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ABSTRACT In this article, we investigated the semantic segmentation of Polarimetric Synthetic Aperture
Radar (PolSAR) using Complex-Valued Neural Network (CVNN). Although the coherency matrix is more
widely used as the input of CVNN, the Pauli vector has recently been shown to be a valid alternative. We
exhaustively compare both methods for six model architectures, three complex-valued, and their respective
real-equivalent models. We are comparing, therefore, not only the input representation impact but also the
complex- against the real-valued models. We then argue that the dataset splitting produces a high correlation
between training and validation sets, saturating the task and thus achieving very high performance. We,
therefore, use a different data pre-processing technique designed to reduce this effect and reproduce the
results with the same configurations as before (input representation and model architectures). After seeing
that the performance per class is highly different according to class occurrences, we propose two methods for
reducing this gap and performing the results for all input representations, models, and dataset pre-processing.

INDEX TERMS CVNN, machine learning, PolSAR, radar, semantic segmentation.

I. INTRODUCTION
In the machine learning community, most neural networks are
developed for processing real-valued features (voice signals,
RGB images, videos, etc.). The signal processing commu-
nity, however, is more interested in developing theories and
techniques in complex fields. Indeed, complex-valued signals
are encountered in various applications, such as biomedi-
cal sciences, physics, communications, and radar. All these
fields use signal processing tools [1], which are usually based
on complex filtering operations and complex-valued repre-
sentations or features (Discrete Fourier Transform, Wavelet
Transform, Wiener Filtering, Matched Filter, etc.) [2]. Thus,
Complex-Valued Neural Networks (CVNNs) appear as a
natural choice to process and to learn from these complex-
valued features since the operation performed at each layer
of CVNNs can be interpreted as complex filtering or multi-
plications. Notably, CVNNs are more adapted than RVNNs
to extract phase information [3]. Recently, we showed that

CVNN are more performant in classifying non-circular Gaus-
sian data than its real counterpart [4], which means CVNNs
are more sensible to extract phase information than RVNNs.
We do that by comparing vectors of random non-circular data
showing that CVNN can profit from this feature and extract its
full potential by achieving higher accuracy, less overfitting,
and lower variance than the RVNN. Our findings were also
cited by Reference [5] to justify some properties of their
obtained results as they were analogous to ours.

Deep learning techniques are becoming widely popular and
have extended into radar and PolSAR image classification [6],
[7], [8]. Usually, these networks are fed with the amplitude
information of the PolSAR image while not using the phase
data.

Recently, some publications started using CVNNs as
an alternative to conventional Real-Valued Neural Network
(RVNN) for radar applications [9], [10] since radar data are
generally complex-valued. Knowing that Synthetic Aperture
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Radar (SAR) data is non-circular [11], [12] and therefore
phase information plays a crucial part in their representation
[13], [14], [15], it is no wonder that CVNNs are becoming
increasingly popular for SAR, PolSAR or InSAR applications
[16], [17], [18].

However, pre-processing techniques inherit from conven-
tional RVNN architectures, using an input representation that
favors real values [19]. Furthermore, current state-of-the-art
PolSAR segmentation achieves very high accuracy, as will be
shown in Section II, however, this high results might be due to
a correlation between training and validation sets which might
indicate that the true performance of these models is actually
lower. Finally, PolSAR images tend to be unbalanced, making
them biased to predict the more frequent class, resulting in
a sub-optimal classifier. In this work, we propose to explore
all the issues mentioned above by studying the impact of
SAR pre-processing and balancing methods on the CVNNs
segmentation performance. The novelty of this work is then
to:
� Compare coherency matrix against Pauli vector input

representation on new PolSAR data with several model
architectures (see Section V).

� Reduce saturation on previous results using the dataset
splitting presented in Reference [20] on two other model
architectures (Section VI).

� Reduce bias and improve Average Accuracy (AA) by
balancing methods (Section VII).

� On top of all that, we compare CVNN against RVNN at
all stages to add evidence of CVNN merits.

Section II summarizes the related work on the area. Sec-
tions III and IV explain the model architectures and the dataset
used respectively. Later, in Section V, we show the results
for all complex models with both coherency matrix and Pauli
vector input representation. Section VI relaunches the sim-
ulations with a prior pre-processing, which aims to reduce
the correlation between training and validation sets. Finally,
Section VII aims to reduce the gap between Overall Accuracy
(OA) and AA by implementing two methods, either balancing
classes through the training sampling or using a weighted loss
function.

II. RELATED WORKS
Works using Complex-Valued Convolutional Neural Network
(CV-CNN) have been published for PolSAR applications.
Reference [21] compares a CV-CNN with RV-CNNs but lacks
confidence intervals. Other recent works [22], [23], [24], [25],
[26] use a CV-CNN for PolSAR applications but without
comparing its result with a RV-CNN.

References [27] and [28] added complexity to the CNN
architecture by using a Recurrent Complex-Valued Convo-
lutional Neural Network to obtain higher accuracy results.
Lately, References [29], [30] achieved state-of-the-art perfor-
mance using a Complex-Valued Fully Convolutional Neural
Network (CV-FCNN) model architecture. All the previously
cited works of CVNN applications on PolSAR perform a
pixel-wise classification task, which can be seen as a semantic

segmentation task. Therefore, it is not surprising that a FCNN
model achieves higher accuracy as it performs semantic seg-
mentation by design.

III. MODEL ARCHITECTURES
Complex-Valued MultiLayer Perceptron (CV-MLP) [31],
Complex-Valued Convolutional Neural Network (CV-CNN)
[21] and Complex-Valued Fully Convolutional Neural Net-
work (CV-FCNN) [29] model architectures are used for the
experiments. These are all complex-valued architectures. An
equivalent real-valued model architecture was also used to
have the same capacity in terms of the trainable parameters as
their complex-valued counterparts, as explained in References
[32], [33]. In this Section, we will give a detailed descrip-
tion of those models. Some slight modifications were made
compared to the model’s respective references with state-of-
the-art parameters not popular or known at the time of those
publications. References [31] and [21] use Stochastic Gradi-
ent Descent (SGD) as an optimizer whereas Reference [29]
use a more modern optimizer known as Adam which might
allow models to find a lower optimal minimum. Adam was,
therefore, used as the optimizer for all models. According to
the results, the learning rate and momentum were tweaked for
each model independently. As well as the number of epochs.

Although complex activation functions used on CVNN are
numerous [34], we will mainly focus on two types of ac-
tivation functions that are an extension of the real-valued
functions [4], [35]:
� Type-A: σA(z) = σRe(Re(z)) + i σIm(Im(z)) ,
� Type-B: σB(z) = σr (|z|) exp (i σφ (arg(z))) ,
where σRe, σIm, σr, σφ are all real-valued functions. Re and

Im operators are the real and imaginary parts of the input,
respectively, and the arg operator gives the input phase. The
most popular activation functions, sigmoid, hyperbolic tan-
gent (tanh), and Rectified Linear Unit (ReLU), are extensible
using Type-A or Type-B approach. Although tanh is already
defined on the complex domain for what, its transformation
is probably less interesting. Although [31] use tanh activa-
tion function for the MLP model, we decided in this work
to use Rectified Linear Unit (ReLU). Indeed, both activation
functions were tested for the MLP architecture showing an
interesting increase in performance when using Rectified Lin-
ear Unit (ReLU). For the output layer, the softmax activation
function [36] has been used.

A Normal weight initialization by K. He in [37] was
used, and the bias was initialized as zero. The adaptation for
complex-valued weights initialization is described in Refer-
ence [38, p. 6], which has to be done with care to keep the
benefits of the K. He initialization on the complex domain.

A categorical cross-entropy loss function was used for all
models. For complex models, the loss is computed twice,
using first the real part and then the imaginary part as the
prediction result. An average of the two error values is then
calculated to be optimized. Reference [29] defines this loss
function as complex average categorical cross-entropy (LACE )
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FIGURE 1. Complex-Valued Fully Convolutional Neural Network (CV-FCNN)
diagram.

which is computed as follows:

LACE = 1

2

[LCCE (Re(y), d ) + LCCE (Im(y), d )
]

, (1)

where LACE is the complex average cross-entropy, LCCE is
the well-known categorical cross-entropy. y is the network
predicted output, and d is the corresponding ground truth or
desired output. For real-valued output LACE = LCCE .

Complex- and Real-Valued MLP architectures had two
hidden layers. For the CV-MLP, 96 and 180 neurons were
used for the first and second hidden layers, respectively, as
presented in [29]. The hidden layers sizes of the RV-MLP
were dimensioned to have the same amount of real-valued
training parameters with the same aspect ratio as explained by
Reference [32]. The MLP models presented some overfitting
for what dropout with 50% rate was used, which improved the
performance.

Throughout literature, CV-CNNs are the most popular
CVNN architecture used for PolSAR. All References [21],
[22], [23], [24], [25] have identically characterized the model
with the same amount of layers and kernels. Therefore, we
decided to use the same architecture, which presents two con-
volutional layers, with 6 and 12 kernels, respectively, for the
complex model. Again, their size was dimensioned for the real
model as explained by Reference [33]. All kernels were of
size 3 × 3. Conventional arithmetic average pooling was used
between both convolutional layers. The model presents a fully
connected layer at the end to perform the classification.

Finally, CV-FCNN (Fig. 1) was implemented as described
on [29], which is composed of the downsampling or feature
extraction part and the upsampling part. The downsampling
part presents several blocks (B1, B2, B3, B4, B5, and B6).
Each block has two sub-modules that are represented in Fig. 1
in green and red colors. The upsampling part presents blocks
B7, B8, B9, B10, and B11, which, in terms, are a combination
of the other two sub-modules, the second one being the same
green sub-module present in the downsampling section.

The green sub-module is a combination of a convolu-
tion layer, a BatchNormalization (BN) (the complex BN was

adapted from the real-valued BN technique by Reference [38])
and Complex-Rectified Linear Unit (ReLU). Reference [29]
mentions using dropout but does not indicate at which points
nor their rate. Different dropout rates were tested at several
stages, such as the downsampling or upsampling part, without
appreciable amelioration (and sometimes the opposite). For
this reason, no Dropout was used for this model. This can
be explained as BN also acts as a regularizer, in some cases
eliminating the need for Dropout. The convolutional filter on
each layer was of size 3 × 3, and the number used for each
layer is represented in Fig. 1 for the complex model. As usual,
the definition of Reference [33] was used to dimension the
real-valued model.

The red sub-module is a max pooling layer whose main
objective is to shrink the image into smaller ones by keeping
only the maximum value within a small window, in our case,
of size 2 × 2. For the complex case, the absolute value of
the complex number is used for comparison as proposed in
[21]. This layer complements the max-unpooling sub-module
(yellow), inspired by the functioning of Max Un-pooling ex-
plained in Reference [39]. Max-unpooling technique receives
the maxed locations of a previous Max Pooling layer and
enlarges the input image by placing the input values on those
locations and filling the rest with zeros. Before the input

The last blocks of the downsampling and upsampling parts
(B6 and B11) have some differences with respect to the other
blocks. B6 removes the max-pooling layer (red) completely.
B11, on the other hand, replaces the ReLU activation function
with a softmax activation function to be used for the output
layer.

Each model was evaluated over around 10 Monte-Carlo
trials to be able to extract statistical analysis. Simulations were
done on CentraleSupélec Metz GPU servers [40].

IV. USED DATASET
The Electromagnetic and Radar Science Department (DEMR)
of ONERA, the French Aerospace Research Agency devel-
oped the RAMSES (Radar Aéroporté Multi-spectral d’Etude
des Signatures) PolSAR system in 2002 with funding from the
DGA (Direction Générale de l’Armement) and CNES (Cen-
tre National d’Études Spatiales). RAMSES was developed
mainly as a test bench for new technologies and to provide
specific data for TDRI (Target Detection, Recognition, and
Identification) algorithm evaluation. It is flown on a Transall
C160 platform operated by the CEV (Centre d’Essais en Vol).

RAMSES can be configured with three bands picked
among P-(430 MHz), L-(1.3 GHz), S-(3.2 GHz), C-(5.3 GHz),
X-(9.5 GHz), Ku-(14.3 GHz), Ka-(35 GHz), and W-(95 GHz)
bands totaling for eight different bands. From those eight,
six (all but Ka and W) operate in fully polarimetric mode.
The associated bandwidth and waveforms can be adjusted to
meet the data acquisition objectives, and the incidence angles
can be set from 30◦ to 85◦. The X-band and the Ku-band
systems are interferometric and can collect PolInSAR mode
imagery in multi-baseline configurations, either along-track,
cross-track, or both [41].

VOLUME 4, 2023 159



BARRACHINA ET AL.: IMPACT OF POLSAR PRE-PROCESSING AND BALANCING METHODS

FIGURE 2. Bretigny image and overlapped ground truth. Built-up Area;
Wood Land; Open Area; Runway

ONERA’s proprietary PolSAR image of Bretigny, France
[42] whose area is shown in Fig. 2. This image was measured
with RAMSES at X-band with a resolution of 1.3 m. The
image has a spatial resolution of 2 m, an incidence angle
of 30◦, and an X frequency band. 2,871,080 labeled pixels
of four classes, which are Open Area (73.20%), Wood Land
(5.76%), Built-up Area (14.43%), and Runway (6.61%), were
manually labeled. However, although there was a single class
for the fields (Open Area), there are different types of crops,
which can impact the prediction accuracy negatively. Indeed,
using k-means to split the pixels into four classes fails because
it tends to group some crops with Wood Land or runway
classes [43].

PolSAR classification algorithms generally make use of
signal coherence (or equivalently phase and local phase vari-
ance) existing on a single look complex data channel vector
s measured from two orthogonal polarimetric transmitted sig-
nals on two orthogonal polarimetric received signals. Here we
use the horizontal (H) and vertical (V) polarisation, and, as
with monostatic radar, the cross channels are equal; the useful
received vector is:

s =
(

SHH ,
√

2 SHV , SVV

)T
. (2)

For each pixel of the Synthetic Aperture Radar (SAR) im-
age, this backscattering vector is usually expressed in the Pauli
basis and reshaped onto one single complex vector ∈ C

3:

k = 1√
2

(SHH + SVV , SHH − SVV , 2 SHV )T . (3)

The Hermitian so-called coherency matrix is then formally
built according to

T = 1

n

n∑
j

k j kH
j , (4)

where the operator H stands for complex conjugate transpose
operation and where n is the number of pixels chosen in a
boxcar located in each local area of the SAR image. This op-
eration is done mainly to reduce speckle noise by performing
an average with the neighboring pixels.

Since T is Hermitian symmetric, its lower triangle, ex-
cluding the diagonal, is normally discarded as it provides no
additional information. As the diagonal is real-valued, the data

is extended to the complex plane by adding a zero imaginary
part which leads to a total of six complex values per pixel, or
nine real values for the RVNN architectures.

For our classification experiments, not all pixels are used
for the training as the image is very large. Smaller image
patches are generated using the sliding window operation
[44]. This method generates smaller image patches by sliding
a window through the image with a given stride. The same
parameters used in Reference [29] were used for the sliding
window operation method, generating images of size 12 × 12
for the MLP and CNN models and 128 × 128 for the FCNN
architecture. References [31] and [45] used about 2% of the
image pixels for training whereas [46] and [47] used 5%. In
[48], the authors adopted 10%. Finally, reference [21] tested
different sampling rates and proposed, based on the results,
to use a 10% sampling rate for both training and validation
set together. For this reason, we decided to use 8% and 2%
for training and validation, respectively, leaving the remaining
pixels as the test set.

V. COHERENCY VS. PAULI
To our best knowledge, all existing work on PolSAR CVNN
classification use the coherency matrix as their network in-
put representation, except for Reference [19], which proposes
using the Pauli vector instead under the assumption that it
will work better. Indeed, the authors show that using the Pauli
vector as input representation instead of the coherency ma-
trix reduces variance and increases accuracy. However, they
only perform the simulations on a FCNN architecture. In
this Section, we perform the same simulations on shallower
Convolutional Neural Network (CNN) and a MultiLayer Per-
ceptron (MLP) to see if the results also stand for these models.

This increase in performance when using the Pauli vector
representation is assumed to be because of the averaging op-
eration performed on (4), whose main objective is to reduce
noise at the expense of losing resolution and mixing values of
adjacent pixels, which is not favorable for pixel-wise classi-
fication. Although this averaging operation is done to reduce
speckle noise, the averaging algorithm can be viewed as a non-
trainable convolution operation on kkH with a constant kernel
fill with 1

n values, where n is the size of the kernel. Letting
these kernels be trainable could enhance the performance of
classification and segmentation. Furthermore, most despeck-
ling techniques such as the one presented on Reference [49]
can not be used as it only works for real-valued images.

Additionally, the diagonal elements of the coherency ma-
trix are real-valued, which is a desirable property in some
instances, but that has no interest when using CVNNs as they
can deal with complex-valued data naturally. Therefore, they
propose to use Pauli vector k as CVNN input whenever this
data format is available.

The results for the FCNN architecture were already pub-
lished on [20], where CV-FCNN achieved a high of 99.83 ±
0.02% OA and 98.69 ± 0.33% AA and RV-FCNN 99.69 ±
0.06% and 98.62 ± 0.20% respectively, all using Pauli vector
as the input representation and even lower for the coherency

160 VOLUME 4, 2023



TABLE 1. Test Accuracy Mean Results (%)

matrix representation. We, therefore, performed the same sim-
ulations for the other two architectures, whose results are
shown in Table 1. We can verify that although FCNN obtain
better results when using the Pauli vector as input repre-
sentation, this is not the case with CNN and MLP models.
This can be explained by the fact that MLP have no easy
way to deal with the speckle noise, as their operation is not
analogous to that of a filter. For this model, it is logical to
assume that the speckle noise reduction out-weights the loss
of information caused by the average filter. For CNN, the com-
plex model obtained higher performance with the coherency
matrix, although further simulations should be done as confi-
dence intervals intersect. RV-MLP, on the other hand, favored
the Pauli vector. Indeed, by using a complex model, the lower
amount of filters, with the fact that we are using only two
convolutional layers, may not always suffice to reduce speckle
noise while extracting the pertinent features, penalizing per-
formance. Indeed, under these characteristics, CV-CNN have
a lower degree of freedom than RV-MLP [50], although gen-
erally helps achieve better results, in this case, it prevents the
model from generalizing better. A deeper model with more
filters per layer should be used to verify this hypothesis.

Another surprise when using MLP architecture is that, un-
like for FCNN and CNN, the real-valued model outperformed
the complex one, although by a very small margin as, for
example, CV-MLP upper mean OA estimate (95.11%) almost
coincide with RV-MLP lower mean estimate (95.12%). This
fact remains to be explored.

In general, although using a complex-valued model might
be significant to increase performance, the used model archi-
tecture has a bigger relevance and impact in the result, with
FCNN outperforming CNN and CNN outperforming MLP
regardless of the architecture data type (complex or real).

VI. DATASET SPLIT
In the previous Section, results got as high as 99.83% mean
test Overall Accuracy for FCNN architecture, indicating that
the problem is over-saturated. Reference [20] states that this
issue is mainly due to a close correlation between the training,
validation, and test sets. Therefore, they propose to split the
dataset to reduce this effect. Indeed, with this pre-processing,
the OA accuracy drops significantly to under 94%. We, there-
fore, perform the same dataset splitting and relaunch the

FIGURE 3. Split of Bretigny dataset; 70% as the training set, 15% as the
validation set, and 15% as the test set. Built-up Area; Wood Land;
Open Area; Runway.

TABLE 2. Test Accuracy Mean Results With Dataset Split Method (%)

simulations for all models to verify the impact of this training
and validation correlation.

The dataset was split as shown in Fig. 3. 70% of the im-
age was used as a training set, and 15% was used for both
validation and test set. Note that the four classes are present
in each sub-image as shown in Fig. 3. This method not only
avoids the ground-truth overlap but also prevents pixels from
the same class from being close to each other.

Again, the results for the FCNN architecture were pub-
lished on [20], where CV-FCNN achieved a high of 93.62 ±
0.20% OA and 75.31 ± 0.63% AA and RV-FCNN 92.63 ±
0.29% and 76.20 ± 0.80% respectively. Resulting in a sig-
nificant decrease from previous results. These results meant
that this technique successfully unsaturated the segmentation
task to a harder case. Table 2 shows the test accuracy results
when using the splitting method. We can see that this split
has a smaller impact on CNN and MLP models compared
with FCNN. This is probably due to the fact that this method
reduces the total image patches for training for the FCNN
models while not affecting the same figure for the CNN or
MLP models.

VII. BALANCING DATASETS
The used dataset presents a huge difference in class occur-
rences. This can bias the algorithm to favor the more frequent
class when making predictions. For example, always predict-
ing Open Area will have an Average Accuracy of only 25%,
but almost 75% of Overall Accuracy, showing that the OA
metric alone can be misleading. Indeed, previous results show
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TABLE 3. Training Set Class Occurrences With Dataset Split Method

a big dissimilarity between OA and AA of around 3% differ-
ence when using the coherency matrix and even more than 6%
when using the Pauli vector.

We decided to reduce the gap between both metrics by
either balancing the train and validation set using different
sampling per class or using a weighted loss that heavily penal-
izes the classes with fewer occurrences. For the last case, the
loss per label was multiplied nl/nc where nl is the number of
samples of less frequent class, and nc is the total occurrences
of the corresponding label.

Balancing classes using the sampling method is easy for
MLP and CNN models as it suffices to take the same amount
of central pixels for each class. Also, as a low percentage of
pixels was used for train and validation (of 10%), this method
did not affect the total number of image patches used for
training and validation sets.

However, this technique is not suitable for the FCNN
model, the results did not work as expected, having little
impact on the network’s performance. Notably, when using
the sliding window operation for the dataset split method with
a stride of 25 and images of size 128 × 128, some generated
small sub-images have only one class present in them (shown
in Table 3 in the column Single-class images). Randomly
removing pixels to have the same amount of pixel classes will
have little impact on the total amount of single images, so
class Open Area will still have a relation of almost 10:1 com-
pared with Wood Land images and even 20:1 with Runway
images. The only effect it will have is that those Open Area
single-class images will have fewer pixels, losing generality.
Under this condition, with a batch size of 32, Runway images
have an average of 1 image per batch, meaning that batches,
where this class is not present will indeed occur.

To balance this dataset, the following algorithm was imple-
mented. As a first step, single-class images are removed to get
the same number of images that contains each class (counting
both single-class images and mixed images). In our case, this
is not possible to achieve because we are in the less likely
case where class 0 (Wood Land) has a total of 568 images,
and even by deleting all single-class images of other classes,
they will still have more presence in images. Therefore, in
this step, all single-class images for every class except Wood
Land were deleted. Under this scenario, the label occurrences
will now be as shown in Table 4. Note that Wood Land is no
longer the less frequent class, but now this role was taken by
the Build-up Area. Also, only with this step, all classes except

TABLE 4. Training Set Class Occurrences With Dataset Split Method After
Balancing Single-Class Images

the Open Area have a very similar occurrence. In cases where
not all single-class images need to be removed (not present in
our example), the images will not be removed randomly, but
the images with fewer pixels will be removed.

The second step will be to remove pixels to balance the
total number of pixels; the final code balancing will therefore
consist of two phases:
� Remove exceeding single-class images
� Balance images per pixel (See Algorithm 1)
However, instead of randomly removing the exceeding pix-

els, it would be better to remove pixels from images that have
more class occurrences. For example, if ten labels have to be
removed and there are only two images containing that class,
one with ten occurrences and the other with 100 occurrences,
it will be preferable to remove all ten pixels from the image
that has 100 occurrences instead of deleting five from each.

In this step, by knowing the total pixels we need to get (in
our example, 2,620,141) and knowing each class total number
of images, we can know the average of pixels these images
should have. If all images have more than this average, the
balancing will be simply to remove pixels so that each image
has this average.

If, on the contrary, some images have fewer pixels than
the expected average, there will forcibly be others that have
more. In this case, per class, images are ordered in ascending
order. The first images will have a lower total number of
pixels than the expected average. For this reason, they will
not be changed, and the total amount of pixels to achieve (in
our example, 2,620,141) will be updated by subtracting the
pixels present in the current image. These images will not be
counted when computing the new average, for the expected
average will increase until there is a moment when the total
pixels of the image will meet or be higher than the expected
average. In this case, labeled pixels of the current class will
be randomly removed so that it has the same pixels as the
intended average, this will be repeated for all the following
images. In the example of having only two images, a total
of 100 pixels are needed, but both images sum 110 pixels.
The average number of pixels per image will therefore be 55,
which is higher than the total of pixels of the first image (10).
The total number of pixels to be achieved will therefore be 90
(100 - 10). In this case, with only one image remaining, the
total average will also be 90, meaning that 10 pixels should be
removed from the last image.
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TABLE 5. Training Set Class Occurrences With Dataset Split Method After
Dataset Balancing

Algorithm 1: Balance Total Pixels of Patch.
Require:objective = desired total pixels per class
1: for each class do
2: tmp_objective = objective
3: ordered_images = indexes of all images that

contain the current class in ascending order
4: total_images = total images that

contain the class
5: for image in ordered_images do
6: occurrences = pixels occurrences within the

image for the current class
7: average = tmp_objective /

total_images
8: total_images − = 1
9: if occurrences ≤ average then

10: tmp_objective − = occurrences
11: else
12: randomly remove occurrences −

average class pixels from the image
13: tmp_objective − = average
14: end if
15: end for
16:end for

Table 5 shows the final numbers of pixels after the bal-
ancing algorithm is implemented. Algorithm 1 shows the
pseudo-code used for this balancing part. The final code
used for balancing the classes can be found in github.com/
NEGU93/CVNN-PolSAR.

Results for both techniques, dataset balancing and weighted
loss, were tested with both the standard dataset pre-processing
of Reference [29], used in Section V and the dataset splitting
proposed by Reference [20] and explained in Section VI.
FCNN did not obtain good results for weighted loss balancing
for what results were omitted, the reason why it happened
should be revised, but it may be for the same reason that
randomly removing pixels from the image did not work.

Fig. 4 shows the mean test accuracy per class for all
CNN models with coherency matrix as input (a similar graph
is obtained when using the Pauli vector representation). It
can be seen how both the dataset balance and the weighted
loss method obtain a higher accuracy for the Wood Land
class while reducing the Open Field accuracy, thus, obtaining
higher AA at the cost of reducing the OA. It is also important

FIGURE 4. CNN Coherency matrix results per class. Model C: CV-CNN;
C-DB: CV-CNN dataset balanced; C-WL: CV-CNN weighted loss; R: RV-CNN;
R-DB: RV-CNN dataset balanced; R-WL: RV-CNN weighted loss

TABLE 6. Test Accuracy Mean Results For Both Dataset Balancing and
Weighted Loss (%)

to note that the complex-valued model acquired higher accu-
racy than their real-valued equivalent model for every class
category.

Results can be seen in Tables 6 and 7. In general, as also
shown in Fig. 4, both techniques successfully reduced the gap
between OA and AA results. However, in most cases, dataset
balancing worked better by obtaining a smaller gap and higher
accuracy values.

For FCNN, the dataset balance without the dataset splitting
had a negative effect on the accuracy, with both OA and AA
having less accuracy than before. The balancing technique
reduced too much the size of the training data meaning that,
although the accuracy per class was more stable, the accuracy
dropped in general. The clearest sign of this case was the
RV-FCNN with the coherency matrix, which had an accu-
racy of around 50%. For CNN, the balancing method worked
very well with AA some times even higher than the OA.
This time, Pauli input representation achieved higher results
than the coherency matrix. It is important to note that for
the coherency matrix with no dataset splitting, CV-CNN and
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TABLE 7. Test Accuracy Mean Results for Both Dataset Balancing and
Weighted Loss With Split Method (%)

RV-CNN obtained almost identical OA. However, this result
was not statistically significant in favor of RV-CNN added to
the fact that CV-CNN did obtain a higher AA.

As before, FCNN obtained higher results when using the
Pauli vector representation as input, whereas MLP obtained
higher results with the Coherency matrix. For CNN, however,
it was not clear which input representation was best with a
small tendency towards coherency matrix.

For the dataset balance with splitting, CV-FCNN obtained
the higher OA but, although the dataset balancing did increase
the AA by around 5%, it was CV-CNN which obtained the
higher AA. This time, CV-CNN obtained higher OA when
using the Pauli vector as input representation but higher AA
when using the coherency matrix.

Throughout the simulations, RV-MLP obtained higher re-
sults when not splitting the dataset, whereas CV-MLP outper-
formed the real-valued model when splitting it. This means
that RV-MLP can learn better if the train and validation are
closer to each other but cannot generalize better for less sim-
ilar datasets. This might be explained by RV-MLP having
more tendency to overfit the data as was shown by References
[4], [5].

VIII. CONCLUSION
We performed an exhaustive comparison of a total of three
complex-valued networks against their real-valued equivalent
on two input representations of PolSAR images for segmen-
tation applications, we show that complex models generalize
better except for the MLP without dataset splitting. For
FCNN, the Pauli vector worked better, as MLP can not natu-
rally perform local filtering operations, and it cannot deal with
the speckling noise, for what the coherency matrix worked
better. Finally, CNN performance was not decisive on what in-
put representation was better. We then performed some dataset
pre-processing to reduce the correlation between the training,

validation, and test datasets and repeated the results obtaining
similar conclusions as before, effectively lowering the accu-
racy of models, which could achieve over 99% accuracy to
less than 94%.

Finally, we tried to reduce the difference between OA and
AA scores by using two different methods. Although both bal-
ancing methods worked correctly in reducing the gap between
OA and AA, mainly increasing the latest, dataset balancing
worked better. In CNN and MLP models, the wide availability
of classes meant this method did not impact the performance
significantly as it had the same number of training examples
per class. We only tried a simple way for the weighted loss
from several, so more research could be done in this area to
increase performance.
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