N

N

A Quantization Procedure for Nonlinear Pricing with an
Application to Electricity Markets

Quentin Jacquet, Wim van Ackooij, Clémence Alasseur, Stéphane Gaubert

» To cite this version:

Quentin Jacquet, Wim van Ackooij, Clémence Alasseur, Stéphane Gaubert. A Quantization Procedure
for Nonlinear Pricing with an Application to Electricity Markets. 62nd IEEE Conference on Decision
and Control, Dec 2023, Singapore (SG), Singapore. hal-04052232

HAL Id: hal-04052232
https://hal.science/hal-04052232
Submitted on 30 Mar 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License


https://hal.science/hal-04052232
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

A Quantization Procedure for Nonlinear Pricing with an Application to
Electricity Markets

Quentin Jacquet, Wim van Ackooij, Clémence Alasseur and Stéphane Gaubert

Abstract— We consider a revenue maximization model, in
which a company aims at designing a menu of contracts, given
a population of customers. A standard approach consists in
constructing an incentive-compatible continuum of contracts,
i.e., a menu composed of an infinite number of contracts,
where each contract is especially adapted to an infinitesimal
customer, taking his type into account. Nonetheless, in many
applications, the company is constrained to offering a limited
number of contracts. We show that this question reduces to an
optimal quantization problem, similar to the pruning problem
that appeared in the max-plus based numerical methods in
optimal control. We develop a new quantization algorithm,
which, given an initial menu of contracts, iteratively prunes
the less important contracts, to construct an implementable
menu of the desired cardinality, while minimizing the revenue
loss. We apply this algorithm to solve a pricing problem with
price-elastic demand, originating from the electricity retail
market. Numerical results show an improved performance by
comparison with earlier pruning algorithms.

I. INTRODUCTION
A. Motivation from electricity markets

Electricity retail markets are now open to competition in
most countries, and providers are free to design a menu of
offers/contracts in addition to regulated alternatives (fixed
prices), so that each consumer can select among the vast
jungle of offers the one which maximizes his utility. Finding
an appropriate utility function which fairly represents the
consumer behavior is all but immediate. In this paper,
the choice of a contract is based on the minimization of
the invoice (rational choice theory, see e.g. [1]]), and we
suppose that each customer can adjust his consumption to
the electricity prices (price elasticity). This phenomenon is
highlighted by the actual energy crisis: consumers are likely
to make huge efforts in view of consumption reduction.

A key problem for electricity providers is to design an
optimal menu of offers, maximizing their revenue, under a
restriction on the “size” of the menu (number of contracts).
In fact, from an optimization point of view, proposing more
contracts increases the revenue, as it allows one to adjust the
menu to the individual preferences of the different types of
customers. However, in practice, it is essential to restrict the
number of contracts, in order to make the commercial offer
more visible to agents, easier to understand, and also to keep
an implementable menu for the company.
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B. The optimal nonlinear pricing problem

We consider more generally the revenue maximization
problem faced by a seller, called principal, or leader in the
setting of Stackelberg games [2[]. This problem has been
addressed by the theory of mechanism design [3] through
the question of nonlinear pricing. The so-called monopolist
problem is among the most studied ones: in this approach, the
population is represented as a continuum of buyers (called
agents or followers), and a contract can be specifically de-
signed for each agent (continuum menu). In the seminal pa-
per [4], Rochet and Choné study the monopolist problem by
introducing a dual approach. In some specific cases (linear-
quadratic setting and specific agents distribution), analytic
solutions can be found in one [5] or many dimensions [6],
via reformulation as welfare maximization using virtual
valuation technique. Extending the framework of Rochet and
Choné to decomposable variational problem under convexity
requirement, Carlier 7] addresses the question of the exis-
tence and uniqueness of a solution, and proposes an iterative
algorithm. In the specific case R?, Mirebeau [8] introduces
a more efficient method using an adaptive mesh based on
stencils. The infinite-size menu is therefore characterized
by a value-function satisfying the incentive-compatibility
conditions as with the full-participation condition, the latter
supposing that contracting with the whole population is
optimal. Bergemann, Yeh and Zhang recently considered the
question of the optimal quantization of a menu [9].

C. Contributions

Our main contribution is the development of new quan-
tization algorithms which, given the infinite-size menu, aim
at finding the best n-contracts approximation that maximizes
the revenue. This 2-step strategy bypasses the combinatorial
difficulty tackled in bilevel pricing — see e.g. [10, [I1] —
where formulations directly embed customer choices over
the n contracts, becoming rapidly untractable for large
size of menu. We show that the quantization problem is
equivalent to the pruning problem, which arose, following
McEneaney [12], in the development of the max-plus based
curse-of-dimensionality attenuation methods in numerical
optimal control, see [|13} |14} |15]], and [16] for an application.
In these methods, the value function of an optimal control
problem is represented as a supremum of “basis functions”,
and one looks for a sparse representation — with a prescribed
number of basis functions. In the present application, the
basis functions are linear functions, representing contracts.
We develop a greedy descent algorithm which iteratively
removes the less “important” contracts. We consider different



importance measures, taking into account the L; and L.,
approximation errors previously considered in the study of
the pruning problem, and also a specific measure of the loss
of revenue, see Algorithms E] and @ An essential feature of
these algorithms is the low incremental cost per iteration,
with an update rule requiring only local computations — in
a “small neighborhood” of the active set of a basis function.
To do so, we exploit discrete geometry techniques, by
associating to a basis decomposition a polyhedral complex,
which is updated dynamically.

To apply this algorithm to the optimal design of a menu
in the electricity retail market, we generalize the framework
of [7] to allow for a nondecomposable (still convex) cost.
Indeed, the revenue of the provider depends on the furniture
cost, supposed to be an increasing function of the global
consumption, see e.g. (|17, |18]). In this extended setting,
we prove the existence and uniqueness of the solution,
see Proposition [2.2] The solving of this problem is then
tackled by a direct method (discretization of the variational
problem). A key feature of the pricing application is the
elastic behavior of the customers, who adapt their consump-
tion according to prices. We show that, after an appropriate
change of variables, this actually reduces to the previous
model, see Proposition @ Numerical tests, on a realistic
instance (arising from the French electricity market), illus-
trate the efficiency of our approach both in terms of revenue
gain and of computational time, see Figure [3| Our algorithm
also allows one to estimate the minimal admissible number
of contracts, given a target level of acceptable revenue loss by
comparison with the case of an infinite number of contracts.

D. Related works

In the nonlinear pricing context, the restriction to a finite
number of offers has been regarded only recently. In [9],
the authors analyze the loss of revenue induced by this
restriction, exhibiting upper bounds of order 1/n?/¢, where
d is the dimension and n the maximal number of contracts.
A similar asymptotic error rate arose in a different setting
of quantization theory, see e.g. [[14]. Moreover, in the linear-
quadratic setting of [9]], the extreme distributions realizing
the worst revenue loss satisfies separability conditions a la
Armstrong [6]], leading to an explicit expression for the
optimal quantization. We do not satisfy these requirements
here, as we tackle a broader class of variational problem,
hence the need of efficient methods to solve the pricing
problems with a finite number of contracts. In [19], a
discretization is obtained by writing the utility function as
a supremum of finitely many affine functions, and so the
solution they obtain can be viewed as a m-contracts menu.
However, the scheme also discretizes the population (with
the same size as the contracts). In the present application,
this is not desirable, since the size of the population has to
be much larger that the size of the menu.

The present algorithms should be compared with the
pruning methods to compute a sparse representation of a
function as maximum of a prescribed number of basis
functions. The pruning problem was shown in [14] to be

a continuous version of the facility location problem, a hard
combinatorial optimization problem. The pruning algorithms
developed in [13}14] rely on a notion of importance metric,
measuring the contribution of each basis function to the
approximation error. A basic algorithm in [13}|14] perform a
single pass which keeps only the n basis functions with the
highest importance metric, the latter being evaluated either
by solving a convex programming problem or in approximate
way, after a discretization of the state space. A greedy ascent
algorithm is also implemented in [14], adding incrementally
functions by decreasing order of importance. In contrast, the
present algorithm does not require a discretization of the
state space. Moreover, the use of fast (local) updates of the
importance measure allows us to perform a greedy descent
starting from the complete family of basis functions, and
removing at each stage the less important one. This leads to
improved performances on our application case.

The paper is organized as follows: in Section[ll] we define
the nonlinear pricing problem, adapted to our application
case, and encompassing the monopolist framework. In Sec-
tion we approximate the continuum menu by a finite
set of contracts, and present refined pruning algorithms with
local update. Then, in Section V] we specify the problem
encountered in electricity markets, and show how it boils
down to the general case of Section |lI} Finally, we numeri-
cally study the effectiveness of our approach in Section

II. NONLINEAR PRICING WITH COUPLING
COSTS

A. Notation

For two vectors z and y of R?, we denote by (x,y) the
scalar product and x ® y the entrywise product. Moreover,
for a discrete set S, we denote by |S| the cardinality of S.

B. Generalized monopolist problem

Let us consider a heterogeneous population, where each
agent in the population is defined by a d-dimensional vector
of characteristics z € X. We suppose that X C Rio is a
compact polyhedral domain. An agent of type = will derive a
utility (x, @ ® g ) —px from consuming a good k with quality
ar € R‘io and price pp € Rsq. The vector o € (R*)? is an
exogeneous data rescaling the quality vector. The agents are
distributed according to p satysfying [ p(x)dz = 1.

Let us consider a monopolist (principal) who designs a
contract menu represented by a pair of functions x —
(p(x),q(x)) € P x Q. For each agent z, these functions
indicate respectively the price and the quality that the agent
is supposed to prefer. Here, P and () are compact subsets of
R and RZ,. To ensure that the contract (p(x), ¢(x)) really
satisfies agent of type x, an additional constraint on the shape
of the function, called incentive-compatibility condition is
required: denoting by u(z) := (x,a ® g(x))—p(x) the utility
function for the menu designed by the monopolist,

u(y) —u(@) =y —z,a0q), Vo,ye X . (1)
Let U, be the set of admissible values of u for type z:

Up:={(x,a®q)—p|(p,q) € PxQ} .



Each set U, is compact by compactness of P and Q.
Proposition 2.1 ([20]]): Let ¢(-) be defined on X, with
values in (). There exists a function p : X — P such that
u(-) satisfies (I if and only if
(i) u(z) € Uy, forx € X,
(i) w is convex on X,
(iii) Vu(z) = a ® q(z) for ae. x € X.
The aim of the monopolist is then to maximize a revenue
function, defined as

J(u,q) := / L(z,u(x),q(x))dz—C </ M(m,q(m))daﬁ) )
X X )

In (@), the cost function C takes as input data aggregated on
the whole domain X. Such coupling cost naturally appears
in some applications, for instance in electricity retail market,
see Section

Assumption 2.1: The integrand L is linear in v and gq.
Moreover, the integrand M is strictly convex in ¢, and C
is increasing and strictly convex.
In addition to the incentive-compatibility condition, the util-
ity must be greater to a reservation utility:

u(x) > R(zx) . 3)
The problem solved by the monopolist is then

u, q satisfy (I, @
(u(z),q(z)) € Uy x Q for z € X

Theorem 2.2: Under Assumption Problem (@) has a
unique optimal solution.
The proof of Theorem [2.2] is given in Section This
result should be compared with [21]], where the (decompos-
able) criteria is defined by an integrand that must satisfy co-
ercivity condition, which entails that a minimizing sequence
(un) must be bounded in the W1 Sobolev norm. Here, J is
not necessarily coercive. Instead, the compactness argument
directly comes with assumptions on P and Q).

u,q

max {J(u, q)

C. Resolution of the infinite-size case

As an extension of the monopolist problem, Problem (@)
can be solved to optimality through a discretization scheme.
In [19]], the authors proved the convergence of the discretized
problem to the continuous one, which can be extended to
nondecomposable cost. Efficient numerical methods have
been proposed in [[7] and [8]]. Let us define a regular grid X
of X. Each of the methods provides a solution {(p;, ;) }iex.»
inducing a convex utility function 4y that can be represented
as the supremum of affine functions, with the notation:

tg(x) = rlneagcai(x), SCy, (5)
where @; : € R? — (gi, ©) — p;- In the context of max-plus
methods [ 12} |22f], the functions 4; are called basis functions
and can be more general than affine functions, but we focus
here on this specific case, as this naturally appears in the
model (affine contracts).

III. PRUNING PROCEDURES
A. Pruning method for max-plus basis decomposition

Let us now suppose that the monopolist has a maximal
number of n contracts he can design. Given the discretized
infinite-size solution uy, the question can be recast as the
following combinatorial problem:

gnglg {d(tg,tux) s.t. |S] <n} , (6)

where the function d(-) can be either

(i) the Lo norm doo (u,v) = [[u— vl (x),

(ii) the L1 norm di(u,v) = ||ju — v||L1(X),
(iii) and the J-based criterion d(u,v) = J(v,a™* © Vv) —

J(u, ™t © Vu) .
The third case corresponds to the maximization of the
function J, where a™* ® ¢ = Vu thanks to Proposition
Theorem 3.1 ([I4]): Let X C R and v : X — R

strongly convex of class C?. Then, both L; and L., ap-
proximation errors are Q (—77) as n — co.
Theorem [3.1]exhibits an error rate identical to the complexity
bound proved in [9] in a different setting.

We define the importance metric of basis function ¢ as

v(S,1) = d(tg\ iy, Us) - @)

This corresponds to an incremental version of the criteria (6).
For the Lo, and L; case, if v(S,i) = 0, then the i-th basis
function does not contribute to the max-sum. Otherwise,
if v(S,7) > 0, then it expresses the maximal difference
between the shape of ug with and without 4;, depending
on the criterion. For the criterion d 7, it expresses the loss of
revenue for the principal when contract 4 is removed.

B. Specific case: minimizing L., error

For a L., approximation error, the importance metric
can be computed by solving a linear program, see [14]:

max v

zeX, v

(P?)
st V5 e S\{i},

(Aij)
In (P?), we denote by ()\;;); the dual variable associated

with each constraint. The set of saturated constraints is then
characterized by the positive variables A;;.

() = ij(x) > v

Algorithm 1 Pruning for L., importance metric

Require: n > Desired number of contracts
I S« X% > Indices of kept contracts
2. I+ X% > Indices of problems to re-compute
3:fort=1:]%X|—ndo
4: for i € I do
5: Vi, \i + solution of (P;)

6: Ji — {] € S\{Z} | )\ij > O}
7: end for
8: T4 argming g v; > Contract to remove

9: S+ S\{r}

10 I+ {ieS|relJ}
11: end for

12: return S




Algorithm T|describes a greedy descent procedure: we start
from the complete set of contracts S, and iteratively remove
the less important contract exploiting a fast local update
of the importance metric. Compared with [[14], we take
advantage of the linearity of the basis functions u; to exploit
the optimal dual variables );; in the linear program (P?):

Proposition 3.2 (Local update): Let )\;; be the optimal
dual variables in for a contract i € S. Then, the
importance metric of ¢ stays unchanged when we remove
a contract j € S s.t. A;; =0, ie., v(S\{j},?) = v(S,1).

Proposition [3.2] ensures the correctness of Algorithm
where we only re-compute at each iteration the values v;
for a very small subset of ¥. This leads to a huge gain in
computation time, see Section E

C. Ly and J-based approximation error

Contrary to the L, case, the computation exploits the ge-
ometric structure. Indeed, the representation of the function
1 as a maximum of basis functions’ 4;,j € S induces a
polyhedral complex, in which every function 4; determines
a polyhedral cell C;, consisting of the types x € X such
that dg(x) = 4,;(x). Removing a basis function 4; from the
supremum g = sup,cg U; yields a local modification of
the latter supremum, concentrated on a neighborhood of the
cell C;. Hence, we will need to compute at each iteration
the neighbors of each contract cell C; with ¢ € S. This idea
may be compared with the notion of Delaunay triangulation
associated to a Voronoi diagram [23]]. During the algorithm,
we keep in memory two sets: .J; represents the neighboring
cells of cell ¢, and V; is the vertex representation of cell .
Two routines are used for both the L, and .J-based criterion:

o VREP(S, 1) returns the V-representation (representation
by vertices) of the polyhedral cell C; induced by contract
1 for a given set S, taking as input the H-representation
(representation by half-spaces) {z € X | 4;(z) >
Uj(x), Vj € S} of the cell ¢. This is done using the
revised reverse search algorithm implemented in the
library 1rs, see [24].

© UPDATENEIGHBORS((Vs);cs) updates the neighbors of
each cell 7 € I knowing the vertex representation.

Proposition 3.3 (Local update): The importance metric
of a contract ¢ € S stays unchanged when we remove
a contract 7 which is not in the neighborhood of i, i.e.,
v(S\{j},i) = v(S,i) for j € S\J,.

Proposition ensures the correctness of Algo. [2] where
we only re-compute vertex representations for a small subset
of contracts (corresponding to the neighboring cells of the
lastly removed contract, see line 8 of the algorithm). This
local update is illustrated in Figure [I] The update of the
importance metric in line 11 differs between the L; and J-
based cases, and is described in Algos. BaH3b] In Algo. [3a]
the integral that appears in the computation of v; can be
evaluated analytically using Green’s formula, as it integrates
a linear form over a polytope, see Appendix [VII-B] In
Algo. d1, can be computed in the same way. For M and
O, this generally involves the integration of the function

x +— M(z,§;). In the present application, this function is
linear, and so the direct integration is possible, see (14)—(I5).

Algorithm 2 Pruning with local update (for L, and .J-based)

Require: n > Desired number of contracts

1: for : € ¥ do

2: Vi < VREP(X,1) > Vertex representation
3: end for

4: S+ % > Indices of kept contracts
5: 1+ X% > Indices of problems to re-compute
6: fort=1:|X| —ndo

7 (Ji)ier < UPDATENEIGHBORS((Vj)ier)

8: foriecl, jeJ;do

9: F; _i < VREP(S\{i}, ) > Future cells
10: end for

11: v < UPDATEIMPMETRIC(I, (V;)ies, (F -;)je; ies)

12: T 4 argmin; g v; > Contract to remove

13: S« S\{r}
14: for j € J, do

15: Vi Fj_» > Update vertex representation
16: end for

17: I+ J,

18: end for

19: return S

Menu of 10 contracts
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Fig. 1: Evaluation of contract by dividing into subregions (d = 2)
The green polyhedron corresponds to Fy _19 N Vip.

Algorithm 3a UPDATEIMPMETRIC (L, error)

Require: I, (Vi)ics, (Fj—i)ier,je;

1: for i € I do > Update metric on cells
2 Vit e ffFj,—iﬁw (i (z) — G;(x))dz

3: end for

4: return v

Algorithm 3b UPDATEIMPMETRIC (J-based error)

Require: I, (V;)ies, (Fj,—i)ier,je;
I: Mo <Y, fsz M(z,§;)dz
2: for i € S do

3 Ly // Lz, 6i(z), §) — Lz, 4;(z), §;)dz
jeg; ? I F—inVi

4: Om <_Zj€Ji ffpj‘fmvi M(z,q;) — M (=, gi)dz

5: vi < 0 — C(Mo) + C(Mo + )

6: end for

> Update metric on cells




Proposition 3.4 (Critical steps): Let m be the maximum
number of neighbors of a polyhedral cell during the execu-
tion of the algorithm (for all ¢ and 4, |J;| < m). Then,

& The number of linear programs (P;%) solved in Algo.
is in O(m|X]),
¢ The number of computations of a vertex representation
of a polyhedral cell (calls to VREP(S,i) / reverse
search) is in O(m?|%]).
By comparison with Proposition [3.4] a naive implementation
(full recomputation of the importance metric at each step) of
the two algorithms would respectively lead to a number of
critical steps in O(|X|?) and O(m|X|?). Each linear program
P# can be solved in polynomial time (by an interior point
method). Reverse search has an incremental running time of
O(|X]|d) per vertex if the input is nondegenerate, see [24].

IV. APPLICATION TO ELECTRICITY MARKETS
A. Price elasticity

Let us consider a provider holding several contracts, each
of them defined by a fixed price component p € R (in €), and
d variable price components z € R? (in €/kWh). In France,
the contracts often take into account d = 2 time periods, with
different prices for Peak / Off-peak consumptions. Moreover,
the price coefficients (p, z) of each contract are supposed to
belong to a non-empty polytope P x Z C R4

Assumption 4.1: Let p~,p* be in Ry and z~, 27 be in
Rio. Then, P = [p~,p*], and the polytope Z is of the
following form:

Z:={z" <z<z" |z, < ki, forin <pis}

where P is a partially ordered set (poset) of {1,...,d}, and
<p the ordering relation, and x;, ;, > 0. When £ = 1,
2~ =0and z* =1, Z is known as an order polytope [25].
Assumption [.1]is natural for the electricity pricing problem:
the price can be freely determined within a box (bounds), as
long as some inequalities between peak price coefficients and
off-peak price coefficients are fulfilled.

We suppose that each agent in the (infinite-size) population
is characterized by a reference consumption vector £ € X C
Rio. Here, supposing a continuum of agents is justified since
we consider in the application case the population of a whole
country. We suppose that the consumption is elastic to prices,
i.e., a consumer can deviate from its reference consumption
Z. In addition, we suppose that electricity elasticity can be
captured into a utility-based framework, see e.g. [26] for the
properties that the utility must satisfy. Here, we focus on
isoelastic utilities:

Assumption 4.2 (Isoelastic utility function): For a refer-
ence consumption &, the utility of consuming an amount
of energy z € Rio is depicted through a Constant Relative
Risk Aversion (C_RRA,[27, 28|]) or isoelastic utility:

d
1
Us z e Ry — EZ%(%W, n € (-00,0)U(0,1] . (8)
1=1

The coefficient 7 is called the risk aversion coefficient.

In this context, this elasticity measure depicts the easiness
of a customer to adopt another energy source to fulfill his
needs. In [28]], the authors model the electric elasticity by
this kind of utility function, and separate the case 7 < 0 and
1 € (0, 1]. The first regime (1 < 0) will model a household
consumption: the satisfaction coming from consuming en-
ergy saturates to a maximum utility, and a zero consumption
is prohibited. In contrast, the second regime (1 € (0, 1]) will
represent the high flexibility of the industrial sector, which
can adapt more easily its consumption according to price.
We refer to [29]] and references therein for empirical studies
on the intensity of the elasticity coefficient 7.

For a contract defined by price coefficients (p,z) €
R x R%, a consumer & will optimize his consumption in order
to maximize the welfare function, obtained by subtracting the
electricity cost to (8):

Us: (p,2) e RxR max {Uz(z) = (x,2)} —p .
z€R>?
) ©))

We denote by U the welfare function as the maximization
term in () corresponds to a Fenchel-Legendre transform up
to a change of sign. As a consequence, U/} is convex and
nonincreasing. We now make the following assumption to
fix the value of :

Assumption 4.3: The reference consumption & € R is
obtained for reference prices p € R and Z € RY.

Under Assumption [4.3] the optimal consumption of cus-
tomer & on period ¢ € {1,...,d}, denoted £, is given by

Eail2) = i (2/2)T7 >0 (10)

and the welfare function is given by

d 7
Us(p,2) = (L =1) Y dnn (en/2) ™7 —p . (A1)
=1

Equations (I0) and (TT]) are obtained from the first order opti-
mality condition (zero derivative) for (O) (8z; = 25, (ﬁsh)k”).

B. Infinite-size menu of offers

In this section, we relax the assumption of a finite number
of contracts, by supposing that the provider is able to define
as many offers as consumers. Therefore, the infinite-size
menu of offers can be represented by two functions p : X —
Rand z : X — RY, representing respectively the fixed price
component and the variable price components. Let us define
the (weighted) invoice of a consumer as

Li:(pz) ERxRY o (p+ (E5(2),2)p(E) .  (12)

where p(&) > 0 represents the density of customers with ref-
erence consumption &. The provider’s revenue maximization
problem is then

max J'(p,z) — J°(2) (13a)
P,z

s.t. Uy (p(), z(w)) > UL (p(y), 2(y)), Yo,y € X (13b)

Uy (p(), 2(x)) > R(z), Vo € X (13¢)

p(x) € P, z(x) € Z (13d)



where J'(p,2) = [y Lo(p(z),2(x))dz and J3(2) =
C (Jx oL Eal@)pla)dr).

Equations and are respectively the incentive-
compatibility condition and participation constraint. Taking
C as a strictly convex increasing function of the global
consumption is often considered in the literature. In par-
ticular, this cost function is often modeled as a piecewise
linear function, see e.g. [[18]], or as a quadratic function, see
e.g. [[17]. In fact, the marginal cost to supply electricity is not
constant and increases with the consumption. The convexity
of the reservation utility is also a classical assumption, as this
reservation utility should be a supremum over the utilities of
alternative offers (each of them being linear function of the
reference consumption).

Let us make the following change of variables:

O —/
qi ‘== (Zz/zz) T=n
Then, the consumption on period ¢ € {1,...,d} is a convex
1

function of g;, expressed as €;;(g;) = #;[¢;]" , and both the
utility and the weighted invoice now read as linear functions

of p and ¢: defining o = (7! — 1)2,

u(z) == (z,a © q(z)) —p(z) ,

Liz,u(@),q(x)) i= (L (2,2 g(2)) - u(x)) pla) |
Theorem 4.1: Under Assumption [.1] the provider’s rev-

enue maximization problem (13) is equivalent to a monopo-
list problem of the form (@) with

(14)

d 1
M(z,q(2)) := p(z) in [gi(2)]7

(15)
=1
and, if n <0,
it/ -n
2T /5T < q < (2H)2)T
Q = q S Rd v 1_7" )
Zi -n . .
g, < (fiz‘l,ig zlj i, Tor iy <p iy
otherwise,
—_n —_n
(z7/2)77 <q< (2 /)7
Q=<q€ RrR?

_n
qi, > (Hil,ig %) gy, for iy <p s
Proof: Owing to assumption on the set ) and the
strict monotonicity of z — 210 (increasing for n < 0 and
decreasing for n > 0), one can explicitly derive the form of
Q. The rest of the formulation is immediate. |

V. NUMERICAL RESULTS
A. Instance

The numerical results were obtained on a laptop i7-
1065G7 CPU@1.30GHz. We provide in Table [I] the values
of the parameters used in the application. In particular, we
consider reference prices (p, Z) corresponding to French reg-
ulated prices, and reference consumption spread around the
mean French consumption per household (€yoy = 4MWh).
The cost function is taken as a quadratic function, scaled

so that the marginal cost C'(Emoy) = 0.08€/kWh. In com-
parison, the production cost is estimated in France around
0.05€/kWh for nuclear plantsﬂ and up to 0.09€/kWh for

wind energ

-0.1

140€

(0,174,019)€/kWh

0.01(-)?

(0,500)€

(0.05,0.5)€/kWh

(0.05,0.5)€/kWh

Uniform([0.6, 1.8] x [1.4,4.2])

linear function (one regulated contract)

g Q

N = —
N \j\j\jv NV

=

TABLE I: Instance used in the numerical results.

We display in Figure [2]the infinite-size menu and the quan-
tized solution for two different sizes of menu (25 contracts
and 10 contracts). In each cell C;, the contract ¢ brings to
customers of reference consumption x € C; the maximal
utility given the quantized menu, i.e., g(x) = 4;(x) for z €
C;. We observe that there is a region/cell (light gray region)
where the monopolist reproduces the alternative option (of
utility R). On the other side, for high consumption (peak or
off-peak), the monopolist manages to design contracts that
provide strictly higher utility than the regulated offer, and at
the same time, procure to the monopolist a higher revenue.

B. Comparison of pruning objectives

In the upper graph of Figure|3| the three pruning objectives
studied in the paper (Lo, L; and .J-based) are compared
with the 1-step approach of [[13] [14]. The approach consists
in sorting the importance metrics for all ¢ € X, and directly
taking the n contracts with highest importance metric (here
we consider the J-based importance metric). We display the
relative objective loss, defined as 1 - J;/Jer, Where J; is the
objective for a menu of size ¢ and J.s the objective obtained
with the infinite-size menu. Note that removing a contract
can induce a violation of the full-participation constraint
(u > R). Therefore, in order to recover a feasible solution
at each iteration, we lift up the solution with the simple rule
u < u + max{max,ec x { R(z) — u(z)}, 0}.

On this example, the pruning procedure of Algo.[2|(greedy
descent) leads to a significant loss reduction, whatever the
criterion, compared with the 1-step approach. As expected,
we observe that the J-based pruning has the smallest relative
loss in the objective, as we minimize the error at each
iteration of the process. In contrast, the L.,-norm does
not capture sufficiently well the behavior of the objective
function J, and has larger objective loss, even for a large
number of contracts.

We also depicted the cumulated time along the iterations
in the lower graph of Figure [3| (we do not display the
time for the 1-step procedure, as it is very fast, in less
than 0.5s). For comparison, we add the cumulative time of
a “naive” J-based pruning, recomputing at each iteration

ICRE (2022), Délibération n° 2022-45
2 ADEME (2016), Coiits des énergies renouvelables en France



>
=)
oy
o

w
n

Peak (MWh)
W
o

N
n
Peak (MWh)

g
=}

n

Peak (MWh)
N W ) S
“w & i s
s
(=)
4

»
(=}
0

n

¢
o

0.8 1.0 1.2 1.4 1.6 1.8 0.6 0.8 1.0
Off-Peak(MWh)

(a) Infinite-size menu

Off-Peak(MWh)
(b) Menu of 25 contracts

12 1.4 1.6 1.8

o
o

0.8 1.0 1.2 1.4 1.6 1.8
Off-Peak(MWh)

(c) Menu of 10 contracts

Fig. 2: Li-norm pruning for the electricity market case.
The normalized utility © — R is depicted with colormap (light gray corresponds to the zero value and blue to high value).

the importance metric of each cell (global update). On this
example, we observe that the computational time is already
reduced by a factor almost 3 (this factor would be greater in
higher dimension, as the neighborhood would be larger). As
expected, the L., criterion is the fastest, owing to the fast
local update rule exploiting the sparsity of optimal Lagrange
multipliers (Algorithm [I), and the J-based and L;-norm
criteria have similar computational time, as they use the
same algorithmic architecture, see Algo. |Zl In terms of loss
minimization, the J-based pruning shows a loss of revenue
reduced by a factor of around 2 by comparison with other
methods. This approach allows us to determine the minimum
number of contracts given an admissible revenue loss: e.g.,
Figure |§| shows that, with a J-based quantization, a menu of
10 contracts suffices to limit the revenue loss to 4%.

4 A==
£ 067 -~ [_norm / :
3 /
2 ——e— - ¥
i) |-norm y
© /
E) 041 -=~- J-based FiRnaieh
bt /
g -—+=- l-step greedy !
202 s e
= e .
— DA AA S S ] Fan "‘""‘,’4.--_4
& m rmmwmvi .{_p"-ﬂ---#’
0.0+= ;
102 10!
U ——
--+= Le-norm

Z 40 A =-=+= Lj-norm
é -—+- J-based (1)
; 201 -—+-J-based (g)
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102 10!

Number of basis functions (contracts)

Fig. 3: Comparison of error bounds for the three types of pruning
objective. The upper graph shows the loss of optimality induced
by a reduced number of contracts. The lower graph depicts
cumulative time along the iterations. (g) stands for global update
while (1) stands for local update.

VI. CONCLUSION

We have addressed a nonlinear pricing problem incorporat-
ing coupling costs. This arises in electricity markets, where

supply costs depend on the global consumption. We have
developed a quantization procedure, allowing to maximize
the revenue of a provider, given a cardinality constraint on
the set of contracts. This relies on refined pruning procedures,
inspired by the max-plus basis methods in numerical optimal
control. In particular, we exploited the local nature of the
pruning process, in order to reduce the computational time.
Thus, this leads to a new class of applications for methods
originally developed in optimal control, and this also im-
proves the complexity of a key ingredient of these methods.
A strong parallel with vector quantization can be made, see
e.g. [30]. In this context, a different quantization problem is
addressed by Lloyd’s procedures, ibid.. Whether these ideas
can be adapted to the quantization of the maximum of affine
functions with revenue criterion is left for further work.
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VII. APPENDIX
A. Proof of Proposition [2.2]

Using Proposition 2.1] for any solution, Vu(z) = a®q(z)
for a.e. © € X. We then directly study the existence and
uniqueness in (u, Vu).

Existence. Let H'(X) be the Sobolev space associated
with X. We define

u convex and u > R
K=<u

(31]

u(z) €Uy P OVu(r) €Q, Vo e X

The set K is a closed, convex and bounded subset of H!(X)
(it is bounded since X is bounded and |lu||_, and ||Vu|
are bounded too; it is convex since R is convex).

Besides, J is concave (Assumption @ Moreover, as ) C
R‘io, there exist a,b > 0 such that for any z € X, a <
[IVu(z)|| < b. Therefore, there exists ¢ € Ry such that
|J(u, Vu)| < ¢, and as a consequence, .J is continuous on
KC, see [31, Chapter 1, Proposition 2.5].

Using the fact that H'(X) is reflexive and [31, Chapter
2, Proposition 1.2], Problem @]) admits at least one solution.

Uniqueness. (Same arguments as in [4]) Let now consider
two distinct solutions u; and wus. Then, if Vu; # Vus on a
measurable subset, any function tu; + (1 — t)us is valid and
gives a strictly better solution than u; and ug (due to strict
convexity of the cost function u — C( [ M(z, Vu(z))dx)
and linearity of L). Therefore, u; —us is a constant function.
By linearity of L, the objective value obtained with u; and ug
differ by the same constant. This contradicts the optimality
of the two solutions u; and us.

B. Fast metric updates using Green’s formula

The next proposition allows us to implement efficiently the
local updates of the importance metric performed in [3aH3b]
Proposition 7.1: Let P a 2D-polytope describes by its
vertices (z;,%;) € R? (counter-clockwise ordered). Then for

any a, b,c € R, %ywl
Y

[ b gy =3

=1

b(gi + =y)ydy

) Tif1 9

—7{ (ax + ¢)(p; + 7x)dx

Zq

with 7 = LY gy = gy — a and g = @ — Ly
Proof: The application of the Green formula gives :

// (ax + by + ¢)dzdy = ]{ (bxy)dy — (ax + c)ydz
P cr

where Cp is the contour of the polytope P. We then
decompose on each edges, and use the change of variable
x = q+ y/7 in the first integral and y = = + 7z in the
second one. [ ]
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