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Général Leclerc, CS 74205 35042 RENNES Cedex France
Email address: hugo.martin@univ-rennes.fr.

Abstract. We study the classic pure selection integrodifferential equation, stemming from
adaptative dynamics, in a measure framework by mean of duality approach. After providing a
well posedness result under fairly general assumptions, we focus on the asymptotic behaviour
of various cases, illustrated by some numerical simulations.

1. Introduction

1.1. A brief state of the art

The synthetic theory of evolution is nowadays the golden standard to explain the variety of
living species, as well as their disappearing. This theory predicts fluctuations in populations due
to the occurence of mutations, that are then eventually selected by the environment. For decades
now, mathematical models have aimed at studying these phenomena, both from an individual
point of view and at the population level. This first approach leads to individual based models,
that use stochastic processes [29, 17, 18, 19, 22, 20, 38, 25]. It also provides a derivation of the
deterministic counterpart of the studied model. When a large enough population is considered,
the behaviours of individuals are averaged, resulting in deterministic equations, such as ordinary
differential, integro-differential or partial differential equations. The famous selection-mutation
model and its variants have been extensively studied for decades now [1, 10, 31, 13, 42, 23, 15,
7, 2, 3, 37, 9, 35, 26, 6]. In this type of models, populations are structured by trait, and the
competitive interactions often lead to the selection of the best trait. Various aditionnal features
can be added, be it for example clonal selection and two populations interacting [11, 12], intra
species cooperation or competition [24], horizontal gene transfer [14] or the addition of a space
variable to account for the behaviour of tumor cells, see [8, 39, 45] and reference therein.
This article focuses on the pure selection equation, that have already been studied by many
authors, see [5, 4, 42, 28, 36] among others. One of its goals is to provide a measure framework
to study this equation with a very general selection pressure operator, denoted Σ. The resulting
equation is then {

∂
∂tn(t, x) = Σ[n(t, ·)](x)n(t, x) t > 0, x ∈ X

n(0, x) = n0(x), x ∈ X
(1.1)

in which traits x lie in a subset of Rd denoted X, with d a positive integer. In past years, efforts
have been made to state the considered models in spaces of measures [5, 4, 27, 15]. The interest
of such a general formulation, both of the type of solution and of the selection pressure operator,
lies in the broad class of models included. Indeed, in the case of X being a finite subset of R, say
X = {x1, . . . , xK}, Equation (1.1) reduces to a system of ODE, such as competitive models in
the sense of Hirsch [33, 34, 32]. For example, denoting n(t, xi) the amount of the ith population
at time t, with ri its intrinsic growth rate and αi,j the competition coefficients with the jth
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species, we recover the general system mentionned in [41] by choosing

Σ[n(t, ·)](xi) := ri

1−
K∑
j=1

αi,jn(t, xj)

 ,

and even more general models are possible, see [21].

1.2. Framework for measure solutions by duality

As previously mentionned, measure solutions to structured population equation have attracted
much attention during the past years. Recent articles summon the theory of semigroups to express
these kind of solutions, both in case of linear or nonlinear equation. We refer to [30] for a complete
exposition of the relevant measure theory.
We denote the set of bounded Borel functions defined on X by B(X). For any f lying in this
set, the supremum norm is defined by

∥f∥∞ = sup
x∈X

|f(x)|.

Endowed with the supremum norm, the space C(X) of continuous functions on X is a Banach
space. We can identify its topological dual space with M(X) the space of signed measures on
X, thanks to the Riesz representation theorem, through the mapping{

M(X) → (C(X))′

µ 7→ (f 7→ ⟨µ, f⟩)

which is an isometric isomorphism, thus

∥µ∥TV = sup
∥f∥∞⩽1

⟨µ, f⟩

defines a norm on M(X), so it is a Banach space. The standard Hahn-Jordan decomposition of a
signed measure µ is µ = µ+−µ− with µ+, µ− ∈ M+(X) the set of finite non negative measures,
and these measures are mutually singular. This decomposition enables to define

|µ| := µ+ + µ−

which is a non negative measure. In turn, we can define the total variation norm of a measure µ
by

∥µ∥TV := |µ|(X) = µ+(X) + µ−(X).

It is worth stressing out that for a non negative measure µ, one has

∥µ∥TV = µ(X) = ⟨µ,1X⟩.
Finally, we explain how to extend the classical sense of Equation (1.1) to measures. Assume that
n(t, x) ∈ C([0,∞); L1(X)) is differentiable in time and satisfies (1.1) in the classical sense. Then,
multiplying (1.1) by f ∈ B(X) and integrating it in space and then time, we obtain∫

X
f(x)n(t, x)dx =

∫
X
f(x)n0(x)dx+

∫ t

0

∫
X
Σ[n(s, ·)](x)f(x)n(s, x)dx ds.

This equation leads us to the following definition of measure solution for Equation (1.1).

Definition 1.1. Let T > 0. A family (µt)0⩽t⩽T ∈ C([0, T ];M(X)) with initial measure µ0 is
called a measure solution to the pure selection equation with initial data µ0 if for all f ∈ Cb(X)
the mapping t 7→ ⟨µt, f⟩ is continuous on [0, T ], and for all t ⩾ 0 and all bounded measurable
functions f on X one has

µtf = µ0f +

∫ t

0
µs (Σ[µs]f) ds (1.2)
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1.3. Assumptions and well posedness result

We make the following assumptions on the selection pressure operator. First, we require that
for each measure µ bounded in total variation norm, the associated selection pressure Σ[µ] is a
bounded Borel function

Σ :

{
M+(X) → B(X)

µ 7→ Σ[µ].

In addition, we require

∀r > 0, ∃k(r) > 0, ∀µ, ν ∈ M+(X), ∥µ∥TV , ∥ν∥TV ⩽ r, ∥Σ[µ]− Σ[ν]∥∞ ⩽ k(r)∥µ− ν∥TV

(1.3)
where r 7→ k(r) is a locally bounded function defined on R+. This assumption is reminiscent of
the first assumption in Remark 2.2 from [28] in the context of L1 functions and [15] in that of
measures, but endowed with the dual bounded Lipschitz norm. Roughly, it can be interpreted as
follows. Given two populations made of the same amount of people, the difference of their two
selection pressures cannot grow too fast, compared to how different are these populations. Then
we assume

∃F > 0 ∀µ ∈ M+(X), ⟨µ,Σ[µ]⟩ ⩽ Fµ(X). (1.4)

The quantity ⟨µ,Σ[µ]⟩ can interpreted as the fitness of a population described by a measure µ,
id est the mean number of offsprings minus the mean number of deaths. Assumption (1.4) thus
enforces the population to grow at most of a factor F per time unit. In addition, not imposing
any lower bound to this value allows the population to eventually go extinct. This hypothesis is
more general than the second one in Remark 2.2 from [28] in which the constant F is replaced by
a function A1−A2 (µ(X)) with A1 > 0 and A2(z) → ∞ when z → ∞. This stronger assumption
though ensures that the total population remains bounded in large time, which is not the case
with ours, see Remark 1.3. The ability for such a population to grow infinitely was already noted
in [15], in which a slightly more general hypothesis than (1.4). Its equivalent in the langage
deployed in the present paper would be

µ 7→ ⟨µ,Σ[µ]⟩

is bounded on every ball, which is straightforward with Hypothesis (1.4). These assumptions are
enough to ensure well posedness results. The following one provides a sufficient condition for non
extinction.

µ ∈ M+(X) and Σ are such that µ({Σ[0] > 0}) > 0. (1.5)

It can be interpreted as the existence of a set of traits with positive µ−measure that have the
potential to proliferate, in the absence of competition.

Theorem 1.2. Assume the selection operator satisfies assumptions (1.3) and (1.4). Then for
every nonnegative initial measure µ0, there exists a unique measure solution (µt)t⩾0 to Equa-
tion (1.1) in the sense of Definition 1.1 that lies in C ([0, T ];M+(X)) for any T > 0. In addition,
if (νt)0⩽t⩽T is a family of measures with nonnegative initial conditions ν0 that satisfies the same
hypotheses, there exists a function L = L(T ) > 0 such that

∀ t ∈ [0, T ], ∥µt − νt∥TV ⩽ eL(T )t∥µ0 − ν0∥TV .

In addition, for every t ⩾ 0, suppµt ⊂ suppµ0. If the additionnal hypothesis (1.5) holds, then

inf
t⩾0

µt(X) > 0.

Remark 1.3. The assumptions above are enough to prove that such a measure solution is globally
defined, but fail to ensure that the total population µt(X) = ∥µt∥TV remains bounded for all
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times. Indeed, combining Assumption 1.4 with the mild formulation above, we obtain that for
any t ⩾ 0, one has

µt(X) ⩽ µ0(X) + F

∫ t

0
µs(X)ds

so Grönwall’s lemma provides
µt(X) ⩽ µ0(X)eFt

which ensures that the solution does not blow up in finite time. Now consider the very simple
case Σ[µ] = e−∥µ∥TV 1X . One can show that this selection operator satisfies all the assumptions
of the theorem

∀µ ∈ M(X), Σ[µ] ∈ B(X), ∀µ ∈ M+(X), ⟨µ,Σ[µ]⟩ = ∥µ∥TV e
−∥µ∥TV ⩽ ∥µ∥TV

(it is even uniformly bounded by e−1) and

∀µ, ν ∈ M(X), ∥Σ[µ]− Σ[ν]∥∞ ⩽ |∥µ∥TV − ∥ν∥TV | ⩽ ∥µ− ν∥TV

but since t 7→ ∥µt∥TV is solution of the ODE
d

dt
x = e−xx

the total population goes to infinity in large time. An hypothesis in the flavour of ‘the planet is
finite’ [44] such as

∃M > 0, ∀µ ∈ M(X), [∥µ∥TV > M ⇒ Σ[µ] ⩽ 0]

ensures the boundedness of the population in large time. The phenomenon of infinite population
in finite time is possible with a slightly weaker hypothesis than (1.4), see (H5) in [15]. In contrast,
it is avoided in [28] by such an assumption, that would translate here as the stronger condition

⟨µ,Σ[µ]⟩ ⩽ (A1 −A2(µ(X)))µ(X)

for all nonnegative finite measure µ, with A1 > 0 and A2 a function satisfyng limz→∞A2(z) = ∞.

2. Well-posedness and stability

This section is devoted to the wellposedness result, stated on fairly general assumptions on the
selection pressure operator. Our construction of a solution of Equation (1.2) relies on a fixed-
point method on the families of measures C([0, T ];M(X)) with T > 0 short enough, that we
then iterate on time intervals of variable length. For a given T > 0, the aforementionned space
is a Banach space once endowed with the norm

sup
t∈[0,T ]

∥µt∥TV .

Throughout the paper, when we refer to a family of measures, we used the notation (νt)0⩽t⩽T or
(ν). For such a family, we introduce a family of operators acting on the set of finite measures for
0 ⩽ s ⩽ t ⩽ T by

µM
(ν)
s,t : f 7→

∫
X
fe

∫ t
s Σ[νσ ]dσdµ. (2.1)

It is easy to see that this family defines a time inhomogeneous semigroup, since one can check
that for 0 ⩽ s ⩽ u ⩽ t ⩽ T , it satisfies{

µM
(ν)
s,t = µM

(ν)
s,uM

(ν)
u,t

µM
(ν)
s,s = µ.

In order to prove the wellposedness of Equation (1.2), we first prove that there exists a unique
family of measures denoted (µt)t⩾0 such that for all t ⩾ 0, one has

µt = µ0M
(µ)
0,t
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or equivalently for all t ⩾ 0 and f ∈ Cb(X)

⟨µt, f⟩ =
∫
X
fe

∫ t
0 Σ[µs]dsdµ0.

As a first step, we prove the result for selection operators that are uniformly bounded from above.

Lemma 2.1. Under the same assumptions as Theorem 1.2, if the selection pressure operator is
in addition uniformly bounded from above, i.e.

∃n > 0, ∀µ ∈ M+(X), ∀x ∈ X, Σ[µ](x) ⩽ n, (2.2)

for any nonnegative initial data µ0 and final time T > 0, there exists a unique family of measures
(µt)0⩽t⩽T ∈ C([0, T ];M(X)) such that for all t ⩾ 0

µt = µ0M
(µ)
0,t . (2.3)

Each measure of this family has the same support that of µ0.

Proof. For an initial datum µ0 ∈ M(X), we want to prove that the function

(ν) 7→ µ0M
(ν)
0,t

has a unique fixed point. One can easily check that for any family (ν) ∈ C ([0, T ];M(X)) and
final time T > 0, the family (Γµ(ν)) lies in C ([0, T ];M(X)) and that if µ is nonnegative, then so
is (Γµ(ν))t for any t ∈ [0, T ]. To start, we prove this lemma in short time, i.e. for the final time
T > 0 small enough. For later prupose, let us introduce the set

BT
µ := {(νt)0⩽t⩽T ∈ C([0, T ];M+(X))| ν0 = µ, ∥ν∥ ⩽ 2∥µ∥TV } .

For T a final time short enough so that if (ν) lies in BT
µ , so does (Γ(ν)). Since BT

µ0
is a closed

subset of C([0, T ];M(X)), it is a complete metric space with the distance induced by the norm
supt∈[0,T ] ∥ · ∥TV , so we can apply the Banach fixed-point theorem.
For 0 ⩽ t ⩽ T , f ∈ B(X) and (ν1), (ν2) two families of measures in BT

µ0
, we compute∣∣∣〈µ0M

(ν1)
0,t − µ0M

(ν2)
0,t

〉
f
∣∣∣ ⩽ ∥f∥∞

∫
X

∣∣∣e∫ t
0 Σ[ν1s ] − e

∫ t
0 Σ[ν2s ]ds

∣∣∣ dµ0

⩽ ∥f∥∞enT
∫
X

∫ t

0

∣∣Σ[ν1s ]− Σ[ν2s ]
∣∣ ds dµ0

by the mean value inequality and the uniform boundedness from above hypothesis (2.2). Using
assumption (1.3) and taking the supremum in t over [0, T ], we obtain

sup
t∈[0,T ]

∥∥∥µ0M
(ν1)
0,t − µ0M

(ν2)
0,t

∥∥∥
TV

⩽ k(2∥µ0∥TV )T e
nT ∥µ0∥TV sup

t∈[0,T ]
∥ν1t − ν2t ∥TV

with k(2∥µ0∥TV ) coming from the fact that (ν1) and (ν2) both lie in BT
µ0

. This means that Γ is
a contraction for a final time T1 small enough, and thus admits a unique fixed point on [0, T1].
We denote (µt)0⩽t⩽T1 this family.
Now, we extend the result to any finite time. A classical way to proceed would be to iterate
the previous construction on successive time intervals [T, 2T ], [2T, 3T ]... changing each time the
initial datum by the final measure of the previous iteration. However, in the case under study, the
contraction constant depends on the total variation norm of the initial measure, so the finite time
is likely to change at each iteration. At each step, the fixed point theorem is applied in B

Tj+1
µTj

,
so for every integer j, the final time Tj is smaller than (log 2)/n and the ‘sum of intermediate
final times’

N∑
i=0

Tj (2.4)
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does not trivially go to infinity as N → ∞. Our goal now is to prove that under the assumptions
of the lemma, this property is actually true. The mentionned iteration procedure gives, for each
integer j ⩾ 1

∥µTj+1∥TV ⩽ enTj+1∥µTj∥TV ⩽ en(T1+···+Tj+1)∥µ0∥TV . (2.5)

With the previous computations, for all j ∈ N, in order to apply the fixed point theorem, the
final time Tj+1 shall satisfy

k(2∥µTj∥TV )Tj+1e
nTj+1∥µTj∥TV < 1,

that we rewrite as

h(Tj+1) <
1

∥µTj∥TV k(2∥µTj∥TV )
.

Since h is a non-negative strictly increasing function from [0,∞) to itself, we can define for all
j ∈ N

xj := h−1

(
1

∥µTj∥TV k(2∥µTj∥TV )

)
> 0.

If the sequence (xj)j∈N does not converge to 0, then we define Tj+1 :=
xj

2 and the series (2.4) di-
verges. If the opposite is true, then we deduce from the definition of xj that ∥µTj∥TV k(2∥µTj∥TV ) →
∞ as j → ∞. Since the function k is locally bounded, we deduce that this is actually true for
∥µTj∥TV , and finally using the estimate (2.5) the series (2.4) diverges in this case too. In both
cases, we can extend the family (µ) to any finite time.
It is easy to see from (2.3) that the support of µt is included in that of µ0. The converse inclusion
is not not necessarily true, since it is not forbiden that the function Σ[µ] takes the value −∞
inside the domain X. □

We are now ready to state the proof of Theorem 1.2. It relies on the truncation of the un-
bounded operator Σ and on the previous lemma.

Proof. (Theorem 1.2) Let T > 0 and Σ satisfying Assumptions (1.3) and (1.4). For all n ∈ N∗,
we define the truncation Σn[µ] = min(Σ[µ], n), id est

Σn[µ](x) =

{
Σ[µ](x) if Σ[µ](x) ⩽ n

n otherwise

and denote Γn
µ0

the associated operator. We also denote (µn
t )0⩽t⩽T the unique fixed-point of

this operator in C([0, T ];M(X)), provided by the previous lemma. We show that this sequence
remains bounded as n → ∞. Fix t ∈ [0, T ]. We show that for any n ∈ N, the family (µn) is a
solution of the equation (1.2) with initial condition µ0 and Σn instead of Σ. To this end, consider
the function ϕn(t, x) defined by

ϕn(t, x) =

{
e
∫ t
0 Σn[µn

σ ](x)dσ if x ∈ suppµ0

0 otherwise.

For almost all x ∈ X and all t ∈ [0, T ] and n ∈ N, the function t 7→ ϕn(t, x) is differentiable and
its derivative satisfies

|∂tϕn(t, x)| =
∣∣∣Σ[µn

t ](x)e
∫ t
0 Σ[µn

s ](x)ds
∣∣∣ ⩽ nenT .

By Leibniz integral rule, the function t 7→ ⟨µn
t , f⟩ is differentiable for every f ∈ B(X) and one

has
d

dt
⟨µn

t , f⟩ = ⟨µn
t ,Σn[µ

n
t ]f⟩. (2.6)
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Thanks to Equations (2.1) and (2.3), we easily see that if µ0 is non negative, so is µn
t for all

t ∈ [0, T ] and n ∈ N. With this observation, the definition of Σn and Assumption (1.4) we obtain
d

dt
∥µn

t ∥TV = ⟨µn
t ,Σ[µ

n
t ]⟩+ ⟨µn

t ,Σn[µ
n
t ]− Σ[µn

t ]︸ ︷︷ ︸
⩽0

⟩ ⩽ F∥µn
t ∥TV

and finally thanks to Grönwall’s lemma

∥µn
t ∥TV ⩽ ∥µ0∥TV e

Ft

so the sequence (∥µn
t ∥TV )n∈N is bounded for any t > 0.

Now, we show that this sequence (µn
t )0⩽t⩽T is actually constant from a certain rank, thus pro-

viding a family of measures (µ∞
t )0⩽t⩽T that is its strong limit.

The previous computations shows that for a fixed t ⩾ 0, the sequence of measures (µn
t )n∈N is

uniformly bounded in total variation norm by ∥µ0∥TV e
Ft. Thus we can bound the family of

functions (Σ[µn
t ])n∈N uniformly on N by

(
∥µ0∥TV e

Ft
)
k(∥µ0∥TV e

Ft)+∥Σ[0]∥∞. Indeed, applying
Assumption (1.3) on the couple of measures (µ, 0), we obtain

∥Σ[µ]− Σ[0]∥∞ ⩽ k (∥µ∥TV ) ∥µ∥TV

and then
∥Σ[µ]∥∞ ⩽ k (∥µ∥TV ) ∥µ∥TV + ∥Σ[0]∥∞.

We deduce that

∀n ⩾
(
∥µ0∥TV e

Ft
)
k(∥µ0∥TV e

Ft) + ∥Σ[0]∥∞ ∀ s ∈ [0, t], Σn[µ
n
s ] = Σ[µn

s ].

So for n large enough, familiar computations provide

∥µn+p
t − µn

t ∥TV ⩽ e((∥µ0∥TV eFt)k(∥µ0∥TV eFt)+∥Σ[0]∥∞)t∥µ0∥TV k(∥µ0∥TV e
Ft)

∫ t

0
∥µn+p

s − µn
s ∥TV ds

and finally Grönwall lemma provides the claimed result. Now we prove that the family of measures
(µ∞

t )0⩽t⩽T is a measure solution in the sense of Definition 1.1. Integrating Equation (2.6) in time
with n large enough, we obtain

⟨µn
t , f⟩ = ⟨µ0, f⟩+

∫ t

0
⟨µn

s ,Σ[µ
n
s ]f⟩ ds.

Since we proved that limn→∞ ∥µn
t − µ∞

t ∥TV = 0, the left handside converges towards ⟨µ∞
t , f⟩. It

remains to prove that
⟨µn

s ,Σ[µ
n
s ]f⟩ → ⟨µ∞

s ,Σ[µ∞
s ]f⟩

for every s ∈ [0, T ] and f ∈ B(X). This is done by writing

|⟨µn
s ,Σ[µ

n
s ]f⟩ − ⟨µ∞

s ,Σ[µ∞
s ]f⟩| ⩽ |⟨µn

s − µ∞
s ,Σ[µn

s ]f⟩|+ |⟨µ∞
s ,Σ[µn

s ]f − Σ[µ∞
s ]f⟩|

⩽∥f∥∞
(
2k

(
∥µ0∥TV e

Ft
)
∥µ0∥TV e

Ft + ∥Σ[0]∥∞
)
∥µn

s − µ∞
s ∥TV

thanks to some estimates previously established.
Now we prove the stability result. Let µ1

0 and µ2
0 two nonnegative measures on X and denote

µ1
t and µ2

t the corresponding solution at time t ∈ [0, T ], respectively, thus both satisfying Equa-
tion (1.2), for an arbitrary final time T > 0. Then for f ∈ B(X), one has

|µ1
t f − µ2

t f | ⩽ |µ1
0f − µ2

0f |+
∫ t

0
⟨µ1

s,
∣∣(Σ[µ1

s]− Σ[µ2
s]
)
f
∣∣⟩+ ∣∣⟨µ1

s − µ2
s,Σ[µ

2
s]f⟩

∣∣ ds
⩽ ∥f∥∞

(
∥µ1

0 − µ2
0∥TV + L(T )

∫ t

0
∥µ1

s − µ2
s∥TV

)
with

L(T ) := 2 sup
t∈[0,T ]

(
(∥µ1

0∥TV + ∥µ2
0∥TV )e

Ftk((∥µ1
0∥TV + ∥µ2

0∥TV )e
Ft) + ∥Σ[0]∥∞

)
7
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and finally by Grönwall’s lemma provide the claimed inequality. This stability result provides
the uniqueness of the solution. Finally, the claim on the support of µt comes from the one from
Lemma 2.1, but supplemented with the boundedness in supremum norm of Σ[µ], that fordids
extinction of a trait in finite time. Thus, if suppµ0 ̸= ∅, then ∥µt∥TV > 0 for any t > 0. The
proof of the final claim in large time is postponed to the next section. □

3. Various asymptotic behaviours

In this section, we give a sufficient condition of non extinction and provide some examples of
selection operators to illustrate different dynamics encompassed by our assumptions.

3.1. A sufficient condition for non extinction

Our rather general assumptions allows various dynamics to occur. For example, a system studied
in [41] might be rewritten X = x0, x1, x2, and

Σ[µ](xi) = 1− µ({xi})− 2µ({xi+1}) (3.1)

with indices in Z/3Z and we easily check that such function satisfies hypotheses (1.3) and (1.4)
with

∥Σ[µ1]− Σ[µ2]∥∞ ⩽ 2∥µ1 − µ2∥TV and ⟨µ,Σ[µ]⟩ = |µ∥TV (1− |µ∥TV ) ⩽ |µ∥TV .

This system displays a periodic behaviour, as proved in the original paper. Otherwise, the solution
to equation (1.2) can either go extinct, converge to an equilibrium or display a chaotic behaviour.
Since this last option is not really considered, we have to decide between the two first possibilities.
This is the purpose of the following lemma.

Lemma 3.1. Assume the selection operator satisfies hypotheses (1.3) and (1.4). Let µ0 be an
initial condition satisfying Assumption (1.5), and denote (µt)t⩾0 the unique measure solution
to (1.1) with initial condition µ0. If

µt
TV−−−→
t→∞

µ,

then µ ̸= 0.

Proof. Assume by contradiction that µ = 0. Then for all ε > 0, there exists T > 0 such that for
all t ⩾ T , one has ∥µt∥TV < ε. Fix η > 0 as small as needed. Thanks to Hypothesis (1.5), there
exists A ⊂ {Σ[0] > 0} with µ0(A) > 0 and for all x ∈ A, Σ[0](x) > η. With Hypotheses (1.3),
one has for all t ⩾ T

∥Σ[µt]− Σ[0]∥∞ ⩽ εk(ε),

thus, for all x ∈ A, one has the estimate

Σ[µt](x) > η − εk(ε) >
η

2

for ε small enough, i.e. T large enough. This provides a contradiction once it is noted that

ε > ∥µt∥TV ⩾
∫
A
e
∫ t
0 Σ[µs]dsdµ0 ⩾ CT

∫
A
e
∫ t
T Σ[µs]dsdµ0 > CT e

η
2
(t−T )µ0(A)

with CT a positive constant, for all t ⩾ T . □

8
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3.2. Cannibalism revisited

In this section, we borrow an example from [42]. In this example, the trait x lies in X = [0,∞)
and represent the degree of cannibalism. For a measure µ that have both finite zeroth and first
moment, the selection operator is

Σ[µ](x) = r + αxµ(X)− ⟨µ, Id⟩ (3.2)

with r the growth rate in the absence of cannibalism and α ∈ (0, 1] the efficiency in offspring
production from intraspecific predation. As noted in this book, unbounded levels of predation
seems very unrealistic, so one can consider the trait instead in a compact set [0, A] with A > 0.
This hypothesis is even necessary in the present paper, since otherwise the operator Σ[µ] does
not lie in L∞. In this setting, we recover the result presented in the book.

Proposition 3.2. There is a unique global positive measure solution (µt)t⩾0 to the equation given
by the selection operator (3.2). In addition, if M := sup suppµ0 ∈ suppµ0, and ⟨µ0, Id⟩ ⩽ r

1−α ,
one has the asymptotic concentration on the trait M , i.e.

lim
t→∞

µt =
r

M(1− α)
δM .

Proof. First, we easily see that the operator given by (3.2) satisfies the assumptions of Theo-
rem 1.2, since X is bounded. Indeed, one has

∀µ ⩾ 0, ⟨µ,Σ[µ]⟩ = rµ(X)− (1− α)µ(X)⟨µ, Id⟩ ⩽ rµ(X)

and
∀µ, ν, ∥Σ[µ]− Σ[ν]∥∞ ⩽ (1 + α)A∥µ− ν∥TV .

Without loss of generality, we choose a family of measures solutions (µt)t⩾0 such that µ0(X) = 1.
Throughout the proof, we will use a rescaled family of measures defined by

νt := e−
∫ t
0 (r−(1−α)⟨µs,Id⟩)dsµt (3.3)

and easily check that it satisfies

⟨νt, f⟩ =
⟨µt, f⟩
µt(X)

so for all t ⩾ 0, νt is a probability measure on X. In addition, for all t ⩾ 0 and f ∈ B(X) one
has

⟨νt, f⟩ = ⟨µ0, f⟩+
∫ t

0
⟨νs, α (µs(X)Id− ⟨µt, Id⟩) f⟩.

We have the inequality

µt(X)⟨µt, Id
2⟩ = µt(X)2⟨νt, Id2⟩ ⩾ µt(X)2⟨νt, Id⟩2 = ⟨µt, Id⟩2

using Jensen’s inequality. Now using this inequality, we compute

d

dt
⟨µt, Id⟩ =

(
r⟨µt, Id⟩+ αµt(X)⟨µt, Id

2⟩ − ⟨µt, Id⟩2
)

⩾ ⟨µt, Id⟩ (r − (1− α)⟨µt, Id⟩) . (3.4)

Assume by contradiction that
lim
t→∞

⟨µt, Id⟩ = 0.

Fix ε > 0. There exists t0 > 0 such that for all t ⩾ t0, one has ⟨µt, Id⟩ ⩽ ε. Integrating (3.4) for
t ⩾ t0, one has

⟨µt, Id⟩ ⩾ ⟨µ0, Id⟩Ceε(t−t0)

9



Hugo Martin

with C a positive constant, yielding a contradiction. Now we compute
d

dt
(r − (1− α)⟨µt, Id⟩) = −(1− α)

(
r⟨µt, Id⟩+ αµt(X)⟨µt, Id

2⟩ − ⟨µt, Id⟩2
)

⩽ −(1− α)⟨µt, Id⟩ (r − (1− α)⟨µt, Id⟩) .
and Grönwall’s lemma yields

r − (1− α)⟨µt, Id⟩ ⩽ (r − (1− α)⟨µ0, Id⟩)e−(1−α)
∫ t
0 ⟨µs,Id⟩ds. (3.5)

In addition, since ⟨µt, Id⟩ does not vanish, one has

e−(1−α)
∫ t
0 ⟨µs,Id⟩ds ⩽ e−(1−α)εt

for some ε > 0. Since by assumption ⟨µ0, Id⟩ ⩽ r
1−α , the last inequality combined with (3.5)

provides
lim
t→∞

r − (1− α)⟨µt, Id⟩ ⩽ 0.

Assume by contradiction that this limit is negative. Since t 7→ r − (1− α)⟨µt, Id⟩ is continuous,
there exists ε > 0 and t0 > such that for all t ⩾ t0, one has

r − (1− α)⟨µt, Id⟩ ⩽ −ε < 0.

For t ⩾ t0, one has
µt(X) = e

∫ t
0 (r−(1−α)⟨µs,Id⟩)ds ⩽ Ce−ε(t−t0)

with C a positive constant. Thus, for such t, one has

⟨µt, Id⟩ ⩽ Mµt(X) ⩽ MCe−ε(t−t0)

and finally
r − (1− α)⟨µt, Id⟩ ⩾ r − (1− α)MCe−εt > 0

for t large enough, yielding a contradiction. Finally, we obtain

lim
t→∞

⟨µt, Id⟩ =
r

1− α
, (3.6)

from which we also deduce that t 7→ µt(X) does not vanish. Now we prove that the variance of
the measures (νt)t⩾0 vanishes. To obtain this property, we write

⟨νt, Id⟩ = ⟨µ0, Id⟩+
∫ t

0
⟨νs, α

(
µs(X)Id2 − ⟨µt, Id⟩Id

)
⟩

= ⟨µ0, Id⟩+ α

∫ t

0
µs(X)⟨νs, Id2⟩ − ⟨µs, Id⟩⟨νs, Id⟩ds

= ⟨µ0, Id⟩+ α

∫ t

0
µs(X)

[
⟨νs, Id2⟩ − ⟨νs, Id⟩2

]
ds

and Jensen’s inequality again ensures that the integrand is non negative. Since every other term
is also non negative and ⟨νt, Id⟩ ⩽ M , the integral on the right handside is finite, and thus
the variance of (νt)t⩾0 vanishes. Since νt does not vanish, it means that this family of measures
concentrates on some point x∗ ∈ [0, A], and so does µt. Now assume by contradiction that
x∗ < M . Then one can find a positive number η < M − x∗. We compute

d

dt
νt([M − η,M ]) = α⟨νt, (Idµt(X)− ⟨µt, Id⟩)1[M−η,M ]⟩

⩾ αµt(X) ((M − η − ⟨νt, Id⟩) νt([M − η,M ])

⩾ αm ((M − η − x∗) νt([M − η,M ])

since t 7→ ⟨νt, Id⟩ is increasing, with 0 < m ⩽ µt(X). This provides

νt([M − η,M ]) ⩾ ν0([M − η,M ])eαm(M−η−x∗)t

10
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Figure 1. Top left: the initial distribution is given by the sum of a Beta dis-
tribution with parameters 2 and 6 and a constant, namely x 7→ β(2,6)(x) + 0.1.
Bottom left: the distribution at time T = 40. Top right: purple: total population
at the discretization times, red: the function t 7→ r/(M(1 − α)) = 15. Bottom
right: L1 difference between the total population at time t and the r/(M(1−α)) =
15.

which is a contradiction, so one has
νt ⇀t→∞ δM . (3.7)

Finally, we combine (3.3) (3.6) and (3.7), to obtain that

lim
t→∞

µt(X) = lim
t→∞

e
∫ t
0 (r−(1−α)⟨µs,Id⟩)ds =

r

M(1− α)

which ends the proof. □

The properties highlighted in the previous proposition are illustrated in Figure 1, with param-
eters r = 3, α = 0.8 and M = 1. With notations closer to the ones used in [28], the selection
operator would be

Σ[µ](x) = r −
∫
X
(y − αx)dµ(y)

which does not satisfy the assumptions required for existence in their paper, but does satisfy the
one from the present paper. As stated earlier, the total variation norm is not well suited for cases
in which concentration occurs. The purpose of the three next subsections is to provide example
of such favorable cases for this norm.

3.3. A stable distribution without singular part

In this section, we consider a selection operator given by

Σ[µ](x) = a(x)−
∫
X
J(x− y)dµ(y)

11
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defined on X = R, with

a(x) =
(1 + |x|)e−|x|

4
and the kernel J(x) =

e−|x|

2
.

This operator Σ satisfies the assumptions of the existence section. Indeed, one has

∀µ ⩾ 0, ⟨µ,Σ[µ]⟩ = ⟨µ, a⟩ −
∫
X
J(x− y)dµ(y)dµ(x) ⩽ µ(X)

and
∀µ, ν, ∥Σ[µ]− Σ[ν]∥∞ ⩽

1

2
∥µ− ν∥TV .

It has to be noted that a = J ∗ J with ∗ being the convolution operator. In the L1 context, a
steady state u would satisfy

(a(x)− J ∗ u(x))u(x) = 0

almost everywhere, and we are interested in positive solutions. Applying the Fourrier transform,
such positive steady state would satisfy

Ĵ(ξ)
(
Ĵ(ξ)− û(ξ)

)
= 0

so a natural candidate for a steady state is the kernel J itself.
We perform numerical tests on a truncated version of the problem, namely

X = [−h, h], Jh(x) =
e−|x|

2(1− e−h)
1(−h,h) and ah(x) =

(1 + |x|)e−|x| − e−2h cosh(x)

4(1− e−h)2
.

For various initial conditions, the distribution seems to converge towards Jh, see Figure 2 for an
example. In this subsection and the next, the numerical method used is a standard semi-implicit
Euler scheme. The function Jh seems to be a stable steady state. In a measure setting, we can
expect a convergence in total variation norm, but rather slowly.

3.4. Trait-structured preys-predators

In the previous subsection, we provided an ad hoc example of operator such that the solutions
converges towards an equilibrium without singular part which is stable with respect to the initial
condition. In this one, we give an example which is more biologically grounded, that also seems
to converge towards a measure that has a density with respect to the Lebesgue measure. To this
end, we consider the trait space X = [0, 1] and a selection operator given by

Σ[µ](x) = a(x) +Aµ([x− η, x) ∩X)−Bµ([x, x+ η) ∩X)

with positive constants A and B. This function intends to model a preys-predators type inter-
action with trait x being interpreted as the position in the food chain. Each individual can be
both prey for and predator depending on the value of its trait x. In addition, the function a is
taken decreasing, to model the ability for smaller species to proliferate faster. More precisely, in
the simulation, we take a(x) = 1 − 1.5

√
x, A = 0.8, B = 0.7 and η = 0.51. In this setting, the

selection operator satisfies Assumption (1.3) with k(r) = A + B, but it is unclear if it also sat-
isfies Assumption (1.4). We performed the simulations anyway and obtained Figure 3. We note
that with these parameters, the asymptotic measure seems to have no singular part. In addition,
we note first that with the predation phenomenon, a population with nonnegative proliferation
rate can survive, and second that dumped oscillation in the total population occurs, which is
reminiscent of the classical preys-predators system. In the notation of [28], the selection operator
would be

Σ[µ](x) = a(x)−
∫ 1

0
B1[x,x+η)∩[0,1](y)−A1[x−η,x)∩[0,1](y)

which does not satisfies their assumptions for existence.

12
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Figure 2. Top left: the initial distribution is given by x 7→ β(2,5)
(
x+h
2h

)
, with

β(2,5) a Beta distribution with parameters 2 and 5. Bottom left: blue: the distri-
bution at time T = 2000, green: the function Jh. Top right: purple: total popu-
lation at the discretization times, red: the function t 7→ 1. Bottom right: purple:
L1 difference between the solution and the fonction Jh. Red: the function t 7→ t−

1
2 .

3.5. Convergence in total variation norm with a uniform competition for ressources

In this subsection, we consider a famous particular model for the selection equation, given by
the selection operator

Σ[µ](x) = r(x)− µ(X) (3.8)
with X an arbitrary compact set, say [0, 1]. This equation has been studied in [42] when r has a
single maximum, and in [40] when different species can coexist asymptotically, see also [43] for
global stability. Here, we consider plateau growth rates r, in the sense that the maximum is not
reached on a discrete set. More precisely, we require

r : X → (0,∞), max
x∈X

r(x) =: rM , min
x∈X

r(x) =: rm > 0 (3.9)

and
inf
y ̸∈S

rM − r(y) =: η > 0 (3.10)

in which we denote
S := argmax(r).

We require the initial measure µ to be finite and that a subset of S is included in its support

Sµ := suppµ ∩ S ≠ ∅. (3.11)

We also need the hypothesis

1Sµ : f 7→ ⟨µ, f1S⟩ is absolutely continuous w.r.t. the Lebesgue measure L (3.12)

and finally
L(Sµ) > 0. (3.13)

13
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Figure 3. Top left: the initial distribution is a Beta distribution with parameters
2 and 3 x 7→ β(2,3)(x). Bottom left: the distribution at time T = 10000. Top right:
total population at the discretization times. Bottom right: L1 difference between
two successive discretized solution.

Under these assumptions, we do not observe the usual concentration on a discrete set, but the
dynamics rather selects the traits in Sµ, as stated in the following proposition.

Proposition 3.3. Under Assumptions (3.9), (3.10), (3.11) , (3.12) and (3.13), the measure
solution (µt)t⩾0 associated with the operator (3.8) satisfies∥∥∥µt − e

∫∞
0 rM−µs(X)ds1Sµ

∥∥∥
TV

⩽ C1(µ, r)e
− η

2
t∥µ− 1Sµ∥TV

+ ⩽ C2(µ, r)e
−ηt + C3(µ, r)e

−rM t∥r − µ0(X)∥∞

with C1(µ, r), C2(µ, r) and C3(µ, r) constants depending on the initial condition and the growth
rate r.

The result is achieved by combining the two following lemmas. The first one states that the
dynamics selects the traits that lies in Sµ, and the second deals with the asymptotic behaviour
of the total population.

Lemma 3.4. Under the same assumptions as in Proposition 3.3, one has∥∥∥µt − e
∫ t
0 rM−µs(X)ds1Sµ

∥∥∥
TV

⩽ C1(µ, r)e
− η

2
t∥µ− 1Sµ∥TV .

Proof. We first consider the dual problem, namely a classical solution f of

∂tf(t, x) = (r(x)− µt(X))f(t, x)

with initial condition f0. A solution can be writen

f(t, x) = e
∫ t
0 (r(x)−µs(X))dsf0(x).

14
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Let us consider g be the classical solution of the related problem

∂tg(t, x) = (r(x)− rM )g(t, x)

with initial condition f0. We can express g as

g(t, x) = e(r(x)−rM )tf0(x)

and its relation to f by
f(t, x) = e

∫ t
0 (rM−µs(X))dsg(t, x).

Thanks to Assumptions (3.9) and (3.10), one has for all t ⩾ 0 and x ∈ X

|g(t, x)− 1S(x)f0(x)| ⩽ e−ηt|f0(x)− 1S(x)f0(x)|
so we obtain∣∣∣f(t, x)− e

∫ t
0 (rM−µs(X))ds1S(x)f0(x)

∣∣∣ ⩽ e
∫ t
0 (rM−µs(X)−η)ds|f0(x)− 1S(x)f0(x)|.

It is proved in [40] that µt(X) → rM , so there exists t0 ⩾ 0 such that for all t ⩾ t0, one has

|rM − µt(X)| ⩽ η

2
,

from which we deduce∣∣∣f(t, x)− e
∫ t
0 (rM−µs(X))ds1S(x)f0(x)

∣∣∣ ⩽ e(rM− η
2 )t0e−

η
2
t|f0(x)− 1S(x)f0(x)|.

Using Assumptions (3.12) and (3.13), we can take the dual inequality in total variation norm,
which ends the proof. □

Now we provide a control of the difference between

t 7→ e
∫ t
0 rM−µs(X)ds

and its final value.

Lemma 3.5. Under Assumptions (3.9) and (3.10), the function t 7→ rM−µt(X) lies in L1(0,∞)
and for all t ⩾ 0, one has∣∣∣e∫ t

0 rM−µs(X)ds − e
∫∞
0 rM−µs(X)ds

∣∣∣ ⩽ η

rmmin
(
1, µ0(S)

rM

)e−ηt+
RM

rmmin
(
1, µ0(S)

rM

)e−rM t∥r−µ0(X)∥∞.

Proof. Drawing inspiration from [40], one has

µt(X) =

〈
µ0, e

r(·)t〉
1 +

〈
µ0,

er(·)t−1
r

〉
so

rM − µt(X) =

〈
µ0,

(
rM
r − 1

)
er(·)t

〉
1 +

〈
µ0,

er(·)t−1
r

〉 +
rM −

〈
µ0,

rM
r

〉
1 +

〈
µ0,

er(·)t−1
r

〉 .
To estimate these terms, we first notice that

1 +

〈
µ0,

er(·)t − 1

r

〉
⩾ 1 +

erM t − 1

rM
µ0(S) ⩾ min

(
1,

µ0(S)
rM

)
erM t.

Then, one has 〈
µ0,

(rM
r

− 1
)
er(·)t

〉
=

∫
Sc ∩ suppµ0

(
rM
r(y)

− 1

)
er(y)tdµ0(y)

⩽
η

rm
e(rM−η)t

15



Hugo Martin

so the first term, which is non negative, is controlled by〈
µ0,

(
rM
r − 1

)
er(·)t

〉
1 +

〈
µ0,

er(·)t−1
r

〉 ⩽
η

rmmin
(
1, µ0(S)

rM

)e−ηt.

For the second, we write∣∣∣rM −
〈
µ0,

rM
r

〉∣∣∣ = ∣∣∣∣〈µ0, rM

(
1

µ0(X)
− 1

r

)〉∣∣∣∣ ⩽ RM

rm
∥r − µ0(X)∥∞

so finally ∣∣∣∣∣∣ rM −
〈
µ0,

rM
r

〉
1 +

〈
µ0,

er(·)t−1
r

〉
∣∣∣∣∣∣ ⩽ RM

rmmin
(
1, µ0(S)

rM

)e−rM t∥r − µ0(X)∥∞

and the proof is complete. □

4. Discussion

In this work, we have studied the classic pure selection equation in the framework of measures.
It enables to obtain well posedness of a global solution for fairly general assumptions, as well as
a sufficient hypothesis for the persistence of the population that is readily interpreted. Then, we
explored various classes of selection operator, both theoretically and numerically, and obtained
different kinds of behaviours.
All our theoretical study took place in the context of the topology of the total variation. Al-
though this norm might seem ’rigid’ for models stemming from adaptative dynamics, in which
convergence towards Dirac deltas can occur, the examples we studied highlighted that under
some particular assumptions, convergence in total variation norm is possible, even exponentially
fast. Such decay estimates are, up to our knowledge, new for the selection equation. One possible
continuation of this work would be to obtain such decay estimates in bounded Lipschitz norm,
more suited for cases in which concentration happens. In particular, the case of subsection 3.2
display numericall a very fast convergence towards a Dirac mass, so it would be no surprise if an
exponential decay could be proved.
The examples we presented displayed various behaviours. In their paper mentionned earlier [41],
the authors highlighted sustained oscillation in a simple ODE system. One might wonder if it is
possible to exhibit a continous version of their model, in which their would be a continuum of
traits instead of three separate ones. Another way to obtain oscillations would be to include a
periodic term in the selection operator, in the fashion of [16].
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selection_equation.git.

16

https://github.com/Hugo-Martin/selection_equation.git
https://github.com/Hugo-Martin/selection_equation.git


MEASURE SOLUTIONS FOR THE SELECTION EQUATION

Bibliography

[1] Amal Aafif and Juan Lin. Selection-mutation process of RNA viruses. Physical Review E,
57(2):2471–2474, feb 1998.

[2] Azmy S. Ackleh, John Cleveland, and Horst R. Thieme. Selection mutation differential
equations: Long-time behavior of measure-valued solutions.

[3] Azmy S. Ackleh, John Cleveland, and Horst R. Thieme. Population dynamics under selection
and mutation: Long-time behavior for differential equations in measure spaces. Journal of
Differential Equations, 261(2):1472–1505, jul 2016.

[4] Azmy S. Ackleh, Ben G. Fitzpatrick, and Horst R. Thieme. Rate distributions and survival
of the fittest: a formulation on the space of measures. Discrete & Continuous Dynamical
Systems - B, 5(4):917–928, 2005.

[5] AZMY S. ACKLEH, DAVID F. MARSHALL, HENRY E. HEATHERLY, and BEN G.
FITZPATRICK. SURVIVAL OF THE FITTEST IN a GENERALIZED LOGISTIC
MODEL. Mathematical Models and Methods in Applied Sciences, 09(09):1379–1391, dec
1999.

[6] Azmy S. Ackleh and Nicolas Saintier. Diffusive limit to a selection-mutation equation with
small mutation formulated on the space of measures. Discrete & Continuous Dynamical
Systems - B, 26(3):1469–1497, 2021.

[7] Pierre-Emmanuel Jabin and. Small populations corrections for selection-mutation models.
Networks & Heterogeneous Media, 7(4):805–836, 2012.

[8] Aleksandra Ardaševa, Robert A. Gatenby, Alexander R. A. Anderson, Helen M. Byrne,
Philip K. Maini, and Tommaso Lorenzi. Evolutionary dynamics of competing phenotype-
structured populations in periodically fluctuating environments. Journal of Mathematical
Biology, 80(3):775–807, oct 2019.

[9] Olivier Bonnefon, Jérôme Coville, and Guillaume Legendre and. Concentration phenomenon
in some non-local equation. Discrete & Continuous Dynamical Systems - B, 22(3):763–781,
2017.

[10] Burger. Mathematical Theory of Selection. John Wiley & Sons, October 2000.

[11] J.-E. Busse, P. Gwiazda, and A. Marciniak-Czochra. Mass concentration in a nonlocal model
of clonal selection. Journal of Mathematical Biology, 73(4):1001–1033, mar 2016.

[12] Jan-Erik Busse, Silvia Cuadrado, and Anna Marciniak-Czochra. Local asymptotic stability
of a system of integro-differential equations describing clonal evolution of a self-renewing
cell population under mutation.

[13] Àngel Calsina and Sílvia Cuadrado. Asymptotic stability of equilibria of selection-mutation
equations. Journal of Mathematical Biology, 54(4):489–511, nov 2006.

[14] Vincent Calvez, Susely Figueroa Iglesias, Hélène Hivert, Sylvie Méléard, Anna Melnykova,
and Samuel Nordmann. Horizontal gene transfer: numerical comparison between stochastic
and deterministic approaches. ESAIM: Proceedings and Surveys, 67:135–160, 2020.

[15] José A. Cañizo, José A. Carrillo, and Sílvia Cuadrado. Measure solutions for some models
in population dynamics. Acta Applicandae Mathematicae, 123(1):141–156, may 2012.

17



Hugo Martin

[16] Cécile Carrère, , and Grégoire Nadin and. Influence of mutations in phenotypically-
structured populations in time periodic environment. Discrete & Continuous Dynamical
Systems - B, 25(9):3609–3630, 2020.

[17] N. Champagnat, R. Ferričre, and G. Ben Arous4. The canonical equation of adaptive dy-
namics: A mathematical view. Selection, 2(1-2):73–83, apr 2002.

[18] Nicolas Champagnat. A microscopic interpretation for adaptive dynamics trait substitution
sequence models. Stochastic Processes and their Applications, 116(8):1127–1160, aug 2006.

[19] Nicolas Champagnat, Régis Ferrière, and Sylvie Méléard. From individual stochastic pro-
cesses to macroscopic models in adaptive evolution. Stochastic Models, 24(sup1):2–44, nov
2008.

[20] Nicolas Champagnat, Pierre-Emmanuel Jabin, and Sylvie Méléard. Adaptation in a sto-
chastic multi-resources chemostat model. Journal de Mathématiques Pures et Appliquées,
101(6):755–788, jun 2014.

[21] Nicolas Champagnat, Pierre-Emmanuel Jabin, and Gaël Raoul. Convergence to equilib-
rium in competitive lotka–volterra and chemostat systems. Comptes Rendus Mathematique,
348(23-24):1267–1272, dec 2010.

[22] Nicolas Champagnat and Sylvie Méléard. Polymorphic evolution sequence and evolutionary
branching. Probability Theory and Related Fields, 151(1-2):45–94, apr 2010.

[23] John Cleveland. Evolutionary game theory on measure space. PhD thesis, Universityof
Louisiana at Lafayette, 2009.

[24] Daniel B. Cooney and Yoichiro Mori. Long-time behavior of a pde replicator equation for
multilevel selection in group-structured populations. April 2021.

[25] Loren Coquille, Anna Kraut, and Charline Smadi. Stochastic individual-based models with
power law mutation rate on a general finite trait space.

[26] Manon Costa, Christèle Etchegaray, and Sepideh Mirrahimi. Survival criterion for a pop-
ulation subject to selection and mutations - application to temporally piecewise constant
environments. Nonlinear Analysis: Real World Applications, 59:103239, jun 2021.

[27] Ross Cressman and Josef Hofbauer. Measure dynamics on a one-dimensional continuous
trait space: theoretical foundations for adaptive dynamics. Theoretical Population Biology,
67(1):47–59, feb 2005.

[28] Laurent Desvillettes, Pierre Emmanuel Jabin, Stéphane Mischler, and Gaël Raoul. On se-
lection dynamics for continuous structured populations. Communications in Mathematical
Sciences, 6(3):729–747, 2008.

[29] Ulf Dieckmann and Richard Law. The dynamical theory of coevolution: a derivation from
stochastic ecological processes. Journal of Mathematical Biology, 34(5-6):579–612, may 1996.

[30] Christian Düll, Piotr Gwiazda, Anna Marciniak-Czochra, and Jakub Skrzeczkowski. Spaces
of Measures and their Applications to Structured Population Models. Cambridge University
Press, sep 2021.

18



MEASURE SOLUTIONS FOR THE SELECTION EQUATION

[31] Régis Ferriere, Judith L. Bronstein, Sergio Rinaldi, Richard Law, and Mathias Gauduchon.
Cheating and the evolutionary stability of mutualisms. Proceedings of the Royal Society of
London. Series B: Biological Sciences, 269(1493):773–780, apr 2002.

[32] M W Hirsch. Systems of differential equations which are competitive or cooperative: III.
competing species. Nonlinearity, 1(1):51–71, feb 1988.

[33] Morris W. Hirsch. Systems of differential equations which are competitive or cooperative: I.
limit sets. SIAM Journal on Mathematical Analysis, 13(2):167–179, mar 1982.

[34] Morris W. Hirsch. Systems of differential equations that are competitive or cooperative II:
Convergence almost everywhere. SIAM Journal on Mathematical Analysis, 16(3):423–439,
may 1985.

[35] Pierre-Emmanuel Jabin and Hailiang Liu. On a non-local selection–mutation model with a
gradient flow structure. Nonlinearity, 30(11):4220–4238, oct 2017.

[36] Pierre-Emmanuel Jabin and Gaël Raoul. On selection dynamics for competitive interactions.
Journal of Mathematical Biology, 63(3):493–517, oct 2010.

[37] Pierre-Emmanuel Jabin and Raymond Strother Schram. Selection-mutation dynamics with
spatial dependence.

[38] Anna Kraut and Anton Bovier. From adaptive dynamics to adaptive walks. Journal of
Mathematical Biology, 79(5):1699–1747, jul 2019.

[39] Tommaso Lorenzi, Fiona R. Macfarlane, and Chiara Villa. Discrete and continuum models
for the evolutionary and spatial dynamics of cancer: a very short introduction through two
case studies.

[40] Tommaso Lorenzi and Camille Pouchol. Asymptotic analysis of selection-mutation models
in the presence of multiple fitness peaks. Nonlinearity, 33(11):5791–5816, oct 2020.

[41] Robert M. May and Warren J. Leonard. Nonlinear aspects of competition between three
species. SIAM Journal on Applied Mathematics, 29(2):243–253, sep 1975.

[42] Benoît Perthame. Transport Equations in Biology. Basel: Birkhäuser, 2007.

[43] Camille Pouchol and Emmanuel Trélat. Global stability with selection in integro-differential
lotka-volterra systems modelling trait-structured populations. Journal of Biological Dynam-
ics, 12(1):872–893, jan 2018.

[44] S. Smale. On the differential equations of species in competition. Journal of Mathematical
Biology, 3(1):5–7, 1976.

[45] Chiara Villa, Mark A. J. Chaplain, and Tommaso Lorenzi. Evolutionary dynamics in vas-
cularised tumours under chemotherapy: Mathematical modelling, asymptotic analysis and
numerical simulations. Vietnam Journal of Mathematics, oct 2020.

19


	1. Introduction
	1.1. A brief state of the art
	1.2. Framework for measure solutions by duality
	1.3. Assumptions and well posedness result

	2. Well-posedness and stability
	3. Various asymptotic behaviours
	3.1. A sufficient condition for non extinction
	3.2. Cannibalism revisited
	3.3. A stable distribution without singular part
	3.4. Trait-structured preys-predators
	3.5. Convergence in total variation norm with a uniform competition for ressources

	4. Discussion
	Ackowledgement
	Supplementary mterials
	Bibliography

