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ABSTRACT: A domino propargylation/furanylation (intramolecular exo-dig-cyclization)/benzannulation reaction of 2,4-diyn-1-

ols with 1,3-dicarbonyl compounds has been developed for the first time. This provides a novel and effective method for the prepa-

ration of aryl/heteroaryl-fused benzofurans from easily accessible starting materials in a single step. The methodology was extended 

to pyrrolyl-benzannulation to obtain aryl/heteroaryl-fused indoles. Further, application of this approach in the synthesis of 

eustifoline D and dictyodendrin structural frameworks has been demonstrated.       

Fused polycyclic heteroaromatics are privileged molecular 

scaffolds present in a range of bio-active molecules,
1
 pharma-

ceuticals
2
 and bioimaging probes,

3
 as well as in optoelectronic 

materials.
4
 Particularly, aryl/heteroaryl annulated-benzofurans 

are frequently used in organic light-emitting diodes (OLEDs) 

owing to their charge-transport properties and thermal stabil-

ity.
5
 Further, π-expanded naphthalimides with fused furan ring 

were used as novel fluorescent probes and naphthofurans 

(R7000, 1A) as mutagenic agents.
6
 Moreover, these scaffolds 

are found as core structure of natural products. For instance, 

the alkaloid eustifoline D (Figure 1, 1B), isolated by Furukawa 

from the root bark of Murraya euchrestifolia, which has 

unique furo[2,3-c]carbazole framework, is used as an active 

constituent in some folk medicines in China.
7
 Likewise, ar-

yl/heteroaryl annulated-indoles are the key motifs of various 

molecules having drawn attention of the pharmaceutical and 

material science communities. For example, dictyodendrin A 

and B, pyrrolo[2,3‐c]carbazoles (Figure 1, 1C and 1D), are 

unusual natural alkaloids isolated from the Japanese marine 

sponge Dictyodendrilla verongiformis and known to possess 

telomerase inhibitory activity.
8
 Additionally, the 3H-

benzo[e]indole skeleton has potential applications in molecu-

lar probes useful for optical imaging and photochromic mate-

rials.
9
 This tricyclic framework is also found in enzymes like 

indoleamine 2,3-dioxygenase (IDO, 1E),  fructose-2,6-

biphosphatase 3 (PFKFB3) inhibitors and drugs for treating 

Alzheimer’s disease and other related conditions.
10

   

 

 

      

 

 

 

 

 

 

Figure 1. Selected molecules having aryl/heteroaryl-fused 

benzofurans and indoles 

Due to their pharmacological importance and unique electron-

ic properties, the development of synthetic methods for the 

construction of aryl/heteroaryl-fused benzofurans and indoles 

has attracted substantial attention in medicinal, as well as in 



 

materials chemistry.
11-13

 Typically, these methods proceed 

either through the construction of furan or pyrrole rings on 

aryl/heteroaryl-annulated benzenes (Scheme 1a)
11

 or via the 

formation of benzene rings on substituted furans or pyrroles, 

(Scheme 1b).
12

 However, one-pot assembly of aryl/heteroaryl-

annulated benzofuran or indoles from acyclic precursors are 

uncommon
13

 and still remains challenge. Hence, development 

of such new methods enabling the direct access to diversely 

functionalized (hetero)aryl-fused benzofurans and indoles 

from readily accessible acyclic compounds is highly desirable. 

In this direction, domino reaction is one of the effective strate-

gies for the construction of functionalized heterocycles with 

molecular diversity and atom- as well as pot-economy by 

avoiding separation of the intermediates.
14

 

Scheme 1. Approaches to the synthesis of aryl/heteroaryl-

fused benzofurans and indoles    

 

 

 

 

 

 

                                                                                                                          

 

On the other hand, 1-aryl/heteroaryl propargyl alcohols have 

emerged as adaptable precursors to yield various het-

ero/carbocycles through nucleophilic substitution followed by 

alkyne-assisted annulation.
15

 However, their analogues with 

extended alkyne conjugation, 1-aryl-2,4-diyn-1-ols, are under-

explored.
16

 These 2,4-diyn-1-ols offer an important avenue to 

undergo additional cyclization in a cascade manner. Our re-

search interests in exploring 2,4-diyn-1-ols,
17 

led us to exam-

ine the possibility of cycloisomerizations for the synthesis of 

aryl/heteroaryl-annulated benzofurans and indoles. Herein, we 

describe a novel domino propargylation/furanylation 

(pyrrolylation)/benzannulation reactions of 2,4-diyn-1-ols with 

1,3-dicarbonyl compounds to access the corresponding ar-

yl/heteroaryl-fused benzofurans/indoles in one-pot (Scheme 

1c). To our knowledge, an approach to benzofuran or indole 

by the sequential construction of the furan or pyrrole and ben-

zene ring from the annulation of diynols has not been de-

scribed to date.  

To examine the proposed plan, the reaction between 1-phenyl-

2,4-diyn-1-ol (1a) and ethyl acetoacetate (2a) was employed 

as a model reaction. Firstly, the propargylation reaction was 

tested in the presence of different acid-catalysts to form the 

intermediate A and found that BF3.Et2O (10 mol% in acetoni-

trile) was the best choice among the tested acid catalysts such 

as pTSA, Sc(OTf)3, Cu(OTf)2, In(OTf)3 and FeCl3 (entries 1 to 

6, Table 1). Then, the conversion of A to the benzofuran 3a 

was verified in the presence of a base through furan formation, 

followed by a benzannulation reaction. To our delight, treat-

ment of A with K2CO3 in acetonitrile at 80 
o
C provided the 

target 3a in 97% yield (entry 7, Table 1). Other bases, such as 

DBU or NaHCO3, were found to be less effective in yielding 

3a (entries 8 and 9, Table 1) even after prolonged reaction 

time. With these conditions, next we performed both the reac-

tions in a one-pot manner eluding the isolation of intermediate 

A to get 3a in 92% yield (entry 10, Table 1). 

Table 1. Optimization of Reaction Conditions
a
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Having established the optimal reaction conditions, the scope 

with respect to 2,4-diyn-1-ols, as well as 1,3-dicarbonyl com-

pounds, was next examined (Scheme 2). A variety of 1-

aryl/heteroaryl 2,4-diyn-1-ols 1 (see the supporting infor-

mation for structure of 2,4-diyn-1-ols) were well tolerated in 

this domino furanylation/benzannulation with ethyl acetoace-

tate (2a) to give the corresponding aryl/heteroaryl-fused 

benzofurans 3 in good to high yields. 1,5-Diphenylpenta-2,4-

diyn-1-ol (1a) having substitutions such as 4-OMe and 4-Ph 

groups on 1-phenyl ring reacted easily, affording the desired 

naphtho[2,1-b]furans 3b (91%) and 3c (83%), respectively. In 

addition, 2,4-diyn-1-ol bearing 1-naphthyl group at C1 posi-

tion was also viable substrate, furnishing the corresponding 

phenanthro[3,4-b]furan 3d in 86% yield. Remarkably, the 

present domino-annulation has a good tolerance of 1-

heteroaryl groups such as 3-carbazolyl and 2-thiophenyl on 

diynols, providing the 7H-benzofuro[5,4-b]carbazole 3e and 

thieno[2,3-e]benzofuran 3f in good yields. Further study re-

vealed that the tested diynols, either with 4-CF3-phenyl group 

or trimethyl silyl (TMS) at C5 position (alkyne carbon), un-

derwent furanyl-benzannulation to furnish the expected 

naphtho[2,1-b]furans 3g (85%) and 3h (86%), respectively. 

Subsequently, diverse 1,3-dicarbonyl compounds were inves-

tigated in their reactions with 1a under the optimal conditions. 

The alkyl acetoacetate possessing either methyl or allyl group 



 

endured this reaction to afford naphtho-furans 3i (82%) and 3j 

(81%). The reaction of ethyl 3-oxo-3-(p-tolyl)propanoate (2d) 

with 1a worked well to afford 3k in 80% yield. Similarly, 

diketo-compound, pentane-2,4-dione (2e) was also indicated 

to be suitable in this domino-annulation with different diyn-1-

ols to deliver the matching naphtho[2,1-b]furans 3l, 3m and 

phenanthro[3,4-b]furan 3n in good yield. Notably, 1,3- 

cyclohexadione (2f, cyclic diketocompound) also smoothly 

participated to produce 9,10-dihydronaphtho[2,1-

b]benzofuran-11(8H)-ones 3o (89%) and 3p (75%).  

Next, we endeavored to construct the furo[2,3-c]carbazole, a 

unique framework embedded in eustifoline D natural product.
7
 

Pleasingly, the reaction of suitable 2,4-diyn-1-ol 1i, derived 

from indole-3-carboxaldehyde, with 2a under optimal condi-

tions, offered the furo[2,3-c]carbazole 3q in 89% yield 

(Scheme 2). Additionally, few more 1,3-dicarbonyls including 

Scheme 2. Investigation of Substrate Scope
a
  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1,3-cyclohexanedione were examined with 2,4-diyn-1-ol 1i, to 

get the corresponding furo[2,3-c]carbazole products 3r, 3s and 

3t (eustifoline D analogues) in good yields (Scheme 2).  

Next, we wondered if the annulated-indole products 4 could be 

formed also in the presence of an amine using the present ap-

proach via domino pyrrolylation/benzannulation reactions. 

The reaction of 1a with 2a in the presence of aniline was car-

ried out under the conditions used for furano-benzannulation. 

As predicted, the construction of 4a is challenged by the cata-

lytic activity of acid in the presence of aniline (base) and only 

a  low yield of the product formation was observed, which 

forced us to further optimize the reaction conditions (for de-

tails see supporting information Table S1). Gratifyingly, the 

desired benzo[e]indole 4a was isolated in 87% yield by heat-

ing in toluene at 60 °C in the presence of BF3.Et2O (10 mol %) 

for 1 h followed by addition of amine and reflux for 8 h, then 

removal of toluene, addition of DBU in CH3CN and stirred at 

room temperature for 1 h. These optimized conditions were 

subsequently employed to examine the generality of this 

method (Scheme 3). Initially, diverse 1,3-dicarbonyl com-

pounds 2d to 2f were treated with 1a in the presence of aniline 

and the reaction proceeded smoothly, affording the desired 

benzo[e]indoles 4b to 4d in 78–86% yields. Different amines 

such as benzyl amine and 4-methoxy benzylamine were also 

studied in the reaction of 1a with 2a to obtain the expected N-

benzyl products 4e (84%) and 4f (81%), respectively.  To our 

delight, annulation of 1-heteroaryl 2,4-diyn-1-ols 1e and 1f 

with 2a in the presence of aniline, led to the formation of 3,7-

dihydroindolo[5,4-b]carbazole 4g (79%) and 6H-thieno[3,2-

e]indole 4h (91%), respectively. Notably, the developed meth-

od was found to be suitable for the synthesis of 

pyrrolo[2,3‐c]carbazole 4i, from the reaction of 1-(3-indoloyl)-

2,4-diyn-1-ol 1i with 2a in 83% yield (Scheme 3). This mole-

cule has the structural motif of dictyodendrin A and B.
8
 

Scheme 3. Generality of domino pyrrolo-benzannulation
a,b

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

On the basis of our experimental results and the literature re-

ports,
17-18 

plausible reaction mechanism is depicted in Scheme 

4. Initially, the propargylation (involving nucleophilic substi-

tution via a carbocation I) occurred to generate the intermedi-

ate A (isolated and fully characterized) from 1a and 

propargylic alcohol 2a in the presence of BF3.Et2O. Next, 

base-mediated intramolecular 5-exo-dig-cyclization of enol II 

and subsequent isomerization of III would provide the 

propargyl-furan IV. Later, intermediate undergoes further 

cycloisomerization through V (1,7-hydrogen shift driven aro-

matization) to result in the benzannulated product, fused-

benzofuran 3a. For the formation of benzo-annulated indole 

(Scheme 4, route b), it is considered that the intermediate A 

reacts with aniline to give the corresponding imines VI which 

tautomerize to the corresponding conjugated enamines VII. 

From these derivatives, similar sequence of cyclization-

isomerization-benzannulation-aromatization should occur to 

afford the target 4a via pyrrole B (isolated and fully character-

ized). 

Scheme 4. Proposed Mechanism 

 

 

 

 

 

 

 

 

 

 

 

To establish the reaction scalability of this method, a gram 

scale preparation of 3m (81%) was attained by the reaction of 

1b with 2e. Additionally, the practicality of functional groups 

on the furan ring is shown through further derivatization to-

wards expanding the structural diversity. To our delight, the 

treatment of 3m with NH2OH.HCl/NaOAc in MeOH:H2O 

(2:1) provided the ketoxime 5 in 92% yield (Scheme 5). The 

structure of 5 was confirmed by a single crystal X-ray method. 

Scheme 5. Gram-Scale Synthesis of 3m and derivatization 

 

 

 

 

 

In summary, this study presents a handy reaction of 2,4-diyn-

1-ols with 1,3-dicarbonyl compounds as a novel method for 

the synthesis of distinctly functionalized aryl/heteroaryl-

annulated benzofurans and indoles. Remarkably, the reaction 

allows the assembly of two C-C and one C-O (two C-N) bonds 

by the cleavage of one C−O in a one-pot operation via a dom-

ino acid-catalyzed propargylation of 1,3-dicarbonyls followed 

by base-mediated furanylation or pyrrolylation (intramolecular 

exo-dig-cyclization)/benzannulation sequence. This protocol 

enables accessing eustifoline D analogues as well as the struc-

tural framework of dictyodendrins in good to excellent yields. 

The developed approach is noteworthy for its wide scope, 

good yields and a mild, operationally simple strategy. 
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