
HAL Id: hal-04052060
https://hal.science/hal-04052060v2

Submitted on 6 Nov 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Neural networks smart grid based optimisation for
expensive functions

Alain Uwadukunze, Xavier Bombois, Marion Gilson, Marie Albisser

To cite this version:
Alain Uwadukunze, Xavier Bombois, Marion Gilson, Marie Albisser. Neural networks smart grid
based optimisation for expensive functions. 22nd European Control Conference, ECC 2024, Jun 2024,
Stockholm, Sweden. �10.23919/ECC64448.2024.10590999�. �hal-04052060v2�

https://hal.science/hal-04052060v2
https://hal.archives-ouvertes.fr

Neural networks smart grid based optimisation for expensive functions

Alain UWADUKUNZE1,2, Xavier BOMBOIS3, Marion GILSON2, Marie ALBISSER1

Abstract— Bayesian optimisation is an emerging machine
learning technique known to be efficient especially for opti-
mising functions which are expensive to evaluate. In Bayesian
optimisation, a Gaussian process model of the unknown func-
tion is identified based on available data. Its estimate of the
unknown function and the associated uncertainties are used
to build a so-called acquisition function which does a trade-
off between exploitation and exploration. The latter is then
iteratively maximised to find candidates which are promising
to be close to the optimum. In this paper, an alternative version
of Bayesian optimisation, where the Gaussian process model is
replaced by a neural network model, is proposed. As shown in
the numerical illustration of this paper, this alternative version
will require less computation time when facing optimisation
problems with initially large data sets. Since neural networks
do not naturally provide an information about the quality of
the estimates, a different strategy for the exploration objective
of our approach is proposed. The efficiency of the proposed
approach is illustrated and compared to Bayesian optimisation
on different case studies.

I. INTRODUCTION
In many applications such as engineering design or con-

trol, one seeks to determine the maximum Xopt of an
unknown static function f(X) of a vector X of design
variables. Even though f(X) is unknown, this function can
be evaluated for any given X (in a certain range). However,
it is supposed that evaluating f(X) for a given X is costly
(in time and/or resources). Consequently, a gradient-based
optimisation with a numerical evaluation of the gradient
is not the most appropriate approach to determine Xopt.
Instead, the literature proposes different techniques that are
based on a smart gridding of the space of X . For each grid
point X , the function is evaluated and a procedure determines
the next grid point in a smart way. To achieve this, a model
of the function f(X) is identified based on the previous grid
points {Xn, f(Xn)}kn=1 and this model is used to determine
a point Xk+1 (the next grid point) that is a promising
candidate for (being close to) Xopt. A popular version of this
smart grid approach is the so-called Bayesian optimisation
(BO) [1] where the model of the function f(X) takes the
form of a Gaussian process (GP) [2]. In this paper, we will
be comparing the classic BO to an alternative version, where
the model of the function is a neural network (NN).

The problem described in the previous paragraph is quite
classical in data-driven control applications where a con-
troller achieving the highest level of performance is de-

1 French-German Research Institute, ISL, 5 rue du Géneral Cassagnou,
68300 Saint-Louis, France

2 Université de Lorraine, CNRS, CRAN, F-54000 Nancy, France
3 Laboratoire Ampère, Ecole Centrale de Lyon, Université de Lyon,

36 avenue Guy de Collongue, Ecully, France and Centre National de la
Recherche Scientifique (CNRS), France

signed without requiring a model of the to-be-controlled
system. Instead, an optimal controller is determined by
testing different controllers (with different parameters X)
on the system. It is clear that, for many real-life systems,
the evaluation of a candidate can be quite costly and the to-
be-tested controllers should therefore be chosen in a smart
way. Bayesian optimisation is generally performed for this
purpose: a model of the performance f(X) of the closed loop
made up of the system and the controller with parameters
X is identified based on the previous experiments and this
model is used to determine the parameters of the controller
that has to be tested in the next experiment. Examples of
application of BO in control can be found in [3], [4], [5]
and [6]. Bayesian optimisation is also performed in many
other applications such as in Environmental Monitoring as
suggested in [7].

The model of the unknown function f(X) is a crucial
component of such smart-grid based optimisation procedures.
As mentioned above, GPs are generally used for this purpose.
A GP is a non-parametric identification method that allows
to deduce an estimate of f(X) for any point X based on data
points {Xn, f(Xn)}kn=1. Besides this estimate, the GP also
provides an uncertainty region indicating the confidence we
can have in the estimate. This uncertainty region is deduced
in a Bayesian framework and its reliability of course depends
on the chosen prior assumptions and kernels used in this
Bayesian framework. This means that it is not guaranteed
that the unknown true function lies in the uncertainty region.
However, it will be generally observed that the uncertainty
will be large for points X that are far away from the data
points with which the GP has been identified.

The GP model of the function f(X) (and its uncertainty)
is then used to determine the next point Xk+1 for which
f(X) must be evaluated. This is generally done by maximis-
ing a so-called acquisition function A(X). The acquisition
function A(X) is a function of the GP model and of its
uncertainty. Its maximum (i.e., the next grid point Xk+1)
will be a point for which the GP model of f(X) is large
(exploitation) and/or for which the uncertainty of the GP
is high (exploration). The acquisition function achieves the
trade-off between these two objectives.

In recent studies, the use of other types of models, in
procedures similar to BO, has been explored. For example
in [8], Inverse Distance Weighting interpolation and Radial
Basis functions are successfully used as models of the to be
optimized function. The goal in this paper, will be to show
that a neural network (NN) model can also be efficiently
used in a smart-grid based optimisation procedure. Neural
networks are increasing in popularity and being applied in

many fields such as system identification [9], [10]. Moreover,
they are known to require less training time than regular GP
when the number of training samples increases. This may
prove to be useful when BO needs to be performed with an
initially large dataset. It is clear that, unlike a GP model, a
NN model is generally not accompanied by an uncertainty
region. However, it will be shown that efficient acquisition
functions can also be built when the model of f(X) is a
NN model by using the distance to observed samples for the
exploration. It will also be illustrated, through different case
studies, that using a NN in a smart grid based procedure
can provide similar optimisation performances to regular
BO but presents the interesting advantage of requiring less
computational time than regular BO when the initial dataset
available is large.

The rest of the paper is structured as follows : First, the
BO algorithm is presented in section III-A, then the proposed
approach is presented in section III-B. Finally, the proposed
method is illustrated through different applications in section
IV.

II. PROBLEM STATEMENT

This paper focuses on optimisation problems of the form:

Xopt = argmax
X

f(X), (1)

where X ∈ RN with N the dimension of the inputs and
f(X) ∈ R. f is considered to be unknown and expensive to
evaluate (i.e. requires a lot of resources or time to obtain the
value of f(X) for a given X).

For the optimisation problem (1), this paper has the
following objective: given a dataset containing k samples:
Dk : {Xn, f(Xn)}kn=1, obtained from an unknown function
f , use a neural network as a model of the unknown function
f in a smart grid based optimisation procedure such as BO,
to search which promising candidates to evaluate to get close
to Xopt.

III. METHODOLOGY

The proposed smart grid optimisation is inspired of BO
which is briefly recalled here.

A. Bayesian optimisation

Bayesian optimisation aims at finding an optimum Xopt

of the problem (1). The optimum is searched by iteratively
maximising a so called acquisition function A(X). The
maximisation of A(X) yields a promising candidate to
evaluate on f in order to get close to Xopt. The acquisition
function balances the search between exploitation (searching
for the place where a model’s estimate of f is large) and
exploration (searching for the place where the uncertainties
are the largest). Therefore, a model of the unknown function
f and its uncertainty are needed to build the acquisition
function. In this sense, all the available samples from f , Dk :
{Xn, f(Xn)}kn=1, with k the number of samples, are used to
construct a probabilistic model of f(X) capable of providing
uncertainties. The most commonly used probabilistic models
are Gaussian processes (GP) [2] which are non-parametric

regression models. A GP assumes a prior Gaussian distribu-
tion over an unknown function f defined by a prior mean
µp(X) and Kernel matrix K(X,X

′
). Kernels are covariance

matrices which measure the similarity between points using
distance metrics. An example of a frequently used kernel is
the Radial Basis Function (RBF), defined as follows for two
points Xa and Xb :

K(Xa, Xb) = exp (−d(Xa, Xb)
2

2l2
), (2)

where d is the Euclidean distance and l a length scale param-
eter. When samples from f , Dk : {Xn, f(Xn)}kn=1, become
available, the GP model is updated through Bayesian infer-
ence and provides a Gaussian distribution N (µ(X), σ2(X))
over the unknown function f . This process is repeated at
each iteration of BO as new samples become available. The
mean µ(X) is the best estimation of f(X) and is used for the
exploitation. The variance σ2(X) provides the uncertainties
on f for each point X and is used for the exploration.

Several acquisition functions for BO can be found in the
literature, as suggested in [1]. Among them are : Probability
of Improvement, Upper Confidence Bound and Expected
Improvement. Since the proposed approach is inspired of
the Upper Confidence Bound (UCB) acquisition function
(see III-B for comparison), the paper focuses mainly on
this technique. This acquisition function is perhaps the most
straightforward to understand and is defined as follows :

UCB(X) = βσ(X) + µ(X), (3)

where σ(X) and µ(X) are the standard deviation and pre-
dictive mean of the GP, respectively. The trade-off between
exploitation and exploration is achieved by finding the point
X for which σ and µ are both the highest. The parameter β
can be used to control the degree of the trade-off. When β is
chosen high more importance will be given to the exploration
objective and when it is chosen low, more importance will
be given to the exploitation objective. However, the value
of β can also be chosen more appropriately to, e.g., bound
some cumulative regret as suggested in [11].

The BO algorithm using UCB as acquisition function to
solve an optimisation problem (1), given an initial dataset
Dk, is described in Algorithm 1. Note that if the dataset Dk

is large, i.e. k is large, the first step of Algorithm 1 which
involves identifying a new GP model at each iteration of BO
may be time consuming.

Depending on the application or available data, one may
want to use other models to represent the unknown functions.
As a result, an alternative to BO where neural networks are
used as models of the unknown function is proposed in the
following section.

B. Proposed approach using neural networks

In this section, an alternative approach to BO is proposed.
We refer to this method as Neural Network Smart Grid
Optimisation (NNSGO). Similarly to BO, the idea behind
this method is that the most promising point to evaluate
on the real function f should be a trade-off between the

Algorithm 1 Bayesian optimisation algorithm

for j = 0,, Nit, with Nit the maximum number of
iterations, do

1. Train GP with available set of samples. Dk+j :
{Xn, f(Xn)}k+jn=1

2. Build acquisition function :

Aj(X) = βσj(X) + µj(X)

3. The next point Xk+j to evaluate on f is

Xk+j = argmax
X

Aj(X)

4. Evaluate Xk+j on f and add (Xk+j , f(Xk+j)) to
the training samples Dk.
end for
return X with the highest f(X) from Dk+Nit

exploitation and exploration objectives. The main difference
between NNSGO and BO is that NN are employed as models
of the functions rather than using probabilistic models such
as GPs. The great advantage of neural networks resides in
their ability to handle different types of problems while
requiring less computational time to learn large datasets
(i.e. datasets Dk, where the number of observations k is
large) than other machine learning algorithms, such as GPs.
Many different types of NN exist. In this paper, multi layer
perceptrons (MLP), which are NN with fully connected
layers are used as models. They provide the relation between
a set of inputs X , where X ∈ RN with N the dimension
of the inputs, associated to outputs f(X), where f(X) ∈ R,
thanks to trained parameters known as weights and bias.

A MLP needs to be trained to provide the best estimates of
an unknown function. The training consists in finding the best
values of parameters that minimise an identification criterion
commonly known as loss function for NNs. The loss function
which is frequently used in regression to train the MLP is
the Mean Squared Error (MSE) defined as

MSE =
1

k

k∑
n=1

‖f̂(Xn)− f(Xn)‖2, (4)

where k is the number of samples, f(Xn) the target output
for Xn, f̂(Xn) the estimate of f(Xn) by the NN and
‖A‖ =

√
ATA represents the Euclidean norm of a vector A.

The most commonly used method to train a MLP is back-
propagation which uses Gradient Descent [12] to iteratively
update the parameters of the NN. Using this method requires
the MLP to have differentiable activation functions such as
reLu or tanH.

1) Exploration strategy for NNSGO: Unlike GPs, regular
NN do not come with a measure of their uncertainties.
Therefore, the exploration when using NN has to be achieved
in a different way to classic BO. In the proposed procedure,
we suggest to perform the exploration with the objective of
covering regions not already covered by the dataset (and
therefore not already observed by the NN). The rationale

behind this proposal is that when a point X to be predicted
is far from the observed points, then it is likely that the
prediction f̂(X) will differ from the real value f(X). This is
also the case in GP, where the exploration is performed using
the uncertainties which are based on the similarity between
the evaluated points and the observed ones. Therefore, this
idea is used to create a measure which is employed for
the exploration objective of the proposed procedure. In
that respect, δmin(X) is defined as the Euclidean distance
between a point X and the closest point to it from the points
in the dataset Dk

X . It is defined as :

δmin(X) = min
Xn∈Dk

X

‖X–Xn‖. (5)

This means that δmin(X) is small when evaluating a point
close to the observed points and increases when evaluating
a point far from the observed ones. When δmin(X) is low,
it is likely that the estimate of f(X), f̂(X) is close to the
real value f(X) and vice-versa.

2) Illustration of the comparison between δmin and the
GP uncertainties: The measure δmin can be compared to the
uncertainties provided by a GP model. To illustrate this, k =
5000 random samples are generated from a function f(X)
where f(X) is the 12 dimensional form of the Rosenbrock
function defined as :

f(X) =

N−1∑
i=1

[100(xi+1 − x2i)2 + (1− xi)2], (6)

with X = (x1, x2..., xN) ∈ RN and N = 12. The optimi-
sation of this function using the proposed procedure will be
performed in section IV-C. The goal of this illustration is to
visualize how the NN performs and how the GP standard
deviation behaves when the value of δmin increases. For
this purpose, a GP and a NN model of the 12 dimensional
Rosenbrock function, are identified using the generated
samples. In this example, training the GP model recquires
more computational time than training the NN model. This
will be further discussed in section IV-C. A new dataset
Dl
new containing l = 500 new samples /∈ Dk is generated.

The GP and NN models are then used to predict the 500
unseen points from Dl

new. The following elements are then
calculated:

• The standard deviation σ(X) for X ∈ Dnew, note that
this value is multiplied by 4 for better visualization in
Fig. 1.

• The δmin(X) for X ∈ Dl
new and computed with (5)

where Dk
X is the set containing the k = 5000 initial

points.
• The error of the NN for each point X ∈ Dl

new deter-
mined as the absolute value of the difference between
the estimate of the Rosenbrock function by the NN
f̂(X) and the actual value f(X): error = |f̂(X) −
f(X)|.

Fig. 1 presents the GP standard deviation (σ) and the
NN error w.r.t to δmin for different tested points. On this
figure, the value on the vertical axis of each orange dot

Fig. 1: Value of GP σ (represented by the blue stars) and NN
error (represented by the orange dots) w.r.t δmin (horizontal
axis).

represents the error on the NN prediction (|f̂(X)−f(X)|) of
an unseen tested point X and the corresponding value on the
horizontal axis, represents the value of δmin for that point.
The value on the vertical axis of each blue star represents
the GP standard deviation σ of an unseen tested point X and
the corresponding value on the horizontal axis, represents
the value of δmin for that point. We can observe that the
points X for which δmin(X) is low (i.e points in regions
well covered by the dataset) are relatively well predicted by
the NN. The GP standard deviation σ(X) is also low for
these points. However, we see that when δmin(X) increases,
more and more points tend to be poorly predicted by the
NN as the error increases. The GP standard deviation is also
greater for points where δmin(X) is large. Therefore, by
using the measure δmin(X) for the exploration objective of
our procedure, we will test in regions where the model is
likely to perform poorly. This is essential, because if the
optimum is in those regions and therefore poorly predicted,
without the exploration it may never be tested. This will also
allow to improve the quality of the model in areas not already
covered by the dataset.

3) Acquisition function for the NNSGO: δmin will there-
fore be used to construct the acquisition function for
NNSGO. For this purpose, the problem (1) is still considered
with initial samples Dk : {Xn, f(Xn)}kn=1 drawn from an
unknown function f . The function f is modelled by a NN
model f̂(X) which is trained with the initial samples Dk.
We then choose the following expression for the acquisition
function A(X) in the NNSGSO procedure:

A(X) = βδmin(X) + f̂(X). (7)

Compared to the UCB (3), f̂(X) plays the role of the GP’s
µ and serves for the exploitation purpose, δmin serves the
exploration purpose just like σ in (3) and β is a trade-off
hyper-parameter which balances the search between explo-
ration and exploitation. First of all, β must be chosen in a
way that both the exploration and exploitation terms have

the same order of magnitude. Afterwards, the value of β
can be increased or decreased to permit more exploration
or more exploitation, respectively. In our procedure, the first
Nit−1 points to evaluate ,with Nit the maximum number of
iterations, are chosen by achieving the trade-off between the
exploration and exploitation objectives (i.e. by maximisation
of the acquisition function (7)). Since the real function can
only be evaluated once after the final iteration, performing
exploration in the objective of improving the model is no
longer useful. The last point to evaluate is thus, chosen solely
through the exploitation objective i.e. by finding the point X
for which the NN estimate of f is the largest. The main steps
of the NNSGO are described in algorithm 2.

4) Distance metrics in higher dimensions: The NNSGO
requires the use of distance metrics. However, in higher
dimensions when measuring similarities between points,
they tend to provide poor contrasts between farthest and
nearest neighbours to an evaluated point [13]. This makes
the proposed procedure less efficient in higher dimensions.
Nevertheless, two solutions can be considered in order to
overcome this issue :
• Use fractional distance metrics which give better con-

trast between farthest and nearest neighbours to an eval-
uated point, as defined in [13], instead of the Euclidean
distance.

• Increase the term δmin to the power α (with α > 1) to
increase the contrast. Note that this approach will only
be efficient if the evaluated δmin is greater than 1.

IV. APPLICATIONS

In this section, it is illustrated through different case stud-
ies, that the proposed NNSGO can be used as an alternative
to other different smart grid based optimisation procedures
such as BO. The first study case is a classical control problem
which consists in determining the optimal controller in a

Algorithm 2 NN Smart grid optimisation algorithm

for j = 0,, Nit − 1 do
1. Train neural network model f̂(X) with available set

of samples Dk+j : {Xn, f(Xn)}k+jn=1

2. Build acquisition function Aj(X) = βδmin(X) +
f̂(X)

3. The next point Xk+j to evaluate on f is

Xk+j = argmax
X

Aj(X)

4. Evaluate Xk+j on f and add (Xk+j , f(Xk+j)) to
the training samples Dk+j .
end for
The final point to evaluate on f is :

Xk+Nit = argmax
X

f̂(X)

Evaluate Xk+Nit on f and add (Xk+Nit , f(Xk+Nit)) to
the training sample Dk+Nit .
return X with the highest f(X) from Dk+Nit

particular situation while the second one consists in using
the same technique but into an aerodynamic domain. In the
latter, the objective will be to find an optimal geometry for a
projectile. The final case is on the optimisation of the Rosen-
brock function, in a case where the initially available dataset
is large. Note that the three case studies are minimisation
problems but will be presented as maximisation problems to
match the theory presented in the previous sections. For all
these case studies, the NNSGO is compared to BO. Before
performing the procedures, a preliminary study is carried
out to find the structures of the NN and of the GP models
that best fit the data using e.g a grid search approach [14].
The number of iterations is chosen depending on the study
case and more particularly the cost to evaluate each function
to optimize (these functions are considered expensive to
evaluate, therefore only a limited number of iterations is
performed). Finally, the values of β in algorithm 1 (BO) and
algorithm 2 (NNSGO) are chosen to have the same order of
magnitude between the exploration and exploitation terms.

The NN and GP models are built using Scikit-learn [15],
a famous Python machine learning library which offers the
possibility to build simple MLP regression models and GPs.
For more advanced NN models, tools such as PyTorch or
Keras could also be used. The optimisation of different
acquisition functions is achieved using the Limited-memory
BFGS [16] method in its Scipy [17] implementation. Scipy
is also used to construct the transfer functions used in the
controller design case. Simulations are performed on a PC
equipped with a 12th Gen Intel CORE i7-12700H processor
with 14 cores and 64 GB of RAM.

A. Controller design example

In this section, the NNSGO procedure is applied to de-
sign a controller for an unknown system. We consider the
same study case as in [3] but without including the safety
constraints.

The unknown system is considered to be a linear system
described by the following transfer function :

G(s) =
10

(s+ 10)(s+ 1)
. (8)

The goal of this study is to find an optimal controller
K(s, θ), parametrized with a parameter vector θ[k, p1, p2]T ,
in a closed-loop framework. The controller K(s, θ) has the
following transfer function :

K(s, θ) =
k(p1 + s)(p2 + s)

s(s+ 4.2)
, (9)

and is designed to track a reference noted yref . This
reference corresponds to the unit step response of the model
Mref defined as :

Mref (s) =
9

s2 + 4.2s+ 9
. (10)

Since the transfer function of the system G(s) is consid-
ered to be unknown, the optimal controller parameters can
not be accessed directly but have to be obtained through

an optimisation algorithm. In the following, the NNSGO
algorithm is performed to directly estimate the controller
parameters. A BO approach will also be carried out to
compare the results with NNSGO.
To illustrate the methods presented in this paper the follow-
ing experiment is conducted :
• A unit step response of 5 seconds is applied to the

closed-loop system.
• From this step response, n = 200 samples are collected

at a sampling rate of Ts = 0.025s.
The criterion to be maximised by the NNSGO and BO, in

order to estimate the optimal controller, is defined as:

V (θ) =

200∑
n=1

(yref (n)− y(θ, n))2, (11)

where yref (n) is the desired output at sample point n, and
y(θ, n) is the obtained output at sample point n with a
given parameter vector θ. The optimal controller parameters
are thus estimated by solving the following optimisation
problem:

θopt = argmax
θ
−V (θ). (12)

Unlike in BO where the optimisation can be performed with-
out any initial samples, neural networks need to be provided
with a sufficient number of samples in order to efficiently
estimate the value of a function. To solve this optimisation
problem using the NNSGO, 50 controller parameters θ are
chosen randomly to initialize the NN model. Among these
controllers, the parameters θD which perform the best (i.e.
for which V (θ) is the lowest) are for V (θD) = 0.7. The
procedure is then performed using algorithm 2 with the
following considerations:
• The number of iterations is set to 250.
• The neural network model used is a multi layer percep-

tron with 1 hidden layer with 32 neurons and a reLu
activation function on each neuron.

• The maximum of the acquisition function provides the
next controller to evaluate and is given as :

A(θ) = −V̂ (θ) + βδmin(θ), (13)

where V̂ (θ), is the multi layer perceptron’s estimate of
V (θ) and β = 1.

The NNSGO is compared to BO which is performed using
algorithm 1 with the following considerations :
• The first controller to evaluate is chosen randomly
• The number of iterations is set to 300. The 300 iterations

are chosen here to have the exact same number of
observed points as with the NNSGO procedure (50
initial samples + 250 tested).

• A GP model with an RBF kernel (2) is used.
• The maximum of the acquisition function which pro-

vides the next controller to evaluate corresponds to the
UCB (3) where µ(θ) is the GP estimate of −V (θ), σ(θ)
the standard deviation provided by the GP model and
β = 1.

The great advantage of these two approaches (NNSGO and
BO) is that the optimal controller parameters are estimated
without requiring the identification of a model for the process
to be controlled. Indeed, the MLP and GP both model the
static relationship between the parameter vector θ and the
performance of the controller on the model: V (θ).
After performing 250 iterations of NNSGO using algorithm
2, the best controller parameters among the tested ones are
θNNSGO = [1, 8, 1.1]T with V (θNNSGO) = 0.02. By using
the NNSGO procedure, we are able to find a controller
θNNSGO for which the value of V is 98% lower than the V
of θD (the controller with the lowest value of V in the initial
dataset). The best controller found with BO after performing
algorithm 1 for 300 iterations is θBO = [1, 8.4, 0.98]T with
V (θBO) = 0.01. The time to perform the optimisation for
both approaches is of approximately 5 seconds each (Note
that this time can slightly vary depending on the time that
Scipy takes to calculate the response of a particular tested
controller). In this case study, BO performs better than the
NNSGO procedure since it finds a controller with a smaller
value of V than the one found using the NNSGO procedure
in the same optimisation duration. However, the controller
provided by the NNSGO procedure remains close to the
optimal controller parameters which are θopt = [0.9, 10, 1].
Fig. 2 presents the obtained response with the best controllers
found using NNSGO (θNNSGO) and using BO (θBO), com-
pared to the target response associated to Mref (10). As
it can be seen, the response of the system when θNNSGO
is used as the controller parameters is also close to the
target response. Therefore, the procedure can be used as an
alternative to BO for this controller design problem.

B. Aerodynamic design

The aim of the second example is to illustrate that the
NNSGO method can also be used for other applications such
as aerodynamic design. This study consists in finding the
optimal dimensions of a particular type of projectile named

Fig. 2: Target step response (in black) compared to the step
response based on the controllers found using the NNSGO
approach (θNNSGO in red) and BO (θBO in blue)

,fin stabilized, which minimise a criteria associated to aero-
dynamic coefficients (coefficients associated to the forces and
moments applied to a projectile during its flight. More infor-
mation about the case study can be found in [18]). There are
no readily available physical models that give the relationship
between the aerodynamic coefficients and the dimensions of
the projectile. Nevertheless, it remains possible to find the
coefficients associated to a certain geometry of a projectile.
This is usually achieved through experimental tests (free
flight or wind tunnel tests) or numerical simulations. Both
possibilities used to quantify the coefficients come at an
expensive cost (time or resources needed). Therefore, it is
crucial to find a smart way to optimize the geometry by
performing the least possible tests. We therefore, propose to
use the presented NNSGO procedure to this aerodynamic
optimisation. The optimisation is also performed using BO
for comparison.
To perform this study, we have access to a database contain-
ing different values of the projectile geometry dimensions
noted X , (where X ∈ RN with N = 5) for different
Mach numbers (Ratio between the speed of an object moving
through a fluid and the speed of sound in the same fluid)
associated to different aerodynamic coefficients. The number
of available samples is 2592. They are generated from a
simulation tool to test the efficiency of the procedure for
this application.
The criteria to optimise to find the optimal dimensions in
this study, is the average value of the drag coefficient, noted
CA0 , over 8 values of the Mach number between 2 and 5,
contained in the vector M . It is denoted as : fo(X) (for
objective function) and is given by :

fo(X) =
1

8

8∑
l=1

CA0
(X,Ml), (14)

where Ml is the lth Mach number in the vector M . Using the
available samples, the average drag fo(X) of each configu-
ration X , is computed. This provides a dataset of different
configurations X directly associated to the average value of
the drag coefficient fo(X). This new dataset contains 324
samples.
The description of the dimensions X of the projectile and
the search domain X are detailed in table I. The unit caliber
corresponds to the dimension with respect to the diameter of
the body of the projectile.

TABLE I: Boundaries for each design parameter X of the
geometry

Dimension X Minimum Maximum unit
X1 : Total Length 10 25 caliber
X2 : Nose Angle 10 34.5 degrees
X3 : Fins Height 0.5 2.5 caliber
X4 : Fins Width 0.5 1.72 caliber

X5 : Position of fins 0 1 caliber

This leads to the following optimisation problem :

Xopt = arg max
X∈X

−fo(X). (15)

The optimisation problem (15) could be analysed geo-
metrically. Indeed, the projectiles with the lowest drag are
the ones which have the lowest possible values for each
dimensions. In this case, Xopt will be the lowest possible
values for each X in our search domain X which are :
Xopt = (10, 10, 0.5, 0.5, 0). For the purpose of the study,
it is considered that this optimal projectile is unknown and
can not be found using a geometrical analysis. Algorithm
2 is therefore used to solve the optimisation problem (16).
The goal is to see if we are able, using a smart grid based
procedure, to find configurations close to Xopt in a limited
budget.
To solve the optimisation problem (16), the NNSGO is per-
formed using algorithm 2 with the following considerations:
• The number of iterations is set to 20.
• The neural network model used is a multi layer percep-

tron with 1 hidden layer with 32 neurons and a reLu
activation function on each neuron.

• The maximum of the acquisition function provides the
next point X to evaluate and is given as :

A(X) = −f̂o(X) + βδmin(X), (16)

where f̂o(X), is the multi layer perceptron’s estimate
of f(X) and β = 1.

The NNSGO is compared to BO which is performed using
algorithm 1 with the following considerations :
• The number of iterations is set to 20.
• A GP with a Matern kernel [2] is used.
• The maximum of the acquisition function which pro-

vides the next controller to evaluate corresponds to the
UCB (3) where µ(X) is the GP estimate of −fo(X),
σ(X) the standard deviation provided by the GP model
and β = 2.

In the initial dataset, the projectile with the lowest value of
the average drag fo, noted XD, has a fo(XD) = 0.28 and
the optimal projectile Xopt has a fo(Xopt) = 0.24. After
testing 20 projectile configurations X using the NNSGO, we
are able to find the optimal configuration Xopt. This is also
the case for BO where the optimal configuration is among
the 20 tested projectiles. Moreover, the time needed to run
20 iterations of both methods (including the time to test
the configurations on the simulator) is 219 seconds and 221
seconds, for BO and NNSGO respectively. Therefore, for
this study case, both methods perform similarly.

The smart grid based procedures are then compared to
a brute force optimisation. In the latter, 60 projectiles are
drawn randomly from a uniform distribution in the search
domain. The values of fo are then computed with the simula-
tor used to generate the database employed in the study. The
goal is to see, if the NNSGO and BO procedures perform
better i.e. find configurations with a lower fo, than when
generating randomly the configurations to evaluate. Among
the 60 tested projectiles using the brute force approach,

the configuration X with the lowest average drag has an
average drag fo(X) = 0.28. Therefore, the use of the
smart grid based procedure is justified in this study case.
Indeed, we are not able to find the optimal configurations by
increasing the dataset with 60 configurations using a brute
force approach whereas by increasing the dataset with 3
times less (20) configurations using the NNSGO or BO, the
optimal configuration is found.

C. Optimisation with a larger initial dataset

This section follows on from section III-B.2: the objective
is to perform the optimisation of the 12 dimensional form
of the Rosenbrock function f(X) (6). This function has one
global minimum at X = (1, 1,, 1) for f(X) = 0. The
optimisation is performed here in the search domain
X ={X=(x1, .., x12)

T |−2.048< xi <2.048(i = 1, ..., 12)}
where X ∈ R12.
For the purpose of the study it is considered that the
function is unknown and expensive (in time and resources)
to evaluate. However, we have access to a dataset containing
5000 samples (pairs {Xn, f(Xn)}kn=1 with k = 5000). This
dataset is generated randomly in a corner of the search
domain which does not include the global minimum to
motivate the use of a smart grid based approach.
The goal of this section will be to find the optimum Xopt of
the following optimisation problem :

Xopt = arg max
X∈X

−f(X). (17)

To solve this optimisation problem, the NNSGO is performed
using algorithm 2 with the following considerations :
• The number of iterations is set to 100.
• The NN model used is a multi layer perceptron with

1 hidden layer with 256 neurons and a reLu activation
function on each neuron.

• The maximum of the acquisition function provides the
next point X to evaluate and is given as :

A(X) = −f̂(X) + βδmin(X), (18)

where f̂(X), is the multi layer perceptron’s estimate of
f(X) and β = 1.

The NNSGO is compared to BO which is performed using
algorithm 1 with the following parameters :
• The number of iterations is set to 100.
• A GP with a Matern kernel [2] is used.
• The maximum of the acquisition function which pro-

vides the next controller to evaluate corresponds to the
UCB (3) where µ(X) is the GP estimate of −f(X),
σ(X) the standard deviation provided by the GP model
and β = 2.

TABLE II: Optimisation results

Method used Optimisation time Value of optimum
NNSGO 40 seconds f(XNNSGO) = 40

BO 1 hour f(XBO) = 38

Table II presents the values of f for the optimum points
found using the NNSGO procedure (noted XNNSGO) and
BO (noted XBO), as well as the time to run 100 iterations
of both procedures. As shown in this table, both methods
perform similarly in terms of optimums found. In the initial
dataset, the point XD, for which the value of the Rosenbrock
function is the lowest is for the value f(XD) = 226. By
increasing the dataset with 100 new points using the two
smart grid based approaches (BO and NNSGO), we are able
to find points X for which the value of f(X) is 84% smaller
than the original smallest value in the dataset.
However, for this example the NNSGO has a clear advantage
in terms of the computational time needed to perform 100
iterations. This is due to the fact that neural networks scale
better in training time than regular GPs when the size of
the dataset increases. In this particular case, the NN takes
8 seconds to train whereas the GPs take 30 seconds. Fur-
thermore, after each iteration of the NNSGO, the previously
trained model parameters are re-used as an initialization for
the new model. This further decreases the training time of
the updated NN models. This is achieved by using the warm
start option in scikit-learn multi layer perceptron regressor
implementation. Without using this option, the optimisation
when using the NNSGO procedure takes 12 minutes, which
is still 6 times less than when using the regular BO, to
perform 100 iterations and similar optimums are found.
(Note that this option is not available for GP regression
models in scikit-learn).

V. CONCLUSIONS AND PERSPECTIVES

In this study, an alternative method to Bayesian opti-
misation for the optimisation of costly unknown functions
is proposed. It is based on the use of neural networks
instead of Gaussian processes. This method uses the distance
between points, instead of the usual uncertainties provided
by Gaussian processes, to search for a potential optimum
to be tested next on the unknown function. The proposed
procedure is tested on different case studies and provides
competitive results to regular Bayesian optimisation. It is
also illustrated that when the initial dataset contains a large
number of samples, the optimisation procedure using the
proposed approach will require less time to perform a certain
number of iterations than the classic Bayesian optimisation
algorithm. The next step will be to improve our solution by
extending it to optimisation problems under constraints.

REFERENCES

[1] P. I. Frazier, “A tutorial on bayesian optimization,” arXiv preprint
arXiv:1807.02811, 2018.

[2] C. E. Rasmussen, “Gaussian processes in machine learning,” in
Summer school on machine learning, pp. 63–71, Springer, 2003.

[3] X. Bombois and M. Forgione, “Control design via Bayesian Optimiza-
tion with safety constraints,” Conference on Control Technology and
Applications, 2022.

[4] S. Bansal, R. Calandra, T. Xiao, S. Levine, and C. J. Tomlin, “Goal-
driven dynamics learning via bayesian optimization,” in 2017 IEEE
56th Annual Conference on Decision and Control (CDC), pp. 5168–
5173, 2017.

[5] S. Kuindersma, R. Grupen, and A. Barto, “Variational bayesian
optimization for runtime risk-sensitive control,” Robotics: Science and
Systems VIII, pp. 201–208, 2012.

[6] R. Guzman, R. Oliveira, and F. Ramos, “Heteroscedastic bayesian
optimisation for stochastic model predictive control,” IEEE Robotics
and Automation Letters, vol. 6, no. 1, pp. 56–63, 2020.

[7] R. Marchant and F. Ramos, “Bayesian optimisation for intelligent en-
vironmental monitoring,” in 2012 IEEE/RSJ international conference
on intelligent robots and systems, pp. 2242–2249, IEEE, 2012.

[8] A. Bemporad, “Global optimization via inverse distance weighting and
radial basis functions,” Computational Optimization and Applications,
vol. 77, no. 2, pp. 571–595, 2020.

[9] C. Andersson, A. H. Ribeiro, K. Tiels, N. Wahlström, and T. B. Schön,
“Deep convolutional networks in system identification,” in 2019 IEEE
58th conference on decision and control (CDC), pp. 3670–3676, IEEE,
2019.

[10] M. Forgione and D. Piga, “dynonet: A neural network architecture
for learning dynamical systems,” International Journal of Adaptive
Control and Signal Processing, vol. 35, no. 4, pp. 612–626, 2021.

[11] N. Srinivas, A. Krause, S. M. Kakade, and M. Seeger, “Gaussian
process optimization in the bandit setting: No regret and experimental
design,” arXiv preprint arXiv:0912.3995, 2009.

[12] S. Ruder, “An overview of gradient descent optimization algorithms,”
arXiv preprint arXiv:1609.04747, 2016.

[13] C. C. Aggarwal, A. Hinneburg, and D. A. Keim, “On the surprising
behavior of distance metrics in high dimensional space,” in Interna-
tional conference on database theory, pp. 420–434, Springer, 2001.

[14] P. Liashchynskyi and P. Liashchynskyi, “Grid search, random
search, genetic algorithm: a big comparison for nas,” arXiv preprint
arXiv:1912.06059, 2019.

[15] L. Buitinck, G. Louppe, M. Blondel, F. Pedregosa, A. Mueller,
O. Grisel, V. Niculae, P. Prettenhofer, A. Gramfort, J. Grobler, R. Lay-
ton, J. VanderPlas, A. Joly, B. Holt, and G. Varoquaux, “API design for
machine learning software: experiences from the scikit-learn project,”
in ECML PKDD Workshop: Languages for Data Mining and Machine
Learning, pp. 108–122, 2013.

[16] R. H. Byrd, P. Lu, J. Nocedal, and C. Zhu, “A limited memory
algorithm for bound constrained optimization,” SIAM Journal on
scientific computing, vol. 16, no. 5, pp. 1190–1208, 1995.

[17] P. Virtanen, R. Gommers, T. E. Oliphant, M. Haberland, T. Reddy,
D. Cournapeau, E. Burovski, P. Peterson, W. Weckesser, J. Bright, S. J.
van der Walt, M. Brett, J. Wilson, K. J. Millman, N. Mayorov, A. R. J.
Nelson, E. Jones, R. Kern, E. Larson, C. J. Carey, İ. Polat, Y. Feng,
E. W. Moore, J. VanderPlas, D. Laxalde, J. Perktold, R. Cimrman,
I. Henriksen, E. A. Quintero, C. R. Harris, A. M. Archibald, A. H.
Ribeiro, F. Pedregosa, P. van Mulbregt, and SciPy 1.0 Contributors,
“SciPy 1.0: Fundamental Algorithms for Scientific Computing in
Python,” Nature Methods, vol. 17, pp. 261–272, 2020.

[18] M. Albisser, Identification of aerodynamic coefficients from free flight
data. PhD thesis, Université de Lorraine, 2015.

