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13 Abstract 
14 Amino acids evolve at different speeds within protein sequences, because their functional and 

15 structural roles are different. Notably, amino-acids located at the surface of proteins are known 

16 to evolve more rapidly than those in the core. In particular, amino-acids at the N- and C-termini 

17 of protein sequences are likely to be more exposed than those at the core of the folded protein 

18 due to their location in the peptidic chain, and they are known to be less structured. Because 

19 of these reasons, we would expect that amino-acids located at protein termini would evolve 

20 faster than residues located inside the chain. Here we test this hypothesis and found that amino 

21 acids evolve almost twice as fast at protein termini compared to those in the centre, hinting at 

22 a strong topological bias along the sequence length. We further show that the distribution of 

23 solvent-accessible residues and functional domains in proteins readily explain how structural 

24 and functional constraints are weaker at their termini, leading to the observed excess of amino-

25 acid substitutions. Finally, we show that the specific evolutionary rates at protein termini may 

26 have direct consequences, notably misleading in silico methods used to infer sites under 

27 positive selection within genes. These results suggest that accounting for positional 

28 information should improve evolutionary models.

29
30
31 Introduction
32 Since the early days of structural biology, protein termini have somewhat unsurprisingly often 

33 been found at the protein surface (Kendrew et al. 1960). Today, tens of thousands of protein 

34 structures have been resolved (Berman et al. 2000), and protein termini have indeed quite 

35 consistently been found to be less structured and exposed outside of the protein core 

36 (Carugo 2011), often leading to difficulties in including them in crystals for X-ray 
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37 crystallography. It is now well established that residues located at the surface of a folded 

38 protein and accessible to the solvent evolve faster than those in the core of the protein 

39 (Moutinho et al. 2019). We can therefore ask if residues at the extremities of peptidic chains 

40 evolve faster than those in the central region of the sequence. Within proteins, evolutionary 

41 rates are already known to be heterogeneous, because they are influenced by a residue’s 

42 implication in functional domains and by structural constraints in the folded protein (Echave 

43 et al. 2016). Accounting for such heterogeneity in models of molecular evolution is critical to 

44 accurately infer phylogenies and estimate cases of positive selection. Elaborate models have 

45 been developed to achieve this (Halpern and Bruno 1998), generally by estimating site-

46 specific rates in a maximum likelihood framework employing Markov models of sequence 

47 evolution (Yang et al. 2000; Kosakovsky Pond and Frost 2005; Baele et al. 2021). 

48 However, the impact of the position of a given amino acid in the sequence relative to protein 

49 start and end on the rate of molecular evolution has received little attention so far, and is 

50 therefore not accounted for in such models. 

51 We therefore tested the hypothesis that residues located at protein termini might evolve 

52 faster than residues in the core. Towards this, we measured the rates of amino-acid 

53 changing substitutions (non-synonymous, dN) and silent substitutions (synonymous, dS) at 

54 individual codons positions and averaged them over thousands of coding sequences (CDS) 

55 in animal or in plants. We found that rates of molecular evolution are almost twice as fast at 

56 CDS ends as in the centre. We next showed that structural constraints of the folded proteins, 

57 characterised by the relative solvent accessibility (RSA) of residues explain well why 

58 evolutionary rates differ depending on residue positions along the sequence. Finally, we 

59 showed that this faster rate of evolution at protein termini has probable consequence on the 

60 prediction of positive selection. 

61
62 Results
63 Evolution is faster at protein termini
64 To examine the dependency between codon position in CDS and sequence variation during 

65 evolution, we first took a global view of multiple sequence alignments in 15,828 primate gene 

66 families to identify fixed mutations (substitutions, insertions and deletions) that took place in 

67 these sequences during the evolution of 26 primate species. The results showed a strong 

68 excess of such changes towards the sequence extremities (Fig. 1A), leading to a distinctive 

69 U-shaped pattern. To better understand this result, we computed separately the dN and dS 

70 rates in this collection of primate sequences. Computing rates of molecular evolution in 

71 eukaryote CDS is conventionally performed on multiple sequence alignments of CDS 

72 belonging to the same gene family. At each site considered independently, results rely on the 

73 number of aligned sequences at this position and on the small minority that show 
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74 substitutions. The robustness of measures at individual sites is therefore variable and 

75 generally low. Here we computed average rates at specific codon positions but from 

76 collections of CDS comprising thousands of gene families. This enabled us to concatenate 

77 aligned codons from the same position sampled from each gene family. dN and dS rates 

78 were then computed from virtual sequences composed exclusively of codons from the same 

79 position in their respective CDS (Figure S1), thus providing strong and uniform statistical 

80 power across sites. 

81 Results showed that while the dS remains remarkably constant along the CDS length 

82 (average dS=0.052), the dN increases significantly in the region spanning the first and last 50 

83 codons (Fig. 1B). We observed a similar bias when computing dN and dS along the CDS of 

84 6,459 plant (Fabids) gene families, which were subjected to an approximately 8-fold higher 

85 divergence rate than primates (Fig. 1C). Effect sizes are major, with a more than two-fold 

86 decrease in dN between the first 10 codons and the middle 50 codons (0.117 vs 0.054, a 

87 54% decrease) while dS remains essentially constant (0.400 vs 0.413, a 3% increase). In 

88 summary, the dN appears to be driving the distinctive U-shaped pattern of total substitutions 

89 and dN/dS in gene CDS (Fig. 1D). 

90
91
92
93
94
95
96
97
98
99

100
101
102
103 Fig. 1. (A). Frequency of amino acid substitutions, insertion and deletions computed in 15,828 
104 primate multiple sequence (CDS) alignments (MSA), rescaled from 0 to 100% of the CDS 
105 length. (B). Distribution of silent (dS) and non-synonymous (dN) substitution rates computed 
106 at each codon position from random pairs of sequences sampled from 14,186 primate MSA 
107 without alignment gaps and shown here for the first (left panel), middle (middle panel) and last 
108 (right panel) 50 codons. (C). Same as in B but for pairs of CDS sampled from 6,459 MSA of 
109 plant (Fabids) genes. (D). Distribution of dN/dS ratio for dN and dS values shown in B but 
110 across the entire CDS length rescaled from 0 to 100%. In all panels the shaded area represents 
111 the 95% confidence interval. 
112

Page 3 of 43 Molecular Biology and Evolution



Article

4

113 Computing substitutions in a multiple alignment of CDS is a multi-step process, with many 

114 potential sources of technical biases which could potentially explain this pattern (Schneider 

115 et al. 2009; Prosdocimi et al. 2012). We conducted a serie of experiments to exclude 

116 annotation errors, multiple alignment artefacts and compositional biases (Supplementary 

117 material, Fig. S2 and S3), showing that our observations were robust to controls designed to 

118 address possible technical artefacts in the process, from CDS annotation to substitution 

119 calculations.

120
121 Evolution is faster for solvent-exposed amino acids
122 We next examined biological or evolutionary explanations. We first eliminated the possibility 

123 that the increased dN at CDS extremities would be caused by a stronger local mutation rate 

124 because the dS, which would be much more sensitive to the mutation rate, is essentially 

125 constant along CDS length (Fig. 1B,C). We next reasoned that weaker negative selection at 

126 protein termini might be caused by weaker functional constraints. The functional role of 

127 proteins depends both on the structural architecture of the folded sequence and on specific 

128 domains present at key positions within the sequence. We investigated how structural 

129 constraints, or lack thereof, may influence evolutionary rates at protein termini. Within the 

130 core of a folded protein, amino-acids are involved in a tight network of interactions that 

131 shapes the molecular function and role of the macromolecule. Amino acids located at the 

132 surface of the folded protein are interacting with the solvent and are typically less important 

133 for the protein function. It is indeed well-established that evolutionary rates differ between 

134 residues depending on their solvent accessibility (Franzosa and Xia 2009; Ramsey et al. 

135 2011; Moutinho et al. 2019). The precise relationship between solvent accessibility, 

136 evolutionary rates and amino acid position along the sequence has however never been 

137 ascertained. Such investigation has long been impaired by the quasi-systematic absence of 

138 N- and C-terminal regions in protein structure files, because those were either poorly 

139 resolved in electron density maps, genetically modified or removed prior to protein 

140 production. To circumvent this issue, we used the recently released dataset of 22,613 

141 complete protein structures predicted by Alphafold (Jumper et al. 2021) from the human 

142 genome, which have been shown to provide remarkably accurate Relative Solvent 

143 Accessibility (RSA) estimates on individual proteins (Bæk and Kepp 2022). We computed the 

144 RSA of each residue for all proteins (Fig. S6) and we noted that RSA values follow a bimodal 

145 distribution, which coincide with a strong enrichment (RSA < 0.3) or depletion (RSA > 0.6) in 

146 PFAM functional domains. Computing the distribution along protein sequences of residues 

147 from these two categories, we discovered that solvent accessibility increases sharply at 

148 protein termini (Fig. 2A), consistent with these regions being largely unstructured. This could 

149 theoretically be caused by the existence of structures unknown to Alphafold in protein 
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150 termini, resulting in the absence of predicted structure, but several reasons argue against 

151 this. First, this result is in agreement with a general pattern seen in structures obtained 

152 experimentally (Carugo 2011). Second, Alphafold is able to properly fold proteins with 

153 unknown structure (Jumper et al. 2021). Therefore, the observed increased accessibility is 

154 consistent with weak structural constraints at protein termini (Ruff and Pappu 2021; Bæk and 

155 Kepp 2022; Wilson et al. 2022). Critically, the dN/dS rate is low and constant along protein 

156 length in sites with low accessibility, while it is elevated in highly accessible regions (Fig. 2B). 

157 In these controls, the marked increase in dN/dS at sequence extremities shown in Figure 1 is 

158 absent, indicating that solvent accessibility is likely a strong marker of the decrease in 

159 selective pressure observed in the N- and C-terminal region of proteins. 

160
161 Evolutionary rates correlate with protein domain density
162 In order to better characterize these results, we analysed the contribution of protein domains 

163 in the observed evolutionary profile. Predicted protein domains indeed capture a large 

164 fraction of amino acids involved in structural and functional roles in protein sequences, and 

165 their prediction relies on sequence similarity and structural information (Wang et al. 2021). 

166 Both of these features make them also good proxies for sites under evolutionary constraints. 

167 We computed, for several predicted protein domains databases, the distribution of protein 

168 domains by calculating the frequency at which a given position along the protein sequence is 

169 found inside a domain. We found that domains are strongly depleted at protein termini (Fig. 

170 2C and fig. S4A-C), following a distribution consistent with a mechanical exclusion caused by 

171 the physical impossibility for a domain to overlap protein edges. The distribution of domains 

172 decreases sharply towards protein edges regardless of the length of the protein sequences 

173 (Fig. S4D-E), supporting a scenario where all proteins are similarly affected by a deficit of 

174 domain-induced evolutionary constraints at their edges. The dome-shaped distribution of 

175 domains mirrors the distinctive U-shaped distribution of the dN/dS ratio (Fig. 1A), consistent 

176 with our initial hypothesis that a depletion of domains at the edges of proteins would make 

177 them more permissive to non-synonymous changes and indels because of weaker selective 

178 constraints. To test this more directly, we distinguished codons that code for amino acids 

179 involved in a domain from those that do not, and computed the dN/dS for each category 

180 separately (Fig. 2D). In line with the above expectation, the dN/dS bias could not be 

181 observed when computed exclusively inside domains. Again, the difference in dN/dS 

182 behaviour is largely caused by the dN, since the dS remains constant both inside and outside 

183 of domains and is almost identical in both categories throughout the protein length (Fig. S5). 

184 These results are consistent with conclusions from the structure-based analysis, strongly 

185 supporting a model in which selective constraints are significantly weaker at protein edges.

186
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187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213 Fig. 2. (A) The distribution of frequency of amino acids with high (red line) and low (blue line) 
214 Relative Solvent Accessibility (RSA) computed by pCASA on 3D structure predicted by 
215 AlphaFold on 22,613 human protein sequences, rescaled to 0-100% of the length. (B) dN/dS 
216 computed on 7,144 sequences common to the AlphaFold and Ensembl primate CDS datasets, 
217 where sites with high (red line) and low (blue line) RSA are distinguished. (C) The distribution 
218 of protein domains from the PFAM database in 9,073 human proteins rescaled from 0-100% 
219 of their length (blue line). The orange line shows the distribution of the same domains in 
220 random non-overlapping positions in the same sequences. (D) dN/dS computed in 14,186 
221 alignments from 26 primate genomes, where sites inside (blue line) and outside (purple line) 
222 PFAM domains are distinguished. (E) Proposed model where the mean dN/dS in high (RSA > 
223 0.6) and in low (RSA < 0.3) accessibility regions are weighted according to the percent of 
224 codons in each RSA category. This model is compared to true observations (green line) from 
225 data without signal peptides. The Mean Absolute Error (MAE) and percent average error 
226 between the model and the true observations are indicated for each panel. In all panels the 
227 shaded area represents the 95% confidence interval.
228
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229 Solvent exposure largely explains the increase in evolutionary rate at protein termini
230 Because both RSA and functional domains correlate with dN/dS variation at protein termini, 

231 we designed a model to estimate their respective influence. The model takes as parameter a 

232 dN/dS value computed as an average across all domains, or across all low RSA (RSA < 0.3) 

233 or all high RSA (RSA > 0.6) regions, and weighs it by the proportion of residues in the 

234 corresponding category at a given position (Supplementary Material). When applied solely 

235 with RSA as parameter, the model reproduced the observed dN/dS with remarkable 

236 accuracy in human proteins (mean difference between model and data = 5.09%, Figure 

237 S7A), suggesting that RSA is sufficient to explain the bias in average dN/dS along protein 

238 sequences. When the model uses only functional domains as parameter (Figure S7B), the fit 

239 to the data at protein termini is degraded compared to the RSA-only model (mean difference 

240 at both termini: 19%) and mean difference between model and observation is higher at 14%. 

241 The model combining both RSA and domain as parameters (Figure S7C) confirms the lower 

242 impact of domains in explaining the dN/dS shift, because the average difference with the 

243 data is the same as with the RSA-only model (Supplementary Material). 

244 The RSA-only model, however, noticeably deviates from the observed data in the first 10 

245 codons at the N-terminus. We hypothesised that signal peptide, which are known to be highly 

246 variable in sequence (von Heijne 1985), might play a role in causing this deviation. Indeed, 

247 the shift largely disappeared when we removed the 15.8% of proteins with a N-terminal 

248 signal peptide (Fig. 2E). Signal peptides are therefore likely to provide additional relief from 

249 the evolutionary pressure measured in this small region, that is not accounted for with RSA. 

250 The impact of peptide signals is particularly notable when comparing the N-terminus, which 

251 contain some, and the C-terminus, which contain none (Figure S8A). Differences in average 

252 dN/dS distribution between the two protein ends are greatly reduced when signal peptide are 

253 excluded (Figure S8B). 

254
255 Faster evolution can be measured at the termini of individual proteins
256 Until now, we measured the dN/dS bias at protein ends by averaging thousands of sites at 

257 each position. Is the bias also significant at the level of individual sequence alignments? This 

258 is important if evolutionary models applied to single gene families are likely to be affected. To 

259 address this, we computed a correlation between codon position and dN/dS for 7,800 

260 multiple sequence alignments, separately for the 50 codons at the beginning and at the end 

261 of CDS (Fig. 3A). 

262
263
264
265
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266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295 Figure 3. (A) Distribution of Pearson correlation coefficients between dN/dS values and their 
296 position in mouse CDS from 7,800 alignments of at least 3 rodent sequences. The distributions 
297 correspond either to the first (filled blue bars) or the last (filled orange bars) 50 codons. The 
298 blue line shows the distribution for the first and last 50 codons in the same mouse sequences 
299 with shuffled positions. (B) Distribution of the frequency of sites under positive selection in 
300 13,301 rodent CDS rescaled to 0-100% of their length (C) Distribution of the frequency of sites 
301 under positive selection in the first, middle and last 50 codons of 8,371 rodent CDS, 
302 distinguishing sites with high (red line) and low (blue line) RSA. (D) Distribution of the frequency 
303 of sites under positive selection in the first, middle and last 50 codons of 13,020 rodent CDS, 
304 distinguishing sites inside (blue line) and outside (red line) PFAM domains.
305
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306
307 Compared to a control where amino acid positions were randomised, the distribution of 

308 correlation coefficients were significantly shifted towards negative (p-value=3.10-63; t-test) 

309 and positive (p-value = 7.10-79; t-test) values for the start and end regions of CDS, 

310 respectively. This reflects the existence of a measurable increase in dN/dS towards CDS 

311 edges, even in individual sequences. We propose that this pattern is caused by the same 

312 factors as for the average sequences analysed previously (Fig. 1B), the biased solvent 

313 accessibility and, to a lesser extent, the domain distribution. 

314
315 Faster evolutionary rates at termini confound tests of positive selection
316 These results immediately raised questions for the identification of positive selection in protein 

317 sequences, because a significantly elevated dN compared to some background rate is 

318 generally taken as evidence of adaptive changes (Nei and Kumar 2000). The U-shaped bias 

319 in dN observed in our study suggests that relaxation of constraints at protein edges might 

320 confound tests of positive selection. To investigate this, we estimated sites under positive 

321 selection in a set of 13,301 rodent gene trees using a site model (methods). We found that 

322 sites estimated under positive selection are strikingly enriched at protein edges (Fig. 3B), and 

323 that this enrichment can be specifically attributed to residues with high solvent accessibility 

324 (Figure 3C) and to sites located outside of functional domains (Fig. 3D). Notably, the same 

325 bias towards CDS extremities can be observed in several published scans for positive selection 

326 (Figure S9). Interestingly, while this bias is conspicuous for sites estimated to have been 

327 subject to positive selection using bioinformatic methods, it is not the case for experimentally 

328 verified sites, although our compilation of cases for this category is too small to draw general 

329 conclusions. 

330
331 Discussion
332 We revealed a pattern of evolutionary rate along CDS that has so far remained concealed: the 

333 average amino acid substitution rate (dN) increases towards the extremities of the sequence. 

334 We found this pattern by assembling observations that were sometimes known quantitively or 

335 intuitively in the field but never connected with respect to codon or amino acid positions in 

336 sequences. This pattern provides insights into the elusive mechanism driving evolutionary rate 

337 heterogeneities (Echave et al. 2016). First noted by Perutz and colleagues on haemoglobin 

338 (Perutz et al. 1965) and confirmed by many studies since then, protein surfaces evolve faster 

339 than their interior, where structural constraints, residue interactions and functional sites are 

340 most enriched and solvent accessibility is lower (Franzosa and Xia 2009; Ramsey et al. 2011). 

341 Attempts at explaining evolutionary rate heterogeneity have thus mainly focused on this 

342 paradigm, that structural constraints governed by complex spatial interactions create a range 
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343 of selective pressures on amino acids, but that are hard to predict from the sequence itself. 

344 Here, we show that the average dN/dS varies along the length of protein sequences following 

345 a U-shape distribution, and that a simple model based on high and low RSA values explains > 

346 93% of this distribution over the extremities of protein sequences, with a small contribution by 

347 signal peptides in the first codons at the N-terminus. 

348 It is worth noting that in the present study, molecular rates are not dependent on a substitution 

349 model, as they do not rely on ancestral state inferences in CDS, and molecular rates are 

350 computed on MSA without gaps, which are known to introduce biases. This may explain that 

351 while we see the same increase in dN/dS at the 5’ end of CDS as in a recent study on 

352 Drosophila genes (Davydov et al. 2019), we do not see the same decrease in substitution rates. 

353 On a related matter, we wish to point out that our finding that the average dS is constant along 

354 CDS length (Figs. 1B, 1C) should not be interpreted as meaning that dS does not vary or is 

355 not subject to site heterogeneity in individual genes, as this has been shown in many previous 

356 studies (Rubinstein and Pupko 2012). 

357 Protein domains in the PFAM database are unlikely to cover all biological domains (Sammut 

358 et al. 2008), even in well-studied vertebrate genomes. That human protein sequences still 

359 contain non-annotated domains (false negatives) would be consistent with the observation that 

360 the dN/dS measured outside domains is lower in the centre of proteins (Fig. 2D), as if some 

361 feature (e.g. non-annotated domains) would exert negative selection. However, the important 

362 point for the present study is that the PFAM database contains few false positives, i.e. regions 

363 incorrectly annotated as functional domains. This is supported by the observation that dN/dS 

364 inside domains is remarkably constant across the length of proteins (Fig. 2D), suggesting that 

365 domain annotation by PFAM is highly specific.

366 We may ask why, if protein termini are under low evolutionary pressure, are they not cropped 

367 by micro-deletions in the course of evolution? Requirements for reduced RNA secondary 

368 structures at the beginning of the CDS (Gu et al. 2010), presence of signal sequence with 

369 limited folding constraints but with key roles in the processing and traffic of the protein, such 

370 as signal peptides (von Heijne 1985), but also the necessary display of amino acids carrying 

371 specific post-translational modifications such as epigenetic marks in histones (e.g. methyl or 

372 acetyl groups) (Ghoneim et al. 2021), illustrate how protein extremities can fulfil specific 

373 important roles linked to their intrinsic evolutive and structural flexibility. 

374 Methods designed to identify positive selection are sensitive to false positives, potentially 

375 caused by factors such as variable effective population size (Rousselle et al. 2018), biased 

376 gene conversion (Ratnakumar et al. 2010), multi-nucleotide mutations (Venkat et al. 2018) 

377 and punctual relaxation of selective pressure in a lineage (Zhang et al. 2005; Hughes 2007). 

378 Here we show that sites inferred as having experienced a period of positive selection are 

379 conspicuously enriched in regions with high dN caused by low selective pressure, suggesting 
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380 that they may contain a high proportion of false positives. This is consistent with the 

381 observation that experimentally tested positively selected sites are, on the contrary, depleted 

382 at sequence extremities. Of note, we observed that the synonymous rate dS is constant 

383 along protein length, thus providing little leverage for background model adjustments to 

384 counteract this effect in statistical tests of positive selection. Considering the excess of 

385 positive selection inferences at protein extremities as false positives would also be consistent 

386 with expectations that selection for advantageous traits would operate predominantly where 

387 functional domains and structural constraints are most frequent, i.e. far away from the 

388 extremities (Slodkowicz and Goldman 2020).  Altogether, we propose that weaker structural 

389 constraints and weaker functional constraints lead to lower selective pressure at protein 

390 termini. Accounting for this bias in models of molecular evolution should improve their 

391 handling of site heterogeneity and accuracy of adaptive evolution inference. 

392
393 Material and Methods 
394 Coding sequences, protein sequences and alignments. The sequence data comprises 4 

395 sets covering different taxonomic groups: primates, rodents, plants, and Human-Mouse 

396 orthologs. Primate and rodent sequences were downloaded from the Ensembl database 

397 (Cunningham et al. 2021) as follows:

398 Primates. The genomes are from the following species: Otolemur garnettii, Microcebus 

399 murinus, Propithecus coquereli, Prolemur simus, Saimiri boliviensis boliviensis, Cebus 

400 capucinus, Aotus nancymaae, Cercocebus atys, Mandrillus leucophaeus, Papio anubis, 

401 Theropithecus gelada, Macaca mulatta, Macaca fascicularis, Macaca nemestrina, 

402 Chlorocebus sabaeus, Colobus angolensis palliatus, Piliocolobus tephrosceles, 

403 Rhinopithecus roxellana, Rhinopithecus bieti, Pongo abelii, Gorilla gorilla, Pan troglodytes, 

404 Pan paniscus, Homo sapiens, Nomascus leucogenys, Carlito syrichta, Mus musculus 

405 (outgroup). 

406 Rodents. The genomes are from the following species: Tupaia belangeri, , Dipodomys ordii, 

407 Jaculus jaculus, Rattus norvegicus, Mus musculus, Mus spicilegus, Microtus ochrogaster, 

408 Cricetulus griseus, Mesocricetus auratus, Peromyscus maniculatus bairdii, Nannospalax 

409 galili, Octodon degus, Cavia porcellus, Chinchilla lanigera, Sciurus vulgaris, Marmota 

410 marmota marmota, Urocitellus parryii, Ictidomys tridecemlineatus, Ochotona princeps 

411 (outgroup), Oryctolagus cuniculus (outgroup).

412 Phylogenetic gene trees and CDS sequences restricted to either primate or rodent genomes 

413 were downloaded from Ensembl Multi compara v101 (primates) and v104 (rodents) via the 

414 Perl API. To retain only strict 1:1 orthologs, for each tree the largest sub-tree that does not 

415 contain duplications was extracted, with a random choice in case of a tie. To avoid 

416 alignments with too few sequences, only the trees of size greater than 4 were selected. A 
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417 multiple sequence alignment (MSA) on the amino acid sequences was then performed with 

418 MAFFT (Katoh and Standley 2013) (--maxiterate 1000 –localpair). Sequences were finally 

419 back-translated (treebest backtrans -t 0.9) with the corresponding CDS to obtain the final 

420 aligned codons in nucleotides. 

421 Plants. The genomes were from the following Fabids species: Cucumis sativus, Medicago 

422 truncatula, Lotus japonicus, Glycine max, Phaseolus vulgaris, Phaseolus angularis, Lupinus 

423 angustifolius, Manihot esculenta, Populus trichocarpa, Prunus persica. 

424 Coding sequences from all 10 genomes were downloaded from the April 2021 release of the 

425 OMA database (Altenhoff et al. 2021) based on Ensembl Plants. A MSA on the amino acid 

426 sequences of each OMA family was then computed with FSA (Bradley et al. 2009) with 

427 default parameters. Sequences were finally back-translated (treebest backtrans -t 0.9) with 

428 the corresponding CDS to obtain the final aligned codons in nucleotides.

429 Human-Mouse orthologs. Gene CDS were directly extracted from mRNA sequences 

430 (transcripts) downloaded from the October 2020 release of AniProtDB (Barreira et al. 2021). 

431 A reciprocal blastp was performed (e-value 1.10-3) to select orthologs. Pairs of matching 

432 sequences were then aligned using the Needleman-Wunsh algorithm (needle, with -gapopen 

433 10.0 -gapextend 0.5) from the EMBOSS package.

434 (See Table S1 for a summary of data set size (number of sequences) related to figures.)

435
436 Gap-less alignments. Algorithms introduce gaps in MSA to accommodate insertion or 

437 deletions of amino acids. They are more frequent at the edges than in the middle of CDS, 

438 and they may bias the counting of substitutions in these regions: for every gap, there is one 

439 less site available to count substitutions in a column of the alignment, thus decreasing 

440 statistical power and increasing noise. To quantify substitutions in an unbiased way, for some 

441 results we removed, in each alignment, sequences that introduce gaps. Therefore, remaining 

442 sequences are aligned with no gaps, only substitutions. Since it was not always possible to 

443 find at least 2 remaining sequences in a given alignment, this procedure resulted in a smaller 

444 set of alignments (see table S1).

445
446 Position-specific codon alignments and evolutionary rate computation. To compute 

447 molecular evolutionary rates presented in 3 panels of 50 codons each, the following 

448 procedure was followed. Two random CDS sequences beginning with a start codon ATG 

449 were chosen in each MSA, and the aligned codons at the same position in each pair were 

450 concatenated into a new, position-specific alignment. The procedure was applied for the first, 

451 middle and last 50 codons of each alignment. On each concatenated position-specific 

452 alignment, the dN and dS were computed using the YN00 model in Codeml from the PAML4 

453 package (Yang 2007) using the Bio.Phylo.PAML.codeml library. See Figure S1 for a 
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454 schematic representation of the procedure. Several codon models were tested (YN00, 

455 LWL85 and NG86), with similar results. In order to limit situations where two codons would 

456 be counted in adjacent 50-codons panels because of short CDS, we restricted these 

457 computations to sequences at least 134 codons (>400 nucleotides) long (Figure S2).   

458
459 Metagenes. Representations scaled from 0% to 100% of the length of proteins (metagenes) 

460 were computed as follows. For each MSA (e.g. for evolutionary rates, Figure 1A) or each 

461 protein sequence (e.g. RSA value density, Figure 3A), the length of the MSA (respectively 

462 sequences) was divided in 100 intervals. For this reason, only CDS/proteins of at least 100 

463 codons (or aa) are used. For each interval, the variable of interest (e.g. the number of aa 

464 substitutions and indels in Figure 1A) was divided by the number of sites in the interval 

465 (height of the columns in the MSA times the width of the interval). This ratio, now normalized 

466 to account for the varying size of each sample, was averaged on all samples for each 

467 position.

468
469 Synthetic sequences. To control for the potential role of errors during MSA constructions, 

470 which may have caused the observed excess of substitutions in CDS edges, we built a set of 

471 14,470 synthetic multiple alignments using INDELible (Fletcher and Yang 2009), which 

472 simulates aligned sequences containing insertions/deletions. Parameters were LAV 2 300 

473 model for gaps, submodel 4 0.175 , insertrate 0.010500, deleterate 0.021000, and primate 

474 values for codon stationary frequencies. The template tree was taken from the real dataset, 

475 with one replicate for each gene tree. This resulted in 14,470 simulated alignments which 

476 were considered to be the “truth”. All gaps were then removed to reconstitute the original 

477 CDS, which were translated before being aligned with mafft (--maxiterate 1000 --localpair) in 

478 amino acids and back-translated into codon alignments. There were thus two sets of 14,470 

479 sequences: a “truth” set generated by INDELible and a “realigned” set. It was then possible 

480 to compute the dN/dS ratio for both datasets and compare the values at each position to 

481 measure the impact of the multiple alignment method. The same experiments were 

482 performed by realigning with FSA with and without HMM-Cleaner (Di Franco et al. 2019), 

483 with similar results. Other experiments were conducted by artificially lengthening (by a factor 

484 of up to 50) the length of the branches to obtain more distant sequences, but this did not 

485 change the conclusions. 

486
487 Flanking regions. To control for a potential bias due to annotation errors, particularly at the 

488 extremities of the CDS which are notoriously difficult to identify precisely, we computed 

489 dN/dS values on position-specific codon alignments that included Untranslated (UTR) 

490 sequences before the start codon and after the stop codon. For this, all Nomascus 
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491 leucogenys (Nleu 3.0) and Pan troglodytes (Pan tro 3.0) CDS sequences from Ensembl 

492 version 104 were downloaded with upstream and downstream flanking 30 nucleotides 

493 collected via BioMart. Amino acid translation, double blastp (-evalue 1e-3) and reciprocal 

494 best hits selection followed by alignment (mafft --maxiterate 1000 --localpair) and finally 

495 backtranslation were performed to obtain aligned nucleotide data. Only the 13,079 pairs of 

496 orthologs aligned with no gaps were retained in order to compute dN/dS in these CDS as 

497 well as in the 10 flanking pseudo-codon overlapping UTR sequences. 

498
499 Functional Domain distribution. Functional protein domains were downloaded via the 

500 Ensembl v101 API for 12,067 human protein sequences selected from the primate MSA for 

501 the computation of molecular rates, for four different databases: Pfam (Mistry et al. 2021), 

502 Smart (Letunic et al. 2021), SuperFamily (Gough et al. 2001) and Prosite (Sigrist et al. 2013) 

503 patterns. To compute random re-distribution of domains, the sizes of the inter-domain spaces 

504 for each protein were summed, then redivided in the same number of intervals but using 

505 randomly sampled boundaries. These new inter-domain intervals were then re-inserted 

506 between the original domains without changing their order or content. 

507
508 Solvent accessibility. PDB-formatted 3D structures of the human and mouse proteomes 

509 predicted by AlphaFold (Jumper et al. 2021) were downloaded from the AlphaFold Protein 

510 Structure Database (Varadi et al. 2022) resulting in 23,391 human and 21,615 mouse 

511 structures. To obtain relative solvent accessibilities (RSA), we used pCASA (Wei et al. 2017) 

512 to compute the total accessible surface (m) and the average accessible surface (n) for each 

513 residue, and we took the ratio between the former and the latter: RSA = m / n.

514
515 Signal Peptides. Signal peptides were identified in the primate sequences involved in gap-

516 less multiple sequence alignments (Table S1) using SignalP (Almagro Armenteros et al. 

517 2019) resulting in 15.82% proteins with a signal peptide.

518
519 Pearson correlations in individual sequences. We started from the same 13,668 rodent 

520 phylogenetic trees and sequence families as described above from Ensembl version 104 

521 (Table S1), aligned with MAFFT as described. We restricted the alignments to those of at 

522 least 400 bp, containing sequences from at least three different species and with no gap. The 

523 few MSA where all dN/dS values are null and no correlation can be computed were also 

524 excluded, resulting in 7,812 MSA for the 5’ end and 7,790 MSA for the 3’ end, respectively. 

525 The dN and dS were computed using the YN00 model in Codeml from the PAML4 package 

526 (Yang 2007) using the Bio.Phylo.PAML.codeml library. A Pearson coefficient from a linear 
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527 correlation was computed for each alignment between the dN/dS values and their respective 

528 positions.

529
530 Positive selection. To estimate sites under positive selection, we used 13,555 rodent 

531 phylogenetic trees and sequence families as described above from Ensembl version 104 

532 (Table S1), aligned with MAFFT as described, where the MSA was at least 300 bp (13,301 

533 MSA, Fig. 3B) or at least 400 bp (13,020 MSA, Fig. 3C). To compute positive selection in 

534 high and low RSA amino acids, we had to restrict the analysis to alignments for which we 

535 could unambiguously find a correspondence between the AlphaFold dataset and the 

536 Ensembl Dataset, thus ending with 8,371 MSA. We used Hyphy MEME (Mixed Effects Model 

537 of Evolution) (Murrell et al. 2012; Kosakovsky Pond et al. 2020) to detect sites evolving under 

538 positive selection under a proportion of branches. In all cases, only positions with a positive 

539 selection p-value lower than 0.05 were retained. 

540 We also collected data from the literature (Figure S9) as follows:

541  Table S5 in supplementary data in van der Lee et al. (2017) (van der Lee et al. 2017), 

542 corresponding to 934 Positively Selected Residues (PSR) in 331 primate protein 

543 coding genes out of 11,096 initial gene families tested. Positively selected genes 

544 were identified by Codeml from the PAML package (Yang 2007) using a gene-level 

545 dN/dS test and positively selected residues by selecting sites with a significant 

546 Bayesian posterior probability.

547  Tables S4-S5-S7-S15-S16-S18 in Murrell et al. (2012) (Murrell et al. 2012): We 

548 retained only 13 positively selected sites identified jointly using HyPhy-MEME and 

549 FEL (M+F+) in 7 animal genes. 

550  Table 1 in Rodrigue et al., (2021) (Rodrigue et al. 2021), corresponding to 51 

551 positively selected sites identified in 6 metazoan genes with the MutSel-M3 model at 

552 a threshold p > 0.95. 

553  Table 1 from Yokoyama, S. (2008) (Yokoyama 2008) Corresponding to 51 

554 experimentally validated sites in 6 visual pigment proteins (e.g. Rhodopsins).   

555
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