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Theoretical Background

i. Experimental

The typical modulus versus temperature curve for a polymer exhibiting a secondary relaxation is shown by Figure 1. This temperature dependence is strongly related to molecular motions, and in particular to the inter-and intra-molecular bonds [START_REF] Ashby | Engineering materials 2: An introduction to microstructures, processing and design[END_REF]. These bonds can be divided into two categories: primary bonds which consist in strong covalent intramolecular bonds and have a dissociation energy which varies between 50 and 200 kcal/mol, and secondary bonds such as hydrogen bonds, dipole interactions, Van der Waals interactions which can be dissociated much more easily (dissociation energy between 0.5 and 20 kcal/mol).

Figure 1 Modulus versus temperature for a typical polymer

In the lower temperature range the polymer is in the glassy state with intact primary and secondary bonds. As temperature increases, secondary bonds stretch without breaking resulting in a quasi-elastic behaviour of the polymer. In some cases secondary relaxations can occur if the thermal energy is high enough to allow rotation of side groups.

As the temperature is raised further, a much more noticeable relaxation occur, known as the alpha transition or the glass transition which results in a dramatic drop of the storage modulus until the rubbery plateau where the material state comprises intact primary bonds and broken secondary bonds. At even higher temperature, the primary bonds are also broken and the material is decomposed which is noticeable by a new drop of the storage modulus (viscous flow).

ii. Modelling temperature-dependent mechanical properties

Modelling temperature-dependent mechanical properties of Fibre Reinforced Polymer (FRP) goes back to the 1980s, a complete review of such models has been done by Keller, et al. [START_REF] Mahieux | A systematic stiffness-temperature model for polymers and applications to the prediction of composite behavior[END_REF][START_REF] Bai | Modeling of stiffness of FRP composiets under elevated and high temperatures[END_REF]. Among the existing models, many consist in stepped functions connecting experimentally gathered key points such as the glass transition temperature, and E-modulus values chosen in the various regions of the modulus versus temperature curve, cf. Figure 1.

Mahieux, et. Al [START_REF] Mahieux | Property modeling across transition temperatures in polymers: a robust stiffness-temperature model[END_REF], [START_REF] Mahieux | A systematic stiffness-temperature model for polymers and applications to the prediction of composite behavior[END_REF] defined a theoretical model for temperature-dependent E-modulus where they assumed a Weibull distribution to represent the process of bond rupture.
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where T is the temperature and E i (i=1, 2, 3) represents the instantaneous stiffness of the material at the beginning of each plateau or state, as shown in Figure 1. The Weibull coefficients w i corresponds to the statistics of bond breakage. This model successfully correlated experimental data conducted on six different polymers and will be used in this study.

Other models were developed, for instance by Bai, et al. [START_REF] Bai | Modeling of stiffness of FRP composiets under elevated and high temperatures[END_REF] who modelled the temperaturedependent modulus using an Arrhenius-type equation. Gibson, et al. [START_REF] Gibson | Modeling composite high temperature behavior and fire response under load[END_REF] who developed a semiempirical model derived from phenomenological observations, allowing to describe the temperature-dependent modulus from the glass to the rubber state. And more recently, Feng and Guo [START_REF] Guo | A new temperature-dependent modulus model of glass/epoxy composite at elevated temperature[END_REF], [START_REF] Feng | Model for Temperature-dependence modulus of Glass/Epoxy Composite[END_REF], [START_REF] Feng | Temperature-frequency-dependent mechanical properties of epoxy resin and its composites[END_REF] who added a physical meaning to Gibson's model by using the intrinsic growth rate of the number of rubber-state molecule per unit temperature [START_REF] Feng | Model for Temperature-dependence modulus of Glass/Epoxy Composite[END_REF]. Their consideration is based on a population growth model (logistic model). In addition, they defined a new parameter m which controls the symmetry of the glass transition region with respect to the glass transition temperature.

iii.

Sandwich composite beam theory

According to the Timoshenko beam theory, the total maximum deflection ∆ can be calculated as the sum of the deflections due to flexural and shear deformations (∆f and ∆s respectively). For a dual cantilever beam, the equation can be written as follows [START_REF] Gay | Matériaux Composites[END_REF]:
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where F is the vertical load at midspan, L is half the distance between the supports, E and G are the elasticity and shear moduli, I the centroidal moment of inertia and S the cross-sectional area and k is a shear coefficient known as the shear area factor accounting for the fact that the shear stress distribution is not uniform through the thickness. The configuration is shown by Figure 2.

Figure 2 Dual cantilever configuration

In addition, it can be shown [START_REF] Gay | Matériaux Composites[END_REF] that for a sandwich composite beam of width b, composed of two skins of thickness e p with an elastic modulus E p and shear modulus G p , and a core of thickness e c with an elastic modulus E c and a shear modulus G c :

〈 〉 = ² + (Eq.3)
and

〈 〉 = + (Eq.4)
For an isotropic material such as the epoxy adhesive, it can be assumed that:

= (Eq.5)
with is the Poisson's ratio of the core material.

Besides, for an homogeneous rectangular cross section, the shear area factor k is usually chosen equal to 6/5. Yet, Gay [START_REF] Gay | Matériaux Composites[END_REF] gives a more detailed expression when dealing with sandwich beam composites:
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From (Eq.2) to (Eq.6) it is feasible to compute the temperature-dependent bending stiffness of a sandwich composite beam based on the stiffness temperature-dependence of the constituents.

Experiments i. Procedure

The skins were made of an epoxy woven fabric composite with glass fabric reinforcement. Two lay-ups were analysed: [0] 2 and [45] 2 . Additionally, a structural epoxy adhesive was used for the core.
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The composite skins were approximately 0,30mm thick (each ply is 0,15mm thick), and the epoxy adhesive was approximately 1,00mm thick. The sandwich test specimens were manufactured with either the 0° skins, or the 45° skins. Experiments were conducted on a TA Instruments DMA Q800 machine, using either the tensile mode (to characterize the constituent behaviour) or the double cantilever mode to characterize the sandwich beam, between 25°C and 200°C with a heating rate of 5°C/min at a frequency of 1Hz.

ii. Constituents

Figure 3 shows the evolution of the storage modulus of the three constituents plotted against temperature. Within the temperature range considered (25°C-150°C) the adhesive undergoes a complete glass transition. Indeed, the epoxy adhesive is in the glassy state at temperature below 310K with a stable storage modulus of about 3000MPa and in the rubber state at temperatures above 360K with a storage modulus of about 30MPa. The glass transition region starts from about 310K up to 360K with a glass transition temperature of approximately 340K. The evolution of the storage modulus of the composite skins exhibits a different behaviour.

There is no stable region for the storage modulus which decreases over a wide range of temperature from room temperature (298K) to approximately 400K. When temperature is further increased the modulus drops more significantly, which corresponds to the glass transition temperature of the epoxy resin (420K according to manufacturer's datasheet).

Figure 3 Storage modulus of the composite skins and epoxy structural adhesive under tensile mode

iii.

Sandwich beam

The storage modulus of the sandwich test specimens exhibit a behaviour very similar to the epoxy adhesive, with a full transition observed near 350K. At room temperature, the stiffness of the sandwich with 0° skins is higher than the stiffness of the sandwich with 45° skins, hence indicating that at low temperature the bending stiffness is controlled by the skins. At higher temperature, a similar storage modulus is observed, which seems to indicate that beyond the glass transition, the bending behaviour is governed by the core material. 

Numerical Modelling

The model of Mahieux [START_REF] Mahieux | Property modeling across transition temperatures in polymers: a robust stiffness-temperature model[END_REF], [START_REF] Mahieux | A systematic stiffness-temperature model for polymers and applications to the prediction of composite behavior[END_REF] discussed previously was used to model the temperaturedependent storage modulus of the constituents, cf. (Eq.1). The parameters were determined with a non-linear least square fitting method. The evolution of the stiffness of the epoxy adhesive is modelled by taking into account a glass transition near 345K, and a decomposed state near 440K.

E1

As regards to the composite skins for which the storage modulus exhibited a long and slow decrease with increasing temperature, a first transition is taken into account near 350K, and a second one (glass transition) near 430K for the 45° composite skins, and near 480K for the 0° composite skins. The decomposed state is taken into account only for the 45° skins with T 3 = 500K. 

i. Results

Under the dual cantilever mode, the storage modulus of a test sample is determined according to the equation below:

= 1 + 2. 1 + (Eq.7)
With v the Poisson's ratio, L the sample length, h the sample thickness, I the sample moment of inertia, E the elastic modulus, K s the measured stiffness and F c a clamping correction factor. This expression assumes an isotropic homogeneous beam, hence it is likely that this expression is incorrect for the case considered here (sandwich composite beam). In particular, the second term of the expression is determined assuming a constant shear area factor (k=6/5) [START_REF] Osnes | Dynamic mechanical analysis-theoretical considerations on mechanical properties[END_REF], whereas we have seen previously that this factor depends on the skins and core stiffness according to (Eq.6) which vary with the temperature.

In order to get rid of these correction factors, we focus on predicting the bending stiffness K s of the sandwich beam which is experimentally determined as the ratio of the dynamic force by the dynamic displacement. This experimental stiffness is plotted in Figure 6 and compared with the numerical prediction determined by (Eq.2) with K s = F/∆. A temperature-dependent shear area factor according to (Eq.6) is considered. The temperature dependency of the bending stiffness correlates reasonably well with the experimental data. Yet, it can be seen that discrepancies exist in absolute values between the experimental and computed stiffness. Similar observations were made by Deng et al. [START_REF] Deng | Temperature-dependent elastic moduli of epoxies measured by DMA and their correlations to mechanical testing data[END_REF] and Hobbiebrunken et al. [START_REF] Hobbiebrunken | Microscopic yielding of CF/epoxy composites and the effect on the formation of thermal residual stresses[END_REF] when they compared conventional mechanical testing data with DMA data, including in tension mode, cf. Figure 7. Similarly, Ropers, et al. [START_REF] Ropers | A thermo-viscoelastic approach for the characterization and modeling of the bending behavior of thermoplastic composites[END_REF] compared DMA data with the bending stiffness of thermoplastic composites and found good correlations on condition that proportionality factors are applied to the DMA data so that they match bending experiments. These discrepancies exist due to the instrumentation compliance, clamping and experimental conditions, test specimens dimensions, etc. Therefore, it is likely that a proportionality factor needs to be applied to the storage modulus of the composite skins and epoxy adhesive to better represent the actual values of the elastic moduli. Hence, we choose to solve a nonlinear least-square curve-fitting so as to determine the proportionality factors α p (with E p = α p E' p ) and α c (with E c = α c E' c ) needed to match the numerical and experimental bending stiffness from Figure 6. The optimization returns α p = 0.87 and α c = 0.93. The new results are presented in Figure 8. With these small adjustments, the method allows computing the temperature-dependent bending stiffness of the sandwich assembly with a good correlation with experimental DMA data. It also justifies the use of the temperature dependency of the elastic moduli derived from the DMA to compute the bending stiffness.

ii. Discussion on the shear correction factor

It is interesting to notice that the temperature dependency of the shear area factor needs to be taken into account. Indeed, as shown by Figure 9, a constant shear area factor with a value of 6/5 poorly estimates the evolution of the bending stiffness. Numerically, we obtain that at room temperature k≈1,5 while at T = 100°C k≈37,2 and at T=170°C k≈187,6, cf. Figure 10.

Figure 9 Prediction of the bending stiffness of the sandwich composite beam with a temperature dependent shear area factor

It underlines that the higher the temperature, the higher the contribution of the shear displacements to the total deflection of the sandwich beam since the deflection due to shear deformations is proportionally related to k (Eq.2). At temperatures higher than 450K, as E c and G c tends to zero, the shear area factor tends to infinity. As we had noticed, it is important to note that the storage modulus of such a multi-material assembly, determined by the DMA machine is most likely incorrect as (Eq.7) considers a constant value k=6/5. This change of behaviour at increasing temperature has particularly been noticed by Manalo et al. [START_REF] Manalo | Flexural behavior of an FRP sandwich system with glass-fiber skins and a phenolic core at elevated in-service temperature[END_REF]. They observed that the flexural behaviour of a GFRP skin/phenolic core/GFRP skin sandwich system was governed by the GFRP skins up to 80°C (significant contribution to the sandwich stiffness and strength), and by the phenolic core beyond 80°C since the shear modulus of foam-core materials decreases at high temperature [START_REF] Zhang | The effect of temperature on the failure modes of polymer foam cored sandwich structures[END_REF].

iii. Parameters sensitivity

A sensitivity study has been performed to investigate on the influence of the stiffness of the skins and core on the bending stiffness of the sandwich composite beam.

The system of equations (Eq.2) to (Eq.6) leading to the computation of the bending stiffness of the composite sandwich beam as a function of the dimensions of the test sample (ec, ep, b, L) and of the stiffness parameters (E c , E p , G p ) has been modelled with Artificial Neural Networks (ANN). Artificial neural networks consist in modelling complex nonlinear systems that are not easily modelled with a closed-form equation. Here, we want to quickly assess the influence of each parameter on the bending stiffness of the sandwich as a function of the temperature. The neural network is created with the Matlab's neural network toolbox.

Once the neural network has been created, it requires 7 inputs (e c , e p , b, L, E c , E p , G p ) and returns the bending stiffness of the sandwich composite beam as a function of temperature. The sensitivity of each parameter is then easily investigated. Figure 8 considers a variation of +/-10% of each of the stiffness coefficients (E c , E p , G p ) taken separately and plots the absolute variation of the bending stiffness.

For instance, to investigate on the influence of E p , a bending stiffness "K s _E p " is computed thanks to the neural network with several values of E p taken within the range [0,90.E p , 1,10.E p ]. The absolute variation of the bending stiffness is then computed according to (Eq.8). 

Model description

The FE model is built with Abaqus CAE, the static and drive shafts are fully modelled as rigid bodies and the displacement of the mobile shaft is set to 4µm to model the experimental conditions. Tie constraints are applied between the upper and lower composite plies and the machine support.

Fully integrated linear isoparametric continuum elements are known to be too stiff in modelling flexural deformations of a beam. To overcome this shear-locking phenomenon, several possibilities exist: to use second-order isoparametric elements, incompatible mode elements, or reduced-integration elements with sufficiently through-the-thickness elements or with the enhanced hourglass control option [START_REF] Abaqus | Abaqus Documentation[END_REF].

Figure 14 Finite Element Model of the Dual Cantilever Setup

Several elements are compared with various mesh size to assess the mesh convergence, cf. Figure 15. We choose to use C3D8I (incompatible mode eight-node brick elements) with a mesh size of 0.2mm with 6 elements through the thickness of the core and one element through the thickness of each composite ply. Quadratic elements with reduced integration (C3D20R) are expected to be more accurate but are much more costly than the linear elements with incompatible modes. 

Results

The first analysis consists in computing the bending stiffness of the test specimen at several temperatures. The results slightly over-predict the analytical and experimental bending stiffness, cf. Figure 16. This was expected as based on our mesh convergence study, our model tends to slightly over-predict the reaction force, hence the bending stiffness. • USE of DMA data in a FE code to predict the bending stiffness and stress distribution within the sandwich assembly
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 4 Figure 4 Storage modulus evolution of the sandwich samples under the dual cantilever mode

Figure 5 skins under tensile modes 5 .
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 6 Figure 6 Prediction of the bending stiffness of the sandwich composite beam with elastic moduli equal to storage moduli with (a) 0° Composite skins and (b) 45° Composite skins

Figure 7

 7 Figure 7 DMA data needs to be corrected to fit mechanical testing data in the work of Deng, et al. [20]
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 8 Figure 8 Prediction of the bending stiffness of the sandwich composite beam with shifted DMA data with(a) 0° Composite skins and (b) 45° Composite skins
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 10 Figure 10 Evolution of the shear area factor with regards to temperature
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 11 Figure 11 Flexural ∆ f and shear ∆ s deformations versus temperature
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 12 Figure 12 Variation of the bending stiffness of the sandwich beam with regards to a +/-10% variation of the stiffness of the skins (E p , G p ) and core (E c )Figure12underlines that at temperature lower than T g , the stiffness of the skins has a predominant influence on the bending stiffness of the sandwich, while at temperature higher than T g , the stiffness of the core plays a more influent role. The shear modulus of the skins G p has barely any influence at all.[Add the influence of the test specimen dimensions]
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 15 Figure 15 Mesh convergence as a function of the element types
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 16 Figure 16 Comparison between Experimental DMA Data, Analytical Model and FE Model

•

  Analytical prediction of the temperature-dependent bending stiffness of a sandwich assembly based on DMA data • Numerical characterisation of the temperature-dependence of the shear correction factor

  

Table 1 Parameters used to fit the experimental data according to the model presented by Mahieux [8]

 1 

			E2	E3	T1	T2	T3	w1	w2	w3
	Comp45	8717	3000	502	345	430	450	4	35	20
	Comp0	11055	9423	-	357	483,5	-	6,73	17,34	-
	AXSON	3092	35	-	340	438	-	21,9	61,4	-