
HAL Id: hal-04052060
https://hal.science/hal-04052060v1

Preprint submitted on 30 Mar 2023 (v1), last revised 6 Nov 2023 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Neural networks smart grid based optimisation for
expensive functions

Alain Uwadukunze, Xavier Bombois, Marion Gilson, Marie Albisser

To cite this version:
Alain Uwadukunze, Xavier Bombois, Marion Gilson, Marie Albisser. Neural networks smart grid
based optimisation for expensive functions. 2023. �hal-04052060v1�

https://hal.science/hal-04052060v1
https://hal.archives-ouvertes.fr

Neural networks smart grid based optimisation for expensive functions

Alain UWADUKUNZE1,2, Xavier BOMBOIS3, Marion GILSON2, Marie ALBISSER1

Abstract— Bayesian Optimisation is an emerging machine
learning technique known to be efficient especially for opti-
mising functions which are expensive to evaluate. In Bayesian
Optimisation, a Gaussian Process model of the unknown func-
tion is identified based on available data. Its estimate of the
unknown function and the associated uncertainties are used
to build a so-called acquisition function which does a trade-
off between exploitation and exploration. The latter is then
iteratively maximised to find candidates which are promising
to be close to the optimum. Despite the effectiveness of this
technique, it is interesting to investigate other different models
to Gaussian Processes. In this paper an alternative to Bayesian
Optimization based on the use of neural networks instead
of Gaussian Processes is proposed. Since neural networks do
not naturally provide an information about the quality of the
estimates, the proposed method makes use of the distance
between an evaluated point and the closest observed one to
it for the exploration. The efficiency of the proposed approach
is illustrated on two different study cases : controller design
and aerodynamic design.

I. INTRODUCTION
In many applications, one seeks to determine the maxi-

mum Xopt of an unknown static function f(X) of a vector
X of design variables. Even though f(X) is unknown, this
function can be evaluated for any given X (in a certain
range). However, it is supposed that evaluating f(X) for a
given X is costly (in time and/or resources). Consequently,
a gradient-based optimization with a numerical evaluation
of the gradient is not the most appropriate approach to
determine Xopt. Instead, the literature proposes different
techniques that are based on a smart gridding of the space
of X . For each grid point X , the function is evaluated and a
procedure determines the next grid point in a smart way. To
determine the next grid point, a model of the function f(X)
is identified based on the previous grid points (Xi, f(Xi))

k
i=1

and this model is used to determine a point Xk+1 (the next
grid point) that is a promising candidate for (being close to)
Xopt. A popular version of this smart grid approach is the
so-called Bayesian Optimization (BO) [1] where the model
of the function f(X) takes the form of a Gaussian Process
(GP) [2]. In this paper, we propose an alternative version of
this approach where the model of the function is a neural
network.

The problem described in the previous paragraph is quite
classical in data-driven control applications where a con-
troller achieving the highest level of performance is designed

1 French-German Research Institute, ISL, 5 rue du Géneral Cassagnou,
68300 Saint-Louis, France

2 Université de Lorraine, CNRS, CRAN, F-54000 Nancy, France
3 Laboratoire Ampère, Ecole Centrale de Lyon, Université de Lyon,

36 avenue Guy de Collongue, Ecully, France and Centre National de la
Recherche Scientifique (CNRS), France

without requiring a model of the to-be-controlled system. In-
stead, an optimal controller is determined by testing different
controllers (with different parameters X) on the system. It
is clear that, for many real-life systems, the evaluation of a
candidate can be quite costly and the to-be-tested controllers
should therefore be chosen in a smart way. Bayesian Opti-
mization is generally performed for this purpose: a model
of the performance f(X) of the closed loop made up of
the system and the controller with parameters X is identified
based on the previous experiments and this model is used
to determine the parameters of the controller that has to be
tested in the next experiment. Examples of application of
Bayesian Optimisation in control can be found in [3], [4], [5]
and [6]. Bayesian Optimisation is also performed in many
other applications such as in Environmental Monitoring as
suggested in [7].

The model of the unknown function f(X) is a crucial
component of such smart-grid based optimization procedure.
As mentioned above, Gaussian Processes (GP) are generally
used for this purpose. A GP is a non-parametric identification
method that allows to deduce an estimate of f(X) for
any point X based on data points (Xi, f(Xi))

k
i=1. Besides

this estimate, the GP also provides an uncertainty region
indicating the confidence we can have in the estimate. Note
that this uncertainty region is certainly not an uncertainty
region as the ones encountered in robust control. Indeed,
there is no guarantee that the true function f(X) lies in this
uncertainty region. One can however say that the uncertainty
will be large for points X that are far away from the data
points with which the GP has been identified.

The GP model of the function f(X) (and its uncertainty)
is then used to determine the next point Xk+1 for which
f(X) must be evaluated. This is generally done by maximiz-
ing a so-called acquisition function A(X). The acquisition
function A(X) is a function of the GP model and of its
uncertainty and its maximum (i.e., the next grid point Xk+1)
will be a point for which the GP model of f(X) is high
(exploitation) and/or for which the uncertainty of the GP
is high (exploration). The acquisition function achieves the
trade-off between these two objectives. In this paper, the
objective is to show that, instead of a GP model, a neural
Network (NN) model can also be efficiently used in a
smart-grid based optimization procedure. Neural networks
are increasing in popularity and being applied in many fields
such as system identification [8], [9]. It is clear that, unlike
a GP model, a NN model is generally not accompanied by
an uncertainty region. However, as mentioned above, the
uncertainty of the GP can not also really be considered as
an uncertainty region such as in robust control. Moreover it

will be shown that efficient acquisition functions can also be
built when the model of f(X) is a NN model by using the
distance to observed samples for the exploration. In addition,
in a number of cases, a NN model can be easier to handle
than a GP. For instance, basic GP are not suited to learn large
quantity of samples i.e the number of pairs (Xk, f(Xk)),
since GP scale cubically with the number of observations.
This is mainly due to the fact that it implies solving heavy
calculations on very large covariance matrices, which results
into costly computations. This is indeed inconvenient in
cases where BO needs to be performed using an initial
large data set of available experiments. Gaussian Processes
also encounter some issues for high dimensional problems.
In [10], it is shown that in higher dimensions, distance
metrics such as L2 norm, used to calculate typical GP
kernel matrices, become limited since they provide poor
contrast between farthest and nearest neighbours. Rather, the
proposed approach overcomes this drawback by applying
some modifications on the proposed acquisition function.
Despite the complexity of building GP in high dimensions,
some studies have been achieved on how to overcome
these issues. These strategies, summarized in [11], require
modifications on the classic GPs for them to be employed
for datasets of several dimensions. Among these strategies,
dimensionality reduction approaches for high dimensional
problems can be found as suggested in [12]. An alternative
could also be to use other types of models to represent the
function to optimize instead of Gaussian Processes as it is
proposed in this paper. Only a few work can be found in
the literature where other types of models are used in smart
grid based optimisation procedures similar to BO. A study
worth mentioning where the procedure is similar to the one
discussed in this paper is presented in [13]. In the latter,
Inverse Distance Weighting interpolation and Radial Basis
functions are successfully used as models of the objective
functions. Similarly to our procedure, the exploration is
also partly based on the distance between the evaluated and
observed points. Some studies have also explored the use
of particular neural networks which are known to perform
well with large datasets and in high dimensions both in
classification and regression problems. For example in [14],
Bayesian neural networks are used for BO and perform well
for hyper-parameter tuning. Nevertheless, building Bayesian
neural networks can be computationally intensive. In the
presented approach, we propose the use of multi layer
perceptrons types of NN with only one hidden layer, which
require less computational cost and are sufficient in different
applications. This paper will focus on two of them : Control
design and aerodynamic optimization.

The rest of the paper is structured as follows : First, the
Bayesian Optimisation algorithm is presented in section III-
A, then the proposed approach is presented in section III-
B. Finally, the proposed method is illustrated through two
applications : the design of a controller and the optimisation
of a projectile’s geometry in section IV.

II. PROBLEM STATEMENT

This paper focuses on the optimisation of the form :

Xopt = argmax
X

f(X), (1)

f is considered to be unknown, high dimensional and ex-
pensive (i.e. requires a lot of resources or time to obtain the
value of f(X) for a given X) to evaluate.

The goal of this paper is to answer the following problem
: Given a dataset Dk : {Xi, f(Xi)}ki=1 obtained from an
unknown function f , use a neural network as a model of
the unknown function f in a smart grid based procedure
such as Bayesian Optimisation, to search which promising
candidates to evaluate to get close to Xopt.

III. METHODOLOGY

The proposed smart grid optimisation is inspired by a
method named Bayesian Optimisation briefly recalled here.

A. Bayesian Optimisation

Bayesian Optimisation aims at finding an optimum Xopt

of the problem (1). The optimum is searched by iteratively
maximising a so called acquisition function A which gives
a promising candidate, to be close to the optimum Xopt of
f , to evaluate on the function f . The acquisition function
balances the search between exploitation (searching for the
place where a model’s estimate of f is high) and exploration
(searching for the place where the uncertainties are the
highest). Therefore, a model of the unknown function f and
the uncertainties associated to each estimate of the model
are needed to build the acquisition function. In this sense,
all the available samples from f , Dk : {Xi, f(Xi)}ki=1, with
k the number of samples, are used to construct a probabilistic
model of f(X) capable of providing uncertainties. The most
commonly used probabilistic models are Gaussian Processes
(GP) [2] which are non-parametric regression models. A GP
assumes a prior distribution over functions defined by its
mean µp(X) and a kernel matrix K(X,X

′
). The Kernels are

covariance matrices that measure the similarity between the
samples using distance metrics. An example of a frequently
used kernel is the Radial Basis Function (RBF), defined as
follows for two points Xa and Xb :

K(Xa, Xb) = exp(−
d(Xa,Xb)

2

2l2
), (2)

where d is the Euclidean distance and l a length scale pa-
rameter. Using Bayesian inference, the unknown function is
approximated by a Gaussian distribution N (µ(X), σ2(X)).
At each iteration of the BO, the GP model is updated with
the sample obtained after the maximisation of θ and the
evaluation on f . The mean µ(X) is the best estimation of
f(X) and is used for the exploitation. The variance σ2(X)
provides the uncertainties on f for each point X and is
used for the exploration. Note that the uncertainties provided
by the GP which are used to build acquisition functions in
BO depend on the chosen kernel (covariance matrix) and
therefore are based on the similarity between an evaluated
point and the points observed by the GP.

Several acquisition functions for BO can be found in the
literature, as suggested in [1]. Among them are : Probability
of Improvement, Upper Confidence Bound and Expected
Improvement. Since the proposed approach is inspired from
the Upper Confidence Bound (UCB) acquisition function
(see III-B for comparison), the paper focuses mainly on
this technique. This acquisition function is perhaps the most
straightforward to understand and is defined as follows :

UCB(X) = βσ(X) + µ(X), (3)

where σ(X) and µ(X) are the standard deviation and pre-
dictive mean of the GP, respectively. The trade-off between
exploitation and exploration is achieved by finding the point
X for which σ and µ are both the highest. The parameter β is
used here to control the degree of the trade-off i.e when β is
chosen high more importance will be given to the exploration
and when it is chosen low, more importance will be given
to the exploitation.

The BO algorithm using UCB as acquisition function to
solve an optimisation problem (1) is described in Algorithm
1, with Nit the maximum number of iterations.

Algorithm 1 Bayesian Optimisation algorithm

for j = 1,, Nit do
1. Train Gaussian Process with available set of samples

Dk+j : {Xi, f(Xi)}k+ji=1

2. Build acquisition function :

Aj(X) = βσj(X) + µj(X)

3. The next point Xk+j to evaluate on f is

Xk+j = argmax
X

Aj(X)

4. Evaluate Xk+j on f and add (Xk+j , f(Xk+j)) to
the training sample Dk.
end for
return X with the highest f(X) from Dk+Nit

As mentioned before, one may want to use other models to
represent the unknown functions. As a result, an alternative
to BO where neural networks are used as models of the
unknown function is proposed in the following section.

B. Proposed approach using neural networks

In this section, an alternative approach to BO is proposed.
We refer to this method as NN based smart grid optimisation
(NNSGO). Similarly to BO, the idea behind this method
is that the point which should be evaluated as a promising
candidate to be close to the optimum of the real function f
should be a trade-off between the place where the estimate
of f is at its optimum and where it is likely to differ from
the real value of f , i.e the place where the uncertainties are
the highest. The main difference between NNSGO and BO
is that NN are employed as models of the functions rather
than using probabilistic models such as GP.

1) Neural networks and a measure for their uncertainties:
Neural networks (NN) are used for their flexibility and good
adaptability to different sorts of problems. Many types of
neural networks exist. In this paper, multi layer perceptrons
(MLP), which are types of NN with fully connected layers
are used as models. They provide the relation between a set
of inputs Xm of dimension m associated to outputs f(X)l

of dimension l, thanks to trained weights W .
A MLP needs to be trained to provide the best estimates of

an unknown function. The training consists in finding the best
values of weights that minimise an identification criterion
commonly known as loss function for NNs. The loss function
which is frequently used in regression to train the MLP is
the Mean Squared Error defined as

l =
1

k

k∑
i=1

‖fnn(Xk)− f(Xk)‖2, (4)

Where l is the loss function, k the number of samples,
f(Xk) the target output for Xk, fnn(Xk) the estimates
of f(Xk) by the NN and ‖A‖ =

√
ATA represents the

Euclidean norm of a vector A. The most common method
used to train a MLP is back-propagation which uses Gradient
Descent [15] to iteratively update the weights of the NN.
To use this method, the MLP needs to have differentiable
activation functions such as reLu.

Unlike GP, regular NN do not come with uncertainties.
Nevertheless, it remains possible to have an idea of the
points X for which the estimate fnn(X) of the neural
network is likely to differ from the real value f(X). Well
trained NNs are supposed to generalise i.e. to predict unseen
points as well as observed ones. Even so, this will still be
limited by the similarity between the observed and unseen
points. When a point X to be predicted is far from the
observed points, then it is likely that the prediction fnn(X)
will differ from the real value f(X). This is also the case
in GP, where the uncertainties are based on the similarity
between the evaluated points and the observed ones, as seen
in section III-A. Therefore, this idea is used to create a
measure which is employed for the exploration aspect of
the proposed procedure. In that respect, δmin(X) is defined
as the distance between a point to be evaluated X and the
closest point, depending on chosen distance metric, to it from
the observed points in Dk

X . It is defined as :

δmin(X) = min
Xk∈Dk

X

‖X–Xk‖ (5)

This means that δmin(X) is small when evaluating a point
close to the observed points and increases when evaluating
a point far from the observed ones. When δmin(X) is low,
it is likely that the estimate of f(X), fnn(X) is close to the
real value f(X) and vice-versa.

2) Illustration of the comparison between δmin and the
GP uncertainties: The measure δmin can be compared to the
uncertainties provided by a Gaussian Process. To illustrate
this, 5 random samples are generated from a function f(x).
A GP model and a NN model, are both identified using those
samples. The GP and NN models are then used to predict

unseen and seen points. The following elements are then
compared:

• The standard deviation obtained from the predictions of
the GP.

• The δmin (5) calculated by taking into account the 5
random samples.

• The error of the NN for each sample x determined as
the absolute value of the difference between the estimate
of the unknown function fnn(X) and the target value
f(x): error = |f(x)− fnn(x)|.

Fig. 1 presents the results for the samples drawn from
f(x) = xsin(x).

As it can be seen on Fig. 1, even if the values of both
the GP standard deviation σ and δmin are slightly different,
their behaviour is very similar. Indeed, at observed samples
(marked by black dots), the GP σ is at its lowest and
so is δmin. The prediction quality of the NN (error) can
also be compared to δmin. Indeed, δmin increases when the
difference between the predicted and the target value also
increases.

3) Acquisition function for the NNSGO: δmin will there-
fore be used to construct the acquisition function for
NNSGO. For this purpose, the problem (1) is still considered
with initial samples Dk : {Xi, f(Xi)}ki=1 drawn from an
unknown function f . The function f is modelled by a neural
network model fnn which is trained with the initial samples
Dk. In this case, a similar function to the UCB acquisition
function (3) is optimised to choose the next point to evaluate
on f at each iteration. It is given by:

A(X) = βδmin(X) + fnn(X), (6)

Compared to the UCB (3), fnn(X) plays the role of the GP’s
µ and serves for the exploitation purpose. δmin serves the
exploration purpose just like σ in (3). β is a trade-off hyper-
parameter which balances the search between exploration
and exploitation. One way to choose the value of β, is
to analyze the distribution of the data across the search
space. In the case where the data do not cover uniformly
the search space, then β could be chosen high to increase
the exploration in the spaces not covered by the data.

The main steps of the SGO are described in algorithm 2.

Fig. 1: Comparison between the GP σ (std), the δmin and NN
error

4) Distance metrics in higher dimensions: The NNSGO
requires the use of distance metrics. As stated in the intro-
duction, in higher dimensions when measuring similarities
between points, distance metrics tend to provide poor con-
trasts between farthest and nearest neighbours to an evaluated
point [10]. This makes the proposed procedure less efficient
in higher dimensions. Nevertheless, two solutions can be
considered in order to overcome this issue :

• Use fractional distance metrics which give better con-
trast between farthest and nearest neighbours to an eval-
uated point, as defined in [10], instead of the Euclidean
distance.

• Increase the term δmin to the power α (with α > 1) to
increase the contrast. Note that this approach will only
be efficient if the δmin which is evaluated is higher than
1.

IV. APPLICATIONS

In this section it is illustrated through two different study
cases, that the proposed NNSGO can be used as an al-
ternative to other different smart grid based optimization
procedures such as Bayesian Optimization. The first study
case is a classical control problem which consists in deter-
mining the optimal controller in a particular situation while
the second one consists in using the same technique but into
an aerodynamic domain. In the latter, the objective is to find
an optimal geometry for a projectile.

The neural network models are built using Scikit-learn
[16], a famous Python machine learning library which offers
the possibility to build simple multi layer perceptrons re-
gression models. For more advanced NN models, tools such
as PyTorch or Keras could also be used. The optimisation
of different acquisition functions is achieved using the Se-
quential Least Square Programming method in its Scipy [17]

Algorithm 2 NN Smart grid optimisation algorithm

for i = j,, Nit − 1 do
1. Train neural network model fnn with available set

of samples Dk+j : {Xi, f(Xi)}k+ji=1

2. Build acquisition function Aj(X) = βδmin(X) +
fnn(X)

3. The next point Xk+j to evaluate on f is

Xk+j = argmax
X

Aj(X)

4. Evaluate Xk+j on f and add (Xk+j , f(Xk+j)) to
the training sample Dk+j .
end for
The final point to evaluate on f is :

Xk+Nit
= argmax

X
fnn(X)

Evaluate Xk+Nit
on f and add (Xk+Nit

, f(Xk+Nit
)) to

the training sample Dk+Nit .
return X with the highest f(X) from Dk+Nit

implementation. Scipy is also used to construct the transfer
functions used in the controller design case.

A. Controller design example

In this section, the NNSGO procedure is applied to de-
sign a controller for an unknown system. We refer to the
study case presented in [3] but without including the safety
constraints.

The unknown system is considered to be a linear system
described by the following transfer function :

G(s) =
10

(s+ 10)(s+ 1)
(7)

The goal of this study is to find an optimal controller
K(s, θ), parametrized with a parameter vector θ[k, p1, p2],
in a closed-loop framework. The controller K(s, θ) has the
following transfer function :

K(s, θ) =
k(p1 + s)(p2 + s)

s(s+ 4.2)
(8)

The controller is designed to track a reference model Mref

defined as :

Mref (s) =
9

s2 + 4.2s+ 9
(9)

Since the system’s transfer function G(s) is considered
to be unknown, the optimal controller parameters can not
be accessed directly but have to be obtained through an
optimisation algorithm. In the following, we propose to use
the NNSGO algorithm to directly estimate the controller
parameters. A Bayesian Optimisation algorithm will also be
performed to compare the results with NNSGO.

To illustrate the methods presented in this paper the
following experiment is conducted :
• A unit step response of 5 seconds is applied to the

closed-loop system.
• From this step response, n = 200 samples are collected

at a sampling rate of Ts = 0.025s.
The criterion to be minimized by the NNSGO and BO, in

order to estimate the optimal controller, is defined as :

V (θ) =

200∑
n=1

(yref (n)− y(θ, n))2, (10)

where yref (n) is the desired output at sample point n,
and y(θ, n) is the obtained output at sample point n with
parameter vector θ.

The optimal controller parameters are thus estimated by
solving the following optimisation problem :

θopt = argmin
θ

V (θ), (11)

To solve this optimization problem, the NNSGO is per-
formed using algorithm 2 with the following parameters :
• The number of iterations is set to 300.
• The neural network model used is a multi layer percep-

tron with 1 hidden layer with 32 neurons and a reLu
activation function on each neuron.

• The first controller to evaluate is chosen randomly
• The maximum of the acquisition function provides the

next controller to evaluate and is given as :

A(θ) = −V̂ (θ) + βδmin(θ), (12)

where V̂ (θ), is the multi layer perceptron’s estimate of
V (θ) and β = 1.

The NNSGO is compared to BO which is performed using
algorithm 1 with the following parameters :
• The number of iterations is set to 300.
• A Gaussian Process with an RBF kernel is used.
• The first controller to evaluate is also chosen randomly
• The maximum of the acquisition function provides the

next controller to evaluate corresponds to the UCB (3)
and is given as :

A(θ) = −µ(θ) + βσ(θ), (13)

where µ(θ), is the Gaussian Process estimate of V (θ),
σ(θ) the standard deviation provided by the GP and
β = 1.

The great advantage of these two approaches (NNSGO and
BO) is that the optimal controller parameters are estimated
without requiring the identification of a model for the process
to be controlled. Indeed, the MLP and GP both model the
static relationship between the parameter vector θ and the
performance of the controller on the model: V (θ).

After performing 300 iterations of NNSGO using algo-
rithm 2, the best controller parameters among the tested ones
are θNNSGO = [1, 9.1, 0.93] with V (θNNSGO) = 0.02. The
best controller found with BO after performing algorithm
1 for 300 iterations is θBO = [1, 7.9, 1] with V (θBO) =
0.03. Therefore, the NNSGO proposed procedure performs
similarly to the BO one for this study case. Moreover, both
methods provide controller parameters, which are very close
to θopt = [0.9, 10, 1].

Fig. 2 presents the obtained response with the best con-
troller found θNNSGO and θBO, using NNSGO and BO
respectively, compared to the target response associated to
Mref . As it can be seen, the response of the system when
θNNSGO is used as the controller parameters is close to the
target response. Therefore, the procedure can be used as an
alternative to BO for this controller design problem.

Fig. 2: Target step response vs Step response based on the
controllers θNNSGO and θBO

B. Aerodynamic design

The aim of the second example is to illustrate the interest
of using the NNSGO method in an aerodynamic framework.
This study consists in finding the optimal dimensions of
a particular type of projectile named fin stabilized. The
optimal dimensions are obtained by minimizing a criteria
associated to aerodynamic coefficients (coefficients asso-
ciated to the forces and moments applied to a projectile
during its flight [18]). There are no readily available physical
models that give the relationship between the aerodynamic
coefficients and the projectile’s dimensions. Nevertheless,
it remains possible to find the coefficients associated to a
certain geometry of a projectile. This is usually achieved
through experimental tests (free flight or wind tunnel tests)
or numerical simulations. Both possibilities used to quantify
the coefficients come at an expensive cost (time or resources
needed). Therefore, it is critical to find a smart way to
optimize the geometry by doing the least possible tests. We
therefore, propose to use the presented NNSGO procedure
to this aerodynamic optimization.

To perform this study, we are using a database containing
different values of the projectile geometry dimensions noted
X , for different Mach numbers noted m associated to
different aerodynamic coefficients. The number of available
samples available is 2600. They are generated from an avail-
able simulation tool to test the efficiency of the procedure
for this application.

The criteria to minimize to find the optimal dimensions in
this study, is the average value of the drag coefficient CA0

over 8 values of the Mach number m between 2 and 5. It is
denoted as : fo(X) (for objective function) and is given by :

fo(X) =
1

8

8∑
l=1

CA0(X,ml), (14)

where ml is the lth Mach number.
The description of the dimensions X of the projectile and

their search boundaries are detailed in the table I. The unit
caliber corresponds to the dimension with respect to the size
of the diameter of the projectile’s body.

TABLE I: Boundaries for each design parameter X of the
geometry

Dimension X Minimum Maximum unit
X1 : Total Length 10 25 caliber
X2 : Nose Angle 10 34.5 degrees
X3 : Fins Height 0.5 2.5 caliber
X4 : Fins Width 0.5 1.72 caliber

X5 : Position of fins 0 1 caliber

This leads to the following optimization problem :

Xopt = argmin
X

fo(X). (15)

The optimisation problem (15) could be analysed geomet-
rically. Indeed, the projectiles with the lowest drag (without
considering any stability constraints) are the ones which

have the lowest possible values for each dimensions. In this
case, Xopt will be the lowest possible dimensions in our
search boundaries which are : Xopt = (10, 10, 0.5, 0.5, 0).
For the purpose of the study, it is considered that this
optimal projectile is unknown and can not be found using a
geometrical analysis. Algorithm 2 is therefore used to solve
the optimisation problem (15). The goal is to see if we are
able, using the proposed procedure, to find configurations
close to Xopt in a limited budget. These configurations
found using the NNSGO procedure should also have a lower
fo(X), than the one with the lowest fo in the initial database.

A multi layer perceptron model with 1 hidden layer and
128 neurons in each layer with a reLu activation function
on each neuron is identified with the available database. It
takes as inputs the geometry parameters X and the Mach
number m. Its ouput is the the aerodynamic coefficient CA0 .
This model provides an estimation of the static relationship
between X , m and CA0

: F̂ (X,m) = ĈA0
.

The maximum of the acquisition function provides the
next geometry to evaluate and is given as :

A(X) = −f̂o(X) + βδmin(X), (16)

where f̂o(X) is the estimated average value of CA0
over 8

Mach numbers using the predictions of the MLP for CA0
:

f̂o(X) = 1
n

∑8
l=1 ĈA0

(X,ml). β is equal to 1. Algorithm 2
is ran for 20 iterations. Each new configuration is evaluated
on the simulator used to generate the database.

In the initial dataset, the projectile with the lowest fo,
noted XD, has a fo(XD) = 0.28 and the optimal projec-
tile Xopt has a fo(Xopt) = 0.24. Among the 20 tested
projectiles, the one with the lowest fo is obtained when
Xbest = (10, 10, 0.5, 1.6, 0.9) for fo(Xbest) = 0.25.

Fig. 3 presents the best projectile Xbest found among the
20 iterations compared to the best one in the dataset and
the known optimum. As shown on this figure, by applying
the procedure described in this paper, it is possible to find a
configuration with a lower CA0

, for different Mach numbers,
than those in the initial dataset. Moreover, the best projectile
found has a mean value of CA0

close to the optimum one.

Fig. 3: CA0 for best geometry in the database XD vs the
one found using the proposed procedure Xbest vs the known
optimal projectile Xopt

The NNSGO procedure is then compared to a brute force
optimisation. In the latter, 60 projectiles are drawn randomly
from a uniform distribution in the search space. The values of
fo are then computated with the simulator used to generate
the database employed in the study. The goal is to see, if
the procedure performs better i.e. finds configurations with a
lower fo, than when generating randomly the configurations
to evaluate.

Fig. 4 presents the values of fo(X), found using the
brute force optimisation (red bars) and using the NNSGO
procedure (green bar). As it can be seen on this figure
4, among the 60 tested projectiles using the brute force
approach, none of them has a lower fo than the best
configuration obtained using the NNSGO procedure, where
only 20 configurations were tested. Therefore, the proposed
procedure provides better results than a brute force procedure
in this study case.

V. CONCLUSIONS AND PERSPECTIVES

In this study, an alternative to Bayesian Optimisation for
the optimisation of costly unknown functions is proposed.
It is based on the use of neural networks instead of Gaus-
sian Processes. This method uses the distance between the
evaluated point and the closest observed one to it, instead of
uncertainties to search for a potential optimum to be tested
next on the unknown function. The proposed procedure is
tested on two different study cases and provides efficient
results in both domains. The next step will be to improve
our solution by extending it to optimization problems under
constraints.

VI. ACKNOWLEDGEMENT

This work is funded by the French-German Research
Institute of Saint-Louis (ISL). The database used for the
study is provided by ISL.

REFERENCES

[1] P. I. Frazier, “A tutorial on bayesian optimization,” arXiv preprint
arXiv:1807.02811, 2018.

[2] C. E. Rasmussen, “Gaussian processes in machine learning,” in
Summer school on machine learning, pp. 63–71, Springer, 2003.

[3] X. Bombois and M. Forgione, “Control design via Bayesian Optimiza-
tion with safety constraints,” Conference on Control Technology and
Applications, 2022.

Fig. 4: Smart grid optimisation (green) vs Brute force optimi-
sation (red)

[4] S. Bansal, R. Calandra, T. Xiao, S. Levine, and C. J. Tomlin, “Goal-
driven dynamics learning via bayesian optimization,” in 2017 IEEE
56th Annual Conference on Decision and Control (CDC), pp. 5168–
5173, 2017.

[5] S. Kuindersma, R. Grupen, and A. Barto, “Variational bayesian
optimization for runtime risk-sensitive control,” Robotics: Science and
Systems VIII, pp. 201–208, 2012.

[6] R. Guzman, R. Oliveira, and F. Ramos, “Heteroscedastic bayesian
optimisation for stochastic model predictive control,” IEEE Robotics
and Automation Letters, vol. 6, no. 1, pp. 56–63, 2020.

[7] R. Marchant and F. Ramos, “Bayesian optimisation for intelligent en-
vironmental monitoring,” in 2012 IEEE/RSJ international conference
on intelligent robots and systems, pp. 2242–2249, IEEE, 2012.

[8] C. Andersson, A. H. Ribeiro, K. Tiels, N. Wahlström, and T. B. Schön,
“Deep convolutional networks in system identification,” in 2019 IEEE
58th conference on decision and control (CDC), pp. 3670–3676, IEEE,
2019.

[9] M. Forgione and D. Piga, “dynonet: A neural network architecture
for learning dynamical systems,” International Journal of Adaptive
Control and Signal Processing, vol. 35, no. 4, pp. 612–626, 2021.

[10] C. C. Aggarwal, A. Hinneburg, and D. A. Keim, “On the surprising
behavior of distance metrics in high dimensional space,” in Interna-
tional conference on database theory, pp. 420–434, Springer, 2001.

[11] M. Binois and N. Wycoff, “A survey on high-dimensional gaussian
process modeling with application to bayesian optimization,” arXiv
preprint arXiv:2111.05040, 2021.

[12] R. Tripathy, I. Bilionis, and M. Gonzalez, “Gaussian processes with
built-in dimensionality reduction: Applications to high-dimensional
uncertainty propagation,” Journal of Computational Physics, vol. 321,
pp. 191–223, 2016.

[13] A. Bemporad, “Global optimization via inverse distance weighting and
radial basis functions,” Computational Optimization and Applications,
vol. 77, no. 2, pp. 571–595, 2020.

[14] J. Snoek, O. Rippel, K. Swersky, R. Kiros, N. Satish, N. Sundaram,
M. Patwary, M. Prabhat, and R. Adams, “Scalable bayesian opti-
mization using deep neural networks,” in International conference on
machine learning, pp. 2171–2180, PMLR, 2015.

[15] S. Ruder, “An overview of gradient descent optimization algorithms,”
arXiv preprint arXiv:1609.04747, 2016.

[16] L. Buitinck, G. Louppe, M. Blondel, F. Pedregosa, A. Mueller,
O. Grisel, V. Niculae, P. Prettenhofer, A. Gramfort, J. Grobler, R. Lay-
ton, J. VanderPlas, A. Joly, B. Holt, and G. Varoquaux, “API design for
machine learning software: experiences from the scikit-learn project,”
in ECML PKDD Workshop: Languages for Data Mining and Machine
Learning, pp. 108–122, 2013.

[17] P. Virtanen, R. Gommers, T. E. Oliphant, M. Haberland, T. Reddy,
D. Cournapeau, E. Burovski, P. Peterson, W. Weckesser, J. Bright, S. J.
van der Walt, M. Brett, J. Wilson, K. J. Millman, N. Mayorov, A. R. J.
Nelson, E. Jones, R. Kern, E. Larson, C. J. Carey, İ. Polat, Y. Feng,
E. W. Moore, J. VanderPlas, D. Laxalde, J. Perktold, R. Cimrman,
I. Henriksen, E. A. Quintero, C. R. Harris, A. M. Archibald, A. H.
Ribeiro, F. Pedregosa, P. van Mulbregt, and SciPy 1.0 Contributors,
“SciPy 1.0: Fundamental Algorithms for Scientific Computing in
Python,” Nature Methods, vol. 17, pp. 261–272, 2020.

[18] M. Albisser, Identification of aerodynamic coefficients from free flight
data. PhD thesis, Université de Lorraine, 2015.

