K̃(u/h)/hd = ∏d
k=1 k̃(uk/h)/hd for any u ∈ [−1, 1]d.

Both numerator and denominator of the estimator defined in (19) are the sum of 3d

terms; one corresponds to the original data in the unit hypercube [0, 1]d, and each of
the remaining terms corresponds to reflected data across one of the 0-faces, 1-faces, . . . ,
d− 1-faces of the unit hypercube as illustrated in Figure 2 for d = 2.
Note that the function f̃n,hn,i is supported on [0, 1]d and

∫
[0,1]d f̃n,hn,i(x)dx = 1. Moreover,

it satisfies the two following lemmas.
Lemma 3.5. Let hn ∈ (0, 1/2). Under Assumptions the (A1), (A′4), and (A′5), for all
i ∈ {1, · · · , d}, we have∥∥∥E [

f̃n,hn,i

]
− fX

∥∥∥
∞

=
∥∥∥E [

f̃n,hn,1
]

− fX

∥∥∥
∞

= O(hα
n)· (21)

Lemma 3.5 is an extension of [33, Proposition 5.2] to every α > 0 in Assumption (A′4)
(itself an extension to every dimension and every α ∈ (0, 2] of [28, Lemma 3.1]). Its proof
is postponed to Appendix A.2.
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Lemma 3.6. [33, Proposition 5.3] Let hn ∈ (0, 1/2) and δn ∈ (0, 1). Under the Assump-
tions (A1), (A′5), and (A8) and with the kernel K̃, there exists a constant C > 0 such
that we have, with probability 1 − δn,

∥∥∥f̃n,hn,i − E
[
f̃n,hn,i

]∥∥∥2

∞
⩽ C

(
log( 1

hn
)
)

+
+ log( 2

δn
)

nhd
n

(22)

for all i ∈ {1, · · · , d}.

Once more, choosing hn = n−1/(2α+d) and δn = 1/n in Lemmas 3.5 and 3.6, we recover the
optimal nonparametric rate up to the log factor. As before, we can deduce from Lemmas
3.5 and 3.6 the control of the mean integrated squared error of f̃n,hn,i together with its
infimum.

Corollary 3.7. Assume that Assumptions (A1), (A2), (A′4), and (A′5) are satisfied,
as well as Assumption (A8) with kernel K̃. Then one has, for all i ∈ {1, · · · , d},

E
[∫

[0,1]d
(f̃n,hn,i(x) − fX(x))2dx

]
= o(n−1/2) (23)

and
1

infx∈[0,1]d
∣∣∣f̃n,hn,i(x)

∣∣∣ = OP(1) (24)

as soon as nh2d
n → ∞ and nh4α

n → 0 as n → ∞.

Assuming hn = n−γ with γ > 0, the conditions nh2d
n →∞ and nh4α

n →0 lead once more to
1/(4α) < γ < 1/(2d) and α > d/2.
The proof of Corollary 3.7 comes from Lemmas 3.5 and 3.6 and is similar to the proof of
Corollary 3.4 from Lemmas 3.1 and 3.2. It is thus skipped.

4 Central limit theorems
In this section, we prove a central limit theorem for both estimators defined in (8) and
(20).

Theorem 4.1 (Central limit theorem for T̂n,hn). Under Assumptions (A1) to (A8), one
has

√
n

(
T̂n,hn − E[E[Y |X]2]

) L−−−→
n→∞

N
(
0,Var((2Y −m(X))m(X))

)
(25)

as soon as α > d/2 and hn = n−γ with 1/(4α) < γ < 1/(2d).

Theorem 4.2 (Central limit theorem for T̃n,hn). Replacing Assumptions (A4) and (A6)
respectively by Assumptions (A′4) and (A′5) in the statement of Theorem 4.1, one has

√
n

(
T̃n,hn − E[E[Y |X]2]

) L−−−→
n→∞

N
(
0,Var((2Y −m(X))m(X))

)
(26)

as soon as α > d/2 and hn = n−γ with 1/(4α) < γ < 1/(2d).
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The proofs of Theorems 4.1 and 4.2 are postponed to Appendix A.3 while the proofs of
the following results are postponed to Appendix A.4.

Proposition 4.3 (Asymptotic efficiency for T̂n,hn and T̃n,hn). Under the assumptions of
Theorems 4.1 and 4.2 respectively, T̃n,hn and T̃n,hn are asymptotically efficient to estimate
E[E[Y |X]2] from an i.i.d. sample (Xi, Yi)i=1,··· ,n of the pair (X, Y ).

Using the delta method [42, Theorem 3.1], we are now able to get the asymptotic behavior
of the estimators of SX derived respectively from (8) and (20). Let

Ŝn,hn
:=

T̂n,hn −
(

1
n

∑n
j=1 Yj

)2

1
n

∑n
j=1 Y

2
j −

(
1
n

∑n
j=1 Yj

)2 and S̃n,hn
:=

T̃n,hn −
(

1
n

∑n
j=1 Yj

)2

1
n

∑n
j=1 Y

2
j −

(
1
n

∑n
j=1 Yj

)2 .

Corollary 4.4 (Central limit theorem and asymptotic efficiency for Ŝn,hn and S̃n,hn).
(i) Under the assumptions of Theorem 4.1, one has

√
n

(
Ŝn,hn − SX

) L−−−→
n→∞

N (0, σ2), (27)

where the limiting variance σ2 has an explicit expression given in the proof.
(ii) Under the assumptions of Theorem 4.2, the same result holds for S̃n,hn.
(iii) Moreover, Ŝn,hn and S̃n,hn are asymptotically efficient to estimate SX from an i.i.d.
sample (Xi, Yi)i=1,··· ,n of the pair (X, Y ).

Using once more the delta method, we deduce the asymptotic behavior of the vector of
the p first-order Sobol’ indices. Let us denote by Si the first-order Sobol’ index associated
to X = Vi and its estimators Ŝi and S̃i given by:

Ŝi
n,hn

:=
T̂n,hn −

(
1
n

∑n
j=1 Yj

)2

1
n

∑n
j=1 Y

2
j −

(
1
n

∑n
j=1 Yj

)2 , S̃
i
n,hn

:=
T̃n,hn −

(
1
n

∑n
j=1 Yj

)2

1
n

∑n
j=1 Y

2
j −

(
1
n

∑n
j=1 Yj

)2 ·

Corollary 4.5. (i) Under the assumptions of Theorem 4.1, one has
√
n

(
(Ŝ1

n,hn
, . . . , Ŝp

n,hn
)T − (S1, . . . , Sp)T

)
L−−−→

n→∞
Np(0,Σ), (28)

where the limiting covariance matrix Σ has an explicit expression.
(ii) Under the assumptions of Theorem 4.2, the same result holds for (S̃1

n,hn
, . . . , S̃p

n,hn
).

(iii) Moreover, (Ŝ1
n,hn

, . . . , Ŝp
n,hn

) and (S̃1
n,hn

, . . . , S̃p
n,hn

) are asymptotically efficient to es-
timate (S1, . . . , Sp) from an i.i.d. sample (Xi, Yi)i=1,··· ,n of the pair (X, Y ).

The proof of Corollary 4.5 does not rely on the fact that we are dealing with first-order
Sobol’ indices. Hence if u1, . . . , ur are distinct subsets of {1, . . . , p}, we also have under
the same assumptions that

√
n

(
(Ŝu1

n,hn
, . . . , Ŝur

n,hn
)T − (Su1 , . . . , Sur)T

)
L−−−→

n→∞
Nr(0,Σr), (29)

where the limiting covariance matrix Σr has an explicit expression. The same result
naturally holds for (S̃u1

n,hn
, . . . , S̃ur

n,hn
).
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5 Comparison with existing methods
In this section, we compare several estimators of E[E[Y |X]2] proposed in the literature in
terms of asymptotic variance in the central limit theorem.

A seminal kernel-based method As mentioned in Section 3, the authors of [13]
consider a truncated version of T defined as T trunc,ε = E[E[Y |X]21X∈(ε,1−ε)d ] to bypass
boundary issues.

Proposition 5.1 (Remark 2.2 in [13]). Under the assumptions of [13, Corollary 2.1] and,
for d ⩾ α, the limiting variance is given by

Var (1X∈(ε,1−ε)dm2(X)) + 4E[1X∈(ε,1−ε)dm2(X)σ2(X)]

recalling that m is the regression function.

As mentioned before, notice that the fine tuning of ε is cumbersome. Moreover, the
estimated quantity is not exactly T but only its pruned version.

An alternative kernel-based method in dimension one An alternative procedure
has been introduced in [7, page 11]. Anyway, note that the estimator T̂n defined in [7,
page 11] is not easily tractable in practice. More precisely, the initial n-sample is split
into two samples of sizes n1 = ⌊n/ log n⌋ and n2 = n − n1 ≈ n. The first sample is used
to estimate the joint density of (X, Y ) while the second one is used in an outer loop to
estimate the integral term by Monte-Carlo. Asymptotic guarantees are provided in [7]
and we recall the form of the asymptotic variance in Proposition 5.2 below.

Proposition 5.2 (Theorems 3.4 and 3.5 in [7]). The limiting variance is given by

Var((2Y −m(X))m(X)) = Var(m2(X)) + 4E[m2(X)σ2(X)].

In addition, the sequence of estimators (T̂n)n⩾1 is proved to be asymptotically efficient to
estimate E[E[Y |X]2]. We refer the reader to [7, Theorems 3.4 and 3.5] and [14].

Nearest neighbor-based method One may also compare our results to the estimation
procedure proposed in [11], based on nearest neighbors. Here again, the initial 2n-sample
is split into two samples of equal size n. The first sample allows to estimate the regression
function m(·) = E[Y |X = ·] using the first nearest neighbor of x among the points of the
first sample while the second sample is used as a plug-in estimator. They proved that
their estimator Sn is consistent for any dimension d of X and that

√
n(Sn − E[Sn]) is

asymptotically Gaussian. Nevertheless, the bias term is negligible only if d ⩽ 3 and in
the setting where fX is Lipschitz continuous and bounded away from zero. Thus it may
happen that the central limit theorem does not hold true for

√
n(Sn−E[E[Y |X]2]) if d ⩾ 4.

In the following proposition, we give the limiting variance obtained with this estimation
procedure. The multiplicative factor 2 in front of Var(m2(X)) takes into account that we
have considered two samples of size n.

Proposition 5.3 (Theorem 2.1 in [11]). Under the assumptions of [11, Theorem 2.1] and
for d ⩽ 3, the limiting variance is given by

2Var(m2(X)) + 5E[m2(X)σ2(X)] + 2E[σ2(X)].

12



When d = 1, one may also use the estimation procedure based on ranks introduced in [5]
and studied in [14].

Proposition 5.4 (Proof of Theorem 4.1 in [14, 16]). Under the assumptions of [14,
Theorem 4.1], the limiting variance is given by

Var(m2(X)) + 4E[m2(X)σ2(X)] + E[σ2(X)].

This asymptotic variance is not the efficient one. Anyway, this methodology has been
proven to perform numerically particularly well.

Pick-Freeze method The limiting variance involved in the central limit theorem of
the Pick-Freeze estimation, based on the particular Pick-Freeze design, is given by

Var(m2(X)) + 2E[m2(X)σ2(X)] + E[σ2(X)].

6 Numerical applications
In this section, we illustrate the practical performances of one of our estimators on several
analytical test cases coming from the sensitivity analysis literature. Recall that both
estimators are based on a high-order kernel supported on [0, 1]d for the first estimator
and on [−1, 1]d for the second one. From a theoretical perspective both of them lead to
equivalent convergence results, but the first one actually suffers from strong numerical
instabilities as discussed in https://hal.science/hal-04052837. This explains why we
focus on the second one in what follows.
For all test cases:

• We will focus on estimators for first-order and total-order Sobol’ indices for each
input variable Vi, corresponding to (1) with X = Vi and X = V−i respectively.

• We compute our second mirror-type estimator (20) with an Epanechnikov kernel of
order 2 and 4 (see [19] for a definition), with the kernel bandwidth being optimized
via leave-one-out on the regression function ("Kernel 2" and "Kernel 4").

• We also consider concurrent estimators, namely the nearest-neighbor estimator of
[11] ("NN") and the asymptotically efficient version of Pick-Freeze estimator studied
in [22] ("PF1") for first-order indices and for total-order indices, and also the repli-
cated version of Pick-Freeze estimator proposed in [40] ("PF2"), the rank estimator
of [14] ("Rank"), and the lag estimator of [25] ("Lag") for first-order indices.

• For all estimators, we generate a standard n-sample (X1, Y1), · · · , (Xn, Yn) except
for the Pick-Freeze method since it relies on a structured design of experiments.

• Each experiment is repeated 50 times with a number of model evaluations fixed to
n = 500 (then to n = 1000). The reference value is obtained from a Pick-Freeze
estimation with very large sample size.
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The Bratley function First, we consider the Bratley function defined by:

gBratley(V1, . . . , Vp) =
p∑

i=1
(−1)i

i∏
j=1

Vj, (30)

with Vi ∼ U([0, 1]) i.i.d. and p = 5. The results of the 50 experiments for all estimators
of first-order indices are given as boxplots in Figure 3. We observe several trends.

• The nearest-neighbor estimator exhibits both large bias and large variance.

• The Pick-Freeze estimators and the rank one perform well except when the sensi-
tivity index is small.

• Both the lag estimator and our mirror-type one have very small bias and variance.
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(b) n = 1000

Figure 3: Estimators for first-order indices of the Bratley function with n = 500 (left)
and n = 1000 (right). The reference value is represented with a gray line.

For total-order indices in Figure 4, recall that the only concurrent estimators are nearest-
neighbor and Pick-Freeze estimators. Once again Pick-freeze estimators perform well, but
the bias of the nearest-neighbor one is very large (here d = p−1 = 4), this bias increasing
dramatically when the sensitivity index is small. Our mirror-type estimator still has small
bias and very small variance for all input variables.

The g-Sobol function Then, we investigate the g-Sobol function defined by

gg-Sobol(V1, . . . , Vp) =
p∏

i=1

|4Vi − 2| + ai

1 + ai

, (31)

with Vi ∼ U([0, 1]) i.i.d., p = 5 and a = (0, 1, 4.5, 9, 99). Notice that it is non-differentiable
at any input value with a component equal to 0.5, but the impact on our estimator
performance is negligible, as can be seen in Figure 5 for first-order indices. Except for
the degraded performance of the lag estimator, the conclusions are the same as for the
Bratley function, even for total indices displayed in Figure 6.
Finally, we illustrate numerically that the choice of the ϵ tuning parameter of the estimator
proposed in [13] is very sensitive, thus limiting its practical use as opposed to our mirror-
type estimator. We consider Example 3.2 from [13] and test ϵ = 10−1, 10−2, 10−3. The
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Figure 4: Estimators for total-order indices of the Bratley function with n = 500 (left)
and n = 1000 (right). The reference value is represented with a gray line.
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Figure 5: Estimators for first-order indices of the g-Sobol function with n = 500 (left)
and n = 1000 (right). The reference value is represented with a gray line.

comparison with our estimator with a kernel of order 2 is given in Figure 7. When ϵ is equal
to 10−3, the performance of both estimators are similar. However in other cases, the bias
of [13] can be very large. Since in practice such an estimation problem is unsupervised,
the tuning of ϵ seems highly difficult and the non-robustness of the final estimator with
respect to this parameter limits its practical use.

Additional material Extended numerical studies discussing numerical stability of high-
order kernels can be found on the link https://hal.science/hal-04052837.
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Figure 6: Estimators for total-order indices of the g-Sobol function with n = 500 (left)
and n = 1000 (right). The reference value is represented with a gray line.
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Figure 7: Comparison of our mirror-type estimator with the estimator of [13] for different
values of ϵ. The reference value is represented with a gray line.
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A Proof of the results
In the following, hn is simply denoted by h and C is a deterministic and finite constant,
the value of which is allowed to change between occurrences. Recall also that fX is the
density of X with respect to the Lebesgue measure. The regression function is denoted by
m: m(x) = E[Y |X = x] and we introduce the function g defined by g(x) = fX(x)m(x).
In addition, σ2(x) stands for Var(Y |X = x).

A.1 Proof of the preliminary results of Section 3.1
Now, recall that f̂n,h,i defined in (11) and m̂n,h,i defined in (7) are respectively the leave-
one-out estimator of fX based on (X1, · · · , Xi−1, · · · , Xi+1, · · · , Xn) and the estimator
of the regression function m based on the (n − 1)-input/output sample ((X1, Y1), · · · ,
(Xi−1, Yi−1), · · · , (Xi+1, Yi+1), · · · , (Xn, Yn)). Then, the leave-one-out estimator of g is
naturally given by ĝn,h,i = m̂n,h,if̂n,h,i.
To lighten notation, we write mi, σ2

i , gi, and fi for m(Xi), σ2(Xi), g(Xi), and fX(Xi)
respectively. Additionally, m̂i, ĝi, and f̂i denote m̂n,h,i(Xi), ĝn,h,i(Xi), and f̂n,h,i(Xi) re-
spectively. By abuse of notation, we denote f̂n,h,i(x) and ĝn,h,i(x) by f̂i(x) and ĝi(x).

Proof of Lemma 3.1. The result can be deduced from the proof of the bound (8) in [2,
Proposition 1] (see [2, Section 7.2.]) as the domain [0, 1]d is compact. More precisely, one
has

E[f̂n,h,i(x)] =
∫

[0,1]d
Kh ◦ Ax(x′ − x)fX(x′)dx′ =

∫
Dx

K(u)fX(x+ hA−1
x (u))du

where the last display is obtained after the variable change u = Ax(x′ − x)/h, using
the fact that |det(Ax)| = 1 and where Dx is the integration domain after the variable
change. Now observe that the mirror property in (10) ensures that, if 0 < h ⩽ 1/2 for all
i ∈ {1, · · · , d}, then [0, 1]d ⊂ Dx for all x ∈ [0, 1]d. Thus we have

E[f̂n,h,i(x)] − fX(x) =
∫

[0,1]d
K(u)(fX(x+ hA−1

x (u)) − fX(x))du (32)

since
∫

[0,1]d K(u)du = 1. If α ∈ (0, 1), since fX ∈ Cα([0, 1]d), ∥K∥∞ < ∞ and ∥A−1
x (u)∥∞ ⩽

1, we conclude straightforwardly that∣∣∣E[f̂n,h,i(x)] − fX(x)
∣∣∣ ⩽ CfX

hα
∫

[0,1]d

∥∥∥A−1
x (u)

∥∥∥α

∞
|K(u)| du ⩽ Chα.

Now, for α ⩾ 1, observe that, still due to the mirror property in (10), 0 < h ⩽ 1/2 for all
i ∈ {1, · · · , d} ensures that x + hA−1

x (u) ∈ [0, 1]d for all x ∈ [0, 1]d and for all u ∈ [0, 1]d.
Thus the term in (32) can be handled with a Taylor expansion of fX (see, e.g., [6, Theorem
5.4]). More precisely, by a multivariate Taylor expansion, since fX is Cα([0, 1]d), we get:

fX(x+ uh) − fX(x) =
∑

1⩽|β|<⌊α⌋

h|β|

β ! u
β ∂

βfX

∂xβ
(x) + h⌊α⌋ ∑

|β|=⌊α⌋
Rβ(x+ uh)uβ
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with

Rβ(x+ uh) = ⌊α⌋
β!

∫ 1

0
(1 − t)⌊α⌋−1∂

βfX

∂xβ
(x+ tuh) dt.

Then, recalling that (A−1
x (u))β = (A−1

x (u)1)β1 . . . (A−1
x (u)d)βd , we have

E[f̂n,h,i(x)] − fX(x) =
∑

1⩽|β|<⌊α⌋

h|β|

β !

(∫
[0,1]d

(A−1
x (u))βK(u)du

)
∂βfX

∂xβ
(x)

+ h⌊α⌋ ∑
|β|=⌊α⌋

∫
[0,1]d

(A−1
x (u))βK(u)Rβ(x+ hA−1

x (u))du

= ⌊α⌋h⌊α⌋ ∑
|β|=⌊α⌋

1
β!

∫
[0,1]d

(A−1
x (u))βK(u)

∫ 1

0
(1 − t)⌊α⌋−1∂

βfX

∂xβ
(x+ thA−1

x (u)) dtdu

using the fact that (A−1
x (u))β is polynomial in (u1, . . . , ud) of degree β and K is of order

(⌊α⌋ + 1). Now, using again that K is of order (⌊α⌋ + 1), we get

E[f̂n,h,i(x)] − fX(x) = ⌊α⌋h⌊α⌋ ∑
|β|=⌊α⌋

1
β!

∫
[0,1]d

(A−1
x (u))βK(u)

∫ 1

0
(1 − t)⌊α⌋−1

(
∂βfX

∂xβ
(x+ thA−1

x (u) − ∂βfX

∂xβ
(x)

)
dtdu.

Then, using (4) since fX ∈ Cα([0, 1]d), one gets∣∣∣∣∂βfX

∂xβ
(x+ thA−1

x (u)) − ∂βfX

∂xβ
(x)

∣∣∣∣ ⩽ CfX
(ht∥A−1

x (u)∥∞)α−⌊α⌋

for all u ∈ [0, 1]d, x ∈ [0, 1]d, t ∈ [0, 1], h ∈ (0,∞), and β ∈ Nd such that |β| = ⌊α⌋. Then,

|E[f̂n,h,i(x)] − fX(x)|

⩽ CfX
⌊α⌋hα

( ∑
|β|=⌊α⌋

1
β!

)(∫
[0,1]d

∥A−1
x (u)∥β

∞∥A−1
x (u)∥α−⌊α⌋

∞ |K(u)|du
)(∫ 1

0
(1 − t)⌊α⌋−1tα−⌊α⌋dt

)

= Chα
( ∑

|β|=⌊α⌋

1
β!

)(∫
[0,1]d

|K(u)|du
)(∫ 1

0
(1 − t)⌊α⌋−1tα−⌊α⌋dt

)
⩽ Chα

since ∥A−1
x (u)∥β

∞ ⩽ 1 and ∥K∥∞ < ∞.

Proof of Lemma 3.2. For u ⊂ {1, . . . , d}, let ∼ u = {1, . . . , d} \ u. For x ∈ [0, 1]d,

(n− 1)f̂n,h,i(x) =
∑
j ̸=i

∏
1⩽k⩽d s.t.
xk∈[0,1/2]

kh(Xk,j − xk)
∏

1⩽k⩽d s.t.
xk∈(1/2,1]

kh(xk −Xk,j)

=
∑
j ̸=i

∑
u⊆{1,...,d}

∏
k∈u

1[0,1/2](xk)kh(Xk,j − xk)
∏

k∈∼u

1(1/2,1](xk)kh(xk −Xk,j)

=:
∑
j ̸=i

K∗
h,x(Xj).
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Arguing as in [33, Section 5.1.2] and since the class of functions F defined by (13) is a
uniformly bounded VC-class of functions by (A8), we can say that the class

F∗ = {K∗
h,x, h > 0, x ∈ [0, 1]d}

is also a uniformly bounded VC-class of functions. Thus it follows from a particular case
of [23, Corollary 13] that the bound in (14) holds with probability 1 − δn.

Proof of Corollary 3.4. First, by Lemmas 3.1 and 3.2, we get∥∥∥f̂n,h,i − fX

∥∥∥2

∞
⩽ 2

∥∥∥f̂n,h,i − E
[
f̂n,h,i

]∥∥∥2

∞
+ 2

∥∥∥E [
f̂n,h,i

]
− fX

∥∥∥2

∞

= OP

(
h2α +

(
log( 1

hn
)
)

+
+ log( 2

δn
)

nhd
n

)
= oP(n−1/2)

as soon as nh2d → ∞ and nh4α → 0 by considering, e.g., δn = 1/n. Since the input space
[0, 1]d is compact by Assumption (A1), one concludes that (15) holds.
Moreover, for all i ∈ {1, · · · , d}, as f̂n,h,i(x) = fX(x) + f̂n,h,i(x) − fX(x), and from As-
sumption (A2), we get with probability 1 − 1/δn and for n large enough:

inf
x∈[0,1]d

∣∣∣f̂n,h,i(x)
∣∣∣ ⩾ δ − C

(
h2α +

(
log( 1

hn
)
)

+
+ log( 2

δn
)

nhd
n

)
for some positive constant C. This last quantity is nonnegative as soon as n is large
enough when nhd → ∞ and hα → 0 by considering, e.g., δn = 1/n.

We also state Lemma A.1 below as a preliminary result for the proof of Theorem 4.1.

Lemma A.1. Under Assumptions (A1), (A5), (A6), and (A8), one has, for all i ∈
{1, · · · , d},

E
[∫

[0,1]d
(ĝn,h,i(x) − g(x))2dx

]
= o(n−1/2) (33)

as soon as nh2d → ∞, and nh4α → 0.

Proof of Lemma A.1. Similarly as for density estimation, we prove that

∥E [ĝn,h,1] − g∥∞ = O(hα) (34)

and that there exists some constant C > 0 such that, with probability 1 − δn,

∥ĝn,h,1 − E [ĝn,h,1]∥∞ ⩽ C
( log( 1

h
) + log( 2

δn
)

nhd

)
. (35)

Then, we deduce (33) as soon as nhd → ∞ and hα → 0 by considering, e.g., δn = 1/n.
Now, to prove (34), observe that

E[ĝn,h,1(x)] =
∫

[0,1]d
Kh ◦ Ax(x′ − x)g(x′)dx′.

Then, (34) comes following the same lines as in the proof of (21) since g ∈ Cα([0, 1]d).
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As for the proof of (35), one has, for all i ∈ {1, · · · , d},

(n− 1)ĝn,h,i(x) =
∑
j ̸=i

Yj

∏
1⩽k⩽d s.t.
xk∈[0,1/2]

kh(Xk,j − xk)
∏

1⩽k⩽d s.t.
xk∈(1/2,1]

kh(xk −Xk,j)

=
∑
j ̸=i

Yj

∑
u⊆{1,...,d}

∏
k∈u

1[0,1/2](xk)kh(Xk,j − xk)
∏

k∈∼u

1(1/2,1](xk)kh(xk −Xk,j)

= O
(∑

j ̸=i

K∗
h,x(Xj)

)
.

We conclude as in the proof of Lemma 3.2.

A.2 Proof of the preliminary results of Section 3.2
Now, recall that f̃n,h,i defined in (17) and g̃n,h,i defined in 18 are the leave-one-out esti-
mators of fX and g respectively based on the (n− 1)-input/output sample ((X1, Y1), · · · ,
(Xi−1, Yi−1), · · · , (Xi+1, Yi+1), · · · , (Xn, Yn)). Then, the estimator of the regression func-
tion m is naturally given by m̃n,h,i = g̃n,h,i/f̃n,h,i.

Proof of Lemma 3.5. It follows the same lines as in the proof of Lemma 3.1. We consider
the case x ∈ [0, 1/2]d. The remaining cases can be deduced by symmetry. Let A := {k ∈
{1, . . . , d} : xk ⩽ h}. For all k ∈ {1, · · · , d} and all tk ∈ [0, 1],

k̃h(M1(tk) − xk) = k̃h(2 − tk − xk) = 0

as k̃ is supported on [−1, 1] and h < 1/2. In addition, for all k ∈ {1, · · · , d} \ A and all
tk ∈ [0, 1],

k̃h(M−1(tk) − xk) = k̃h(−tk − xk) = 0.
For any subset B ⊂ A, define xB such that xB,k = xk = M0(xk) if k /∈ B and xB,k =

−xk = M−1(xk) if k ∈ B. Then, the expected value of f̃n,h,i(x) can be written as:

E[f̃n,h,i(x)] =
∑

B⊂A

∫
[0,1]d

∏
k∈B

k̃h(−zk − xk)
∏
k /∈B

k̃h(zk − xk)fX(z)dz

=
∑

B⊂A

∫
XB

d∏
k=1

k̃(uk)fX(zB)du =
∑

B⊂A

∫
XB
K̃(u)fX(zB)du

with

zB,k =
−xk − ukh, k ∈ B
xk + ukh, k /∈ B

and XB,k =
{uk ∈ [−1, 1) : −xk − ukh ∈ [0, 1]}, k ∈ B

{uk ∈ [−1, 1) : xk + ukh ∈ [0, 1]}, k /∈ B

(recalling that the support of K̃ is [−1, 1]d) and XB = ∏d
k=1 XB,k. Note that (XB)B⊂A

forms a partition of [−1, 1)d. Indeed, one has

XB =
d∏

k=1
XB,k =

∏
k∈B

[−1,−xk

h
)

∏
k∈A\B

[−xk

h
, 1)

∏
k∈{1,··· ,d}\A

[−1, 1).
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Let us now define fMI
X on [−1, 2]d such that, for all y ∈ [−1, 2]d,

fMI
X (y) = fX(yMI) where yMI

k =


−yk if yk ∈ [−1, 0]
yk if yk ∈ [0, 1]
2 − yk if yk ∈ [1, 2]

.

Then, for all x ∈ [0, 1]d and a ∈ {−1, 0, 1}d, fMI
X (Ma(x)) = fX(x) and similarly, for

any B ⊂ A, fMI
X (xB) = fX(x). Now, since fMI

X = fX on [0, 1]d and for any u ∈ XB,
fMI

X (zB) = fX(zB), we have

E[f̃n,h,i(x)] =
∑

B⊂A

∫
XB
K̃(u)fMI

X (zB)du =
∑

B⊂A

∫
X ′

B

K̃(v)fMI
X (zB)dv (36)

using the variable change v = uB, the symmetry of K̃ and with

X ′
B,k =

{vk ∈ [−1, 1) : −xk + vkh ∈ [0, 1]}, k ∈ B
{vk ∈ [−1, 1) : xk + vkh ∈ [0, 1]}, k /∈ B

.

In addition, since
∫

[−1,1]d K̃(u)du = 1, (X ′
B)B⊂A forms also a partition of [−1, 1)d, and

fMI
X (xB) = fX(x), one has

fX(x) = fX(x)
∫

[−1,1]d
K̃(u)du =

∑
B⊂A

∫
X ′

B

K̃(u)fX(x)du =
∑

B⊂A

∫
X ′

B

K̃(u)fMI
X (xB)du . (37)

From (36) and (37), we deduce

E[f̃n,h,i(x)] − fX(x) =
∑

B⊂A

∫
X ′

B

K̃(u)
(
fMI

X (xB + vh) − fMI
X (xB)

)
dv.

By construction and since Assumption (A′4) is satisfied (in particular derivatives up to
order ⌊α⌋ vanish near the boundary), fMI

X has derivatives up to order ⌊α⌋. Then, fMI
X

belongs to Cα([−1, 2]d) with CfMI
X

= 3CfX
. Thus, proceeding as in the proof of Lemma

3.1 we write:

fMI
X (xB + uh) − fMI

X (xB) =
∑

1⩽|β|<⌊α⌋

h|β|

β ! u
β ∂

βfMI
X

∂xβ
(xB) + h⌊α⌋ ∑

|β|=⌊α⌋
Rβ(xB + uh)uβ (38)

with

Rβ(xB + uh) = ⌊α⌋
β!

∫ 1

0
(1 − t)⌊α⌋−1∂

βfMI
X

∂xβ
(xB + tuh) dt. (39)

Then, with similar arguments as in the proof of Lemma 3.1, together with Assumptions
(A′4) and (A′5) and the fact that (X ′

B)B⊂A forms a partition of [−1, 1)d, we get

|E[f̃n,h,i(x)] − fX(x)|

⩽ 3CfX
⌊α⌋hα

( ∑
|β|=⌊α⌋

1
β!

)(∫ 1

0
(1 − t)⌊α⌋−1tα−⌊α⌋dt

)( ∑
B⊂A

∫
X ′

B

|u|α|K̃(u)|du
)

⩽ 3CfX
⌊α⌋hα

( ∑
|β|=⌊α⌋

1
β!

)(∫ 1

0
(1 − t)⌊α⌋−1tα−⌊α⌋dt

)(∫
[−1,1]d

|K̃(u)|du
)

= Chα.
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We also state Lemma A.2 below as a preliminary result to the proof of Theorem 4.2.

Lemma A.2. Let α > 0. Under Assumptions (A1), (A5), (A′5), and (A8), one has,
for all i ∈ {1, · · · , d},

E
[∫

(g̃n,h,i(x) − g(x))2dx
]

= o(n−1/2) (40)

as soon as nh2d → ∞, and nh4α → 0.

Proof of Lemma A.2. The proof follows similar lines as the one of Lemma A.1. Recall
that for x ∈ [0, 1]d, g(x) = fX(x)m(x). We extend m as mMI on [−1, 2]d as follows. For
all y ∈ [−1, 2]d, mMI(y) = m(yMI) with yMI defined in the proof of Lemma 3.5. Then,
for all x ∈ [0, 1]d and a ∈ {−1, 0, 1}d, mMI(Ma(x)) = m(x) and similarly, for any B ⊂ A,
mMI(xB) = m(x). We introduce the function gMI(x) = fMI

X (x)mMI(x). We also introduce
the intermediate function g̃MI(x) = fMI

X (x)m(x). Now following the proof of Lemma A.1,
we get, for all x ∈ [0, 1]d,

E[g̃n,h,i(x)] − g(x) =
∑

B⊂A

∫
X ′

B

K̃(u)
(
gMI(xB + uh) − gMI(xB)

)
du .

Now,

gMI(xB + uh) − gMI(xB) = gMI(xB + uh) − g̃MI(xB + uh) + g̃MI(xB + uh) − g̃MI(xB)
+g̃MI(xB + uh) − g̃MI(xB) + g̃MI(xB) − gMI(xB)

= fMI
X (xB + uh)

(
mMI(xB + uh) −m(xB + uh)

)
+g̃MI(xB + uh) − g̃MI(xB) + fMI

X (xB)
(
m(xB) −mMI(xB)

)
.

Now by definition, we have mMI(xB +uh) = m(xB +uh) and mMI(xB) = m(xB). Thus we
have gMI(xB+uh)−gMI(xB) = g̃MI(xB+uh)−g̃MI(xB). As fMI

X andm belong to Cα([−1, 2]d)
from Assumptions (A′4) and (A5), the function g̃MI also belongs to Cα([−1, 2]d). Then,
mimicking (38) and (39), we obtain for any y ∈ Y ,

g̃MI(xB + uh) − g̃MI(xB) =
∑

1⩽|β|<⌊α⌋

h|β|

β ! u
β ∂

β g̃MI

∂xβ
(xB) + h⌊α⌋ ∑

|β|=⌊α⌋
Rβ(xB + uh)uβ

with

Rβ(xB + uh) = ⌊α⌋
β!

∫ 1

0
(1 − t)⌊α⌋−1∂

β g̃MI

∂xβ
(xB + tuh) dt.

Then, we conclude with similar arguments as in the proof of Lemma 3.1. From Assumption
(A′5) and as (X ′

B)B⊂A forms a partition of [−1, 1)d, we have

∑
B⊂A

∫
X ′

B

K̃(u)
∑

|β|=⌊α⌋
uβdu =

∫ 1

−1

( ∑
|β|=⌊α⌋

uβ
)
K̃(u)du = 0 .
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Thus

E[g̃n,h,i(x)] − g(x) = ∑
B⊂A

∫
X ′

B
K̃(u)

(
gMI(xB + uh) − gMI(xB)

)
du

= ∑
B⊂A

∫
X ′

B
K̃(u)h⌊α⌋ ∑

|β|=⌊α⌋ Rβ(xB + uh)uβdu

= ∑
B⊂A

∫
X ′

B
K̃(u)h⌊α⌋ ∑

|β|=⌊α⌋
⌊α⌋
β!

∫ 1
0 (1 − t)⌊α⌋−1

(
∂β g̃MI

∂xβ (xB + tuh) − ∂β g̃MI

∂xβ (xB)
)
dtuβdu .

Now, using (4) since g̃MI ∈ Cα([0, 1]d), we have
∣∣∣∣∂β g̃MI

∂xβ
(xB + tuh) − ∂β g̃MI

∂xβ
(xB)

∣∣∣∣ ⩽ C(ht∥u∥∞)α−⌊α⌋ ⩽ Chα−⌊α⌋

for all u ∈ [0, 1]d, x ∈ [0, 1]d, t ∈ [0, 1], h ∈ (0,∞), and β ∈ Nd such that |β| = ⌊α⌋. We
hence conclude that E[g̃n,h,i(x)] − g(x) ⩽ Chα.

A.3 Proof of Theorems 4.1 and 4.2
Proof of Theorem 4.1. Following the same lines as in the proof of Theorem 2.1 in [13], we
aim at proving that

T̂n,h − E[E[Y |X]2] = 1
n

n∑
i=1

(2Yi −mi)mi − E[E[Y |X]2] + oP(n−1/2). (41)

The conclusion of Theorem 4.1 will then follow directly applying the standard central
limit theorem for the sum of i.i.d. random variables to the right-hand side of the previous
display together with Slutsky’s lemma.
To establish (41), we compute

T̂n,h − 1
n

n∑
i=1

(2Yi −mi)mi = 1
n

n∑
i=1

[
(2Yi − m̂i)m̂i − (2Yi −mi)mi

]
= 1
n

n∑
i=1

[
2Yi(m̂i −mi) +m2

i − m̂2
i

]
= 1
n

n∑
i=1

[
2(Yi −mi)(m̂i −mi) − (m̂i −mi)2

]
=: I1 − I2.

Study of I1 Since

m̂i −mi = ĝi − f̂imi

fi

+ (fi − f̂i)(ĝi − f̂imi)
fif̂i

,
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I1 rewrites as the sum of two terms I11 and I12 with

I11 = 2
n

n∑
i=1

(Yi −mi)
ĝi − f̂imi

fi

= 2
n(n− 1)

n∑
i=1

n∑
j=1,
j ̸=i

(Yi −mi)(Yj −mi)
Kh ◦ AXi

(Xj −Xi)
fi

= 2
n(n− 1)

n∑
i=1

n∑
j=1,
j ̸=i

εi(εj +mj −mi)
Kh ◦ AXi

(Uij)
fi

denoting the residual Yi − mi by εi and the difference Xj − Xi by Uij. Conditioning by
X(n) = (X1, · · · , Xn) and using independence, we deduce that

E[I11] = 2E
[
ε1(ε2 +m2 −m1)

Kh ◦ AX1(U12)
fi

]
= 2E

[
E[ε1|X1](E[ε2|X2] +m2 −m1)

Kh ◦ AX1(U12)
fi

]
that cancels since E[ε1|X1] = 0 while E[I2

11] equals
4

n2(n− 1)2

n∑
i,k=1

n∑
j,ℓ=1,
j ̸=i,
ℓ ̸=k

E
[
εiεk(εj +mj −mi)(εℓ +mℓ −mk)Kh ◦ AXi

(Uij)
fi

Kh ◦ AXk
(Ukℓ)

fk

]

= 4
n2(n− 1)2

n∑
i=1

∑
j=1,
j ̸=i

E
[
ε2

i (εj +mj −mi)2 (Kh ◦ AXi
(Uij))2

f 2
i

]

+ 4
n2(n− 1)2

n∑
i=1

∑
j=1,
j ̸=i

E
[
εiεj(εj +mj −mi)(εi +mi −mj)

Kh ◦ AXi
(Uij)

fi

Kh ◦ AXj
(Uji)

fj

]
.

Conditioning by X(n) = (X1, · · · , Xn) once again leads to

E[ε2
i (εj +mj −mi)2|X(n)] = E[ε2

i ε
2
j |X(n)] + 2E[ε2

i εj(mj −mi)|X(n)] + E[ε2
i (mj −mi)2|X(n)]

= E[ε2
i |Xi]E[ε2

j |Xj] + 2(mj −mi)E[ε2
i |Xi]E[εj|Xj] + (mj −mi)2E[ε2

i |Xi]
= σ2

i σ
2
j + (mj −mi)2σ2

i

and

E[εiεj(εj +mj −mi)(εi +mi −mj)|X(n)]
= E[ε2

i ε
2
j |X(n)] + (mj −mi)E[ε2

i εj|X(n)] + (mi −mj)E[ε2
jεi|X(n)] − (mj −mi)2E[εiεj|X(n)]

= σ2
i σ

2
j .

Hence

E[I2
11] = 4

n2(n− 1)2

n∑
i=1

∑
j=1,
j ̸=i

E
[
(σ2

i σ
2
j + (mj −mi)2σ2

i )(Kh ◦ AXi
(Uij))2

f 2
i

]

+ 4
n2(n− 1)2

n∑
i=1

∑
j=1,
j ̸=i

E
[
σ2

i σ
2
j

Kh ◦ AXi
(Uij)

fi

Kh ◦ AXj
(Uji)

fj

]
.
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By Assumptions (A2), (A3), (A6), and the fact that m is bounded from above, we
conclude that

E[I2
11] = O

( 1
n2h2d

)
= o

( 1
n

)
since nh2d → ∞ by assumption.
Let us turn to the computation of I12 defined as follows

I12 = 2
n

n∑
i=1

(Yi −mi)
(fi − f̂i)(ĝi − f̂imi)

fif̂i

.

By (16) and since ĝ1 does not depend on Y1,

|E[I12]| ⩽
C

n

n∑
i=1

EX1,··· ,Xn
Y1,··· ,Yn

[
|εi|

|fi − f̂i|(|gi − ĝi| + |fi − f̂i||mi|)
fi

]

= C EX1,··· ,Xn
Y1,··· ,Yn

[
|ε1|

|f1 − f̂1|(|g1 − ĝ1| + |f1 − f̂1||m1|)
f1

]

= C EX1,··· ,Xn

[ |f1 − f̂1|
f1

EY1,··· ,Yn [|ε1|(|g1 − ĝ1| + |f1 − f̂1||m1|)|X(n)]
]

= C EX1,··· ,Xn

[ |f1 − f̂1|
f1

EY1 [|ε1||X1](EY2,··· ,Yn [|g1 − ĝ1||X(n)] + |f1 − f̂1||m1|)
]

⩽ C EX1,··· ,Xn

[ |f1 − f̂1|
f1

σ1(EY2,··· ,Yn [|g1 − ĝ1||X(n)] + |f1 − f̂1||m1|)
]

= C EX1,··· ,Xn
Y2,··· ,Yn

[ |f1 − f̂1|
f1

σ1(|g1 − ĝ1| + |f1 − f̂1||m1|)
]

= C EX2,··· ,Xn
Y2,··· ,Yn

[∫
[0,1]d

|fX(x) − f̂n,h,1(x)|σ(x)(|g(x) − ĝn,h,1(x)| + |fX(x) − f̂n,h,1(x)||m(x)|)dx
]

⩽ C EX2,··· ,Xn
Y2,··· ,Yn

[∫
[0,1]d

|fX(x) − f̂n,h,1(x)||g(x) − ĝn,h,1(x)|dx
]

+ C EX2,··· ,Xn
Y2,··· ,Yn

[∫
[0,1]d

|fX(x) − f̂n,h,1(x)||fX(x) − f̂n,h,1(x)||m(x)|)dx
]
.

By applying twice Cauchy-Schwartz inequality, the first term is bounded from above by

C EX2,··· ,Xn
Y2,··· ,Yn

[(∫
[0,1]d

(fX(x) − f̂n,h,1(x))2dx
)1/2(∫

[0,1]d
(g(x) − ĝn,h,1(x))2dx

)1/2
]

⩽ C EX2,··· ,Xn
Y2,··· ,Yn

[∫
[0,1]d

(fX(x) − f̂n,h,1(x))2dx
]1/2

EX2,··· ,Xn
Y2,··· ,Yn

[∫
[0,1]d

(g(x) − ĝn,h,1(x))2dx
]1/2

= o(n−1/2)

using (15) and (33) while the second term is o(n−1/2).

Study of I2 Recall that

I2 = 1
n

n∑
i=1

(m̂i −mi)2 = 1
n

n∑
i=1

(ĝi − f̂imi)2

f̂ 2
i

= OP

( 1
n

n∑
i=1

(ĝi − f̂imi)2
)
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by (16). Then,

E[I2] ⩽ C EX2,··· ,Xn
Y2,··· ,Yn

[∫
[0,1]d

(ĝn,h,i(x) − f̂n,h,i(x)m(x))2fX(x)dx
]

= C EX2,··· ,Xn
Y2,··· ,Yn

[∫
[0,1]d

[(ĝn,h,i(x) − g(x)) + (fX(x)m(x) − f̂n,h,i(x)m(x))]2fX(x)dx
]

⩽ C EX2,··· ,Xn
Y2,··· ,Yn

[∫
[0,1]d

(ĝn,h,i(x) − g(x))2fX(x)dx
]

+ C E
[∫

[0,1]d
(f̂n,h,i(x) − f(x))2m(x)2fX(x)dx

]
= o(n−1/2)
as fX is continuous thus bounded on [0, 1]d, as m is also bounded on [0, 1]d (recall that it
follows from the boundedness of σ2) and from the results stated in (15) and (33).

Proof of Theorem 4.2. The proof is similar as the proof of Theorem 4.1 except that for
any i ̸= j, Kh ◦ AXi

(Uij) is replaced by ∑
a∈{−1,0,1}d

∏d
k=1 Kh(Mak(Xk,j) −Xi).

A.4 Proof of the remaining results
Proof of Proposition 4.3. We denote by P the distribution of (X, Y ) and we introduce

ψ(P ) = E[E[Y |X]2].
The influence efficient function of ψ at P , as stated in [13], is given by ψ̃P (x, y) = (2y −
m(x))m(x) − E[Y m(X)] (see [24] for explicit computations). Moreover, we deduce from
(41) that

T̂n,h = ψ(P ) + 1
n

n∑
i=1

ψ̃P (Xi, Yi) + oP(n−1/2)

and, by [42, Condition (25.22)], T̂n,h is asymptotically efficient. The same holds true for
T̃n,h.

Proof of Corollary 4.4. In view of the definition of the asymptotic efficiency (see, e.g.,
[42, Lemma 25.23] or [24, Definition 2.4], the asymptotic efficiency ensures the asymptotic
normality. Thus we only need to prove the asymptotic efficiency. To do so, it suffices to
use the asymptotic efficiency of T̂n,h and T̃n,h in Proposition 4.3, the asymptotic efficiency
of the empirical mean Yn and the empirical variance Y 2

n (see, e.g., [22]) together with
the efficiency in product space [42, Theorem 25.50] to conclude to the joint asymptotic
efficiency of (T̂n,h, Yn, Y 2

n ) and (T̃n,h, Yn, Y 2
n ). Finally, we follow the same lines as in the

proof of [22, Proposition 2.5] using the efficiency and delta method [42, Theorem 25.47]
to get the required result. It remains to perform easy computations to get the expression
of the asymptotic variance

σ2 = 1
Var(Y )2 (4(Var(Y g1(X)) − 2Cov(Y g1(X), Y )E[Y ] + E[Y ]2Var(Y ))

+ 4SX(2Cov(Y g1(X), Y )E[Y ] − Cov(Y g1(X), Y 2) − 2E[Y ]2Var(Y ) + E[Y ]Cov(Y, Y 2))
+ (SX)2(4E[Y ]2Var(Y ) − 4E[Y ]Cov(Y, Y 2) + Var(Y 2))).

Proof of Corollary 4.5. It suffices to apply [42, Theorem 25.50].
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