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The analysis of similar earthquakes, such as events in a seismic sequence, is an effective tool with which to
monitor and study source processes and to understand the mechanical and dynamic states of active fault
systems. We are observing seismicity that is primarily concentrated in very limited regions along the 1980
Irpinia earthquake fault zone in Southern Italy, which is a complex system characterised by extensional
stress regime. These zones of weakness produce repeated earthquakes and swarm-like microearthquake
sequences, which are concentrated in a few specific zones of the fault system. In this study, we focused on a
sequence that occurred along the main fault segment of the 1980 Irpinia earthquake to understand its
characteristics and its relation to the loading-unloading mechanisms of the fault system.

O
bserving and studying the seismicity of active faults has proven to be a fundamental step in studying the
geometry, mechanical properties, and time-dependent processes of fault zones. The accurate relocation
and study of the source properties of large catalogues of earthquakes were used to produce high-

resolution images of complex fault systems (e.g.1); characterise the small-scale variability of faulting style, stress
and strength (e.g.2); test mechanical models of rupture (e.g.3); and study the processes associated with the
triggering of earthquakes and earthquake migration (e.g.4).

Within this framework, repeated earthquakes are found to exhibit unique characteristics. For example, seismic
sequences that occur within a very small source area are characterised by highly similar waveforms5,6. These
events offer a unique opportunity to study the fault processes at time scales that range from hours to years. These
similar earthquakes can be located with great precision and can provide accurate estimates of the local stress
regime, the mechanical properties of the fault, and the efficiency of the loading mechanism7,8.

The goal of observing the seismicity of an active fault system during its inter-seismic period has led to the
development of a dense seismic network (ISNet - Irpinia Seismic Network) that has been operational since 2005 in
Southern Italy along the Campania-Lucania Apennine 9. ISNet includes a complete catalogue of events since 2008
and constitutes a unique field laboratory, which monitors and studies the source processes in a complex seismo-
genic region that is characterised by prevalent normal-faulting seismicity and is capable of generating earthquakes
up to magnitude 7. The most recent of these high-magnitude earthquakes was the M 6.9 Irpinia earthquake in
198010. This was a complex, normal-faulting event characterised by different rupture episodes that nucleated
along three different fault segments, with a total approximate length of 60 km. The projections of those fault
segments are shown in Figure 1. This earthquake was the first in Italian history to produce substantial and clear
surface faulting. Westaway and Jackson11 were the first to discover more than 10 km of breakage surface faulting.
Based on their field work, Pantosti and Valensise12 subsequently reconstructed three main strands, which together
formed a 38-km-long, northwest-trending fault scarp.

Since 2008, ISNet has recorded approximately 1,200 events along the Campania-Lucania Apennines, each with
a local magnitude (ML) of less than 3.413. All of the data were acquired with a sampling frequency of 125 Hz. The
majority of the recorded seismicity is concentrated in a small number of regions along the 1980 Irpinia earthquake
fault zone. These zones of weakness produce repeated earthquakes and swarm-like microearthquake sequences
(Figure 1) that last from 2 to 5 days. They have a maximum moment magnitude of less than 3 and are char-
acterised by co-located events that share the same focal mechanism, which has been observed in the area14.
Supplementary Figure S1 demonstrates that these observations are not related to the ISNet geometry because the
zones of weakness still remain when the seismicity is considered over the complete location threshold of the
network (ML 5 1.3)14.

In this paper, we describe the steps of the detailed analysis that we performed on one of the sequences. We
discuss our results to enable a better understanding of the processes that control the occurrence and size of
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microearthquakes in a single swarm and the relation of these pro-
cesses to the fault system loading-unloading mechanisms.

Results
The analysed microearthquake sequence occurred in May 2008 and
lasted for 3 days. The sequence consisted of 19 small earthquakes

(0.8 , Mw , 2.9), which were located near the village of Laviano.
The sequence was recorded by 21 stations in the ISNet network and
11 stations in the Italian National Institute of Geophysics and
Volcanology (INGV) network, thus providing a total number of
242 P-wave picks and 165 S-wave picks. The striking waveform sim-
ilarity and the clarity of the P-wave first motion polarity at different
stations indicated that events were co-located and shared the same
focal mechanism. An example of the strong similarity between each
event is shown in Figure 2. This figure shows band-pass-filtered (1–
20 Hz), normalised waveforms of the velocimetric vertical-compon-
ent records at the COL3, SNR3, and VDS3 stations for all of the
microearthquakes in the sequence. For the main event, we also mea-
sured 26 P-wave first motion polarities.

The absolute location of the sequence indicates that the events
occurred within errors along the main fault segment of the 1980
Irpinia earthquake, at an average depth of 10 km. After the double-
difference relocation process (see the Methods section), we found that
the events in the sequence were highly concentrated to a volume of less
than 300 m per side and were clearly aligned along an approximately
E-W direction, with the fault strike (287u) of the main event shown in
Figure 3a. Regarding the relative location, the estimated average ver-
tical error was of approximately 80 meters, while the estimated average
horizontal error was of approximately 20 m (Supplementary Table
S1). Although the events were extremely similar among the different
stations, which are shown in Figure 2, small differences within a few
samples in Ts-Tp times between pairs of microearthquakes were
allowed to resolve small variations in the event locations. Windows
of 0.5 seconds around the S-wave arrival time at the north component
of the SNR3 and COL3 stations are reported in Figure 3c and
Figure 3d, respectively. In these figures, traces of each event are aligned
with respect to the first P-wave arrival, and the main event (event 12)
is indicated with a red line. While a difference is not evident at the
COL3 station, it can be seen that at the SNR3 station, the S-wave for
some events, including the main event, arrived in advance compared
to the rest of the S-waves in the sequence. These observations were
consistent with a location of those events nearest to the SNR3 station,
as shown in Figure 3(a and b).

The sequence started on May 25, 2008, with an event of mag-
nitude Mw 5 1.0 at 2:53 UTC. During that day, ten microearth-
quakes occurred, with moment magnitudes ranging from 0.8 to 1.5.
On May 26, only one event occurred. At 16:19 UTC on May 27,
the main event (Mw 5 2.9) occurred west of the area affected by

Figure 1 | Density map of the 1200 microearthquakes located by the
ISNet since 2008. The events are displayed on the map with red circles. The

seismicity is concentrated in very limited regions along the 1980 Irpinia

earthquake fault zone, where the majority of the recorded sequences

occurred. AA’ indicates the vertical cross section reported in Figure 6.

Figure 2 | Vertical-component velocity records of the seismic sequence at the (a) COL3, (b) SNR3, and (c) VDS3 stations. The waveforms are band-

pass-filtered from 1 to 20 Hz and are amplitude-normalised. Events are ordered in time from earliest to latest and the event number increases with the

event origin time. Waveforms are aligned with respect to the first P-wave arrival time. Red and green vertical bars indicate windows containing the P- and

S-wave arrival times, respectively. The S-to-P (SP) conversion at shallow interfaces is also indicated.

www.nature.com/scientificreports
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microearthquakes during the previous two days. Subsequently, the
region in which the other events occurred was activated again by
six microearthquakes until May 28, with moment magnitudes ranging
from 1.6 to 2.3. The last event of magnitude 1.2 occurred to the west of
the main event at a distance of approximately 200 m. The progression
of the sequence in time is shown in the Supplementary Figure S2.

The main event of the sequence (Mw 5 2.9) was clearly the largest
event, as its seismic moment (2.431013 Nm) was approximately 2.5
times larger than the cumulative seismic moment of the other micro-
earthquakes (9.931012 Nm, corresponding to Mw 5 2.6).

After assuming circular crack rupture propagation, we estimated
the source radius and the stress drop from the inversion of the S-wave
displacement spectra (see the Methods section). We found that the
high-frequency decay of the S-wave displacement spectra was pro-
portional to v2c, with c 5 1.51 6 0.68. A self-similar scaling law was

maintained, with a constant stress drop Ds 5 3.9 6 2.2 MPa, as
shown by the red circles in Figure 4. The constant stress drop scaling
model results are appropriate after considering the entire seismicity
pattern recorded by the ISNet, as represented by the grey circles in
Figure 4 that span the moment range between 1011 and 1014 Nm. The
self-similar, constant stress drop scaling was verified by a x2 test,
which included uncertainties in the single estimates. We found
that the source radius ranges from approximately 20 to 100 m. For
comparison, we completed the plots by assigning each event for
which there was no reliable estimation of the source radius a constant
value of 17 m, which is the minimum space scale that is resolvable in
this analysis. After comparing the cumulative rupture area of the
smallest events to the area of the main event, the two areas were
found to have approximately the same dimensions; therefore, the
seismic moment of the main event is 2.5 times larger than the

Figure 3 | (a) Epicentres of the analysed seismic sequence. The fault strike (287u) of the main event is indicated with a black line crossing the rupture area

of the main event (red circle). (b) Relative position of the sequence with respect to the SNR3 and COL3 stations. (c, d) Record of the north component of

the SNR3 and COL3 stations in a 0.5-second window around the S-wave arrival time. The traces of each event are aligned with respect to the first P-wave

arrival, and the main event (event 12) is indicated with a red colour. The main differences in S-wave arrival times are demonstrated at the SNR3 station.

www.nature.com/scientificreports
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cumulative seismic moment of the other events due to a greater slip.
In fact, the estimated average slip ranges from 0.2 to 0.7 cm for all of
the secondary events, while the value for the main event is 2.4 cm.
The estimated source parameters for the entire sequence are reported
in the Supplementary Table S2.

We considered the estimations of the source radius and the static
stress drop for the main event obtained using the duration of the
source time functions (STFs), which are the values shown in grey in
the Supplementary Table S2 and displayed with triangle symbols in
Figure 4. The values matched (see Figure 4) those obtained by invert-
ing the S-displacement spectra but were more robust and showed
smaller errors. The 26 P-wave first motion polarities were used with
the FPFIT code15 (see also the Methods section) to obtain the fault
plane solutions of the main event. The resulting focal mechanism is
reported in Figure 5a and indicates an almost pure normal faulting
event. The average errors of the maximum likelihood solutions were
also computed with the FPFIT code and are 4, 2, and 5u for strike, dip,
and rake, respectively. Moreover, the accuracy of the solutions is also
supported by a very low misfit of 0.04 and a station distribution ratio
(STDR) of greater than 0.5 (see Figure 5a). We investigated which of
the two nodal planes is more likely to accommodate the rupture of
the main event using the isochrone back-projection technique16. For
each plane and a fixed constant rupture velocity, we retrieved the best
solution for the slip by minimising the L1 distance between the
observed STFs and their synthetic estimations, which is an appro-
priate cost function for reproducing both the amplitude and the

shape of the STFs. By repeating the process for different rupture
velocities within the range of 2.223.0 km/s, the minimum cost func-
tion was obtained for a rupture with a velocity of 2.3 km/s along the
nodal plane with a strike of 287u and a dip of 38u. The results are
shown in Figure 5b. To determine the sensitivity of the solution to the
nodal plane and the rupture velocity, the vertical axis of the figure
shows the normalised variation of the cost function with respect to
the minimum value. After inspecting the curves, we found that the
nodal plane generating the rupture is highly constrained; however,
variation of the cost function with the rupture velocity is exception-
ally small, thus indicating a large parameter uncertainty. The best
solution for the slip distribution is shown in Figure 5c. The main
event was primarily a circular crack with a slip concentration in the
up-dip and positive strike directions, thus providing evidence for a
possible directivity effect in those directions.

Discussion
We investigated an earthquake sequence located along the main
segment of the Irpinia fault system, at an approximate 10 km depth,
using the analysis of high-quality seismic data from ISNet.

We found that a self-similar source scaling relationship holds for
microearthquakes of the analysed sequence, with a nearly constant
static stress drop of Ds 5 3.9 6 2.2 MPa. The hypothesis of a self-
similar constant stress drop scaling was statistically verified. This
value is consistent with the estimation of Ds 5 3.5 MPa for the
Ms 6.9, 1980 Irpinia earthquake17, thereby suggesting that self-
similarity could extend over an extensive seismic moment range
(1011–1019 Nm) for earthquakes occurring along the Irpinia fault
system. Although the stress drop is only a measure of the difference
between the initial and final stress on a fault, the value obtained for
this sequence suggests a similar stress loading-unloading mechan-
isms across several space scales along this segmented normal fault
system in the Southern Apennines.

A detailed analysis of the main event waveforms revealed a kin-
ematic complexity of the rupture at a fracture scale of a few hundred
metres. The apparent source time function (Supplementary Figure
S3), obtained by empirical Green’s function (EGF) deconvolution at
12 stations, revealed a bi-modal time function with a generally nar-
rower second peak, which was larger than the first peak. We
as-sociated this shape with a two-stage rupture model, which is char-
acterised by a smooth initial nucleation and a later phase associated
with a localised and relatively high-slip patch. Because the relative
weight of the second stage of the rupture is large (i.e., the second peak
of the STF), the spectral signature of this complex rupture results in
two corner frequencies, the smaller of which is associated with the
entire duration of the rupture and the larger of which is associated
with the later phase. It is important to note that estimations of the
corner frequency from the displacement spectra of microearth-
quakes may be biased by small-scale source and/or propagation
effects; however, the waveform deconvolution is a more robust tech-
nique for estimating the correct source size when properly selecting
the P/S wave time windows18. We mapped the final slip distribution
on the fault plane using a back-projection technique applied to STF
amplitudes. The final image revealed complexity in the slip pattern,
with small values in the rupture nucleation area and a larger slip at
the crack boundary. The highest values were found in the up-dip
direction, west of the nucleation point. The size of the main rupture is
poorly constrained because the rupture velocity is not determined by
the back-projection method. However, after assuming a constant
rupture velocity, the size of the high slip patch was found to be 4
to 5 times smaller than the initial, low-slip phase of the rupture. This
observation is similar to what was inferred for moderate to large
earthquakes, in which the largest slip values are generally localised
in small-sized patches far from the rupture nucleation zone19.
However, due to the non-uniqueness of the kinematic model, a
large-amplitude, late-wave radiation can also be attributed to a sharp

Figure 4 | Log of the source radius r (a) and the static stress drop Ds (b)
compared with the log of the seismic moment Mo. In the panel (a),

dashed lines correspond to constant static stress drop values, which are

expressed in MPa. Uncertainties in source parameters are reported in each

panel for the events belonging to the analysed sequence (red circles). A red

triangle symbol in both panels indicates the calculated estimation from the

STF durations. Grey circles represent source parameter estimations for the

entire catalogue of seismic events recorded by the ISNet.

www.nature.com/scientificreports
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increase of the slip rate and/or the rupture velocity at the crack
border.

The smaller-magnitude events in the sequence were primarily
located east of the main event rupture surface. When looking at their
locations, projected on the main event fault plane (Figure 5c), their
rupture surfaces nearly overlap. This indicates that the mechanism of
static stress transfer is likely responsible for controlling the time
progression of the sequence. The cumulative rupture area of the
smaller-magnitude events is the same as that of the main event, while
the cumulative seismic moment of smaller-sized earthquakes is 2.5
times less than the seismic moment of the main event; therefore, this
difference results in the highest average slip.

The focal mechanisms of each event and the directivity analysis for
the main event reveal a clear, normal fault mechanism occurring
along a plane plunging northeast at 38u angle. This angle is less steep
than the 60u fault dip estimated for the Ms 6.9, 1980 Irpinia earth-
quake from first motion polarities of regional data11 (references
therein). The surface projection of a 38u dipping plane crossing the
sequence area is 8.5 km far away from the fault scarp of the 1980
earthquake, which is instead compatible with a 60u dipping plane
(Figure 6). This may indicate a possible fault dip change between the
shallow and deep portions or an abrupt slope change related to a
kink, a branch or a fork near 10 km depth. The presence of a fault
kink or bend at a depth of approximately 10 km was also hypothe-
sised by Westaway and Jackson11 to explain the later phases of the
main rupture of the Irpinia earthquake on the basis of vertical ground
levelling data and aftershock distribution.

Listric or kinked fault geometries are not unusual in normal fault-
ing tectonic contexts20. The anomalously large stress concentration

may be the cause of the generation of small fractures near the zone
where the fault slope changes, which are likely to cause the fault zone
to be strongly damaged and/or fractured. This zone could be the
source of repeated earthquake activity due to the internal mechanical
re-adjustments from local stress release and/or fluid migration along
the fault zone near the geometrical barrier. Such seismic movements
can produce a crackling noise, which also occurs due to other phe-
nomena such as sound emission during paper crumpling, fluids

Figure 5 | (a) Fault plane solutions of the main event computed using 26 P-wave first motion polarities. P and T denote the P- and T-axis positions. Open

circles and crosses indicate dilations and compressions, respectively. (b) Percentage variation of the normalised cost functions compared with the rupture

velocity for both of the nodal planes. The absolute minimum was obtained for the nodal plane with a strike of 287u, a dip of 38u, and a rupture velocity of

2.3 km/s. (c) Slip map of the main event and a superimposed distribution of all microearthquakes in the sequence along the strike-dip plane. The

dimensions of the circles correspond to the Madariaga’s circular rupture area of the events, inferred from corner frequencies, while the colour of the circles

indicates the computed average slip,Du. Events in the sequence for which there was no reliable estimation of the source radius complete the plot by taking

the minimum value estimated for that parameter. Dotted circles at the centre represent the rupture area of the main event, which was estimated using the

STF durations. Horizontal and vertical location errors are also displayed.

Figure 6 | Sketch of the fault planes projected on the AA’ vertical cross
section (see Figure 1). The red line corresponds to the fault plane obtained

in this study, while the blue line corresponds to the main segment of the

1980 Irpinia earthquake. The inset in the left corner shows a close-up image

of the analysed microearthquake sequence.

www.nature.com/scientificreports
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invading porous material, solar flares, Barkhausen noise and fractures
in heterogeneous material21.

Overcoming a geometrical barrier for an earthquake is not as easy
as moving along a planar surface. In addition, the probability for a
rupture to turn around a bend depends on the orientation of the bend
itself, the bend angle, the remote stress orientation and the local
rupture velocity. Furthermore, it depends on which of the two
branches the rupture nucleates. With a vertical principal stress, s1,
and a horizontal principal stress, s3, the stress drop is nearly the
same along the two segments, and is almost independent of the ratio
s1/s3 and the dynamic friction, indicating that the two segments
have the same ability to sustain a propagating rupture. However, a
rupture developing along the steeper part of the fault is not dynam-
ically favoured over down-dip propagation and turning around the
bend22,23. Additionally, occurrence of swarm-like sequences on the
compressional side of the kink reduces the normal stress on the
steeper portion of the fault, increasing the probability for the nuc-
leation of large events along this latter side of the fault24. This could
have been the case of the 1980 Irpinia earthquake that nucleated at a
depth of approximately 10 km along the steep portion of the fault and
propagated up-dip until it broke the free surface. Hence, monitoring
seismic sequences and separating physical processes that occur after
seismic events may help to define seismicity rates along the fault
system and the probability of moderate-to-large-magnitude
(M.6) earthquake occurrences.

Methods
We initially identified the accurate absolute locations of the events using a nonlinear
global approach (NonLinLoc)25 in a 3-D velocity model of the Campania-Lucania
area26,27. Subsequently, we refined the locations by applying a double-difference
technique (HypoDD)28, which solves the double-difference equations using the sin-
gular value decomposition, in the equivalent layer-averaged 1-D velocity model29.
This second step allowed for the minimisation of error due to un-modelled velocity
structures because ray paths from the events to a common station are similar; in fact,
hypocentral separations among earthquakes in the swarm are small compared to the
event-station distance and the length scale of the velocity heterogeneities. We used
both accurate manual picks and cross-correlation differential travel-times of P- and
S-waves in the earthquake relocation procedure. The cross-correlation differential
travel-times were computed in the frequency domain using the CCHAR program30,
resulting in a dataset of 3,906 differential times. Prior to cross-correlation, the
CCHAR code performed adaptive waveform pre-filtering, which was based on cross-
coherency. This filtering assigned lower weights to incoherent frequency bands while
reducing the risk of the removal of potentially useful signals by the a priori band-pass
filter choice. In particular, our CC analyses used a window length of 125 (150)
samples, at 1 (1.2) second each, with a pre-pick offset of 0.2 (0.4) seconds for the P-
wave (S-wave) picks. Since the waveform cross-correlation data included differential
times of higher accuracy than the individual picks31,32, their use in the double-dif-
ference algorithm gave accurate relative event relocations8,28,33. Double-difference
relocations for events in the sequence are shown in Supplementary Table S1 with their
respective uncertainties.

After assuming a source model with a high-frequency decay proportional to v-c (c
is an inverted parameter), refined estimations of the spectral amplitude Vo and the
corner frequency vc were obtained by inverting the observed S-wave displacement
spectra in the frequency range of 0.5–50 Hz. Following an inversion strategy similar
to that used by De Lorenzo et al.34, we adopted a multi-step, non-linear, iterative
procedure aimed at the joint determination of the source, the medium attenuation
parameters along with a frequency-dependent parameter, and the site amplification
function35. Specifically, we applied the non-linear Levenberg-Marquardt least-
squares algorithm36, which was implemented in the software package GNUPLOT37,
for curve-fitting and parameter estimation. In the curve-fitting, the signal-to-noise
ratio was calculated in the entire range of frequencies and was used as a weighting
factor; the noise level was calculated from a time window of 2.5 seconds before the first
P-wave arrival. With respect to the spectral analysis, the S-wave displacement spec-
trum was calculated as the modulus of the two horizontal-component spectra in a
time window of 2.5 s, which started 0.25 s before the S-wave onset and ended 2.25 s
after the onset. The use of a small time window around the direct S-wave arrivals
reduces the influence from common propagation effects that can affect the resulting
parameters38.

Starting from the estimates of the spectral parameters Vo and vc, we calculated the
seismic moment Mo39 and the source radius r40 for nine microearthquakes recorded by
at least three stations and with signal-to-noise ratios larger than two throughout the
entire frequency range. The seismic moment and the radius of circular fault ruptures
were then used to estimate the static stress drop Ds41 and the average slip Du39.

We studied the rupture process of the largest magnitude event by first determining
its focal mechanism with the FPFIT code15, which uses the information provided by

P-wave first motion polarities, and after by performing a kinematic rupture modelling
through the deconvolution of the empirical Green’s function (EGF). In particular, the
inversion of the FPFIT code was accomplished through a grid search step of one
degree. With regard to the kinematic rupture modelling, to retrieve a reliable apparent
source time function (STF), we first applied the stabilised deconvolution technique of
Vallée42, in which causality, positivity, limited duration and equal area constraints on
the STF are integrated in the deconvolution process. The Mw 5 1.9 microearthquake
that occurred on 2008-5-27 at 17:25 UTC was used as the EGF; in fact, it was among
the smallest of the events and it was recorded by a large number of stations. We then
estimated the STF at 12 recording stations (Supplementary Figure S3) in the S-wave
time window. We finally performed a kinematic rupture inversion using the iso-
chrone back-projection technique16. The inversion of STFs allowed us to constrain the
fault plane and provided us with an estimation of the slip distribution, rupture
direction, and average velocity.

After using the STF durations, additional estimations of the corner frequency, the
source radius, and the static stress drop were obtained. The values are reported in the
Supplementary Table S2 and are plotted in Figure 4 with triangle symbols.

1. Waldhauser, F. & Schaff, D. P. Large-scale relocation of two decades of Northern
California seismicity using cross-correlation and double-difference methods. J.
Geophys. Res. 113, B08311 (2008).

2. Hardebeck, J. L. Homogeneity of small-scale earthquake faulting, stress, and fault
strength. Bull. Seismol. Soc. Am. 96(5), 1675–1688 (2006).

3. Zaliapin, I. & Ben-Zion, Y. Asymmetric distribution of aftershocks on large faults
in California. Geophys. J. Int. 185(3), 1288–1304 (2011).

4. King, G. & Cocco, M. Fault interaction by elastic stress changes: New clues from
earthquake sequences. Advances in Geophysics 44, 1-38 (2001).

5. Nadeau, R. M. & McEvilly, T. V. Fault slip rates at depth from recurrence intervals
of repeating microearthquakes. Science 285(5428), 718 (1999).

6. Nadeau, R. M. & McEvilly, T. V. Periodic pulsing of characteristic
microearthquakes on the San Andreas Fault. Science 303(5655), 220 (2004).

7. Vidale, J., Ellsworth, W. L., Cole, A. & Marone, C. Variations in rupture process
with recurrence interval in a repeated small earthquake. Nature 368(6472), 624–
626 (1994).

8. Waldhauser, F. & Ellsworth, W. L. Fault structure and mechanics of the Hayward
Fault, California, from double-difference earthquake locations. J. Geophys. Res.
107, B3 (2002).

9. Iannaccone, G. et al. A prototype system for earthquake early-warning and alert
management in southern Italy. Bull. Earthq. Eng. 8(6), 1105–1129 (2010).

10. Bernard, P. & Zollo, A. The Irpinia (Italy) 1980 earthquake: detailed analysis of a
complex normal fault. J. Geophys. Res. 94, 1631–1647 (1989).

11. Westaway, R. W. C. & Jackson, J. The earthquake of 1980 November 23 in
Campania-Basilicata (southern Italy). Geophys. J. R. Astr. Soc. 90, 375–443 (1987).

12. Pantosti, D. & Valensise, G. Faulting mechanism and complexity of the November
23, 1980, Campania-Lucania earthquake, inferred from surface observations. J.
Geophys. Res. 95(B10), 15319–15341 (1990).

13. Bobbio, A., Vassallo, M. & Festa, G. A local magnitude scale for Southern Italy.
Bull. Seismol. Soc. Am. 99, 2461–2470 (2009).

14. De Matteis, R. et al. Analysis of background microseismicity for crustal velocity
model, fault delineation and regional stress direction in Southern Apennines,
Italy. Bull. Seismol. Soc. Am. 102(4), in press (2012).

15. Reasenberg, P. & Oppenheimer, D. FPFIT, FPPLOT and FPPAGE: Fortran
computer programs for calculating and displaying earthquake fault plane
solutions. U.S. Geol. Surv., Open File Report 85–739 (1985).

16. Festa, G. & Zollo, A. Fault slip and rupture velocity inversion by isochrone
backprojection. Geophys. J. Int. 166(2), 745–756 (2006).

17. Deschamps, A. & King, G. C. P. The Campania-Lucania (southern Italy)
earthquake of 23 November 1980. Earth Planet. Sci. Lett. 62, 296–304 (1983).

18. Viegas, G., Abercrombie, R. E. & Kim, W.-Y. The 2002 M5 Au Sable Forks, NY,
earthquake sequence: Source scaling relationships and energy budget. J. Geophys.
Res. 115, B07310 (2010).

19. Mai, P. M., Spudich, P. & Boatwirght, J. Hypocenter locations in finite-source
rupture models. Bull. Seismol. Soc. Am. 95, 965–980 (2005).

20. Eyidogan, H. & Jackson, J. A. A seismological study of normal faulting in the
Demirci, Alasehir and Gediz earthquakes of 1969-1970 in western Turkey:
implications for the nature and geometry of deformation in the continental crust.
Geophys. J. R. Astr. Soc. 81, 569–607 (1985).

21. Sethna, J. P., Dahmen, K. A. & Myers, C. R. Crackling noise. Nature 410(6825),
242–250 (2001).

22. Kame, N., Rice, J. R. & Dmowska, R. Effects of pre-stress state and rupture velocity
on dynamic fault branching. J. Geophys. Res. 108(B5), 2265 (2003).

23. Festa, G. & Vilotte, J.-P. Role of the fault geometry on the rupture dynamics and
the radiated wavefield. AGU Fall Meeting, S54C-05, San Francisco, USA, 5–9
December (2011).

24. Duan, B. & Oglesby, D. D. The dynamics of thrust and normal faults over multiple
earthquake cycles: Effects of dipping fault geometry. Bull. Seismol. Soc. Am. 95(5),
1623–1636 (2005).

25. Lomax, A., Virieux, J., Volant, P. & Berge, C. Probabilistic earthquake location in
3D and layered models: Introduction of a Metropolis-Gibbs method and
comparison with linear locations. in Advances in Seismic Event Location, Thurber,
C. H. & Rabinowitz, N. (eds.), Kluwer, Amsterdam, 101–134 (2000).

www.nature.com/scientificreports

SCIENTIFIC REPORTS | 2 : 410 | DOI: 10.1038/srep00410 6



26. De Matteis, R., Romeo, A., Pasquale, G., Iannaccone, G. & Zollo A. 3D
tomographic imaging of the southern Apennines (Italy): A statistical approach to
estimate the model uncertainty and resolution. Studia Geophysica et Geodaetica
54(3), 367–387 (2010).

27. Matrullo, E., Amoroso, O., De Matteis, R., Satriano, C. & Zollo A. 1D versus 3D
velocity models for earthquake locations: a case study in Campania-Lucania
region (Southern Italy). EGU General Assembly, EGU2011-9305, Vienna, Austria,
3–8 April (2011).

28. Waldhauser, F. & Ellsworth, W. L. A double-difference earthquake location
algorithm: Method and application to the northern Hayward Fault, California.
Bull. Seismol. Soc. Am. 90, 1353–1368 (2000).

29. Lin, G., Shearer, P. M. & Hauksson, E. Applying a three-dimensional velocity
model, waveform cross correlation, and cluster analysis to locate southern
California seismicity from 1981 to 2005. J. Geophys. Res. 112, B12309 (2007).

30. Rowe, C. A., Aster, R. C., Borchers, B. & Young, C. J. An automatic, adaptive
algorithm for refining phase picks in large seismic data sets. Bull. Seismol. Soc. Am.
92(5), 1660–1674 (2002).

31. Poupinet, G., Ellsworth, W. L. & Frechet, J. Monitoring velocity variations in the
crust using earthquake doublets: An application to the Calaveras Fault, California.
J. Geophys. Res. 89, 571–5731 (1984).

32. Shearer, P. M. Evidence from a cluster of small earthquakes for a fault at 18 km depth
beneath Oak Ridge, southern California. Bull. Seismol. Soc. Am. 88, 1327–1336 (1998).

33. Hauksson, E. & Shearer, P. M. Southern California hypocenter relocation with
waveform cross-correlation, part 1: Results using the double- difference method.
Bull. Seismol. Soc. Am. 95, 896–903 (2005).

34. De Lorenzo, S., Zollo, A. & Zito, G. Source, attenuation, and site parameters of the
1997 Umbria-Marche seismic sequence from the inversion of P wave spectra: A
comparison between constant Qp and frequency-dependent Qp models. J.
Geophys. Res. 115, B09306 (2010).

35. Zollo, A., Orefice, A. & Convertito, V. Scaling relationships for earthquake source
parameters down to decametric fracture lengths. EGU General Assembly,
EGU2011-6608, Vienna, Austria, 3–8 April (2011).

36. Marquardt, D. An algorithm for least-squares estimation of nonlinear parameters,
SIAM. J. Appl. Math. 11, 431–441 (1963).

37. Janert, K. P. Gnuplot in Action: Understanding Data with Graphs. Manning
Publications Co. 396 pp. (2009).

38. Ide, S., Beroza, G., Prejean, S. & Ellsworth, W. Apparent break in earthquake
scaling due to path and site effects on deep borehole recordings. J. Geophys. Res.
108(B5), 2271 (2003).

39. Aki, K. & Richards, P. G. Quantitative Seismology (2nd edition). University Science
Books 704 pp. (2002).

40. Madariaga, R. Dynamics of an expanding circular fault. Bull. Seismol. Soc. Am. 66,
639–666 (1976).

41. Keilis-Borok, V. I. On the estimation of the displacement in an earthquake source
and of source dimensions. Ann. Geophys. 12, 205–214 (1959).

42. Vallée, M. Stabilizing the empirical Green function analysis: development of the
projected Landweber method. Bull. Seismol. Soc. Am. 94, 394–409 (2004).

Acknowledgments
The research has been partially funded by NERA (European Community9s Seventh
Framework Programme [FP7/2007-2013] under grant agreement nu 262330) and REAKT
(European Community’s Seventh Framework Programme [FP7/2007-2013] under grant
agreement nu 282862) projects. Moreover we acknowledge R. De Matteis, M. Lancieri, V.
Convertito, G. Iannaccone and all the members of the seismological laboratory of the
Department of Physics (University of Naples Federico II) for useful discussions and
comments.

Author contributions
T.A.S. and C.S. contributed with the earthquake location. A.O. and A.Z. computed the
source parameters and the STFs. T.A.S. determined the focal mechanism. G.F. performed
the kinematic rupture inversion. All authors contributed to write the manuscript and to
discuss the results.

Additional information
Supplementary information accompanies this paper at http://www.nature.com/
scientificreports

Competing financial interests: The authors declare no competing financial interests

License: This work is licensed under a Creative Commons
Attribution-NonCommercial-NoDerivative Works 3.0 Unported License. To view a copy
of this license, visit http://creativecommons.org/licenses/by-nc-nd/3.0/

How to cite this article: Stabile, T.A., Satriano, C., Orefice, A., Festa, G. & Zollo, A. Anatomy
of a microearthquake sequence on an active normal fault. Sci. Rep. 2, 410; DOI:10.1038/
srep00410 (2012).

www.nature.com/scientificreports

SCIENTIFIC REPORTS | 2 : 410 | DOI: 10.1038/srep00410 7

http://www.nature.com/scientificreports
http://www.nature.com/scientificreports
http://creativecommons.org/licenses/by-nc-nd/3.0

	Anatomy of a microearthquake sequence on an active normal fault
	Introduction
	Results
	Discussion
	Methods
	Acknowledgements
	References


