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1 INTRODUCTION 

ABSTRACT 
The method originally developed by Kalnajs for a numerical linear stability analysis 
of round galactic discs is implemented in the regimes of non-analytic 
transformations between position space and angle-action space, and of vanishing 
growth rates. This allows effectively any physically plausible disc to be studied, 
rather than only those having analytic transformations into angle-action space 
which have formed the primary focus of attention to date. The transformations are 
constructed numerically using orbit integrations in real space, and the projections of 
orbit radial actions on a given potential density basis are Fourier-transformed to 
obtain a dispersion relation in matrix form. Nyquist diagrams are used to isolate 
modes growing faster than a given fraction of the typical orbital period, and to assess 
how much extra mass would be required to reduce the growth rate of the fastest 
mode below this value. To verify the implementation, the fastest m = 2 growth rates 
of the isochrone and the Kuzmin - Toomre discs are recovered, and the weaker m = 2 
modes are computed. The evolution of those growth rates as a function of the halo 
mass is also calculated, and some m = 1 modes are derived as illustration. 
Algorithmic constraints on the scope of the method are assessed, and its application 
to observed discs is discussed . 

. Key words: instabilities - methods: analytical - methods: numerical - galaxies: 
kinematics and dynamics - galaxies: structure. 

Theoretical studies of the stability of thin stellar discs provide useful constraints on models of galactic formation and dynamics. 
Disc models can be excluded as unrealistic if they are found to be very unstable, and the results of galaxy formation studies 
can be clarified where they lead to models close to marginal stability. When applied to observed discs, stability analysis 
provides a unique tool to probe what fraction of the mass is in luminous form via the requirement that there be enough extra 
matter to make the observed distribution stable over a period comparable to the age of the galaxy. 

Three main approaches have been adopted for disc stability analysis: direct N-body simulations, N-body simulations where 
the bodies are smeared on to a biorthonormal basis, thereby solving Poisson's equation implicitly, and linear modal analysis. 
The first has been widely used, initially by Hohl (1971), and more recently by, e.g., Athanassoula & Sellwood (1985). It 
provides a flexible tool of investigation which can be carried into the non-linear regime. These simulations, however, provide 
insight into instabilities only in the statistical sense, and generally probe poorly the marginal stability regime. This drawback 
has recently been addressed by Earn & Sellwood (1995), who developed the second approach of solving Poisson's equation 
through a biorthonormal basis. The stability of stellar systems has also been explored for spherical systems via a global 'energy 
principle' (see Sygnet & Kandrup 1984), but this approach has not been successfully implemented for discs because of 
resonances (Lynden-Bell & Ostriker 1967). Moreover, the method usually provides stability statements which are of little 
practical use, since no time-scale for the astrophysically relevant growth rates is available. 
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Stability analysis of round galactic discs 617 

The third method, linear modal analysis (Kalnajs 1977; Zang 1976; Hunter 1993), is used here. In spite of the obvious 
limitation to perturbations of small amplitudes, it has several potential advantages. In this approach the integro-differential 
equation resulting from self-consistent solutions of the Boltzmann and Poisson equations is recast into a non-linear eigen
problem using an appropriately defined orthonormal basis. The method, pioneered by Kalnajs (1971, 1976, 1977) on the linear 
stability of galactic discs, involves the formulation of the dynamical perturbed equations in angle-action coordinates and the 
restriction to a (finite) set of perturbed densities which diagonalize Poisson's equation in position space. Kalnajs' original work 
(Kalnajs 1971) concerned the stability of the isochrone disc, for which explicit transformations between angle-action and 
position-velocity coordinates exist. Zang (1976) studied the self-similar Mestel discs in the same way. More recently, the 
method was implemented by Hunter (1993) (via repeated evaluation of elliptical integrals) for the infinite Kuzmin-Toomre 
disc. The approach of these authors involved calculating explicit transformations between angle-action variables and posi
tion-velocity variables, and was therefore restricted to a very limited set of simple analytic discs. Also recently, the relevant 
angle-action integrals were computed by quadrature by Weinberg (1991), and by Bertin (1994) while studying the stability of 
spherical systems for which the Hamiltonian is separable. Finally, Vauterin & Dejonghe (1996) carried out a similar analysis 
for discs while performing the whole investigation in position space. 

Here, the first step of mapping the distribution function into angle-action space is implemented numerically by calculating 
the appropriate transformations from the results of integrating unperturbed orbits in the mean field of the galaxy. This then 
allows considerable freedom in the initial equilibrium to be studied, including the prospect of applying linear stability analysis 
to distribution functions recovered for observed galaxies. This method is not restricted to integrable potentials, and it could 
be generalized to three dimensions. It can, in particular, be implemented for measured distribution functions, where the 
potential is deduced from the rotation curve. 

In Section 2, Kalnajs' matrix method is recovered following an indirect route corresponding to a rewriting of Boltzmann's 
and Poisson's equations directly in action space. The stability criteria are then reformulated in a form suitable for numerical 
evaluation of the matrix elements in Section 3. Details of the numerical method are presented, and its range of validity is 
discussed. Section 4 contains results of calculations for the isochrone and the Kuzmin-Toomre discs. These are in agreement 
with those found by Kalnajs (1978), Athanassoula & Sellwood (1985), Hunter (1993) and Earn & Sellwood (1995). Prospects 
and applications to observed data as probes of dark matter are sketched in Section 5. 

2 LINEAR STABILITY ANALYSIS REVISITED 

Linear stability analysis concerns the dynamical evolution of initially small perturbations in their own self-consistent field. The 
derivation (see, e.g., Kalnajs 1977 and Sellwood & Wilkinson 1993) of the resulting integro-differential equation is sketched 
here, putting the emphasis on a coherent description in action space. This analysis is to be contrasted with that of Vauterin 
& Dojonghe (1996), who chose to implement stability analysis for discs in position space alone. The resulting dispersion 
relation, equation (2.17), is fully equivalent to Kalnajs' equation K-15, but the intermediate integral equation, equation (2.11), 
also provides a connection with orbital stability analysis (Lynden-Bell 1979; Pichon & Lynden-Bell 1992; Collett 1995). 

2.1 The integral equation 

The Boltzmann-Vlasov equation, 

of/at + [H, F] =0, (2.1) 

governs the dynamical evolution of an ensemble of collisionless stars. Here H is the Hamiltonian for the motion of one star, 
F is the mass-weighted distribution function in phase space, and the square bracket denotes the Poisson bracket. Writing 
F =Fo + f, and 'I' = 1/10 + 1/1, where Fo and 1/10 are the unperturbed distribution function and potential respectively, and lineariz
ing equation (2.1) inf and 1/1, the perturbed distribution function and potential, yields 

of/at + [HoJ] - [1/1, Fo] =0. (2.2) 

According to Jeans's theorem, the unperturbed equation, [Ho, Fo] =0, is solved ifFo is any function only of the specific energy, 
e, and the specific angular momentum, h. 

Following Lynden-Bell & Kalnajs (1972), angle and action variables of the unperturbed Hamiltonian Ho are chosen here as 
canonical coordinates in phase space. The unperturbed Hamilton equations are quite trivial in these variables, which makes 
them suitable for perturbation theory in order to study quasi-resonant orbits. The actions are defined in terms of the polar 
coordinates, (R, ()), by J = (JR , Jy ), where 

and (2.3) 
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618 C. Pichon and R. C. Cannon 

Here [R] is a function of the radius, R, the specific energy, B, and the specific angular momentum, h,_ given by 
[R] =.J2B + 2t/1o(R) _h2/R2. The angle between apocentres is e =fh/R2[R]-1 dR. For a radial period TR , and a pair of 
azimuthal and radial epicyclic frequencies Q and K, given by Q = e/TR and K = 2rc/TR the phase-angles conjugate to JR and hare 
q>=(q>R' q>o), where 

and (2.4) 

The stationary unperturbed Boltzmann equation (2.1) is solved by any distribution function of the form F=Fo(J), since 
[Ho,J] =0. 

For growing instabilities, f and t/I are both taken to be proportional to e -irot, OJ having a positive imaginary part. When 
expanded in Fourier series with respect to the angles q>, equation (2.2) becomes, after simple algebra (Kalnajs 1977), 

(2.5) 

where m is a integer vector with components (t', m), Qt=m -1m .!!=Q +t'K/m,!! stands for (K, Q), and Qp=OJ/m. Here t/lm 
andfm are the Fourier transforms of t/I andfwith respect to (q>R' q>o); for instance, 

(2.6) 

Poisson's integral relates the potential, t/I, to the density perturbation: 

t/I(R', e')=4rcG dR de dVR dvo. f f(R, v) 

IR-R'I 
(2.7) 

This equation may be written in order to make explicit the contribution from the interaction of orbits. Here again angle-action 
variables are useful, as a given unperturbed orbit is entirely specified by its actions. It is therefore straightforwrd to identify 
in Poisson's integral the contribution corresponding to the interaction of given orbits. Re-expressing this equation in terms of 
angles and actions (cp, J), using Parseval's theorem and taking its Fourier transform with respect to cp, leads to 

(2.8) 

where t/lm andfm are given by equation (2.6), and 

A .=-- --------- d2 q>' d2 q>. 
1 f exp i (m ' • cp' - m . cp) 

mm (2rct IR-R'I 
(2.9) 

The double sum in equation (2.8) extends in both t' and m from minus infinity to infinity, where the radii R(cp, J) and 
R(cp', J') are re-expressed as functions of these variables. Now IR-R'I depends on q>o and q>~ in the combination 
q>~-q>o=Aq> only. As lo(q>~q>o)!o(Aq>q>o)l=l, the order of integration in equation (2.9) may then be reversed, doing the 
q>o integration with Aq> fixed. This yields 2rcbmm ., so m' becomes (t", m) in the surviving terms. This gives for equation 
(2.9) 

A .=-- dA drn' drn . 
2rcbmm • f exp i(mAq> - t" q> ~ + t'q>R) 

mm (2rc)4 IR-R'I 'f'R 'f'R 
(2.10) 

Each m mode therefore evolves independently. The dependence on m will be implicit from now on. So, for example, t/I t is the 
Fourier transform of t/I (R, e) with respect to both q>R and q>o. 

Putting equation (2.5) into equation (2.8) leads to the integral equation 

(2.11) 
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This equation is the integral equation for the linear growing mode with an m-fold symmetry of a thin disc. Equation (2.11) was 
later approximated by Pichon & Lynden-Bell (1992), Collet (1995) and Lynden-Bell (1994) to analyse the growth of the 
perturbation in terms of a Landau instability. . 

2.2 The dispersion relation 

The perturbed distribution function and potential are now expanded over a potential-distribution basis {f(n)}n, {tjJ(n)}n as 

feR, V) = L an/(n)(R, V), and (2.12) 

where the basis is assumed to satisfy Poisson's equation (2.7), which when written in action space has Fourier components 
obeying (following equation 2.8 and given equation 2.10) 

(2.13) 

For basis functions scaling like exp (im ' 8) (preserving the axial symmetry described above), equation (2.6) applied to, say, 
t/I(n)(R) exp(im '8) gives for the Fourier mode t: 

(2.14) 

where equation (2.4) has been used to define the relative azimuthal increment J8({JR) =({Jo - 8. 
Expanding t/I over this basis (using the same expansion for all ts) according to equation (2.12), inserting this expansion into 

equation (2.11), multiplying by fr)' (J), integrating over J, and summing over t yields 

Since fr.) belongs to the basis, it satisfies equation (2.13), and consequently 

Requiring that equation (2.16) has non-trivial solutions in {an} leads to the dispersion relation 

D(w)=detIA-M(w)1 =0, 

(2.15) 

(2.16) 

(2.17) 

where the matrix M is defined in terms of its components (n ',p) by the bracket on the right-hand side of equation (2.16), while 
the matrix A corresponds to the identity if the basis (t/ln,fn) is biorthonormal, or to a matrix with components (n,p) by the 
bracket on the left-hand side of equation (2.16) otherwise. Equation (2.17) was first derived in this context by Kalnajs (1977). 
In order to approximate the behaviour of a halo, a supplementary parameter qE]O, 1] is introduced: 

Dq(w) =det IA -qM (w)1 =0, 

as discussed below. 

2.3 Unstable modes and Nyquist diagrams 

(2.18) 

The dispersion relations (2.18) give, for each m, the criterion for the existence of exponentially growing unstable modes of the 
form exp( - iwt + im8). They are functions of a free complex parameter w corresponding in its real part to m times the pattern 
speed of the growing mode, Qp, and in its imaginary part to the growth rate of the perturbation. The search for the growing 
modes is greatly facilitated by the use of Nyquist diagrams. Consider the complex w plane and a contour that traverses along 
the real axis and then closes around the circle at 00 with Im(w) positive. The determinant Dq is a continuous function of the 
complex variable w; so, as w traces out the closed contour, Dq(w) traces a closed contour in the complexDq plane. If the Dq(w) 
contour encircles the origin, then there is a zero of the determinant inside the original contour, and the system is unstable. In 
fact, a simple argument of complex analysis shows that the number of loops around the origin corresponds to the number of 
poles above the line Im(w)=11 = constant. An intuitive picture of how the criterion operates on equation (2.17) is provided by 
the following thought experiment. Imagine turning up the strength of qG for the disc (i.e., tum on self-gravity, which is 
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physically equivalent to allowing for the gravitational interaction to play its role; alternatively, vary q, the ratio of relative halo 
support). Starting with small qG, all the Mnp are small, so for all ws the determinant Dq(w) remains on a small contour close 
to detlAI. As qG is increased to its full value, either the Dq contour passes through the origin to give a marginal instability or 
it does not. If it does not, then continuous change of qG does not modify the stability, and therefore the self-gravitating system 
has the same stability as in the zero qG case: it is stable. If, however, it crosses, and remains circling the origin, then it has 
passed beyond the marginally stable case and is unstable. This picture is illustrated in the next sections, where the image of 
the complex line mQp + il'/, QpE] - 00, 00[, is plotted for various values of 1'/. 

3 NUMERICAL IMPLEMENTATION 

3.1 Method 

Stability analysis, as implemented in the previous section, allows the treatment of a wide range of potentials and distribution 
functions which, in general, will not afford the explicit transformations between angle-action variables and velocity-position 
variables. 

Spline interpolation for tabulated potentials and distribution functions is used to compute the transformation of variables 
by numerically integrating orbits in the given potential. The whole calculation is performed on a grid of points in (Ro, Vo) 
space, where Ro is the radius at apocentre, and Vo is the corresponding tangential velocity. As may be seen from Fig. 4 in 
Section 3.2, a 40 x 40 grid is adequate for the discs considered here. 

For each point in this grid, three orbits are calculated, one starting at the grid-point itself, and the others at small deviations 
in ho =Ro Vo, and along ho = constant. The angles and actions for these orbits are used later to calculate numerical derivatives 
of the distribution function. A fourth-order Runge-Kutta integration scheme is employed for the orbits, stopping at the first 
pericentre for all but the most eccentric orbits where more than one oscillation is needed to give sufficient accuracy in the 
actions. Further points on the orbits corresponding to grid vertices are then calculated at exact subintervals of the orbital 
period. The Fourier components 1/17 of a particular basis element along an orbit equation (2.14) are then given by 

(3.1) 

where t = <PR/K, and 

(3.2) 

Numerically, this simply corresponds to taking a discrete Fourier transform (DFT) over the resampled points. The symmetry 
of an orbit means that although the argument is complex, the result is purely real. 

The matrix element defined in equation (2.16) is rewritten in terms of (Ro, Vo) and truncated in t: 

(3.3) 

where the I/Ir) are now surfaces in (Ro, Vo) space given by the tth-order term of the DFT of the orbit at Ro, Vo. 
The inclusion of retrograde stars may be effected transparently by specifying a grid in Ro, Vo which includes negative Vo or, 

more efficiently, by noting that 

(3.4a) 

1 fn =; 0 cos [t<pR(h) + mt5<p (h)]c(n){R [<pR(h)]} d<pR' (3.4b) 

=I/I~)t(h); (3.4c) 

so, with the appropriate sign switching, the same set of orbits and Fourier modes may be used as for prograde stars. 
Having calculated the derivatives of the distribution function with respect to I and h by finite differences across the slightly 

displaced orbits described earlier and the Jacobian a (lh)fa (Ro Vo) in the same manner, the problem of computing the matrix 
elements of equation (3.3) reduces to one of integrating quotients of surfaces on the Ro, Vo grid. It is worth noting that, 
although it is the steps of the calculation up to this point which provide the generality of the implementation, their 
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computational cost is relatively slight, amounting in total, for example, to about 1 min on a workstation with a specFp92 of 
100. 

For vanishing growth rates, the integrand in equation (3.3) is a quotient of surfaces with a real numerator but a denominator 
which may vanish along a line within the region of integration. The integral then exists only as a principal-value integral. 
Rather than attempting a brute-force discretization, we approximate both numerator and denominator by continuous 
piecewise fiat surfaces and employ analytic formulae, or their power-series expansions, for each fiat subsection. Each square 
of the Ro, Vo grid is treated as two triangles. According to the magnitudes and slopes of the two surfaces over a given triangle 
there are six different approximations to be used for each component of the integral. For modes with finite growth rates, the 
integrand in equation (3.3) is of a quotient of surfaces with a real numerator but a complex denominator, and this prescription 
still holds. The extra generality afforded yields a solution which handles transparently the marginal stability case, where the 
resonances can be infinitely sharp. 

The integration and summation then yields, for each Qp and y/, an n x n matrix M. Marginal stability corresponds to the 
vanishing of det II - M I. As described in Section 2.3, it is convenient to use Nyquist diagrams to locate the critical points: 
matrices corresponding to about 100 values of OJ are calculated for lines of constant Y/. Provided that the sampling is good 
enough, the number of times the line det 11- M I encircles the origin in the complex plane gives the number of zeros above the 
initial line mQp + iy/. An example of Nyquist diagrams for the isochrone/9 disc (Section 4) is illustrated in Fig. 1 and shown 
more quantitatively in Figs 2 and 3. The three-dots-dashed curve corresponds to Y/ = 0.16 and does not encircle the origin (or 
rather it loops once clockwise and once anticlockwise), whereas the other two curves (Y/ = 0.12 and 0.14) do, indicating that the 
growth rate for the fastest growing bisymmetric instability of this disc is between 0.14 and 0.16 . 

..... 
................ ~.- .... '-. " .~.~'). 

";"'7'-'/ 
..... - ..... _ .... _ ... _' .... -- .. ...: .... 

\ -----
" 

' ..... ......... ...... 

Figure 1. Nyquist diagram for the fastest growing mode of an isochrone/9 model for growth rates '1 = 0.12 (dashed curve), '1 = 0.14 (dot
dashed curve) and '1 = 0.16 (dot-long-dashed curve). The magnification shows that the first two curves do enclose the origin, whereas the 
third does not, indicating that the true growth rate is between 0.14 and 0.16. 
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Figure 2. Nyquist diagram for the fastest growing mode of an isochrone/9 disc with curves labelled as in Fig. 1. The dotted lines join points 
for the same ro. 
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-0.5 -0.5 

-1.0 -1.0 

-1.0 -0.5 0.0 0.5 1.0 -1.0 -0.5 0.0 0.5 1.0 

Figure 3. Nyquist diagram for the fastest growing mode of an isochrone/9 as in Figs 1 and 2. A logarithmic scaling has been applied near the 
origin mapping r-->loglQ(1 + lO"r)/IX, allowing the full topology to be seen more easily. 

This method is easy to apply to verify calculations where the growth rate and pattern speed are already known, but becomes 
more time-consuming when treating discs with unknown properties. Many automatic schemes can be envisaged for locating 
zeros in the complex plane but, since computing the matrices is the slowest part of the calculation, we have found it most 
efficient to manage the search by hand with an interactive tool for examining Nyquist diagrams for different values of q 
(Section 2.3). With a little experience, the zeros can be efficiently located even from poorly sampled diagrams with spurious 
loops which would easily lead to confusion in automated procedures. 

3.2 Validation 

There are two distinct types of errors to be assessed in this analysis: numerical errors arising from the discretization of integrals 
and from machine rounding, and truncation errors relating to the use of small finite bases, limited Fourier expansions and the 
calculation of only the inner parts of infinite discs. 

While, in principle, constraining the first type of errors is purely routine, it is worth noting that both the bases considered 
here require the use of arbitrary precision languages (such as be) for their evaluation. As noted by Earn & Sellwood (1995), 
Kalnajs' basis requires the use of about 50 figures precision to get the first 30 basis elements to five figures. The problem, 
however, lies only in evaluating the polynomial terms, because the coefficients are large and induce substantial cancellations. 
Qian's basis (1992) not only requires extended precision to evaluate a single element, but it is also extremely close to being 
singular. 

Besides evaluation of the basis elements, the only other part requiring special care is in the numerical derivatives of the 
distribution function with respect to J and h, where a tight compromise must be made between the desire for a small interval 
to give an accurate derivative, and the loss of significance in the differences between angles and actions calculated for very 
close orbits. Nevertheless, a straightforward Runge-Kutta scheme for the orbits remains adequate in all the cases studied 
here. 

© 1997 RAS, MNRAS 291, 616-632 
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Stability analysis of round galactic discs 623 

The second class of errors - those arising from the truncation of equations (2.17) - are best assessed by simply recomputing 
the same quantity with more basis functions, more Fourier harmonics, or a larger disc. The results of these tests for all the 
truncated quantities can be seen in Figs 4 and 5. All these results are for the isochrone/9 model first studied by Kalnajs (1976) 
with the n = 7 series of Kalnajs' basis functions, which is further discussed in Section 4. Since the calculation of the matrix 
M (OJ) in equation (2.18) is the most computationally intensive operation, the self-gravity parameter q is taken instead of the 
growth rate '1 as a convergence criterion. The q plotted in the figures is that which satisfies equation (2.18). It is found by 
bisection with respect to the winding number of the Nyquist diagram. A value q = 1 for the expected exact growth rate (given 
by Kalnajs 1978) is the asymptote towards which the calculation should converge when the appropriate range of parameters 
have been found. 

Fig. 4 shows how the sampling affects the result when the initial Ro, Vo grid has the same number of points in each direction. 
The different lines in this and subsequent figures indicate how q converges for different sizes of basis. The figure shows that 
for this disc, a sampling with a 40 x 40 grid reduces the sampling errors well below those from the basis truncation. The right
hand panel shows how the truncation of the disc influences convergence for different sizes of basis. If the instability is localized 
to the inner parts of the disc, including more of the outer regions should not affect the result. The behaviour seen here is due 
to stretching of the basis when Rmax is increased, so more functions are required to sample the inner regions to the same 
resolution. If, however, enough functions are used, no change is seen beyond about Rmax=4.5. 

1.01O"'-~~---~--'---~---' 

1.005 

18 

8~:::::==:==-::=~~:=:: 
7 .............................................................................. . 

1.000 

CT 0.995 

0.990 

0.985 6 ............................................................................... . 

0.980L-___ ......... _~_~ __ ~..-.l 

20 30 40 50 60 70 
no of points in r and v 

1.02...-~--..--~--~--~--, 

":::. 

1.00 ':::::"/IIII!""""" 

CT 0.98 

0.96 

0.94L-~ __ ......... ____ ~ __ ..:.....~ 

4 5 6 
Rmax 

7 .8 

Figure 4. The self-gravity parameter, q, as a function of the grid sampling, and the disc truncation. Data are shown for bases of various sizes 
as labelled. In the right -hand panel, q is shown as a function of the truncation radius of the disc for different sizes of basis as labelled. More 
functions are needed for convergence with larger R, because the inner, dominant, part of the disc is less well sampled when the basis is 
stretched over a larger domain. As with all the figures in this section, the disc is Kalnajs' isochrone/9 model. The basis is Kalnajs' 
biorthonormal set with k = 7. 
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Figure 5. The dependence of the self-gravity parameter, q, upon the order of the basis, the number of functions used in the calculation, and 
the number of radial harmonics. The left-hand panel shows q against the basis size for different bases from Kalnajs' set, labelled by the 
corresponding k parameter. In the right-hand panel, 12 functions were used, with the number of radial harmonics on the abscissa taken on 
either side of a central value as labelled on the lines. Centring the harmonics on 2 (when looking for bisymmetric instabilities) shows 
appreciably better convergence than taking equal numbers of positive and negative harmonics (centre 0). 
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As remarked by Earn & Sellwood (1995), choosing an appropriate basis for a given instability has a significant effect on the 
number of basis functions necessary to resolve the mode. This may be seen in Fig. 5 for Kalnajs' set of biorthono"rmal bases 
with 4 -:::;,k -:::;, 10. 10 functions with the k = 4 basis are required to give the same error in q as achieved with only six functions in 
the k = 10 basis. Kalnajs remarks that some economies may be made by not using the same number of positive and negative 
radial Fourier modes but by centring the range on m, the order of the instability. This is illustrated in the right-hand panel, 
where the abscissa gives the number of radial modes on each side of a central value as labelled. The computational load is 
almost directly proportional to the number of radial modes to be used, so this effect is well worth exploiting. Developing a 
specific basis for different thin discs also speeds up the calculation, by reducing the number of functions required for 
convergence, but it is not necessary. Any reasonable basis will get there in the end, and the feasibility of the resulting 
computations considerably enhances the generality of this approach. Finally, Fig. 6 illustrates the convergence of the shape of 
the mode as a function of the number of basis functions. 

4 APPLICATION: THE ISOCHRONE AND KUZMIN-TOOMRE DISCS 

The versatility of the algorithm for linear stability described above is now illustrated while recovering growth rates and pattern 
speeds of previously studied discs with old and new distribution functions, finding the modal response - in position space and 
in action space - of these discs both for bisymmetric and lopsided modes. 

4.1 The equilibria 

Three families of discs are studied here: two corresponding to equilibria for the isochrone disc (Henon 1961), and one for the 
Kuzmin-Toomre mass model (Kuzmin 1956). The isochrone disc is defined by its potential, l/I=GM/(b +rb), where 
r~ =R z + bZ• The corresponding surface density is ~ =Mb {In[(R + rb)/b] - R/rb}/(2nR3). The Kuzmin-Toomre potential is 
defined by l/I=GM/rb, and the corresponding surface density is ~=Mb/21tr~. Miyamoto (1974), followed by Kalnajs (1976), 
Athanassoula & Sellwood (1985) and Pichon & Lynden-Bell (1996), chose specific forms of distribution functions, assuming 
simple algebraic Ansatz for its expression in (8, h) space. Historically, these models were first used to construct families of 
maximally rotating discs (e.g., the Miyamoto/mM disc models - Hunter 1993), while for others, counter-rotating stars were re
introduced by simple, though somewhat arbitrary, tricks (Kalnajs 1978) described by Earn & Sellwood (1995). In this paper, 
the Kalnajs isochrone/mK models are implemented in order to recover Kalnajs' (1978) first linear stability results on 
differentially rotating discs. To demonstrate the flexibility of the method, the truncated version of Hunter's Kuzmin-Toomre/ 
mM models is also constructed, and the stability of the equilibria given by Pichon & Lynden-Bell (1996) is analysed. 

Kalnajs' distribution family reads (in units of b and G = 1) 

where 

0.0 '----_ 

-0.5 

:8 -1.0 

a 
'is. ! -1.5 

-2.0 

-2.5 

~~ ! ! ! ! ! ! ! ! ! ~ 
/", ••• ,. I'" 

/"""" ..... , . .. 
/""' I , ••• I • 

............. , I •••• 

........--. . . . . , 
.............. .. 

............ I • 

......... I • • ...----. ..-..... 
.. 

-8.0,--~_~_~~_~_-,-~~--, 

o 2 4 6 B 10 12 14 
number of functions 

0.4 

0.2 -;:=::: ::::::::: 
~9gegeee8lJe 

0.0 

i 
11 .(l.2 

..s .(l,4 

.(l.6 

.(l.B 

-1.0 0'--~2-~4~-'-6 -~B---:1:'7:0--:':12:---::1":"4--' 
number of functions 

(4.1) 

(4.2) 

Figure 6. The amplitude (left-hand panel) and the phase (right-hand panel) of components of the critical eigenvectors as a function of the 
number of basis functions. The rapid convergence of the shape of the mode appears clearly. 
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and 

log(r +)1 + r2) - rl)1 + r21 
~W= . 

27tr 3 ( - 1 - )1 + r2) - m r-a/(x' -I) 

(4.3) 

Here Pm stands for the Legendre polynomial of order m. Pichon & Lynden-Bell's distribution family for the isochrone disc is 
given by 

(4.4) 

with L (s) =logUs2 -1 +s) + )S2 -lis. Its contours for mp=4 are illustrated in Fig. 7, while the Q profiles are given by 
Pichon & Lynden-Bell (1996, fig. 5). Finally, Miyamoto's distribution is 

fM(e, h)= (-e) 2FI -m, -2-2m, -, - , 
(2m + 3) 2 + 2m ( 1 _h2) 
~2 2 ~ 

where 2FI is a terminating hypergeometric function of the second kind. 

4.2 Characteristics of the linear wave 

4.2.1 Bisymmetric m =2 modes 

(4.5) 

The pitch angle of the spiral response is commonly defined as cot (i) = <00/0 10g(R) )0' where O=O(R) at the crest of the spiral 
wave. In practice, it is best to calculate tan (i) = < ° 10g(R)/oO)R since R =R (0) is a bijection in [0, 27tlm[. Another useful set of 
quantities are defined by the radius, Rl/2' (resp. the angle 01/2) at which the spiral response has decreased to half its maximum 
amplitude. The winding number nl/2 = 01/2/(27t) yields a measure of the winding of the wave: the larger nl/2 is, the more wound 
it is. Comparing the position of the resonances and Rmax to RI/2 provides the means to assess whether the truncation of the disc 
is likely to have generated spurious cavity waves. Specifically, it is required that Rl/2 < ROLR <Rmax> so that the wave is well 
damped by the outer Lindblad resonance before the disc is truncated. Numerical simulations have suggested that Rl/2 - RCOR ' 

Both statements are verified here for instance in Fig. 10 (resp. Fig. 11), which gives the linear response of a mK =7 and a 
m K = 11 isochrone disc (resp. m K =5 Kuzmin disc) for its first growing mode. These perturbations display the usual bar-shaped 

c: 
.2 
U 
o 

-0.2 0.0 

Distribution Function 

0.2 0.4 
momentum 

0.6 

> 

0.8 1.0 2 3 4 5 
R 

Figure 7. Left-hand panel: isocontours of the mp=4 distribution function in action space. The sharp break at zero momentum is an artefact 
of Kalnajs' trick which was used here to incorporate counter-rotating stars; right-hand panel: same isocontours for the prograde stars only 
in (Ro, Vo) - apocentre, velocity at apocentre - space. These variables are those used throughout the calculation to label the orbits. Note the 
envelope corresponding to the rotation curve of that galaxy. It appears clearly in this parametrization that in this galaxy most orbits are of 
low ellipticity. 
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central response with a loosely wound spiral response further out. Fig. 12 gives the evolution of cot (i), R l/2 , nl(Z' Q p and 1] as 
a function of the Toomre number Q of the Kalnajs /mK discs. Tables 1-3 give the growth rates and pattern speeds of the /mK, 
Imp and /mM families. Note that for the new Imp family the bar modes given in Table 2 again have pattern speeds well above 
the maximum of Q - K/2, and hence do not display inner Lindblad resonance. Note also that the more compact Kuzmin
Toomre potential has larger growth rates and pattern speeds, as expected since the dynamical time is shorter and the self
gravity is enhanced for those discs. Table 4 gives the growth rates for the second and the third growth rate of the m K discs. Note 
that the growth rate of the second fastest growing mode of a m K = 12 model was found by this method to equal 
0) + i1] =0.461 + 0.145i, rougblywithin the error bars given by Earn & Sellwood (1995). Note that the number of radial nodes 
for these slower modes increase with the rank in stability (as illustrated in Fig. 16 for an m = 1 mode discussed in the next 
subsection), which is consistent in so far as winding decreases self-gravity. Note also the small relative error between the 
growth rates recovered for the Myamoto/Hunter models and those given by Hunter (1993) for the Kuzmin-Toornre discs. 
Small residual discrepancies are expected, given that Hunter's discs are infinite, whereas those studied here are truncated at 
R = 5. Fig. 8 gives for the m K and mp families the evolution of the first growing mode as a function of the Toomre Q number 
(mass-averaged in the inner region R < 2) of these discs and 'the mass in the halo' as parametrized by q. An new attempted 
fit of a combination of Q and q is also given in Fig. 9 for both distributions; the relative dispersion illustrates the well-known 
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Figure 8. The variation of the m = 2 growth-rate (top-left panel) and the pattern speed (top-right panel) of an isochrone/mK family as a 
function of the self-gravity parameter q and the Toornre number Q. The bottom panels show the same results for the isochrone/mp family. 
The precision in the growth-rates - at fixed truncation in the basis - drops for lower values of Q, since these modes are more centrally 
concentrated. 
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Figure 9. Fits to the evolution of the m=2 growth rate and the pattern speed of an isochrone/mK (marked Kalnajs) and an isochrone/mp 

(marked DLB) family as a function of a linear combination of the self-gravity parameter q and the Toomre number Q. The left-hand panel 
minimizes the dispersion in lJ, whereas the right-hand panel minimizes that in w. The best fits are obtained for different linear combinations 
of Q and q. The solid line for lJ is lJ = - 0.05 - 0.25 (Q6'q) and that for w: w = 0.56 - 0.46 (Q - q). 
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Figure 10. The density response corresponding to the fastest m = 2 growing mode of the isochrone!7 and isochrone/ll model. Note that the 
colder /11 model yields a more tightly wound spiral, as shown quantitatively in Fig. 12. This is expected, since in the locally marginally radially 
unstable regime, the disc response should asymptotically match that of unstable rings. Its spiral response is also more centrally concentrated 
than that of its hotter counterpart. The solid circle corresponds to R ,rz , the radius at which the wave has damped by a factor of 2, the dotted 
circle to corotation resonance, the dashed circle to the outer Lindblad resonance, and the outer circle to Rmax = 5. 

fact that the stability does not depend only on a simple combination of these numbers. These curves seem to be in qualitative 
agreement with those given by Vauterin & Dejonghe (1996) for different disc models. Here, too, the pattern speed at fixed 
growth rate is a decreasing function of the Q number (ClOp/ClQ" < 0). The conjecture of Athanassoula & Sellwood (1985) of 
an asymptotic value of Q ~ 2 for marginal stability of fully self-gravitating discs seems also consistent with these results. 
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Figure 11. Same as Fig. 10 for a Myamoto-Hunter/3 model. Note 
that the response is much more centrally concentrated, since the 
outer circle is Rmax = 3. This is expected, since the Kuzmin-Toomre 
potential is more compact than the isochrone. 

Table 1. m = 2 growth rates and pattern speed of 
the isochrone/mK model. 

The isochrone/mK model: bisymmetric mode 

Model mOp '1 

6 0.34 0.075 
7 0.37 0.085 
8 0.43 0.125 
9 0.47 0.145 

10 0.50 0.170 
11 0.53 0.195 
12 0.59 0.210 

Table 3. m = 2 growth rates and pattern speed of 
the Toomre/mM model. 

The Toomre/mM model: bisymmetric mode 

Model mOp 

2 0.598 
3 0.714 
4 0.810 
5 0.916 

4.2.2 Lopsided m =1 modes 
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Figure 12. The evolution of '1, Op, cot(i), R l/2 and nJn , as a function 
of the Toomre number Q of the isochrone/mK discs. Note that the 
hotter disc have less wound spiral response. 

Table 2. m = 2 growth rates and pattern speed of 
the isochrone/mp model. 

The isochrone/mp model: bisymmetric mode 

Model mOp '1 

3 0.21 0.003 
4 0.29 0.032 
5 0.35 0.072 
6 0.40 0.105 

Table 4. Second and third fastest m = 2 growing modes of the 
isochrone/mK model. 

The isochrone/mK model: bisymmetric mode 

Model Second mode Third mode 

7 0.29(4) + 0.04(1)i 0.22(0) + 0.008(8)i 
10 0.39(7) + 0.10(5)i 0.27(3) + 0.039(5)i 
11 0.42(8) + 0.12(8)i 0.34(7) + 0.091(5)i 
12 0.46(1) + 0.14(5)i 0.26(4) +0.051(2)i 

The algorithm presented in Section 3 is, in principle, inadequate to address the growth of m = 1 perturbations which for purely 
self-gravitating discs are forbidden, since the perturbation does not conserve momentum. Following Zang (1976), it is assumed 
here that the disc is embedded in some sufficiently massive halo to compensate its infinitesimal centre of mass shift. Fig. 15 
gives the m = 1 modal response of the isochrone!m lO, 11 discs, while the corresponding pattern speeds and growth rates are given 
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Figure 13. The orbital response in action space corresponding to the fastest growing mode described in Fig. 4. The amplitude of the left-hand 
side of equation (2.5) is plotted for the t = - 1 (ILR) fastest growing mode of an isochrone/12 model (left -hand panel), and an isochrone/6 
model (right-hand panel). Superimposed are the isocontours of the corresponding resonance n - K12. The dashed line corresponds to the 
isocontour of a tenth of the pattern of the wave. Note that the hotter disc forms a Grand Design structure involving more eccentric 
orbits. 
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Table 5. First and second growth rates and pattern 
speeds of the m = 1 isochrone/mK model. 

The isochrone/mK model: lopsided mode 

Model Pattern speed Growth rate 

9 0.135 0.0325 
10 0.17 0.065 
11 0.20 0.095 
12 0.23 0.125 

1.0 

0.5 

0.0 

-0.5 

-1.0 

5 -1.0 -0.5 0.0 0.5 1.0 

Figure 14. Nyquist diagram for the second m = 1 modes of an isochrone/12 disc. There are more large loops than are seen for the 
bisymmetric modes, and also more structure at small scales: in the right-hand panel, the origin is shown enlarged under the mapping 
r-+ (1 + 108r)/8. All the space within the innermost of the three large concentric loops corresponds to the tiny cusp at the centre of the left
hand panel. 

......................... 

.. 

....................... 

Figure 15. The m = 1 density response corresponding to the growing mode of the isochrone/lO and isochrone/11 model. The lopsided mode, 
which has a smaller growth rate, has a much more centrally concentrated response than its bisymmetric counterpart. 
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Figure 16. The m = 1 density response corresponding to the 
second faster growing mode (Qp + ill =0.18 + iO.075) of the iso
chrone/12 model. The number of radial nodes in the response has 
increased by one compared to the corresponding faster mode illus
trated on Fig. 15 for an isochrone/ll disc. 
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Figure 17. The effect on q of artificially modifying the density of 
retrograde stars in Kalnajs' isochrone/9 distribution function. The 
retrograde part of the distribution function has been multiplied by 
the factor on the ordinate, keeping the prograde stars the same. 
Although in Kalnajs' model stars on retrograde orbits only account 
for a few per cent of the total mass, they playa significant role in 
stabilizing the disc. 

in Table 5. These modes have smaller growth rates than their bisymmetric counterparts, and are practically more difficult to 
isolate because they are close to other modes which grow almost as fast; the Nyquist diagrams show many large loops, all of 
which must be properly sampled to avoid spurious contours encircling the origin, as illustrated in Fig. 14. Indeed, when 
investigating weaker and weaker modes, the amount of looping in the corresponding Nyquist diagrams should increase, since 
modes always occur in pairs (OJ ± '1), so that when '1 is small, one is always in a regime corresponding to at least two (a growing 
and a decaying) modes. 

The physical mechanism leading to the appearance of these modes needs to be clarified, but presents little practical interest 
when their growth rates do not correspond to the fastest growing mode. The detailed analysis of m = 1 modes for the isochrone 
disc is therefore delayed until models of distribution functions which display weaker m = 2 modes are designed. 

4.3 Application to observed discs 

The procedure described in Section 3 makes no assumption on the nature of the distribution function or the potential of the 
disc. In particular, it is well adapted to distribution functions recovered from measured discs, where the radial derivative of the 
potential follows from H I rotation curve of the disc, while the distribution function itself is inverted from line-of-sight velocity 
profiles. The technique was tested on tables generated from equation (4.5). The agreement between the 'theoretical' and 
'measured' (i.e., derived from a discretized representation of the distribution) growth rates was found to be in better than 1 
per cent. One peculiarity in this context lies in the finite difference chosen in the numerical derivatives of the distribution 
function with respect to ] and h. While applying this analysis to observed data, special care should be taken in handling 
measurements relative to the core of the galaxy, since the relative fraction of counter-rotating stars plays a crucial role in 
determining the growth rates of the disc, as pointed out already by Kalnajs and illustrated in Fig. 17. This appears clearly when 
recalling that counter-rotating stars add up to an effective azimuthal pressure in the inner core, which therefore prevents the 
self-gravity of the disc to build up by orbit alignment. A non-parametric inversion technique has been devised by Pichon & 
Thiebaut (1997) to recover the best distribution accounting for all the measured kinematics while handling specifically the 
counter-rotating stars. 

5 CONCLUSION AND PROSPECTS 

A numerical investigation of linear stability of round galactic discs has proven successful in recovering known growth rates for 
the isochrone disc and the Kuzmin-Toomre discs. The method is fast and versatile, and can be applied to realistic discs with 
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arbitrary density and velocity profiles, and relative 'halo' support. Unstable bisymmetric growing modes for new equilibria, and 
the fastest growing lopsided modes for Kalnajs' distribution function have also been isolated to demonstrate -the code's 
versatility. The authors are currently applying the method in a study of the stability to families of discs parametrized by their 
relative temperature, compactness, fraction of counter-rotating stars and halo support in order to identify the orbits respon
sible for the instability, and to probe the intrinsic (orbital or wave-like) nature of the m = 2 bar instability. The nature of 
lopsided m = 1 instabilities in disc galaxies is also under investigation. The implementation of linear stability analysis for 
observed galactic disc, yielding a direct relationship between the growth rate of the instability, the measured kinematical 
characteristics of the disc and the relative mass in the halo, is also being investigated. The requirement of marginal stability 
will provide an estimate of the minimum halo mass. All ingredients will then be in place to probe the amount of dark matter 
required to stabilize observed galactic discs. 
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