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ABSTRACT
YEASTRACT+ (http://lyeastract-plus.org/) is a
tool for the analysis, prediction and mod-

elling of transcription regulatory data at the
gene and genomic levels in yeasts. It incorpo-
rates three integrated databases: YEASTRACT
(http://yeastract-plus.org/yeastract/), PathoYeas-
tract (http://yeastract-plus.org/pathoyeastract/) and
NCYeastract (http://yeastract-plus.org/ncyeastract/),
focused on Saccharomyces cerevisiae, pathogenic
yeasts of the Candida genus, and non-conventional
yeasts of biotechnological relevance. In this re-
lease, YEASTRACT+ offers upgraded information on
transcription regulation for the ten previously incor-
porated yeast species, while extending the database
to another pathogenic yeast, Candida auris. Since
the last release of YEASTRACT+ (January 2020),
a fourth database has been integrated. Communi-
tyYeastract (http://yeastract-plus.org/community/)
offers a platform for the creation, use, and future
update of YEASTRACT-like databases for any yeast
of the users’ choice. CommunityYeastract cur-
rently provides information for two Saccharomyces
boulardii strains, Rhodotorula toruloides NP11
oleaginous yeast, and Schizosaccharomyces pombe
972h-. In addition, YEASTRACT+ portal currently

gathers 304 547 documented regulatory associa-
tions between transcription factors (TF) and target
genes and 480 DNA binding sites, considering 2771
TFs from 11 yeast species. A new set of tools, cur-
rently implemented for S. cerevisiae and C. albicans,
is further offered, combining regulatory information
with genome-scale metabolic models to provide
predictions on the most promising transcription
factors to be exploited in cell factory optimisation
or to be used as novel drug targets. The expansion
of these new tools to the remaining YEASTRACT+
species is ongoing.

INTRODUCTION

Yeasts are a diverse group of unicellular fungal species with
a strong impact on human life. The most well-known yeast
is by far Saccharomyces cerevisiae, long used unknowingly
for its alcoholic fermentation ability in the brewer and wine
industries, but also in the production of bread and other
dough-based products. Given its early biotechnological suc-
cess, its genetic amenability and its genome fully sequenced
since 1996 (1), S. cerevisiae has been exploited as a cell
factory for the industrial production of many added-value
compounds (2). Recent years have seen a tremendous in-
crease in the number and variety of yeast species displaying
a biotechnological potential thanks to their natural prop-
erties. Among them are the methylotrophic yeast Koma-
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gataella phaffii (formerly Pichia pastoris), a favourite host
for recombinant protein production (3); the weak acid-
resistant food spoilage yeast Zygosaccharomyces baillii (4);
Kluyveromyces lactis, widely used in cheese production (5);
the thermotolerant yeast Kluyveromyces marxianus (6) and
the oleaginous yeast Yarrowia lipolytica (7).

On the other end of the spectrum lay pathogenic yeasts
of the Candida genus, major causative agents of human sys-
temic fungemia, and responsible for more than 400,000 in
life-threatening infections worldwide every year (8). Can-
dida albicans, Candida glabrata, Candida parapsilosis and
Candida tropicalis are the most prevalent among candidiasis
patients, accounting for >90% of all Candida infections (9).
More recently, Candida auris arose as a pathogen of con-
cern, being associated with the first cases of candidiasis out-
breaks in hospital environments, and displaying unusual re-
sistance to the currently available antifungal armamentar-
ium (10).

A complete understanding of the molecular and reg-
ulatory mechanisms that control the productivity in
biotechnologically-relevant yeasts is key to guiding the de-
sign of more effective cell factories. Simultaneously, un-
derstanding the molecular mechanisms that control pheno-
types related to pathogenesis in human pathogens is essen-
tial to guide the design of more effective therapeutic op-
tions. One of the most promising Systems Biology based
methodologies to address both issues is the use of Genome-
Scale Metabolic Models (GSMMs), which provide a sim-
plified, yet comprehensive, view of the full metabolism of
an organism, and enable the simulation of the system’s be-
haviour. Indeed, metabolic engineering based on GSMMs
has been successful in optimising the production of added-
value compounds in yeasts (11). In parallel, GSMMs have
also been exploited in the search for promising new drug
targets, by facilitating the prediction of gene essentiality
in pathogenic organisms (12). However, the lack of inte-
gration of regulatory information in the currently available
GSMMs hinders their predictive ability, preventing the abil-
ity to identify transcription factors as promising targets for
metabolic engineering or for the design of new antifungal
drugs.

In this release, the most recent YEASTRACT+ up-
grade is presented, including up-to-date curated infor-
mation on all published regulatory associations between
transcription factors (TFs) and target genes or TFs and
their DNA binding sites. Besides the previously integrated
YEASTRACT (13-18), PathoYeastract (19) and NCYeas-
tract (20) databases, it also presents upgrades in three di-
mensions: (i) the introduction of a fourth database, Com-
munity Yeastract; (ii) the integration of C. auris, another
Candida species in the PathoYeastract database and (iii) a
set of new computational tools, that combine regulatory
data with genome-scale metabolic models, aiming the pre-
diction of the most promising TFs to be exploited in cell
factory or to be used as novel drug targets.

DATA UPDATE AND UPGRADE

In this paper, the upgrade of the YEASTRACT+ por-
tal is presented, including updates on the YEASTRACT,

Table 1. Number of transcription factors (TFs) with regulatory associ-
ations, number of regulatory associations between TFs and target genes
(TGs), as well as the number of TF binding sites (TFBSs) for the yeast
species of the YEASTRACT+ databases

# TF-TG
Yeast # TFs associations  # TFBSs
YEASTRACT
Saccharomyces cerevisiae 226 215398 2264
NCYeastract
Komagataella phaffii 14 6434 1
Zygosaccharomyces baillii 1 47 2
Kluyveromyces lactis 17 313 2
Kluyveromyces marxianus 2 1148 0
Yarrowia lipolytica 7 9874 2
PathoYeastract
Candida albicans 129 51224 93
Candida glabrata 50 10 101 42
Candida parapsilosis 12 7120 6
Candida tropicalis 18 2 881 1
Candida auris 4 7 0
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Figure 1. Depiction of the query ‘Predict [metabolite] optimisation by ma-
nipulating gene expression’. Top: set of options with the selected medium,
rank criterion and metabolite highlighted in red. Bottom: table listing the
genes whose expression manipulation is predicted to optimise the produc-
tion of the selected metabolite, obtained by simulating the selected GSMM
and the selected medium. Here, the predicted production is given in terms
of the exchange reaction flux. The impact on the metabolite production of
various gene expression manipulations is displayed, from full gene Knock
Out (KO) or decreased expression (UE, Under-Expression, from 0 to 0.75-
fold the wild-type levels), to increased expression (OE, Over-Expression,
from 1.25- to 1.5-fold the wild-type levels). Cells shaded in salmon con-
tain values lower than the WT exchange reaction flux or infeasible cases.
The last two columns highlight the highest metabolite production and as-
sociated manipulation of gene expression, followed by the ‘View’ link for
details on the changes imposed on reaction fluxes by said manipulation.

PathoYeastract and NCYeastract databases, as detailed in
Table 1.

YEASTRACT, focused on S. cerevisiae, currently in-
cludes 215 398 regulatory associations between TFs and
target genes, as well as 310 associations between TFs and
TF binding sites, which corresponds to a 5% increase in
the amount of available data since its latest release. Data on
transcriptional regulatory associations in NCYeastract was
also updated. Specifically, 1%, 0%, 4.3%, 0.9% and 0.5% in-
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creases in the number of regulatory associations between
TFs and target genes, experimentally determined in Koma-
gataella phaffii, Zygosaccharomyces baillii, Kluyveromyces
lactis, Kluyveromyces marxianus and Yarrowia lipolytica, re-
spectively, were registered in the last 2 years. In the case of
PathoYeastract, the number of regulatory associations be-
tween TFs and target genes deposited in the database in-
creased 2%, 114%, 0% and 0.4% for C. albicans, C. glabrata,
C. parapsilosis and C. tropicalis, respectively. Additionally,
a fifth species of pathogenic yeast was included in the
database, C. auris. Despite the fact that relatively little is yet
known about this emergent species, its predicted impact on
the clinical development of recalcitrant candidiasis, associ-
ated with hospital outbreaks of the disease, led us to pro-
vide the community with this resource, which currently in-
cludes only seven experimentally characterised associations
between TFs and target genes.

All TF—target gene and TF-TF binding site associations
deposited in YEASTRACT+ are provided with specific in-
formation on the underlying publication, the experimen-
tal setup used to identify each regulatory association, in-
cluding classification of the used approach as either based
on DNA binding (e.g. Chromatin ImmunoPrecipitation
(ChIP), ChIP-on-chip, ChIP-seq and Electrophoretic Mo-
bility Shift Assay (EMSA)) or Expression (e.g. RT-PCR,
microarray hybridisation, RNA sequencing or expression
proteomics) data, as well as information on the environmen-
tal conditions in which each association was found to take
place.

Altogether, YEASTRACT+ gathers a total of 304 547
documented regulatory associations between transcription
factors (TFs) and target genes and 2,771 DNA binding
sites, considering 480 TFs in the 11 yeast species. Also,
276 389 Gene Ontology (GO) terms (21), associated with
the compiled yeast genes, are currently gathered in the
database, from the gene association data provided by SGD
(http://sgd-archive.yeastgenome.org/curation/literature/)
(22), CGD (http://www.candidagenome.org/download/go/)
(23) and PomBase (https://www.pombase.org/downloads/
go-annotations) (24).

The increasing exploitation of a variety of yeast species of
biotechnology or medical interest constitutes a challenge,
as many of them are poorly characterised, particularly in
terms of their transcriptional networks. The lack of data in
these organisms, especially when compared with the model
yeast S. cerevisiae, can, at least partially, be compensated
by the use of comparative genomics approaches. These per-
mit the exploitation of the knowledge of well-known or-
ganisms to predict the function and regulation of orthol-
ogous proteins in poorly characterised or uncharacterised
systems. Naturally, given that the conservation of gene and
TF function, TF binding sites and regulatory associations
among different species is not complete, results obtained
through this comparative genomics approach should be re-
garded as merely indicative, requiring experimental valida-
tion. Still, with this in mind, the possibility of expanding
YEASTRACT+ to an unlimited number of yeast species,
for which no specific regulatory data is gathered, but whose
genomic sequence can be used to predict gene and genome-
wide regulatory pathways, led to the development of Com-
munity Yeastract.
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Figure 2. Depiction of the query ‘Predict [metabolite] optimisation by ma-
nipulating TF expression’. Top: set of options with the selected medium,
rank criterion and metabolite exchange reaction highlighted in red. Bot-
tom: corresponding table of results listing the TFs whose expression ma-
nipulation is predicted to optimise the production of the selected metabo-
lite, obtained by simulating the selected GSMM and the selected medium.
Here, the predicted production is given in terms of the exchange reaction
flux. The impact on the metabolite production of TF Knock Out (KO) or
Over-Expression (OE) is displayed, for different effects of the TF expres-
sion manipulation on its target genes (TGs). A TF Knock Out (KO) effect
ranges from Under-Expression (UE) of its activated TGs (from 0 to 0.5-
fold the wild-type levels) to OE of its repressed TGs (from 1.25- to 1.5-fold
the wild-type levels). A TF OE effect ranges from OE of its activated TGs
(from 0 to 0.5-fold the wild-type levels) to UE of its repressed TGs (from
1.25- to 1.5-fold the wild-type levels). The last two columns highlight the
highest level of the metabolite production and associated manipulations
of TGs expression, followed by the “View’ link for details on the changes
imposed on reaction fluxes by said manipulations.

CommunityYeastract (Community Yeast Search for
Transcriptional Regulators And Consensus Tracking) is a
repository of automatically generated YEASTRACT-like
databases, for yeast species or strains, according to the re-
quest of community members (20). No data on transcrip-
tion associations documented for the specific organism is in-
cluded. However, all YEASTRACT+ queries may be run on
genes or datasets of the specific organism, considering reg-
ulatory information of homologous genes in related yeast
species fully described in YEASTRACT, PathoYeastract
and NCYeastract.

Community Yeastract currently provides information for
two probiotic Saccharomyces boulardii strains, Biocodex
and Unique 28 (25), the oleaginous yeast Rhodotorula toru-
loides NP11 (26), and the model fission yeast Schizosac-
charomyces pombe 972h-. Tools to automatically generate
YEASTRACT-like databases, based on genome sequences,
were provided elsewhere (26). However, the YEASTRACT
team welcomes requests from its users or potential users to
add additional yeast species to Community Yeastract.

INTEGRATION OF GENOME-SCALE METABOLIC
MODELS WITH REGULATORY INFORMATION: NEW
TOOLS FOR STRAIN OPTIMISATION AND DRUG
TARGET IDENTIFICATION

Genome-Scale Metabolic Models (GSMMs) aim to pro-
vide a reconstruction of the whole metabolism of an or-
ganism, through its description as a mathematical model.
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Figure 3. Depiction of the ‘Essentiality’ prediction query for Candida albicans. Top: set of options with the selected medium, and whether essentiality
is evaluated for genes, reactions or TFs, as highlighted in red rectangles. Bottom left: table of results of essential genes for RPMI medium. Predicted
essential genes, as defined by COBRApy, are those whose single Knock Out (KO) is predicted to lead to biomass production flux below 1% of that of
the wild-type strain. The biomass production flux predicted upon in silico deletion of the indicated gene/ORF is displayed. Although KO and UE=0.0
(Under-Expression) appear to be the same, the simulation tools handle them differently for reactions having multiple enzymes with the same function. In
such a case, the gene ‘KO’ is simulated as having no impact on reaction flux (the other isoenzymes are supposed to fully replace the deleted one), while
‘UE=0.0" is simulated by a decrease of the reaction flux, inversely proportional to the number of isoenzymes (e.g. if 3 isoenzymes catalyse a reaction, the
deletion of one of the coding genes will lead to a 33% reduction of the reaction flux). Bottom right: predicted essential reactions for RPMI medium, as
defined by COBRApy, that is those whose blockage (reaction flow = 0) leads to biomass production flux below 1% of that of the wild-type strain. The
predicted biomass production flux is displayed together with the reaction ID/and name.

Predict essentiality
the metabolic
Model: iRV781 v

Medium: | RPMI 1640 medium v

Considering TF documented regulations with:
O Expression evidence

Essential TGs

TF acting as activator
TF acting as inhibitor
(® DNA binding and expression evidence

Submit Clear L]
TFKO/ undef—expression
b= )-exp of (inh) TGs Essentiality
UE=0.00 _ [UE=0.00  [UE=0.25 |[UE=0.25 |UE=050  |UE=0.50 details
(OE=1.25)" |(OE=1.50) |(OE=1.25) %E:Lso) [(:Eﬂ.zs) (OE=1.50)
Sflip |0 0 148.176 148.176 296.351 296.351 View
Upczp [0 1.22831e-31 |[148.176 148.176 296.351 [296.351 View
Flo8p |1.00059e-27 -6.27983e-28|148.176 148.176 296.351 |296.351 View

Figure 4. Depiction of the ‘Essentiality’ prediction query when looking
for essential TFs in Candida albicans. Top left: set of options with the se-
lected medium, and whether essentiality is evaluated for genes, reactions
or TFs, as highlighted in red rectangles. Bottom: table of essential TFs
for the RPMI medium. Predicted essential TFs, as defined by COBRApy,
are those whose single Knock Out leads to biomass production flux be-
low 1% of that of the wild-type strain. The predicted biomass production
flux upon in silico Knocking Out (KO) or Under-Expression (UE) of each
TF is displayed, considering impacts on the expression of its target genes
(TGs) ranging from UE activated TGs (from 0 to 0.5-fold the wild-type
levels) to Over-Expression (OE) of repressed TGs (from 1.25- to 1.5-fold
the wild-type levels). Top right: regulatory network of one of the identified
essential TFs, Upc2, and the genes whose expression is controlled by that
same TF. This visualisation was obtained by following the corresponding
“View’ link, in the results table. Highlighted in the red circle are the seven
Upc2 TGs predicted to be essential in the same environmental conditions.

The first GSMM was built for Haemophilus influenzae,
in 1999 (27), followed by Escherichia coli, in 2000 (28),
and by S. cerevisiae, in 2003 (29). Throughout the last
two decades, numerous GSMMs have been constructed,
including some dedicated to multicellular organisms, in-
cluding humans (30). GSMMs contain three main levels
of information: metabolites, reactions and metabolic genes.

The relationships between metabolites and reactions can
be described by a stoichiometric matrix and the ones be-
tween reactions and genes by a binary matrix. A well-
constructed model enables the simulation of an organism’s
behaviour - i.e. how much of each metabolite is produced
or consumed—in a given medium/environmental condi-
tion, all done in silico, with constraint-based modelling (30).
Despite many efforts for integrating omics data, including
transcriptomics, proteomics, metabolomics and fluxomics
data, into available metabolic models, it is still not possi-
ble to integrate full regulatory data in any of the currently
available metabolic models.

In this YEASTRACT+ release, automated tools to ex-
ploit current yeast GSMMs are provided for S. cerevisiae
and C. albicans, relying on COBRApy (31). The expansion
of their use to all other yeasts in the database is envisaged.
Two main goals can now be achieved using the proposed
new queries: (1) the prediction of the genes whose expression
manipulation may lead to increased production of a chosen
metabolite, in a metabolic engineering perspective and (ii)
the prediction of the genes that may be used as drug targets,
based on their essentiality in chosen conditions. Thanks to
the integration of regulatory information, it is also possi-
ble to predict the TFs whose expression is worth manipulat-
ing to optimise metabolite production or the TFs that may
be considered promising drug targets. Details on how these
new tools can be used in these contexts, follow.

Prediction of metabolic and TF encoding genes envisaging
cell factory optimisation

Using the new YEASTRACT query ‘Predict [metabolite]
optimisation by manipulating gene expression’, it is possi-
ble to search for the genes whose deletion, down-regulation
or up-regulation is predicted to improve the production of a
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metabolite of interest. The S. cerevisiae GSMM model cur-
rently used in YEASTRACT+ is Yeast8 (32). The query
includes the selection of a specific growth medium. Cur-
rently, two growth media are available - Synthetic Mini-
mal medium and Glucose-rich Synthetic Complete medium
- whose compositions are shown by clicking the link
‘model/medium’. Aiming the optimisation of the produc-
tion of a chosen compound, genes or TFs predicted to be of
interest can be ranked according to one of the three criteria:
‘Reaction flux’, ‘Biomass-Product Coupled Yield (BPCY)’
or ‘Product Yield with Minimum Biomass (PYMB)’.

For example, to identify genes whose expression manip-
ulation may increase ethanol production in S. cerevisiae,
‘Glucose-rich SC medium’ is selected, as it mimics a situa-
tion of high glucose availability and low oxygen availability,
which is typical of industrial alcoholic fermentation (Fig-
ure 1). The metabolite of interest is defined in the appro-
priate box ‘ethanol exchange’. Upon clicking the ‘Search’
button, the results are displayed in a table format, list-
ing the genes whose expression manipulation is predicted
to optimise ethanol production, in the pre-selected condi-
tions (Figure 1). Predicted metabolite production is given in
terms of metabolite exchange flux. The impact on metabo-
lite production of different changes in gene expression is
displayed in the table, from full gene Knock Out (KO) or
decreased gene expression (UE, Under-Expression, from 0
to 0.75-fold the wild-type levels), to increased gene expres-
sion (OE, Over-Expression, from 1.25- to 1.5-fold the wild-
type levels) (33). The final columns highlight the highest
level of metabolite production with the manipulation lead-
ing to that level, followed by the ‘View’ link, which allows
obtaining details on the changes imposed on reaction fluxes
by said manipulation. In this case, the over-expression of
67 genes or the deletion/down-regulation of 106 genes is
expected to result in a moderate increase in ethanol pro-
duction. For example, increasing the expression of PDCI,
PDC5 or PDC6, encoding three pyruvate decarboxylases,
is predicted to increase ethanol production, possibly by in-
creasing the production of acetaldehyde, which may then
be converted into ethanol by alcohol dehydrogenases. An-
other suggested route for increased ethanol production is
the deletion of any one of the 18 ATP genes, encoding sub-
units of the F1F0-ATP synthase that catalyse the last step
of oxidative phosphorylation, which requires the consump-
tion of ethanol or ethanol precursors, through respiration.

The most novel outcome of this new set of tools is ob-
tained with the query ‘Predict [metabolite] optimisation by
manipulating Transcription Factor (TF) expression’ (Fig-
ure 2). This tool enables the identification of the TFs whose
deletion, down-regulation or up-regulation is predicted to
improve the production of a metabolite of interest. Here
again, the user may choose ‘Glucose-rich SC medium’, and
‘ethanol exchange’ as the reaction to be optimised. It is
possible to filter the regulations to be considered, selecting
documented regulations with expression evidence, positive
and/or negative, or additionally requiring DNA binding ev-
idence. Once the ‘Search’ button is clicked, the results are
displayed in a table listing the TFs whose expression manip-
ulation is predicted to enable the optimisation of ethanol
production, in the pre-selected conditions (Figure 2). Pre-
dicted metabolite production is given in terms of metabo-
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lite exchange flux. The impact on metabolite production
of TF KO or OE is predicted, considering a wide range
of possible effects of the TF on the expression of its acti-
vated and repressed target genes (UE, Under-Expression,
of TF activated target genes from 0 to 0.5-fold the wild-type
levels; OE, Over-Expression, of TF repressed target genes
from 1.25 to 1.5-fold the wild-type levels). The final columns
highlight the highest level of the metabolite production ob-
tained by the expression manipulation of each TF, followed
by the possibility to ‘View’ details on the changes imposed
on reaction fluxes by said manipulations. In this case, the
over-expression of 18 TFs or the deletion of 23 TFs is ex-
pected to result in a moderate increase in ethanol produc-
tion. For example, increasing the expression of PDC2 TF
encoding gene is predicted to increase ethanol production.
Interestingly, Pdc2 controls the expression of PDCI and
PDCS5, whose own over-expression is predicted to increase
ethanol production, as discussed above. On the other hand,
the KO of MIGI, GCR2 or HAP2, encoding TFs involved
in the control of glucose repression, glycolysis and respira-
tion, respectively, are predicted to lead to increased ethanol
production, likely through their effect on the expression of
a combination of central carbon metabolism genes. As far
as our knowledge goes, the impact of the expression level of
these TFs on ethanol production has never been evaluated.
If the user wishes to use a growth medium or a yeast
model that is not currently available at YEASTRACT, (s)he
is invited to contact our support team to evaluate its impor-
tance and to make it available to the wider community.

Prediction of metabolic and TF encoding genes as promising
drug targets

The new ‘Essentiality’ prediction query is offered to YEAS-
TRACT+ users, particularly with the aim of identifying
new drug targets. The use of this new tool can be ex-
emplified in the case of the human pathogen C. albicans.
The C. albicans GSMM model currently used by YEAS-
TRACT is iRV781 (34). The query includes the selection
of a specific growth medium. Currently, two growth media
are available—Synthetic Minimal Medium and RPMI 1640
medium—whose compositions are shown by clicking the
link ‘model/medium’. The essentiality search can be per-
formed by looking for essential genes, essential reactions
(which may be coupled to several metabolic genes) or es-
sential TFs.

For example, if the user wishes to identify C. albicans
metabolic genes, which are essential under conditions found
in the human host environment, ‘RPMI 1640 medium’ may
be selected as it mimics human serum (Figure 3). Upon
selecting ‘Genes’ and once the ‘Search’ button is clicked,
the results are displayed in a table format, listing the genes
whose deletion leads to biomass production flux below
1% of that of the wild-type strain, in the selected growth
medium (Figure 3). Consistent with the proposed applica-
bility of this approach, among the list of identified essential
genes are ergosterol biosynthesis genes, including ERGI1,
which encodes the target of the currently used family of
azole antifungal drugs, as reviewed in (35). Remarkably, the
GSCI gene, encoding the target of echinocandin antifungal
drugs, is not identified as an essential gene, in this query. The
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reason for this is that in C. albicans there are two paralogs
of GSCI, GSLI and GSL2, which are predicted to maintain
cell viability when GSCI is absent. For such cases, search-
ing for essential reactions, instead of essential genes, is more
promising. When using the ‘Essentiality’ prediction query,
selecting ‘Reactions’, the results displayed in a table format,
provide the list of reactions whose blockage (reaction flow
=0) is predicted to lead to biomass production flux <1% of
those of the wild-type strain, in the selected growth medium.
In this list of essential reactions it is possible to detect the re-
action ‘UDP-glucose <= > UDP + 1,3-beta-D-Glucan’. If
the user follows the link associated with the reaction name,
the underlying genes are indicated, which, in this case, in-
clude precisely the echinocandin encoding targets GSCI,
GSLI and GSL2.

Again, the most novel outcome of this new set of tools
is obtained with the ‘Essentiality’ prediction query, option
‘TFs’, as it enables the identification of the TFs whose
deletion is predicted to lead to biomass production flux
below 1% of that of the wild-type strain, in the selected
growth medium. Again, the user may choose ‘RPMI 1640
medium’ as the condition of choice. Once the ‘Search’ but-
ton is clicked, the table of results lists the TFs predicted to
be essential in the pre-selected conditions (Figure 4). Three
TFs are predicted to be essential in ‘RPMI 1640 medium’.
Although none of them is encoded by a truly essential
gene (whose deletion generates an unviable cell), the YEAS-
TRACT+ modelling tools predict that in this medium,
mimicking human serum, they are crucial for biomass pro-
duction. Although the exact effect of TF deletion in the
metabolic reaction fluxes is difficult to predict, it is interest-
ing to observe, in Figure 4, that, for example, the Upc2 TF
does indeed control the expression of 18 metabolic genes,
seven of them being involved in ergosterol biosynthesis and
predicted to be essential in the same environmental con-
ditions. This result is consistent with UPC2 essentiality in
these conditions.

FUTURE DIRECTIONS

The YEASTRACT+ team is committed to continuous up-
date, and offer reliable and complete information on yeast
transcription regulation to the international research com-
munity. As the scope of the database is expanded to cover
a wider range of yeast species of biotechnological or med-
ical interest, made easier with the creation of Communi-
tyYeastract, it is expected that the ability to serve better our
users increases. The expansion of the new network mod-
elling tools to all yeast species for which a GSMM is avail-
able will be pursued, as well as the increase in the number
of options offered in this context, particularly the possibility
to predict synthetic lethality as a means to identify possible
targets for combination therapy.
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