Tony F Chant

NEWTON-LIKE PSEUDO-ARCLENGTH METHODS FOR COMPUTING SIMPLE TURNING POINTS*

Keywords: turning points, arclength continuation, Newton's method, nonlinear systems

We present a new method for computing simple turning points of nonlinear equations of the form G(u, A)= 0 which is based on applying Newton's method to the characterization d,\(u)/du = 0, where u is a pseudo-arclength parameter used in a continuation method for following the solution paths.

The method is quadratically convergent and needs only one starting point on the solution path. Second derivatives of G (or difference approximations of them) have to be computed but the method is relatively insensitive to their values and they also give rise to a more accurate second order predictor in the continuation method. We present a chord-Newton variant for improving the efficiency of the algorithm which requires only one factorization of a Jacobian matrix. We also present a damped-Newton variant for improving the robustness and the global convergence of the algorithm. Results of numerical experiments on two standard nonlinear elliptic problems of Simpson's [SIAM J. Numer. •Anal. , 12 (1975), pp. 439-451] show that the new algorithm compares favorably with the best of the existing methods in terms of efficiency and robustness.

1.

Introduction. Many problems in computational physics can be formulated as nonlinear eigenvalue problems of the form [START_REF] Abbott | An efficient algorithm for the determination of certain bifurcation points[END_REF] G(u, A)=O, where u E B (a real Banach space), A ER, and G is a continuously differentiable operator mapping B xR into B. Usually, u represents the "solution" to the physical problem (e.g. flow field, structural displacement) and A is related to a physical parameter (e.g. Reynolds number, load on a structure). Often, one is interested in the dependence of the solution u (A) on the parameter A, i.e. in tracing the solution branches [u (A), A] of [START_REF] Abbott | An efficient algorithm for the determination of certain bifurcation points[END_REF]. When the operator G is nonlinear in u and A, this is usually accomplished numerically by some version of Newton's method applied to [START_REF] Abbott | An efficient algorithm for the determination of certain bifurcation points[END_REF] for a fixed value of A, which makes use of the Jacobian matrix G .. (u, A). However, the solution branches often possess very interesting but complicated nonlinear bifurcation behavior, among which are existence of multiple solutions and singular points (where G .. (u, A) is singular) known as turning points (where the solution branch bends back on itself) and bi furcation points (where two or more solution branches cross). Straight forward application of Newton's method to [START_REF] Abbott | An efficient algorithm for the determination of certain bifurcation points[END_REF] encounters difficulties near these singular points. To overcome these difficulties, some kind of path following continu ation method [START_REF] Georg | Simplicial and continuation methods for approximating fixed points and solutions to systems of equations[END_REF], [START_REF] Keller | Numerical solution of bifurcation and nonlinear eigenvalue problems[END_REF], [1 5], [START_REF] Rheinboldt | Solution fields of nonlinear equations and continuation methods[END_REF] is usually employed. These continuation methods are designed to trace past turning points and can be modified to switch branches at bifurcation points.

In many applications, in addition to tracing the solution branches, one is also interested in locating the singular points themselves, because they are often related to the stability of the solution. Due to their special physical significance, many algorithms have been proposed for determining these singular points accurately. In this paper, we shall only deal with the determination of simple turning points, which can be characterized as points on the solution curve where and

(3) G,dc Range (Gu).

For an excellent survey of existing methods for computing turning points, we refer the reader to the report by Melhem and Rheinholdt [START_REF] Rheinboldt | A comparison of methods for determining turning points of nonlinear equations[END_REF] in which they compare the performances of algorithms proposed by Abbott [l], Moore and Spence [START_REF] Moo | The calculation of turning points of nonlinear equations[END_REF], Seydel [START_REF] Seydel | Numerical computation of branch points in nonlinear equations[END_REF], Paumier [START_REF] Paumier | Une methode numerique pour le ea/cul des points de retournement. Application a un probleme aux limites non-lineaires[END_REF], Ponisch and Schwetlick [START_REF] Schwetlick | Computing turning points of curves implicitly defined by nonlinear equations depending on a parameter[END_REF], Rheinholdt [START_REF] Burkardt | A program for a locally parametrized continuation process[END_REF], [START_REF] Rheinboldt | Computation of critical boundaries on equilibrium ma . nifol<Is[END_REF], Schwetlick [START_REF] Schwetlick | Effective methods for computing turning points of curves implicitly defined by non linear equations[END_REF] and Simpson [START_REF] Simpson | A method for the numerical determination of bifurcation states of nonlinear systems of equations[END_REF]. These methods can be classified into two general classes. The first consists of local iterative algorithms based on an inflated system consisting of [START_REF] Abbott | An efficient algorithm for the determination of certain bifurcation points[END_REF] augmented by a characterization similar to [START_REF] Georg | Simplicial and continuation methods for approximating fixed points and solutions to systems of equations[END_REF], constructed so that the turning point is a unique and isolated solution of the inflated system. The other class of algorithms consists of methods based on a path tracing continuation method by successively using it to compute points on the solution curve that approach the turning point. These algorithms can further be categorized by whether one or more points on the solution curve are needed as initial guess and whether second derivatives of G are needed. In Table 1.1, we tabulated the properties of the best methods as found by Melhem and Rheinholdt, judged by an overall measure of excellency in terms of a combination of efficiency, robustness and generality. For the purpose of comparison, we have included the method that we are proposing in this paper. As can be seen from the table, the method that we are proposing is quadratically convergent, needs only one initial guess on the solution curve, and is based on an underlying continuation method for branch tracing. Methods based on continuation have certain desirable properties. First, they can build upon the curve tracing capabilities that are already in the continuation procedure. For example, very often the same linear equation solver can be used without having to refactor any Jacobian matrix. Second, they naturally provide more details of the solution curve around the turning points. Lastly, as we shall demonstrate later, requiring the iterates to lie on the solution curve tends to make the algorithms more robust than methods based on using augmented systems. The property of requiring only one initial point is also desirable because most continuation methods have to be slowed down near turning points and it may be relatively expensive to obtain two points on the solution curve where A changes sign, as is needed by some methods. We shall review briefly the formulation of typical continuation methods in § 2.

Many of the methods in Table 1.1 use the characterization A(s) = 0 for turning points. Our method is based on an alternative characterization of simple turning points, namely, that [START_REF]Deflated decompositions of solutions of nearly singular systems[END_REF] where u is the pseudo-arclength parameter used in the continuation method. This characterization has been suggested by Keller [START_REF]Global homotopies and Newton methods[END_REF], although he only considered secant methods and no numerical results were given. Our method is based on applying Newton's method to [START_REF]Deflated decompositions of solutions of nearly singular systems[END_REF]. We show in § 3 that the second derivatives [u"(u), A"(u)] can be computed rather inexpensively if the second derivatives of G are available. We note that none of the methods based on continuation cited in [START_REF] Rheinboldt | A comparison of methods for determining turning points of nonlinear equations[END_REF] is quadratically convergent. This is obviously because the authors tried to avoid computing second derivatives, which in some applications are very difficult to obtain. However, since a function evaluation in these methods involves an inner Newton iteration which could be costly, we believe that in many applications where the second derivatives (or approximations of them) are available, the use of a method with a faster convergence rate may be beneficial. As we shall show in § 4.1, the availability of second derivatives also leads to a much more accurate predictor in the underlying continuation method, which in turn improves the efficiency of the overall algorithm.

Another desirable property for an algorithm is that of requiring only a solver for Gu (rather than a matrix derived from Gu) since such a solver may already be available in the application discipline and it can also exploit special solution techniques (e.g. fast elliptic solvers). We show in § 4.2 how this can be arranged in our algorithm. In § 5, we present a chord-Newton variant for improving the efficiency and a damped Newton variant for improving the robustness and global convergence of the basic algorithm. In § 6, we discuss briefly the work and storage requirements of the new algorithm, which are comparable to most of the existing methods. Extensive numerical experiments have been performed on applying the algorithm and its variants to two standard nonlinear elliptic problems of Simpson's [START_REF] Simpson | A method for the numerical determination of bifurcation states of nonlinear systems of equations[END_REF] and the results are presented in § 7. They demonstrate that the new algorithm is both efficient and robust and compares favorably with the best of the existing methods on these two problems.

The key idea is to parametrize the solutions [u (u), A (u)] in terms of a new parameter u that approximates the arclength parameter s, instead of parametrizing u (A) in terms of the natural parameter A. This is usually achieved by augmenting the equation (1) by an auxiliary equation that approximates the arclength condition:

(5) ll u (s)112 + IA(s

)12 = 1,
to give an inflated system with unknowns u(u) and A(u):

(6) G(u(u), A(u)) = 0, N (it (u), A (u), u) = 0.

Instead of solving for u (A) for a given value of A, we solve for u (u) and A (u) for a given value of u. Newton's method and its variants are usually used to solve [START_REF] Chan | On the existence and computation of LU-factorizations with small pivots[END_REF], in which case we need to solve linear systems with the following inflated matrix: [START_REF] Chan | Iterative methods for solving bordered systems with applications to continuation methods[END_REF] The auxiliary function N is constructed so that the matrix M is nonsingular on the solution branch, even near or at simple turning points. Thus, Newton's method encoun ters no difficulties with this inflated system and quadratic convergence is achievable.

Another major component of a continuation method is the computation of the unit tangent [u (s), A(s)] to the solution curve at a point [u, A] on the solution curve, which can be computed relatively inexpensively from its definition, (8) Gu(u, A)u +G>.. (u, A)A = 0, by solving only one linear system with Gu. The system (8) determines [u, A] up to a directional orientation, which can be fixed by some convention. The tangent is usually used in a first order predictor to obtain an initial guess for the Newton iteration applied to the system (6).

We summarize the essential features in the following general algorithm.

ALGORITHM PAC[u0, A0, u, u (u), A (u)] Ps eudo-arclength continuation. Given [u0, Ao] on the solution curve, and a step length u (for step length algorithms, see [START_REF] Heuer | On steplength algorithms for a class of continuation methods[END_REF]), compute the new solution [u (u), A (u)] A few typical N's that have been used in the literature are:

1. N1(U, A, u) = u& (u -Uo) + Ao(A -Ao)-u (introduced by Keller [11]), 2. N2(u, A, u) =ef (y -y 0)-u, where y = (u, A{, ei is the ith unit vector and the index i is chosen so that the matrix M is as well-conditioned as possible (introduced by Abbott [1], Kubicek [START_REF] Kubicek | Dependence of solution of nonlinear systems on a parameter[END_REF] and Rheinholdt [START_REF] Rheinboldt | Solution fields of nonlinear equations and continuation methods[END_REF]). Proof. First note, by differentiating (6) by u, that [u '(u), A '(u)] satisfies: [START_REF] Gill | Computing forward difference intervals for numerical optimization[END_REF] where the coefficient matrix in [START_REF] Gill | Computing forward difference intervals for numerical optimization[END_REF] is nonsingular by construction. Thus [u '(u), A (u)] is well defined even near or at a turning point. Now first assume A '(u) = 0. The second equation in [START_REF] Gill | Computing forward difference intervals for numerical optimization[END_REF] implies that N u u' = -N u ;t. 0. Thus u' is nontrivial. The first equation in [START_REF] Gill | Computing forward difference intervals for numerical optimization[END_REF] reduces to Guu' = 0. Since u' is nontrivial, Gu must be singular. Next assume that [u(u), A(u)]=[u*, A*]. Then by (2) Gu(u) is singular. If A'(u) ;t. 0, then the first equation in [START_REF] Gill | Computing forward difference intervals for numerical optimization[END_REF] implies that G>.. (u) E Range (Gu(u)), which contradicts (3). D

We note that both N1 and N2 satisfy the hypothesis of Theorem 2.

Theorem 2 provides a basis for estimating the step length er because it reduces the problem to one of finding a root of A '(er) = 0. Our method is based on applying Newton's method for doing this, for which we need to compute A"(er). It is not surprising that this requires computing the second derivatives of G. By differentiating [START_REF] Gill | Computing forward difference intervals for numerical optimization[END_REF] with respect to er, we obtain the following system for computing [u"(er), A"(er)]:

(Gu(er) G>.. (er)) (u"(er))

Nu(er) N>.. (er)

A"(er) [START_REF] Keller | Numerical solution of bifurcation and nonlinear eigenvalue problems[END_REF] (-(Guu (er)u '(er)u '(er)+ 2Gu>.. (er)u '(er)A '(er)+ G>.. >.. (er)A '(er)A '(er)))

--(Nuu (er)u '(er)u '(er)+ 2Nu>.. (er)u '(er)A '(er)+ Nu (er)A '(er)A '(er))-Nuu(er)

•
We note that the systems governing [u', A'] and [u", A"] have identical coefficient matrices, which are almost exactly the same as that used in the last step of the Newton iteration in the pseudo-arclength procedure. Thus, the same factorization of these matrices can be used to compute [u', A'] and [u", A"] and they can be obtained essentially free. We outline the basic version of our method in algorithmic form.

ALGORITHM NTP[u0, Ao, u*, A*].

Newton's method for locating turning points. Starting with an initial guess [uo, Ao] on the solution curve, compute an approximation [u*, A*] to a turning point.

Initialize er = 0.

Loop until convergence:

1. Compute [u'(er), A'(er)] and [u"(er), A"(er)] by [START_REF] Gill | Computing forward difference intervals for numerical optimization[END_REF] and [START_REF] Keller | Numerical solution of bifurcation and nonlinear eigenvalue problems[END_REF]. 2. Compute the change in the step length 8er = -A'(er)/A"(er). Note that in Step 4 of Algorithm NTP, we use u0 and Ao instead of the most current iterate. The reason is that the local parametrizations (N1 or N2) usually depend on [u0, A0] and Algorithm NTP is trying to find a pseudo-arclength step er within this local parametrization that will correspond to the turning point. Using the most current iterate in Step 4 here will change the local parametrization.

Under mild conditions on the smoothness of G, it is not difficult to prove local quadratic convergence for Algorithm NTP for simple quadratic (i.e. A "(er)¥ 0) turning points. It can be shown from evaluating the first equation in [START_REF] Keller | Numerical solution of bifurcation and nonlinear eigenvalue problems[END_REF] at the turning point that the condition A"(er)-¥0 is equivalent to Guu(er)u'(er)u'(er)!2'Range (Gu(er)). We shall not pursue the convergence analysis here.

We note that [u', A'] is not equal to the unit tangent [u, A] but is a scaled version of it. As can be seen from Table 1.1, the characterization A(s) = 0 for turning points have been used by many authors but Keller [START_REF]Global homotopies and Newton methods[END_REF] seems to be the only one who has considered the use of the pseudo-arclength parameter er of a continuation procedure, together with the characterization A '(er) = 0, in the context of an algorithm for finding turning points. A system similar to [START_REF] Keller | Numerical solution of bifurcation and nonlinear eigenvalue problems[END_REF] has been derived by Ponisch and Schwetlick [START_REF] Schwetlick | Computing turning points of curves implicitly defined by nonlinear equations depending on a parameter[END_REF] but their method is not based on a continuation procedure.

4.1. Second order predictor. Note that in Algorithm PAC, the solution [u (u), A (u)] is uniquely defined by the parametrization N and the step length u, and one can use any reasonable predictor in Step 2 instead of the commonly used one given in [START_REF] Dongarra | UNPACK Users' Guide[END_REF]. We want to emphasize that the unit tangent at [uo, Ao] is usually used both to define the local parametrization and to obtain a predictor solution although these two processes can be separated. For example, instead of the first order predictor used in Step 2 of Algorithm PAC, we can use the following more accurate predictor:

(12) Up = u (u) + (8u)u'(u) + (8u) 2 u"(u)/2, Av =A (u) + (8u)A '(u) + (8u) 2 A "(u)/2.
This new predictor is more accurate for two reasons. First, the current approximation All the linear systems that arise in our algorithm are of the form: [START_REF] Kubicek | Dependence of solution of nonlinear systems on a parameter[END_REF] where the n x n matrix A may become singular near a turning point but the vectors b and c are chosen so that M remains nonsingular and well conditioned. The algorithm that we have chosen to use for solving the linear systems of the form [START_REF] Kubicek | Dependence of solution of nonlinear systems on a parameter[END_REF] is the following block-elimination algorithm: A can be exploited and special solvers for A can be used (e.g. fast direct solvers, multi-grid solvers). However, as we have shown in [START_REF] Chan | Deflation techniques and block-elimination algorithms for solving bordered singular systems[END_REF], Algorithm BE may be unstable numerically when A is nearly singular, as is the case in the present application. The main source of instability is in Step 1 of Algorithm BE where the vectors v and w are computed inaccurately when A is nearly singular. In [START_REF] Chan | Deflation techniques and block-elimination algorithms for solving bordered singular systems[END_REF], we proposed using implicit deflation techniques developed in [START_REF]Deflated decompositions of solutions of nearly singular systems[END_REF], [START_REF] Stewart | On the implicit deflation of nearly singular systems of linear equations[END_REF] to compute accurate representations for the solutions v and w. These deflation techniques can be viewed as working in subspaces orthogonal to approximate null vectors of A and are implicit in the sense that they only involve solving systems with A. We then use these deflated decompositions of v and w to obtain a stable variant of the BE algorithm, which we called Algorithm DBE. The only overhead involved for performing the deflation in this algorithm is the computation of two approximate left and right null vectors for A. These can be obtained either by an inverse power method or by a technique based on the existence of a small pivot in the LU-factorization of A [START_REF] Chan | On the existence and computation of LU-factorizations with small pivots[END_REF].

In any case, the extra work amounts to only a few backsolves, which is usually negligible in comparison with the work involved in computing the factorization. We refer the details of Algorithm DBE to [START_REF] Chan | Deflation techniques and block-elimination algorithms for solving bordered singular systems[END_REF], where we also presented a backward error analysis that shows that it is numerically stable.

We have assumed that direct elimination methods are used for solving the linear systems that arise. For the use of iterative methods, which might be more attractive for large and sparse problems, we refer the reader to [START_REF] Chan | Iterative methods for solving bordered systems with applications to continuation methods[END_REF]. For another method for solving the inflated systems, see [START_REF]Numerical analysis of continuation methods for nonlinear structural problems[END_REF].

4.3.

Difference approximations for second derivatives. In the context of algorithms for computing turning points, for any method to achieve quadratic conver gence, second derivatives of G are required in general. Unfortunately, in many applications, second derivatives are difficult to compute or not available at all. For this reason, many algorithms avoid using second derivatives explicitly. In the specific context of using the characterization A '(u) = 0 for locating turning points, there are at least three ways to achieve this. The first is to use a secant-like method for finding a zero of A '(u), as is the case in the methods of Keller [START_REF]Global homotopies and Newton methods[END_REF] and Rheinholdt [START_REF] Burkardt | A program for a locally parametrized continuation process[END_REF], [START_REF] Rheinboldt | Computation of critical boundaries on equilibrium ma . nifol<Is[END_REF].

However, the convergence rate will then not be quadratic. In order to retain quadratic convergence, at least approximately, we choose to work with a Newton-like method similar to Algorithm NTP. Within this context, there are at least two ways to avoid second derivatives. This first is to use a difference approximation for A"(u), by evaluating A '(u) at two adjacent points. This is essentially the approach taken by the method of Abbott in Table 1.1. Note that each evaluation of A'(u) may be rather costly as it involves calling Algorithm PAC with a few different values of u and consequently involves solving a few linear systems with the inflated matrix M inside the Newton iteration in Step 3 of Algorithm PAC. The last approach, which is the one we have adopted in this paper, is to use a difference approximation for computing the second derivatives of G. Note that these appear only on the right-hand side of [START_REF] Keller | Numerical solution of bifurcation and nonlinear eigenvalue problems[END_REF] rather than in the coefficient matrix, as is the case in the method of Moore and Spence [START_REF] Moo | The calculation of turning points of nonlinear equations[END_REF]. We believe that this property of the algorithm leads to better numerical stability. For the numerical experiments in this paper, we have used a simple centered difference approximation. For example, GA>.. (u) is approximated by [START_REF] Schwetlick | Computing turning points of curves implicitly defined by nonlinear equations depending on a parameter[END_REF] G>.. >.. (u) = (G>.. (u(u), A (u) +e)-GA (u(u), A (u)-e))/2e.

In practice, one can use better techniques; see for example [START_REF] Gill | Computing forward difference intervals for numerical optimization[END_REF].

S.

Variants. In this section, we present variants of the basic Algorithm NTP designed to improve its efficiency and robustness. Gu. Therefore, one can save a great deal of computation by reusing the factors of a nearby matrix. There are two Newton iterations involved in Algorithm NTP, both of which allow chord-Newton variants. For the outer Newton iteration, it does not pay to use the chord-Newton variant because the coefficient matrix governing [u"(u), A "(u)] in [START_REF] Keller | Numerical solution of bifurcation and nonlinear eigenvalue problems[END_REF] is the same as the one governing [u'(u), A'(u)] in [START_REF] Gill | Computing forward difference intervals for numerical optimization[END_REF]. Thus, the second derivatives [u "(u), A "(u)] can be computed very inexpensively by performing only one back-substitution. For the inner iteration in Algorithm PAC, however, one can obtain a chord-Newton variant by using the same LU-factors of a Jacobian matrix Gu in all the Newton steps, for example, by using the LU-factors of the matrix Gu(u) used in computing A'(u) and A"(u) in Step 1 of Algorithm NTP.

We note that with Algorithm DBE, GA can be updated in M(u) in each step of the chord-Newton iteration without incurring a factorization of Gu, which in general gives a better approximation for M (u) than if an old copy of GA, say GA (0), were used. However, if we choose not to update GA, then the vector v in Algorithm DBE can be computed once for all and each solve with M then involves only one, rather than two, solves with Gu. Therefore, if GA does not change very much around the turning point, it might be more efficient not to update GA at every step in the chord-Newton iteration. This is the strategy that we have used in our numerical experiments.

The above chord-Newton variant requires one factorization of Gu(u) per outer iteration step. This is similar to the treatment of the chord version of Rheinholdt's method. However, if the initial guess [u0, A0] is close enough to the turning point, one can reduce the work further. We can factor Gu (0) once only at the initial guess [u0, A0] and reuse these factors of Gu(u0, A0) in all subsequent iteration steps, both outer and inner. However, for the convergence of the outer iteration, we have to ensure that the function values in the outer iteration, i.e. A '(u), are evaluated accurately. Since the system [START_REF] Gill | Computing forward difference intervals for numerical optimization[END_REF] governing [u '(u), A '(u)] is linear, we can use the following iterative improvement algorithm for doing this:

Starting with an initial guess for t(u), iterate until convergence: A similar algorithm can be applied to the [u"(u), A"(u)] system [START_REF] Keller | Numerical solution of bifurcation and nonlinear eigenvalue problems[END_REF] as well. Moreover, since the second derivatives [u"(u), A"(u)] are available from the last outer Newton iteration, one can use a first order predictor for [u '(u), A '(u)] in [START_REF] Rheinboldt | Solution fields of nonlinear equations and continuation methods[END_REF], similar to the one used in [START_REF]Global homotopies and Newton methods[END_REF]. Furthermore, although we have not pursued it here, the iteration [START_REF] Rheinboldt | Solution fields of nonlinear equations and continuation methods[END_REF] can also be accelerated, for example, by a conjugate gradient type method. No predictor for [u", A"] is available, however, unless one stores previous values and uses extrapolation.

Damped-Newton variant.

It is well known that Newton's method is only locally convergent. In the context of Algorithm NTP, if the initial guess [u0, A0] is far away from a turning point, then the step ou generated at Step 2 of Algorithm NTP may be so large that either there is no solution for [u(u), A (u)] or the inner Newton iteration in Algorithm PAC fails to converge. To improve the robustness of the algorithm, we consider the use of a damped-Newton variant. Since our algorithm is based on a continuation method, this can be arranged naturally by replacing Steps 3 and 4 of Algorithm NTP by 3'. If the previous 8u, say 8up, was damped and l8ul > l8upl then 8u {:::: sign (8u) l8u PI Here y is a scalar damping factor (we used y = 2). To reduce the work wasted in the damped steps, we declare that Algorithm PAC has "failed" if either the number of iterations exceeds a maximum (we used a value of 5) or if the norm of the residuals llGll is not less than that at the previous iteration. This is similar to the treatment in [START_REF] Rheinboldt | Solution fields of nonlinear equations and continuation methods[END_REF], [START_REF] Burkardt | A program for a locally parametrized continuation process[END_REF]. Since the methods are based on a continuation procedure, it can be shown [START_REF] Rheinboldt | Solution fields of nonlinear equations and continuation methods[END_REF] that the loop in Step (4') above will terminate with a nonzero step length 8u. For methods based on inflated systems, no natural damped-Newton variant exists.

6. Work and storage. In Table 6.1, we summarize the work and storage require ments of Algorithm NTP and its chord variant, assuming that a direct factorization solve method is used for solving the linear systems. The storage for the damped Newton version is the same as that for the nondamped version. Its work is more difficult to estimate since it depends on exactly how the damped steps are taken. We have therefore not included it in the table. [u', A'] and[u", A"].

* For the chord version, no factorization is needed after the first iteration.

Storage is needed for the vectors: u, 8u (in the inner Newton iteration), G"" Nu, G, u ' , u " and the two approximate null vectors. For the chord version, one more vector is needed to store the old GA or v. We have ignored the work involved in computing the approximate null vectors needed for deflation in Algorithm DBE since they have to be computed only once per factorization and the work is thus negligible in comparison to the factorization cost for Gu.

We note that the storage is comparable to those of methods of similar type surveyed in [START_REF] Rheinboldt | A comparison of methods for determining turning points of nonlinear equations[END_REF], except that a few more vectors are required. The work is also similar, except that for the chord version, no other author seems to have used the potentially more efficient iterative improvement algorithm (1 9) for computing [u', A'] and [u " , .\"] with only one factorization of Gu.

For a general, dense n by n problem, the work required for evaluating the second derivatives of Gin our algorithm is 0(n3). However, for many problems with sparsity (e.g. see § 7), the work is usually much less.

7. Numerical experiments. We have performed extensive experiments on apply ing our algorithm and its variants to the following nonlinear elliptic eigenvalue problem [START_REF] Rheinboldt | A comparison of methods for determining turning points of nonlinear equations[END_REF], [START_REF] Moo | The calculation of turning points of nonlinear equations[END_REF], [START_REF] Simpson | A method for the numerical determination of bifurcation states of nonlinear systems of equations[END_REF]: [START_REF] Burkardt | A program for a locally parametrized continuation process[END_REF] G(u, A)=au +F(u, A)= 0, on the unit square with zero Dirichlet boundary conditions. Following previous authors, we use a fourthorder finite difference discretization of (20) on a uniform mesh of size h = l / m, which results in a system of n = (m -1)2 nonlinear equations. Two choices for the function F have been considered:

(21) (22) F2 =A (1 + (u + u2 /2)/(1 + u2 /100)).
For m = 8, the turning points that we are interested in are given in Table 7 .1.

F TABLE 7.1
Turning points for m = 8. All computations have been performed on a DEC-20, with 27-bit mantissas, corresponding to a relative machine precision of about 0.4 x 10-8 • The matrices corresponding to Gu are banded and are factored and solved by the UNPACK routines SGBCO and SGBSL [START_REF] Dongarra | UNPACK Users' Guide[END_REF]. The work for the factorization is O(m 4), for the solve is O(m 3) and for the evaluation of second derivatives is O(m 2). Thus, for problems of this kind (generally differential equations with a local stencil), the cost of evaluating second derivatives is smaller than the cost of the solve phase.

We use the pseudo-arclength function Ni in all our computations. We note that Ni is linear in all its arguments and hence all its second derivatives vanish and Nu(u) and N,,. (u) are constants.

For the convergence of the Newton iteration in Algorithm PAC, we use the criterion: llGl l< 10-5 and llNll < 10-5, which is adequate for the scale of our problems. For the iterative improvement algorithm [START_REF] Rheinboldt | Solution fields of nonlinear equations and continuation methods[END_REF], we stop if the relative change in the iterate is less than 10-5• For the difference approximations of second derivatives, we use a value of e = 10-4 in [START_REF] Schwetlick | Computing turning points of curves implicitly defined by nonlinear equations depending on a parameter[END_REF]. For computing the approximate null vectors needed in Algorithm DBE, we always use 3 steps of inverse iteration, the details of which can be found in [START_REF] Chan | Deflation techniques and block-elimination algorithms for solving bordered singular systems[END_REF] (this issue, pp. 121-134). The damped version is always used. We shall use the switch/PD to denote the use of difference approximations of second derivatives.

Following Melhem and Rheinholdt [START_REF] Rheinboldt | A comparison of methods for determining turning points of nonlinear equations[END_REF], we considered two starting points for F 2 : Ao= 7.96754 and Ai = 7.94617. We also considered two other starting points: ,\ 3 == 7.5 and ,\ 4 = 7.0. All are on the lower branch of the solution curve.

We first tested the Newton version. In Tables 7.2, 7.3 and 7.4, we tabulate the results of applying Algorithm NTP to F2 , starting from A0, A1 and A2 respectively. In Table 7 .5, we tabulate the results for F1 starting from A = 6.8 on the lower branch.

The notation is as follows:

• I: number of outer Newton iterations.

• 11: number of iterative improvement iterations in computing A', chord version only,

• 12: number of iterative improvement iterations in computing A", chord version only, • D: number of damped-Newton steps,

• N: number of inner Newton iteration in Algorithm PAC.

For comparison, we have included in the tables the values of A(s), which are not needed in the algorithm. We observe from these results that:

• The computed turning points are accurate to within machine precision.

• The convergence is quadratic.

• The number of inner Newton iterations decreases rapidly as the turning point is approached. In fact, as the turning point is approached, the predictor is often so good that no Newton iteration is needed to satisfy the convergence criteria.

• No damped-Newton step is taken.

When compared to the methods surveyed in [START_REF] Rheinboldt | A comparison of methods for determining turning points of nonlinear equations[END_REF], our method seems to be more efficient. For example, for the cases corresponding to Tables 7.2 and 7.3, all of the methods in [START_REF] Rheinboldt | A comparison of methods for determining turning points of nonlinear equations[END_REF] took 4 outer iterations or more, whereas our method has converged after 2 and 3 iterations respectively, as judged by the magnitude of A. These results show that the outer iteration is very similar to the results of the basic algorithm. The inner iteration took a few more iterations because of the chord-Newton strategy, but due to the more accurate predictor, the number of inner iterations also decreases rapidly as the turning point is approached. As expected, both the inner Newton iterations and the iterative improvement took more iterations when the starting guess (Ai) is farther away from the turning point. But the total number of solves is still reasonably small considering only one factorization was performed. Note also that the number of iterative improvement iterations is less for [u', A'] (which have a better initial guess from a first order predictor) than for [u", A"].

To test the robustness of the damped version, we applied the true Newton version on F2, starting at A 4 = 7. 0. The results are given in Table 7.8. Notice that the starting point is quite far away from the turning point and, as a consequence, many damped Newton steps had to be taken in the beginning. As the turning point is approached, however, no damping is needed and quadratic convergence is regained.

The next test we did was designed to show the effectiveness of the more accurate second-order pre,dictor. We repeated exactly the case corresponding to Table 7.4, except that the first-order predictor was used instead. The results are presented in Table 7.9. They are very similar to the results in Table 7.4, except as expected, the number of Results for F 2 , initial guess A 2 = 7.5, true Newton, first-order predictor. The last test we performed was designed to test the effect of the deflation techniques used in Algorithm DBE, by running some tests using Algorithm BE instead. Without going into details, we shall just report that Algorithm BE is fairly reliable in practice, producing results that are practically the same as if Algorithm DBE had been used. A plausible explanation for the unexpected reliability of Algorithm BE is that it only fails when Gu is very singular, at which point the accuracy is usually high enough that the iterations can be terminated. The only kind of problems that we have encountered with Algorithm BE occur when an iterate happens to be very close to the turning point, then llGll can actually increase in the inner Newton iteration, causing a damped Newton step to be taken. On the other hand, we have had no problem with Algorithm DBE at all, and we believe that it is to be preferred because of its higher reliability and minimal extra cost.

8.

Conclusions. We have presented and tested a new algorithm for computing simple turning points of nonlinear equations. It possesses quadratic convergence, which, together with the more accurate second order predictor, makes it extremely fast when applied close to a turning point. We have also demonstrated that, through the use of a chord-Newton variant, the efficiency can be increased dramatically in such cases. On the other hand, when started far away from a turning point, its use of a natural damped-Newton strategy makes it reasonably reliable and robust. The use of the block-elimination algorithm with implicit deflation makes it possible to exploit special structures and solvers for the problem. Although second derivatives of G are required, the experimental results show that difference approximations for them can be used safely. Although more tests on different and larger problems are needed to more completely validate the new algorithm, our limited experimental results show rather convincingly that it is both efficient and reliable and compares favourably with the best of the existing methods.

 satisfying[START_REF] Chan | On the existence and computation of LU-factorizations with small pivots[END_REF].

1 .

 1 Compute the unit tangent [uo, Ao] at [uo, Ao] by (8). 2. Compute the predicted solution [up, Ap] given by (9) Up = uo+uuo, 3. Use [up, Ap] as initial guess in a Newton-like iteration for solving the system (6) to obtain [u(u), A(u)].

3 .

 3 Newton on A '(u) = 0. We shall consider only simple turning points where the nullity of Gu is one. Consider the situation where we have an approximation [uo, Ao] to a turning point [u*, A*]. The method that we are proposing works by es timating the step length u to use in applying one step of the pseudo-arclength continuation procedure PAC [u0, A0, u, u (u), A (u)] so that u (u) = u* and A (u) =A*. The basis for estimating u is derived from the following characterization of simple turning points: DEFINITION 1. Define A '(u) = dA (u)/du and u'(u) =du (u)/du. THEOREM 2. Ass ume Nu(u);t.0. Then A'(u)= O if and only if [u(u), A(u)]= [u*, A*].

3 .

 3 Update the new step length er{:: er + 8er. 4. Call PAC [u0, Ao, er, u (er), A (er)]. Set u*{=u(er), A*{:: A(er).

 [u(u), A(u)] to the turning point is used instead of[uo, Ao]. It corresponds to using the Taylor series expansions of [u(u + 8u), A (u +8u)] around [u(u), A (u)] instead of around [u0, Ao] which is[START_REF] Dongarra | UNPACK Users' Guide[END_REF]. Second, it has second order accuracy. Note that this more accurate predictor is essentially free, since all the quantities in[START_REF]Global homotopies and Newton methods[END_REF] have already been computed in Algorithm NTP before the call to Algorithm PAC. Its higher accuracy greatly reduces the cost of the inner Newton iteration in Step 4 of Algorithm PAC.

4. 2 .

 2 Block elimination and deflation techniques.

 • -c v x =w-yv.The work consists mainly of one factorization of A and two backsolves with the LU-factors of A. If there are many right-hand sides with the same matrix M, then the factorization of A and the vector v need only be computed once, and the work reduces to only one backsolve for each right-hand side, which makes Algorithm BE extremely attractive in such cases. These situations arise in the chord-Newton variant of Algorithm NTP (see § 5.1). Note also that only a solver for A is needed, and therefore any special structures (e.g. sparsity, handedness, special data structures) in

5. 1 .

 1 Chord-Newton variant. With direct methods for solving the linear systems, the most expensive part of the computation is usually in factoring the Jacobian matrix

) {:: t(u) + M (0)-1 (r(u) -M (u)t(u)), where r(u) = (O , -NO'(u)) r , t(u) = (u'(u), A'(u)) r .

4 '. 4 . 3

 443 Repeat until convergence: 4.1 u{=u+ 8u. 4. 2 Call PAC [u0, .\0, u, u (u), A (u)]. If no convergence in PAC, then 8u {=8u/y.

 9803548E+OO 2.272364 7E + 00 3.6E-08 inner Newton iterations does not decrease as the turning point is approached. Compar ing the two tables shows the dramatic increase in efficiency made possible by the more accurate predictor.

TABLE 1 . 1

 11 Properties of some methods for computing turning points.

		Initial	Rate of	Needs 2nd	Class of	Characterization of
		points	convergence	derivative?	method	turning point
	Abbott Moore & Spence Ponisch & Schwetlick Rheinholdt	1 1 1 2	2 2 2 1.618	yes/ no yes/ no yes/ no no	I I I c	A (s) = o Guw =0, w ¥-0 A (s)=O A (s) = o

TABLE 6 . 1

 61 Work and storage per step.

				Work/step			Storage
					Evaluations		LU	
	Algor.	Factors	Solves	Function	Jacobian	2nd deriv.	Factors	Vectors
	True Newton	N+1	N+2	N+1	N+1	1	1	9
	Chord-Newton	1*	N+I	N+1	N+1	1	1	10
	Notation. N =number of iterations in Algorithm PAC, I= number of iterative improvement iterations
	for computing							

TABLE 7 . 2

 72 Results for F2, initial guess Ao= 7.96754, true Newton.

		A'	11	A"	12	8u	D N	A	u(0.5, 0.5)	,\
	1	2.9E-01	0	-3.3E+OO	0	8.8E-02	0	1 7 .980 3556E + 00 2.2727977E + 00	-6.2E-04
	2	-6.5E-04	0	-3.3E+00	0	-2.0E-04	0 0 7.9803557E+00	2.2723642E + 00	3.6E-08
	3	3.8E-08	0	-3.3E+OO	0	1.2E-08	0 0 7.9803557E+OO 2.2723642E + 00	-1.4E-07

TABLE 7 . 3

 73 Results for F2, initial guess A1=7.94617, true Newton.

		A'	11	A"	12	8u	D N	A	u(0.5, 0.5)	,\
	1	4.7E-01	0	-2.8E+OO	0	1.6E-01	0	1 7.9791579E+OO 2.33245 lOE + 00	-8.2E-02
	2	-9.7E-02	0	-4.0E+OO	0	-2.4E-02	0	1 7 .9803553E + 00 2.2735657E+OO	-1.7E-08
	3	-1.9E-03	0	-3.8E+OO	0	-5.lE-04	0 0 7.9803558E+OO 2.272364 7E + 00	-7.5E-07
	4	-8.5E-07	0	-3.8E+OO	0	-2.2E-07	0 0 7.9803558E+OO 2.2723642E + 00	-1.6E-07

TABLE 7 . 4

 74 Results for F2, initial guess A2 = 7.5, true Newton.

		A'	11	A"	12	8u	D N	A	u(0.5, 0.5)	,\
	1	4.SE-01	0	-1.9E-01	0	2.6E+OO	0	3 7 .887770 3E + 00 2.8753642E+OO	-4.9E-01
	2	-2.2E-01	0	-2.lE-01	0	-1.lE+OO	0	2 7 .9699776E + 00 2.1055603E+OO	2.6E-01
	3	8.lE-02	0	-3.2E-01	0	2.6E-01	0	1 7 .9803556E + 00 2.2724285E + 00	-9.2E-05
	4	-3.0E-05	0	-3.2E-01	0	-9.4E-05	0 0 7.9803556E+OO 2.2723643E + 00	-1.6E-07
	5	-5.2E-08	0	-3.2E-01	0	-1.6E-07	0 0 7.9803556E+OO 2.2723642E + 00	9.3E-10

TABLE 7 . 5

 75 Results for Fi. initial guess A = 6.8, true Newton.

		A'	11	A"	12	8u	D N	A	u(0.5, 0.5)	,\
		4.5E-01	0	-1.1E+01	0	4.lE-02	0	2 6.8062598E + 00 1.4189429E+OO	-1.9E-01
	2	-2.5E-01	0	-2.7E+Ol	0	-9.2E-03	0	1 6.8074830E + 00 1.3951085E+OO	-2.6E-02
	3	-2.9E-02	0	-2.1E+01	0	-1.4E-03	0 0	6.8075035E+OO 1.3916595E+OO	-4.5E-04
	4	-5.lE-04	0	-2.0E+Ol	0	-2.SE-05	0 0	6.8075035E+OO 1.3915978E+OO	-3.3E-07
	5	-3.6E-07	0	-2.0E+Ol	0	-1.8E-08	0 0	6.8075035E+OO 1.3915977E+OO	-1.3E-07

 Next, we tested the chord version on F2, with difference approximations for second derivatives, which is the most efficient and most general version. The results are presented in Tables 7 .6 and 7. 7.

		ll'	I1	ll"	12	llu	D N	ll	u(0.5, 0.5)	,\
	1	2.9E-01	0	-3.3E+OO	0	8.8E-02	0	1 7.9803587E+OO 2.2727739E + 00
	2	-6.2E-04	2	-3.3E+OO	3	-1.9E-04	0 0 7 .9803588E + 00 2.2723626E + 00
	3	-3.3E-07	1	-3.3E+OO	2	-9.9E-08	0 0 7.9803588E+OO 2.2723624E + 00	-9.lE-08
			I1	ll"	12	llu	D N	ll	u(0.5, 0.5)	,\
	1	4.7E-01	0	-2.8E+OO	0	1.6E-Ol	0	5 7.9791640E+OO 2.3324056E + 00
	2	-9.7E-02	6	-4.0E+OO	6	-2.4E-02	0	1 7.9803528E+OO 2.2735747E+OO
	3	-2.0E-03	4	-3.8E+OO	5	-5.lE-04	0 0 7.9803533E + 00 2.2723666E + 00
	4	-7.2E-07		-3.8E+OO	3	-1.9E-07	0 0 7 .9803533E + 00 2.2723661E+OO	-7.0E-07

TABLE 7.6 Results for P2, initial guess Ao= 7.96754, chord/PD. TABLE 7.7 Results for P2, initial guess A1=7.94617, chord/PD. >.. '

TABLE 7 . 8

 78 Results for F2, initial guess A4 = 7 .0, true Newton.

		A'	11	A"	12	6u	D N	A	u(0.5, 0.5)	,\
	1	9.8E-0 1	0	-3.3E-02	0	9.3E-0 1	5	3 7.8777199E+OO	1.79 1 2264E+OO	7.lE-0 1
	2	8.4E-0 1	0	-7.SE-0 1	0	l.2E-0 1	3 2 7 .9665943E + 00 2.0815067E+OO	3.0E-0 1
	3	6.lE-0 1	0	-5.9E+OO	0	2.5E-02	2	2 7.9790850E+OO 2.2123320E+00	9.0E-02
	4	3.0E-0 1	0	-2.6E+Ol	0	1.2E-02	0	2 7 .9794920E + 00 2.32330 10E+OO	-7.0E-02
	5	-4.9E-0 1	0	-2.0E+02	0	-2.5E-03	0	1	7.9802267E+OO 2.2919466E+OO	-2.8E-02
	6	-1.SE-0 1	0	-9.7E+Ol	0	-1.5E-03	0	1	7.9803523E+OO 2.2755943E + 00	-4.6E-03
	7	-2.2E-02	0	-7.lE+Ol	0	-3.lE-04	0 0	7.9803558E+OO 2.2724587E + 00	-1.4E-04
	8	-6.4E-04	0	-6.7E-0 1	0	-9.6E-06	0 0	7.9803558E+OO 2.2723642E + 00	-1.6E-07

TABLE 7 . 9

 79

Pseudo-arclength continuation. In this section, we review the essential features of some common path-following continuation methods.

Implementation. In this section, we discuss some of the implementation details for Algorithm NTP. We address three issues: the construction of a more accurate predictor, algorithms for solving linear systems with the inflated matrix of the form[START_REF] Chan | Iterative methods for solving bordered systems with applications to continuation methods[END_REF] , and the use of difference approximations for second derivatives.

*This research was supported by the Department of Energy under contract DE-AC02-81ERi0996.