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Abstract
In this article, the structure of the incremental quasistatic contact problem with Coulomb

friction in linear elasticity (Signorini-Coulomb problem) is unraveled and optimal existence
results are proved for the most general bidimensional problem with arbitrary geometry and
elasticity modulus tensor. The problem is reduced to a variational inequality involving a
nonlinear operator which handles both elasticity and friction. This operator is proved to
fall into the class of the so-called Leray-Lions operators, so that a result of Brézis can be
invoked to solve the variational inequality. It turns out that one property in the definition of
Leray-Lions operators is difficult to check and requires proving a new fine property of the
linear elastic Neumann-to-Dirichlet operator. This fine property is only established in the
case of the bidimensional problem, limiting currently our existence result to that case. In the
case of isotropic elasticity, either homogeneous or heterogeneous, the existence of solutions to
the Signorini-Coulomb problem is proved for arbitrarily large friction coefficient. In the case
of anisotropic elasticity, an example of nonexistence of a solution for large friction coefficient
is exhibited and the existence of solutions is proved under an optimal condition for the friction
coefficient.

1 Introduction
Among the basic Physics laws that every first-year university student in Science learns, there are
the Hooke law (constitutive equation of a linear spring) and the Coulomb law of dry friction. The
study of the coupling between these two basic laws, that is, the coupling between linear elasticity
and dry friction in the case of a continuum, amounts to studying linear elasticity with unilateral
contact at the boundary, complemented with the Coulomb law of dry friction. This coupling
should be naturally considered within the elastodynamics framework, as it is common experience
that the coupling between elasticity and dry friction can excite vibratory responses, such as brake
squeal. This is actually completely out of reach of current knowledge, as no existence of solution
has been proved yet for elastodynamics with frictionless unilateral contact condition on the
boundary (the so-called dynamic Signorini problem). As there are many examples of situations
in which no vibrations are observed, it makes sense to perform the analysis of the coupling
between linear elasticity and dry friction in the quasistatic framework, that is, the case where the
acceleration terms can be neglected. As the Coulomb law of dry friction involves velocities, the
quasistatic problem is an evolution problem, called the Signorini-Coulomb problem. It falls back
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within the class of so-called rate-independent processes [14] such as perfect elastoplasticity [5] or
brittle fracture [9]. It turns out that the Signorini-Coulomb problem raises huge mathematical
difficulties which have not been fully overcome yet and that this problem is less understood
nowadays than perfect elastoplasticity and brittle fracture are.

In this paper, we consider the incremental problem, that is, the problem arising on each time
step of a time discretization. The mathematical structure of that problem is unraveled for the
most general bidimensional case, yielding optimal existence results. We hope that our analysis
extends to higher space dimension, but this extension is still to be performed (see Remark 2.20).
The same is true of the analysis of the limit towards 0 of the time step of the time discretization,
to obtain a solution of the time continuous quasistatic evolution.

The precise formulation of the problem, the state of the art and the description of our
approach are given respectively in the next three sections.

1.1 Formulation of the Signorini-Coulomb problem

The Coulomb law of dry friction is an empirical law, proposed by Coulomb during the eighteenth
century on the basis of the analysis of the rigid motion of a plate under the action of a prescribed
overall force t. It relates the slipping velocity u̇t ∈ R2 to the tangential force tt ∈ R2 and the
normal force tn ≤ 0. It reads as:

u̇t = 0 =⇒ |tt| ≤ −f tn,

u̇t ̸= 0 =⇒ tt = f tn
u̇t

|u̇t|
,

where | · | stands for the Euclidean norm and f ≥ 0 is a given dimensionless, material-dependent
friction coefficient. The Coulomb law of dry friction is equivalent to the following more concise
formulation:

∀v̂, tt ·
(
v̂ − u̇t

)
− f tn

(
|v̂| − |u̇t|

)
≥ 0,

where ‘·’ stands for the usual Euclidean scalar product. In the particular case f = 0 (no friction),
the Coulomb law reduces to tt = 0.

We are now ready to state the formal Signorini-Coulomb problem, which couples elasticity
and dry friction. Consider a smooth bounded open subset Ω of RN (N = 2 or N = 3), whose
boundary is the union of three disjoint parts ∂Ω = ΓU ∪ ΓT ∪ ΓC . We will prescribe respectively
Dirichlet conditions on ΓU , Neumann conditions on ΓT and contact conditions on ΓC . The
domain Ω is the reference configuration of a linearly elastic body. The displacement is denoted
by u : Ω → RN , the (linearized) strain by ε(u) := (∇u + t∇u)/2, the stress by σ(u) = Λ ε(u),
where the elastic modulus tensor Λ is assumed to satisfy the usual symmetry condition:

∀ε̂1, ε̂2 ∈ MN×N
sym , ∀x ∈ Ω, ε̂1 : Λ(x) ε̂2 = ε̂2 : Λ(x) ε̂1, (1.1)

and the strong ellipticity condition:

∃α > 0, ∀ε̂ ∈ MN×N
sym , ∀x ∈ Ω, ε̂ : Λ(x) ε̂ ≥ α ε̂ : ε̂. (1.2)

Above, ‘:’ stands for the Frobenius scalar product between real matrices A : B := ∑
i,j AijBij .

The outward unit normal to Ω will be denoted by n and any vector v : ∂Ω → RN will be split
into normal and tangential parts: v = vnn + vt where the scalar product n · vt = 0 vanishes.
The loading consists in a given volume force F : Ω → RN and a given surface force T : ΓT → RN
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on ΓT . The initial gap in the direction n between the elastic body Ω and a given rigid obstacle is
represented by a function g : ΓC → R, while the given friction coefficient between the two objects
is denoted by f : ΓC → [0,+∞[. The quasistatic Signorini-Coulomb problem consists in finding
a displacement u(s) : Ω → RN defined for time s ∈ [0, T ], satisfying a given initial condition and,
defining the surface traction t := σ(u) n = tnn + tt:

div σ(u) + F = 0, in Ω,
u = 0, on ΓU ,

σ(u) n = T, on ΓT ,

un − g ≤ 0, tn ≤ 0, tn (un − g) = 0, on ΓC ,

∀v̂, tt ·
(
v̂ − u̇t

)
− ftn

(
|v̂| − |u̇t|

)
≥ 0, on ΓC ,

(1.3)

where the dot stands for the time derivative and | · | for the Euclidean norm.
As it is usual in the analysis of such rate-independent quasistatic evolutions, we introduce

a time discretization with time step ∆s > 0, say si := i∆s (i = 0, 1, . . .), and consider the
problem raised on one time step by replacing the velocity u̇ by (ui − ui−1)/∆s. Denoting by
w := ui−1 the displacement at the end of the preceding time step, which is supposed to be given,
and dropping the index i, the problem on one time step is now to find a (time independent)
displacement u : Ω → RN satisfying:

div σ(u) + F = 0, in Ω,
u = 0, on ΓU ,

σ(u) n = T, on ΓT ,

un − g ≤ 0, tn ≤ 0, tn (un − g) = 0, on ΓC ,

∀v̂, tt ·
(
v̂ − ut

)
− ftn

(
|v̂ − wt| − |ut − wt|

)
≥ 0, on ΓC .

(1.4)

1.2 Historical background

The mathematical analysis of the static problem (1.4) was first considered by Duvaut & Lions
in [6]. They observed that when −ftn is replaced by a given τ ≥ 0 in the last line of problem (1.4)
(Coulomb law), then one gets the following variational problem:

u = arg min
v,

v=0, on ΓU ,
vn≤g, on ΓC ,

1
2

∫
Ω

ε(v) : Λε(v) dx−
∫

Ω
F · v dx−

∫
ΓT

T · v dx+
∫

ΓC

τ
∣∣vt − wt

∣∣,
which can be uniquely solved by the direct method of the Calculus of Variations, under appropriate
regularity assumptions on the data. This remark suggests a fixed point strategy applied to
the mapping τ 7→ −ftn. If the mapping τ 7→ tn were Lipschitz-continuous, then the mapping
τ 7→ −ftn would be a contraction for small (Lipschitz) friction coefficient f , yielding a unique
fixed point and therefore a unique solution of problem (1.4) in that case. This hope was dashed
as no Lipschitz-continuity turns out to be fulfilled.

The next progress came from Jarušek’s PhD thesis [10, 11] who developed an original idea of
Nečas under his supervision. He was able to run successfully the fixed-point strategy by applying
Tikhonov’s theorem in a Hilbert space endowed with the weak topology. The compactness needed
to apply this theorem was obtained by requiring additional regularity on the data and proving
additional regularity on the solution by use of local rectification together with the shift technique,
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involving very technical arguments. In this way, the first existence result for problem (1.4)
was proved, provided that the data have little more regularity than usually required, and more
importantly, that the friction coefficient is small enough.

An alternative strategy of proof was later designed by Eck and Jarušek in [7, 8]. They
consider a penalty regularization of problem (1.4), allowing for a small penetration of the body
into the obstacle. In practice, it amounts to replacing the penultimate line in problem (1.4) by:

tn = −1
ε

〈
un − g

〉+
,

where ⟨x⟩+ := max{0, x} stands for the positive part and ε > 0 is the small regularization
parameter. They show that this regularized problem (1.4) can be easily solved by combining
the direct method of the Calculus of Variations with Schauder’s fixed point theorem, whatever
is ε > 0 and for possibly arbitrarily large friction coefficient. Then, a limit ε → 0+ has to be
taken, which involves the product of two weakly convergent sequences. Some compactness is
sought and the local rectification together with the shift technique is therefore used again. With
this approach also, the existence of a solution for problem (1.4) is proved, provided that the
data have little more regularity than usually required, and more importantly, that the friction
coefficient is small enough. Here, ‘small enough’ means smaller than a constant which depends
only on the elastic modulus tensor. Explicit optimal (with respect to their strategy of proof)
values for that constant in terms of the Poisson ratio in the case of elastic isotropy are provided
in [7] for the cases N = 2 and N = 3. This result is still the best known up to now about the
existence of solution for problem (1.4). We underline that it requires that the friction coefficient
is smaller than a finite value, in both cases of isotropic and anisotropic elasticity.

This result was later exploited by Andersson in [1] who proved the existence of solution for
the Signorini-Coulomb evolution problem (1.3) with continuous time. His proof relies on the
estimates of Eck and Jarušek obtained by use of the local rectification together with the shift
technique, and therefore suffers the same limitations: the data have slightly more regularity
than usually required, and more importantly, the friction coefficient is small enough. Here we
emphasize that the only results up to now that escape a smallness condition for the friction
coefficient are:

• the penalty regularization of problem (1.4) considered by Eck & Jarušek which can be
solved for arbitrarily large friction coefficient, thanks to the direct method of the Calculus of
Variations combined with Schauder’s fixed point theorem (the same is true of its continuous
time counterpart in [1]),

• the finite-dimensional counterpart of problem (1.4) (Galerkin approximation) which can be
solved for arbitrarily large friction coefficient, thanks to the direct method of the Calculus
of Variations combined with Brouwer’s fixed point theorem.

In this paper, we prove the new result that the bidimensional static problem (1.4) can be
solved for arbitrarily large friction coefficient in the case of isotropic elasticity. We also prove
that a critical friction coefficient, only depending on the elastic modulus tensor, appears in the
case of anisotropic elasticity. For friction coefficients smaller than this critical value, the existence
of solutions is proved; we also exhibit an example of nonexistence of solutions to the stationary
problem, for friction coefficients larger than the critical value. Hence, our new strategy of proof
yields optimal existence results for the bidimensional static problem (1.4).
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1.3 Strategy of proof and organization of the article

We consider the static problem (1.4). We choose to take as the principal unknown, the normal
component tn of the restriction of the surface force t to the contact part ΓC of the boundary.
Note that if tn = τ ≤ 0 is known, then we can uniquely solve the following minimum problem:

u = arg min
v,

v=0, on ΓU

1
2

∫
Ω

ε(v) : Λε(v) dx−
∫

Ω
F · v dx−

∫
ΓT

T · v dx−
∫

ΓC

τ vn −
∫

ΓC

fτ
∣∣vt − wt

∣∣,
and find a displacement field u in Ω satisfying (1.4), except for the fourth line (contact conditions).

Considering the normal component un of the trace of that minimizer u on ΓC , we have a
nonlinear operator A : τ 7→ un, which is well-defined for all nonpositive τ ≤ 0. Then the static
problem (1.4) can be equivalently formulated as a formal variational inequality involving the
nonlinear operator A: find t ≤ 0 on ΓC such that:

∀t̂ ≤ 0,
∫

ΓC

(
At− g)(t̂− t) ≥ 0. (1.5)

The nonlinear operator A describes both elasticity and dry friction. However, it turns out that
this operator is monotone only in the case of no friction f = 0. We are therefore led to seek more
general conditions on the nonlinear operator A that ensures the solvability of the variational
inequality (1.5).

This was precisely the aim of the article [4] of Brézis, who sought weak conditions on an
abstract nonlinear operator A ensuring that a sequence of Galerkin approximations for the
solution to (1.5) can be built, based on Brouwer’s theorem, and that a limit to a solution of (1.5)
can be taken. Brézis was able to identify a new class of operators that he called pseudomonotone,
for which the variational inequality (1.5) can be solved. The precise definition of pseudomonotone
operators is recalled in Appendix A. The class of pseudomonotone operators contains a smaller
class previously introduced by Leray and Lions [12] to solve a family of nonlinear elliptic boundary
problems. In a nutshell, the Leray-Lions operators A are basically nonlinear operators which
have the form:

At = A (t, t), (1.6)

where the operator A has a monotonicity property with respect to the second variable when
the first variable is frozen, satisfies suitably weak continuity properties separately in the two
variables, and a condition concerning the passage to the limit in the product of two weakly
convergent sequences. The precise definition of Leray-Lions operators is recalled in Appendix A
and involves four properties (i), (ii), (iii) and (iv). Brézis results [4] made it possible to solve
variational inequalities based on Leray-Lions operators.

Coming back to the formal variational inequality associated with the static problem (1.4), we
see that the operator A has naturally the general form (1.6): it suffices to consider the energy
functional:

Et,τ (v) := 1
2

∫
Ω

ε(v) : Λε(v) dx−
∫

Ω
F · v dx−

∫
ΓT

T · v dx−
∫

ΓC

τ vn −
∫

ΓC

ft
∣∣vt − wt

∣∣,
and to define A (t, τ) as the normal component of the trace on ΓC of the unique minimizer of
Et,τ on the space of those v such that v|ΓU

= 0. Hence, At := A (t, t) and by the results of Brézis
surveyed in Appendix A, we are brought back to prove that the operator A is Leray-Lions and
coercive to prove the existence of a solution for the static problem (1.4). It turns out that it is
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very easy to prove that A is unconditionally coercive in any dimension and that properties (i), (ii),
(iii) in the definition of Leray-Lions operator (Definition A.5 in Appendix A) are unconditionally
fulfilled in any dimension.

The challenging part is to prove that property (iv) in the definition of Leray-Lions operator is
also fulfilled. This requires to pass to the limit in a product of two weakly converging sequences,
and therefore to prove somehow a compactness result. We prove such a compactness result,
first in the restrictive case of bidimensional isotropic elasticity, based on a new fine property
of the elastic Neumann-to-Dirichlet operator. As a consequence we obtain the solvability of
the bidimensional static problem (1.4) in the case of isotropic elasticity without any smallness
condition on the friction coefficient.

The handling of anisotropy raises new challenges as it turns out that the operator A, as
defined in the isotropic case, needs no longer to be Leray-Lions in the case of anisotropic elasticity.
The definition of the operator A has to be slightly adapted, so that it can be proved to be
Leray-Lions even in the anisotropic case. But this adaptation requires a critical condition on the
friction coefficient (not needed in the isotropic case). We verify that this condition is optimal by
proving a non-existence result for larger friction coefficients.

The first use of pseudomonotone operators in the sense of Brézis in the context of frictional
contact problems seems to be [2]. There, the stationary motion of a 2d elastic half-space is
analyzed, under frictional contact with a given obstacle.

The article will be split into two parts: the case of isotropic elasticity will be extensively
discussed in Section 2 and the generalization to anisotropic elasticity will be discussed in
Section 3. Section 2 will consist in three subsections. In Subsection 2.1, we state the regularity
assumptions on the data and give easy preliminary lemmas. Subsection 2.2 gathers the existence
proof for the bidimensional isotropic elastic case. The proof of the required fine property of
the elastic Neumann-to-Dirichlet operator, which is a more technical matter, is postponed to
Subsection 2.3. The discussion of anisotropic elasticity in Section 3 is split into three subsections.
In Subsection 3.1, an example of frictional contact problem with no solution for large friction
coefficient is presented. Subsection 3.2 contains the discussion about the generalization of the
solvability result previously obtained in isotropic elasticity to the case of anisotropy. The detailed
proof of the structure of the Neumann-to-Dirichlet operator for the homogeneous anisotropic
elastic half-space, which plays a central role in the analysis, is postponed to Subsection 3.3.
Appendix A recalls general results on pseudomonotone and Leray-Lions operators.

2 The case of isotropic elasticity
The framework of this section is that of isotropic elasticity. We rigorously formulate the static
contact problem with Coulomb friction condition and prove the existence of at least one solution
in the bidimensional case.

2.1 Data regularity and trace spaces

In all the sequel, the bounded open set Ω ⊂ RN will be supposed connected and of class C 1,1,
which entails in particular that n ∈ W 1,∞(∂Ω;RN ). We consider three nonintersecting open
subsets ΓU , ΓT and ΓC of the boundary ∂Ω of Ω, such that ∂Ω = ΓU ∪ ΓT ∪ ΓC (where Γ
stands for the closure of Γ in ∂Ω). For the sake of simplicity, we make the following additional
hypotheses.
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• The subset ΓU has positive Lebesgue measure. As a homogeneous Dirichlet condition will
be prescribed on ΓU , this hypothesis is a convenience to obtain some coercivity. This
hypothesis is not essential and could be dropped at the price of additional complexity of
the presentation.

• The subset ΓC ⊂ ∂Ω is of class C 0,1 (that is, Lipschitz) and dist(ΓU ,ΓC) > 0. Again, this
hypothesis is made for convenience and is probably not essential. It ensures that the space
of traces on ΓC of functions in H1(Ω) that vanish on ΓU :

H :=
{
u|ΓC

∣∣ u ∈ H1(Ω) and u = 0 on ΓU

}
is exactly H1/2(ΓC). Indeed, the space of traces of functions in H1(Ω) is H1/2(∂Ω)
and restrictions to ΓC of functions in H1/2(∂Ω) are in H1/2(ΓC). Vice versa, when
dist(ΓU ,ΓC) > 0, it is always possible to find an extension to ∂Ω of a given function in
H1/2(ΓC), so that this extension vanishes identically in ΓU . When this hypothesis is not
made, the above trace space can be strictly smaller than H1/2(ΓC) (see [13, Section 11]).

We define the space H−1/2(ΓC) as the dual space of H1/2(ΓC). Given Λ ∈ L∞(Ω) satisfying
requirements (1.1) and (1.2), we have the following standard result on the continuity of the
Dirichlet operator, based on Korn’s inequality. Here and henceforth ⟨·, ·⟩ will denote the duality
product.

Proposition 2.1 Let JΛ : H1/2(ΓC ;RN ) → {v ∈ H1(Ω,RN ) : v|ΓU
= 0} be defined as

JΛ(u) := arg min
v∈H1(Ω;RN ),

v|ΓU
=0,

v|ΓC
=u

∫
Ω

ε(v) : Λε(v) dx, for u ∈ H1/2(ΓC ;RN ).

Then, ∥JΛ(u)∥H1(Ω,RN ) is a norm on H1/2(ΓC ;RN ) which is equivalent to that of H1/2(ΓC ;RN ).
In an analogous way, let J ′

Λ : H−1/2(ΓC ;RN ) → {v ∈ H1(Ω,RN ) : v|ΓU
= 0} be defined as

J ′
Λ(t) := arg min

v∈H1(Ω;RN )
v|ΓU

=0

{1
2

∫
Ω

ε(v) : Λε(v) dx−
〈
t,v|ΓC

〉}
, for t ∈ H−1/2(ΓC ;RN ).

Then,
∀v ∈ H1(Ω;RN ), with v|ΓU

= 0,
∫

Ω
ε(J′

Λ(t)) : Λε(v) dx =
〈
t,v|ΓC

〉
and t 7→ ∥J ′

Λ(t)∥H1(Ω,RN ) is a norm on H−1/2(ΓC ;RN ) which is equivalent to the norm of
H−1/2(ΓC ;RN ).

We recall the following standard results.

Proposition 2.2 The mappings:{
W 1,∞(ΓC) ×H1/2(ΓC) → H1/2(ΓC)

(θ, u) 7→ θu

{
H1/2(ΓC) → H1/2(ΓC)

u 7→ |u|

are well-defined and continuous.
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Recalling that Ω has been assumed connected and of class C 1,1, we can combine Proposition 2.1
with Proposition 2.2 to yield:

Proposition 2.3 Let u ∈ H1/2(ΓC ;RN ). Then, un := u · n ∈ H1/2(ΓC) and the mappings:{
H1/2(ΓC ;RN ) → H1/2(ΓC)

u 7→ u · n

{
H1/2(ΓC) → H1/2(ΓC ;RN )

u 7→ un

are continuous. On the dual side, given t ∈ H−1/2(ΓC ;RN ), we define tn ∈ H−1/2(ΓC) by the
formula:

∀v ∈ H1/2(ΓC), ⟨tn, v⟩ := ⟨t, vn⟩,

and the mapping t 7→ tn is continuous from H−1/2(ΓC ;RN ) into H−1/2(ΓC). In particular, there
exists C > 0 such that:

∀t ∈ H−1/2(ΓC ;RN ), ∥tn∥H−1/2(ΓC) ≤ C
∥∥J ′

Λ(t)
∥∥

H1(Ω,RN ).

2.2 Existence in the case of isotropic elasticity

Our strategy for proving the existence of a solution to the Signorini-Coulomb problem on one time
step is to express this problem in terms of a variational inequality applying to tn ∈ H−1/2(ΓC),
the unknown normal part of the surface traction on ΓC . This variational inequality is based on a
nonlinear operator A whose role is to handle both elasticity in the body and dry friction on the
boundary.

More precisely, we will assume the gap with the obstacle to be g ∈ H1/2(ΓC), and we will set:

K :=
{
t̂ ∈ H−1/2(ΓC)

∣∣ t̂ ≤ 0
}
. (2.1)

We will put the Signorini-Coulomb problem on one time step under the form of finding tn ∈ K
such that:

∀t̂ ∈ K,
〈
Atn − g , t̂− tn

〉
≥ 0,

for an appropriate nonlinear operator A : K → H1/2(ΓC). Then, it will be sufficient to prove that
A is pseudomonotone in the sense of Brézis and coercive (see Appendix A) to yield the existence
of a solution for this variational inequality. Actually, the operator will be proved to belong to
a subclass of pseudomonotone operators, the so-called subclass of Leray-Lions operators (see
Appendix A).

Definition 2.4 We assume that Ω ⊂ RN is open, bounded, connected and of class C 1,1, Λ ∈
L∞(Ω), F ∈ L2(Ω;RN ), T ∈ L2(ΓC ;RN ), f ∈ W 1,∞(ΓC ; [0,+∞[) and wt ∈ H1/2(ΓC ;RN ) such
that wt · n = 0 a.e. in ΓC . Given τ, t ∈ K, the convex functional defined by:

Et,τ (v) := 1
2

∫
Ω

ε(v) : Λε(v) dx−
∫

Ω
F · v dx−

∫
ΓT

T · v|ΓT
dx−

∫
ΓC

τ vn −
∫

ΓC

ft
∣∣vt − wt

∣∣,
where vn and vt are defined by the relation v|ΓC

= vnn + vt, has a unique minimizer on the
following closed subspace of H1(Ω;RN ):

V :=
{

v ∈ H1(Ω;RN )
∣∣ v = 0, on ΓU

}
. (2.2)
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The unique minimizer u of Et,τ on V is characterized by the variational inequality:

∀v ∈ V,

∫
Ω

ε(u) : Λε(v − u) dx ≥
∫

Ω
F · (v − u) dx+

∫
ΓT

T · (v|ΓT
− u|ΓT

) dx+

+
∫

ΓC

τ (vn − un) +
∫

ΓC

ft
(∣∣vt − wt

∣∣− ∣∣ut − wt

∣∣). (2.3)

We define A (t, τ) := u|ΓC
· n the normal part of the trace of u on ΓC and At := A (t, t), so that:

A : K ×K → H1/2(ΓC), A : K → H1/2(ΓC).

Proposition 2.5 Denoting by u the minimizer of Eτ,t on V introduced in Definition 2.4, we
have: ∥∥u∥∥

H1(Ω,RN ) ≤ C1 + C2
(
∥τ∥H−1/2 + ∥t∥H−1/2

)
,

for two positive constants C1, C2 > 0 that are independent of t, τ ∈ K. In particular, the nonlinear
operators A and A are bounded (in the sense of Definition A.1).

Proof. Taking v = 0 in (2.3), we have:∫
Ω

ε(u) : Λε(u) dx ≤
∫

Ω
F · u dx+

∫
ΓT

T · u|ΓT
dx+

∫
ΓC

τ un −
∫

ΓC

ft
(∣∣wt

∣∣− ∣∣ut − wt

∣∣)
≤
∫

Ω
F · u dx+

∫
ΓT

T · u|ΓT
dx+

∫
ΓC

τ un −
∫

ΓC

ft
∣∣ut

∣∣.
Hence, by Propositions 2.2 and 2.3,∫

Ω
ε(u) : Λε(u) dx ≤

(∥∥F∥∥
L2 +

∥∥T∥∥
L2

)∥∥u∥∥
H1 +

∥∥τ∥∥
H−1/2

∥∥un

∥∥
H1/2 +

∥∥ft∥∥
H−1/2

∥∥|ut|
∥∥

H1/2

≤
(∥∥F∥∥

L2 +
∥∥T∥∥

L2

)∥∥u∥∥
H1 + C

(∥∥τ∥∥
H−1/2 +

∥∥t∥∥
H−1/2

)
∥u|ΓC

∥H1/2

where we have used that ∥u|ΓT
∥H1/2 ≤ C∥u∥H1 and that f ∈ W 1,∞(ΓC). Since ∥u|ΓC

∥H1/2 ≤
C∥u∥H1 , the claim is a direct consequence of Korn’s inequality. □

We now handle the task of proving that the operator A of Definition 2.4 is a Leray-Lions
operator, that is, that the corresponding operator A satisfies properties (i), (ii), (iii) and (iv) of
Definition A.5 in Appendix A. We will see that properties (i), (ii) and (iii) are easily checked
and that all the difficulty concentrates on the proof of property (iv).

Proposition 2.6 Let A be as in Definition 2.4 and let t ∈ K be arbitrary. The mapping
τ 7→ A (t, τ) is Lipschitz-continuous from K ⊂ H−1/2 to H1/2. It also satisfies the strong
monotonicity property:

∀τ ∈ K,
〈
A (t, t) − A (t, τ) , t− τ

〉
≥ C

∥∥t− τ
∥∥2

H−1/2 ,

for some positive constant C > 0 independent of t and τ . In particular, property (i) of
Definition A.5 is fulfilled.
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Proof. Let t, τ1, τ2 ∈ K. We denote by ui the minimizer of Et,τ i on V introduced in Definition
2.4. Taking u2 as a test function in the variational inequality (2.3) characterizing u1, u1 as
a test function in the variational inequality characterizing u2 and taking the sum of the two
corresponding inequalities, we get:∫

Ω
ε(u1 − u2) : Λε(u1 − u2) dx ≤

∫
ΓC

(
τ1 − τ2)(u1

n − u2
n

)
. (2.4)

Since u1 − u2 = JΛ(u1
|ΓC

− u2
|ΓC

), we get by Proposition 2.1,

∥∥u1
n − u2

n

∥∥2
H1/2 ≤ C

∫
Ω

ε(u1 − u2) : Λε(u1 − u2) dx,

for some positive constant C independent of u1, u2. It follows ∥u1
n − u2

n∥H1/2 ≤ C∥τ1 − τ2∥H−1/2 ,
which is exactly the Lipschitz-continuity of the mapping τ 7→ A (t, τ).

Let τ ∈ H−1/2(ΓC ;RN ) be defined by:

∀v ∈ V,
〈
τ , v|ΓC

〉
:=
∫

Ω
ε(u1 − u2) : Λε(v) dx.

Integrating by parts, the right-hand side of the previous expression is seen to depend only
on v|ΓC

, so that τ is well-defined. In addition, J ′
Λ(τ ) = u1 − u2 and τn = τ1 − τ2, with J ′

Λ
and τn introduced in Propositions 2.1 and 2.3 respectively. Combining Proposition 2.3 with
inequality (2.4), we obtain:∥∥τ1 − τ2∥∥2

H−1/2 ≤ C
〈
A (t, τ1) − A (t, τ2) , τ1 − τ2

〉
,

for some positive constant C > 0, independent of t, τ1, τ2 ∈ K.
Since the mapping τ 7→ A (t, τ) is bounded by Proposition 2.5 and since Lipschitz-continuity

obviously implies hemicontinuity, property (i) of Definition A.5 is proved. □

Proposition 2.7 Let A be as in Definition 2.4 and let τ ∈ K be arbitrary. The mapping
t 7→ A (t, τ) is bounded and continuous from K ⊂ H−1/2 to H1/2. In particular, property (ii) of
Definition A.5 is fulfilled.

Proof. The boundedness has already been proved in Proposition 2.5. To prove the continuity,
we first pick an arbitrary R > 0 and t1, t2 ∈ K, such that ∥ti∥H−1/2 ≤ R, for i = 1, 2. Denoting
by ui the minimizer of Eti,τ on V introduced in Definition 2.4, Proposition 2.5 shows that ∥ui∥H1

(i = 1, 2) are bounded by a constant depending on F,T, τ and R, but independent of t1 and t2.
The variational inequalities characterizing u1 and u2 (see (2.3)) yield:∫

Ω
ε(u1 − u2) : Λε(u1 − u2) dx ≤

∫
ΓC

f
(
t1 − t2

)(∣∣u1
t − wt

∣∣− ∣∣u2
t − wt

∣∣),
≤
∥∥f(t1 − t2)

∥∥
H−1/2

(∥∥|u1
t − wt|

∥∥
H1/2 +

∥∥|u2
t − wt|

∥∥
H1/2

)
,

≤ C1
∥∥t1 − t2

∥∥
H−1/2

(∥∥u1
t − wt

∥∥
H1/2 +

∥∥u2
t − wt

∥∥
H1/2

)
,

≤ C2
∥∥t1 − t2

∥∥
H−1/2 ,

which shows that the mapping t 7→ A (t, τ) is locally Hölder-continuous of exponent 1/2 from
K ⊂ H−1/2 to H1/2. □
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Proposition 2.8 Let A be as in Definition 2.4. Let tk ⇀ t be a weakly converging sequence in K
such that limk→+∞⟨A (tk, tk) − A (tk, t), tk − t⟩ = 0. Then, for all τ ∈ K, the sequence A (tk, τ)
converges strongly in H1/2 towards A (t, τ). In particular, property (iii) of Definition A.5 is
fulfilled.

Proof. The strong monotonicity property of Proposition 2.6 entails that the sequence tk

converges strongly in H−1/2 towards t. The continuity property of Proposition 2.7 yields the
strong convergence of A (tk, τ) towards A (t, τ). □

At this point, there remains only to prove that A also fulfils property (iv) of Definition A.5
to reach the conclusion that the operator A : K → H1/2 is Leray-Lions and therefore pseu-
domonotone. If it is coercive in the sense of Definition A.2, in addition, then the solvability of
the Signorini-Coulomb problem will follow from Theorem A.3. As it turns out that the coercivity
is easy to obtain and that property (iv) is very difficult, we first get rid of the coercivity result.

Proposition 2.9 The operator A in Definition 2.4 is coercive in the sense:

lim
∥t∥

H−1/2 →+∞,t∈K

⟨At, t⟩
∥t∥H−1/2

= +∞.

Proof. Let t ∈ K and u be the minimizer of Et,t on V , introduced in Definition 2.4. Taking
v = 0 as a test function in the variational inequality (2.3) characterizing u, we obtain:

⟨At, t⟩ ≥
∫

Ω
ε(u) : Λε(u) dx−

∫
Ω

F · u dx−
∫

ΓT

T · u dx+
∫

ΓC

ft
∣∣wt

∣∣,
≥
∫

Ω
ε(u) : Λε(u) dx−

∫
Ω

F · u dx−
∫

ΓT

T · u dx− C
∥∥t∥∥

H−1/2 ,

for some positive constant C > 0 independent of t and u. Let U be the minimizer on V of:

v 7→ 1
2

∫
Ω

ε(v) : Λε(v) dx−
∫

Ω
F · v dx−

∫
ΓT

T · v|ΓT
dx,

and τ ∈ H−1/2(ΓC ;RN ) be defined by:

∀v ∈ V,
〈
τ ,v|ΓC

〉
:=
∫

Ω
ε(u − U) : Λε(v) dx,

so that the definition is well-posed, J ′
Λ(τ ) = u − U and τn = t, with J ′

Λ and τn introduced in
Propositions 2.1 and 2.3 respectively. Proposition 2.3 yields:∥∥t∥∥2

H−1/2 ≤ C

∫
Ω

ε(u − U) : Λε(u − U) dx,

for some positive constant C > 0 independent of t and u. Bringing all together, we obtain:

⟨At, t⟩ + C
∥∥t∥∥

H−1/2 ≥
∫

Ω
ε(u) : Λε(u) dx−

∫
Ω

ε(U) : Λε(u) dx,

≥
∫

Ω
ε(u − U) : Λε(u − U) dx+

∫
Ω

ε(U) : Λε(u − U) dx,

≥
∥t∥2

H−1/2

C
+
〈
t, Un + f |Ut|

〉
,

≥
∥t∥2

H−1/2

C
−
∥∥t∥∥

H−1/2

∥∥∥Un + f |Ut|
∥∥∥

H1/2
,
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where in the third inequality we have used (2.3) applied with the choice v = u + U. The
conclusion follows. □

Let now deal with property (iv) of Definition A.5. It involves the handling of a product of
two weakly converging sequences which turns out to raise huge difficulties. The next theorem
shows how to overcome such difficulties in the bidimensional case N = 2, under the assumptions
that the elastic modulus tensor Λ is that of isotropic elasticity at each point and that it is
Lipschitz-continuous. Its proof is postponed to Section 2.3.

Since N = 2, the tangential direction is (pointwisely) unique, so that tt ∥ vt. Hence, tt and
vt will be replaced below by their scalar components tt and vt. We will denote by M (ΓC) the
set of signed Radon measures with support in ΓC .

Theorem 2.10 Let N = 2 and let Λ ∈ W 1,∞ and isotropic. For t̃ ∈ H−1/2(ΓC) ∩ M (ΓC), we
denote by u the unique minimizer on V of:

v 7→ 1
2

∫
Ω

ε(v) : Λε(v) dx−
∫

ΓC

t̃ vt,

and by un ∈ H1/2(ΓC) the normal part of the trace of u on ΓC . The linear mapping t̃ 7→ un = Lt̃
is continuous for the strong topologies of H−1/2(ΓC) and H1/2(ΓC) (and also for the weak
topologies, as it is linear).

Then, for any sequence tk ∈ K converging weakly in H−1/2(ΓC) towards a limit t ∈ K, and
any sequence t̃k ⇀ t̃ in H−1/2(ΓC) ∩ M (ΓC) such that |t̃k| ≤ −tk, we have:

lim
k→+∞

〈
Lt̃k, tk

〉
=
〈
Lt̃, t

〉
.

Remark 2.11 To prove Theorem 2.10, it would be natural to try to prove that the injection of K
into H−1/2(ΓC) is compact, in the spirit of the result of Murat [15]. Actually, we can adapt the
counterexample given at the second page of [15] to prove that the injection of K into H−1/2(ΓC)
is not compact. In particular, the nonnegative function ϵ| log ϵ|−1/2/(x2 + ϵ2) converges weakly
in H−1/2(−1, 1) towards 0, as ϵ → 0+, but its H−1/2(−1, 1) norm converges towards a positive
value (see Proposition 3.2). Theorem 2.10 is actually a fine property of the elasticity operator, as
shown in Section 2.3.

Corollary 2.12 Let N = 2, Λ ∈ W 1,∞ and isotropic, and let A be as in Definition 2.4. Let
τ ∈ K, tk ⇀ t be a weakly convergent sequence in K such that A (tk, τ) ⇀ F converges weakly
in H1/2(ΓC) towards some limit F . Then, limk→+∞⟨A (tk, τ), tk⟩ = ⟨F, t⟩. In other words,
under the previous hypotheses, property (iv) of Definition A.5 holds true and the operator A is a
Leray-Lions operator.

Proof. Let uk ∈ V be the minimizer on V of Etk,τ (see Definition 2.4). The idea is to split uk,
and then A (tk, τ) = uk

n, into two parts, the first not depending on k and having τ as normal
traction on ΓC ; the second having the same tangent traction as uk on ΓC . The normal component
of this second part will be written in terms of the linear operator L introduced in Theorem 2.10.

Let U ∈ V be the minimizer on V of:

v → 1
2

∫
Ω

ε(v) : Λε(v) dx−
∫

Ω
F · v dx−

∫
ΓT

T · v dx−
∫

ΓC

τvn.
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Let t̃k be the element of H−1/2(ΓC ;RN ) defined by:

∀v ∈ V,
〈
t̃k,v|ΓC

〉
:=
∫

Ω
ε(uk − U) : Λε(v) dx.

Then, the normal part vanishes: t̃kn = τ − τ = 0. We denote by t̃k the (scalar-valued) component
of t̃k along the tangent vector (as N = 2). By (2.3) for uk, using uk + v as test function, we get:

∀v ∈ H1/2(ΓC),
〈
t̃k, v

〉
−
〈
ftk, |v|

〉
≥ 0,

which, as ftk is a nonpositive measure, entails that t̃k is a measure such that |t̃k| ≤ −ftk. As the
sequence tk is assumed to weakly converge in H−1/2(ΓC), it is bounded in the same space. By the
inequality |⟨t̃k, v⟩| ≤ −⟨ftk, |v|⟩ ≤ ∥f∥W 1,∞∥tk∥H−1/2∥v∥H1/2 , the sequence t̃k is also bounded in
H−1/2(ΓC). Also, by linearity, we have:

A (tk, τ) = Un + (uk
n − Un) = Un + Lt̃k,

where L denotes the linear operator defined in the statement of Theorem 2.10. The sequence
⟨A (tk, τ), tk⟩ = ⟨Un + Lt̃k, tk⟩ is bounded. Extracting a subsequence if necessary, it converges.
Possibly extracting another subsequence, we may assume that t̃k converges weakly in H−1/2(ΓC)
towards some limit t̃. As A (tk, τ) ⇀ F and L is continuous for the weak topologies, we have the
identity F = Un + Lt̃. Now, Theorem 2.10 yields:

lim
k→+∞

〈
A (tk, τ), tk

〉
= ⟨F, t⟩.

As the limit is the same for all extracted subsequences, the convergence of the whole limit holds
true. □

Bringing Propositions 2.6, 2.7, 2.8, 2.9 and Corollary 2.12 together, and invoking Proposi-
tion A.6 in Appendix A, we have proved:

Theorem 2.13 Let N = 2 and let Λ ∈ W 1,∞ and isotropic. Then, the operator A in Defini-
tion 2.4 is a Leray-Lions operator and is therefore pseudomonotone. In addition, it is coercive.

We can now rely on Brézis’s theorem (Theorem A.3 in Appendix A) to solve variational
inequalities based on the operator A.

Theorem 2.14 Let N = 2 and let Λ ∈ W 1,∞ and isotropic, f ∈ W 1,∞(ΓC), F ∈ L2(Ω,RN ),
T ∈ L2(ΓT ,RN ), g ∈ H1/2(ΓC) and wt ∈ H1/2(ΓC ;RN ). Let also A be as in Definition 2.4.
Then, there exists t ∈ K satisfying the variational inequality:

∀t̂ ∈ K,
〈
At− g, t̂− t

〉
≥ 0.

It is readily checked that the unique minimizer u ∈ V of Et,t on V (see Definition 2.4) with t
given by Theorem 2.14, solves the formal static Signorini-Coulomb problem (1.4). This means
that, whenever the minimizer is smooth enough, the conditions are fulfilled pointwisely. In
particular, the last condition of (1.4) gives on ΓC :

ut − wt = 0 ⇒ |tt| ≤ −ftn,

ut − wt ̸= 0 ⇒ tt = −ftn
ut − wt

|ut − wt|
.
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2.3 Proof of Theorem 2.10

In this section, we give a detailed proof of Theorem 2.10 which is the cornerstone of our proof of
the existence of solutions for the Signorini-Coulomb problem.

In order to both assess the difficulty of the matter involved and to display the core idea of our
strategy of proof, it is useful to examine first the particular case of the isotropic homogeneous
2d half-space. Indeed, in this case, the explicit knowledge of the fundamental solution makes it
possible to express the solution of the standard elastic Neumann problem for the half-space in
terms of a convolution product. In other words, the operator L of Theorem 2.10 reduces in this
case to a convolution operator with a function which is known explicitly.

Lemma 2.15 (Fundamental solution of the 2d isotropic half-space) Consider the half-
space {(x, y) ∈ R2 | y < 0} filled with an isotropic homogeneous linearly elastic material of
Young modulus E > 0 and Poisson ratio ν ∈ ]−1, 1/2[. Then, all the tempered distributional
displacements u0 satisfying the elastic equilibrium equations with zero body forces and surface
traction equal to Tδ, where δ is the Dirac measure at (0, 0) and T = (Tx, Ty) is a given element
of R2, are of the form:

u0(x, y) = Txu0,x(x, y) + Tyu0,y(x, y) +
+
(
Ux − Ωy + (1 − ν2)Σx

)
ex+

(
Uy + Ωx− ν(1 + ν)Σy

)
ey,

where:

u0,x
x (x, y) := 1

πE

[
−(1 − ν2) log(x2 + y2) − (1 + ν) y2

x2 + y2

]
,

u0,y
x (x, y) := 1

πE

[
−(1 − 2ν)(1 + ν) arctan x

y
+ (1 + ν) xy

x2 + y2

]
,

u0,x
y (x, y) := 1

πE

[
(1 − 2ν)(1 + ν) arctan x

y
+ (1 + ν) xy

x2 + y2

]
,

u0,y
y (x, y) := 1

πE

[
−(1 − ν2) log(x2 + y2) + (1 + ν) y2

x2 + y2

]
,

and Ux, Uy,Ω,Σ denote four arbitrary real constants.

Proof. This is a classical result, obtained by use of the Fourier transform, and the verification is
left to the reader (this is in fact a particular case of the proof of Theorem 3.1 in Section 3.3). □

Remark 2.16 The constant Σ is readily seen to be a component of the stress tensor at infinity.
The three remaining constants represent an arbitrary overall rigid displacement. This arbitrary
affine displacement plays no role in the sequel where Ux = Uy = Ω = Σ = 0 will be systematically
chosen.

Given a compactly supported surface traction distribution t̃ ∈ H−1/2(−1, 1;R2) with normal
and tangential parts t̃n and t̃t, the normal part of the surface displacement reads as:

un = uy = −2(1 − ν2)
πE

log | · | ∗ t̃n − (1 − 2ν)(1 + ν)
2E sgn(·) ∗ t̃t,

up to an arbitrary overall rigid displacement component which plays no role in the sequel and is
therefore omitted. Above, sgn(·) stands for the sign function and ∗ for the convolution product.
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Hence, in the case of the half-space, the normal component of the surface displacement induced by
a tangential traction distribution is obtained as a convolution with the ‘sign’ function. Therefore,
the operator L : H−1/2(−1, 1) → H1/2(−1, 1) in the statement of Theorem 2.10, is given by:

Lt̃ = sgn(·) ∗ t̃,

where sgn(·) ∗ t̃ denotes actually the restriction to ]−1, 1[ of sgn(·) ∗ t̃ and the (nonzero) multi-
plicative constant has been dropped. This operator is actually an isomorphism from H−1/2(−1, 1)
onto H1/2(−1, 1). In the particular case of the isotropic homogeneous 2d half-space, Theorem 2.10
reduces to the following result for which we are going to provide a direct proof.

Theorem 2.17 Let tk ≥ 0 be a sequence in the nonnegative cone of H−1/2(−1, 1) that converges
weakly in H−1/2(−1, 1) towards a limit t. Let also t̃k be a sequence in H−1/2(−1, 1) ∩ M ([−1, 1])
that converges weakly in H−1/2(−1, 1) towards a limit t̃ and such that |t̃k| ≤ tk, for all k. Then:

lim
k→+∞

〈
sgn(·) ∗ t̃k, tk

〉
=
〈
sgn(·) ∗ t̃, t

〉
.

Proof. Since ∥tk∥M ([−1,1]) = ⟨tk, 1⟩ and the weakly converging sequence tk is bounded in
H−1/2(−1, 1), it is also bounded in M ([−1, 1]). It therefore converges weakly-* in M ([−1, 1])
towards t. As |t̃k| ≤ tk, the sequence t̃k is also bounded in M ([−1, 1]) and therefore converges
weakly-* in M ([−1, 1]) towards t̃.

The convolution with the sign function is an antisymmetric operation, that is〈
sgn(·) ∗ t̃k, tk

〉
= −

〈
t̃k, sgn(·) ∗ tk

〉
.

As a measure tk in H−1/2(−1, 1) ∩ M ([−1, 1]) has no atoms, all the primitives uk := sgn(·) ∗ tk
and u := sgn(·) ∗ t are continuous functions. They are also nondecreasing, as tk ≥ 0. We can
therefore apply the two following arguments which yield the strong convergence in C0([−1, 1]) of
the sequence uk towards u.

1. The weak-* convergence in M ([−1, 1]) of tk entails the pointwise convergence of the
sequence

∫ x
−1 t

k and therefore of the sequence uk := sgn(·) ∗ tk towards u, for all x ∈ [−1, 1].
To see it, consider x ∈ ]−1, 1[ and ϵ > 0. As the measure t has no atoms, we can build a
continuous function φε : [−1, 1] → [0, 1], supported in [−1, x] and a continuous function
ψε : [−1, 1] → [0, 1] that takes the value 1 all over [−1, x], such that:

(1 − ε)
∫ x

−1
t ≤

∫ 1

−1
φεt ≤

∫ x

−1
t ≤

∫ 1

−1
ψεt ≤ (1 + ε)

∫ x

−1
t.

As:
∀k ∈ N,

∫ 1

−1
φεt

k ≤
∫ x

−1
tk ≤

∫ 1

−1
ψεt

k,

we obtain that the sequence of functions x 7→
∫ x

−1 t
k converges pointwisely towards x 7→

∫ x
−1 t.

2. Each function uk is monotone and pointwisely converging to a continuous function in the
compact set [−1, 1]. This in fact forces uk to converge uniformly. Indeed, the pointwise limit
u, being continuous on the compact [−1, 1], is uniformly continuous. Given ϵ > 0, there
exist finitely many −1 = x0 < x1 · · · < xn = 1 such that, for all i and all x ∈ [xi, xi+1], one
has |u(x) − u(xi)| < ϵ. Also, for sufficiently large k, and all i, one has |u(xi) − uk(xi)| < ϵ.
Using the fact that all the uk are nondecreasing, we get |uk(x) − u(x)| < 5ϵ, for sufficiently
large k and all x ∈ [−1, 1]. That is, the sequence uk converges strongly in C0([−1, 1])
towards u.
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This entails limk→+∞⟨t̃k, uk⟩ = ⟨t̃, u⟩, and therefore the claim. □

Remark 2.18 In Theorem 2.17, the function sgn(·) could be replaced by any monotone function.
As any function with bounded variation is the difference of two monotone functions, it is readily
checked that Theorem 2.17 holds true, with the function sgn(·) replaced by an arbitrary function
h ∈ BV([−r, r]), with r > 2.

Remark 2.19 The operator t̃ 7→ log | · | ∗ t̃ is also an isomorphism from H−1/2(−1, 1) onto
H1/2(−1, 1). But we cannot replace the function sgn(·) in the above theorem by the function log |·|,
otherwise the conclusion would break. To see it, recall that the mapping t 7→

√
−⟨log | · | ∗ t, t⟩ is a

norm on H−1/2(−1, 1) which is equivalent to the norm of H−1/2 (see, for example, [3, Theorem 3]
or Theorem 3.2 in this paper). In the particular case where t̃k = tk, the conclusion of the theorem,
with sgn(·) replaced by log | · |, would actually be the convergence of the norms, which together with
weak convergence, classically yields strong convergence. In other terms, the above theorem, with
sgn(·) replaced by log | · |, would imply that the injection of the nonnegative cone of H−1/2(−1, 1)
into H−1/2(−1, 1) is compact. But the injection of the nonnegative cone of H−1/2(−1, 1) into
H−1/2(−1, 1) is not compact (a counterexample is given in Remark 2.11). Therefore, one cannot
replace the function sgn(·) in the above theorem by the function log | · |. In other words, the fact
that the operator L maps the tangential traction to the normal displacement plays an essential
role. In that sense, the above theorem is a fine property of the elasticity operator rather than a
general topological property.

Remark 2.20 The proof of Theorem 2.17 can be rephrased by saying that the inclusion

(H1/2 ∩BV )(−1, 1) ⊂ C0(−1, 1)

is compact in the following sense: for uk, u ∈ (H1/2 ∩BV )(−1, 1), we have

uk ⇀ u weakly-H1/2 and strictly-BV =⇒ uk → u strongly-L∞,

where ’strictly-BV ’ means that uk → u strongly-L1 and |Duk|(−1, 1) → |Du|(−1, 1). This
compactness property fails in higher dimension.

The only point of the article where we need N = 2 is precisely Theorem 2.17. In dimension
N = 3, in the simplest case, one is led to pass to the limit in the following expression

lim
k→+∞

〈 x

x2 + y2 ∗ t̃k, tk
〉

where t̃k and tk are supported in ]−1, 1[2 and satisfy hypotheses analogous to those of Theorem
2.17. Due to the previous discussion, the 2D argument does not generalize directly to this case
and further inquiries are needed.

To extend Theorem 2.17 to more general geometries, that is, to the case of bounded bodies,
we will rely on the classical idea that the fundamental solution of the bounded body is locally that
of the half-space with the addition of a smooth correction. This idea is precisely implemented in
the following representation formula.

Lemma 2.21 Let N = 2 and Λ ∈ W 1,∞ be isotropic at each x ∈ Ω. Let also t ∈ H−1/2(ΓC) ∩
M (ΓC). We denote by u the unique minimizer on V of:

v 7→ 1
2

∫
Ω

ε(v) : Λε(v) dx−
∫

ΓC

t vt.
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Then, the normal part un of the trace of u on ΓC can be put under the form:

for a.a. x ∈ ΓC , un(x) =
∫

x′∈ΓC

t g(x, x′)

for some function g : ΓC × ΓC → R, independent of t, of the form:

g(x, x′) = (1 − 2ν(x′))(1 + ν(x′))
2E(x′) h(x, x′) + g̃(x, x′),

where the function h takes only the two values −1,+1 and is continuous on ΓC × ΓC \ ∆, with
∆ := {(x, x)| x ∈ ΓC} being the diagonal, and where g̃ : x′ → g(·, x′) ∈ C0(ΓC ;H1/2(ΓC)).

Proof.
Step 1. Construction of a fundamental solution for the bounded body. Fix x′ ∈ Γ, with
Γ := ∂Ω \ ΓU , and T̃ = (T̃x, T̃y) ∈ R2. Then, there exist unique (ũ, ũ|Γ) ∈ L1(Ω) × L1(Γ) such
that:

∀v ∈ W 2,∞(Ω;R2) with v|ΓU
= 0,

∫
Ω

ũ · div σ(v) dx = −T̃ · v(x′) +
∫

Γ
ũ|Γ · σ(v) n dx. (2.5)

The function ũ has the additional regularity ũ ∈ H1(Ω\Vx′) where Vx′ is an arbitrary neighborhood
of x′, and ũ|Γ coincides with the trace of ũ on Γ. In the sequel, the notation g(x, x′) := ũ(x) will
be used.

This is a classical matter and the proof is sketched only for the sake of completeness. Consider
the mapping:

L

{
L2(Ω;R2) × L2(Γ;R2) → L2(Ω;R2) × L2(Γ;R2)

(F,T) 7→ (u,u|Γ)

where u denotes the unique minimizer on V = {v ∈ H1(Ω;R2)|v|ΓU
= 0} of

v 7→ 1
2

∫
Ω

ε(v) : Λε(v) dx−
∫

Ω
F · v dx−

∫
Γ

T · v dx.

The linear mapping L = L ∗ is self-adjoint. By standard regularity results for elliptic boundary-
value problems, if (F,T) ∈ Lp(Ω) × Lp(Γ) for some p > 2, then u ∈ W 1,p(Ω) ⊂ C0(Ω) (as
the dimension of space is 2). Hence, L : Lp(Ω) × Lp(Γ) → C0(Ω) × C0(Γ). By duality,
L ∗ : M (Ω) × M (Γ) → Lp′(Ω) × Lp′(Γ) can be seen as an extension of L , as L is self-adjoint.
Then, it is readily checked that (ũ, ũ|Γ) := L ∗(0, T̃δx′) (where δx′ is the Dirac measure at x′)
satisfies (2.5). Uniqueness and the fact that ũ ∈ H1(Ω \ Vx′) is a consequence of the standard
local regularity results for elliptic problems which apply to very weak solutions such as the one
satisfying (2.5).
Step 2. Regularity with respect to x of the trace of g(x, x′) on Γ := ∂Ω \ ΓU . Given x′ ∈ Γ and
T̃ = (T̃x, T̃y) ∈ R2 \ {0} a unit tangent vector at x′ (that is, T̃ · n(x′) = 0 and T̃ 2

x + T̃ 2
y = 1),

there exists x 7→ g̃(x, x′) ∈ H1/2(Γ), such that:

for a.a. x ∈ Γ, gn(x, x′) = (1 − 2ν(x′))(1 + ν(x′))
2E(x′) h(x, x′) + g̃(x, x′),

where the function h takes only the two values −1,+1 and is continuous on Γ × Γ \ ∆, with
∆ := {(x, x)| x ∈ Γ} being the diagonal.
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Pick x′ ∈ Γ. There exist an open neighborhood Vx′ of x′ in R2 with Vx′ ∩ ΓU = ∅, an open
ball B centered at 0 and a W 2,∞-diffeomorphism ϕ : Vx′ → B, such that ϕ(x′) = 0, R := ∇ϕ(x′)
is a rotation and such that ϕ induces a diffeomorphism of Vx′ ∩Ω onto D := B∩{y < 0}. We take
T = RT̃ (so that Ty = 0), E = E(x′), ν = ν(x′) and Ux = Uy = Ω = Σ = 0 in the definition of
u0 in Lemma 2.15. Careful examination of the expression of u0 shows that u0 is in W 1,p(D;R2),
for all p ∈ [1, 2[, and is C∞ in D \ {0}. Therefore the displacement u0 ◦ ϕ is in W 1,p(Vx′ ∩ Ω).
Considering an appropriate cut-off function φ in C∞

c (R2) which is identically equal to 1 on a
neighborhood of x′, the displacement φR−1(u0 ◦ ϕ) has compact support in Vx′ . We denote by
ũ0 the extension to Ω by zero. In the particular case where T̃ = (T̃x, T̃y) ∈ R2 \ {0} is a unit
tangent vector at x′, the following property of ũ0 is readily checked from the explicit expression
of u0 in Lemma 2.15.

Since T̃ is tangent, the normal trace ũ0
n on ∂Ω is in W 1,∞(∂Ω \ {x′}) (with support

in Vx′). It therefore has limits as x → x′− and x → x′+, but these two limits are
different (as u0

2(0−, 0−) ̸= u0
2(0+, 0−)). Actually, we have:∣∣∣ũ0

n(x′−) − ũ0
n(x′+)

∣∣∣ = (1 − 2ν(x′))(1 + ν(x′))
E(x′) .

To get the claim of Step 2, it is now sufficient to prove that g(·, x′) − ũ0(·) ∈ H1(Ω). By the
definition of g(·, x′), this is going to be a consequence of the following statement.

There exist τ (·, x′) ∈ Lp(Γ;R2), for all p ∈ [1, 2[, and Φ(·, x′) ∈ Lp(Ω;R2), for all
p ∈ [1, 2[, such that:

∀v ∈ W 2,∞(Ω;R2) such that: v|ΓU
= 0,∫

Ω
ε(ũ0) : Λε(v) dx = T̃ · v(x′) +

∫
Ω

Φ(x, x′) · v(x) dx+
∫

Γ
τ (x, x′) · v(x) dx. (2.6)

The key fact will be the observation that the displacement u0 in Lemma 2.15 is in W 1,p(D;R2),
for all p ∈ [1, 2[, and is C∞ in D \ {0}. We observe that the function φ ◦ ϕ−1 is a cut-off function
on D which is identically equal to 1 on a neighborhood of 0. Denoting by Λ0 the elastic modulus
tensor of the isotropic homogeneous body of Young modulus E(x′) and Poisson ratio ν(x′), we
have:

∀v ∈ W 2,∞(R2;R2) with compact support,
∫

{y<0}
ε(u0) : Λ0ε(v) dx = T · v(0),

(where T = RT̃). Therefore, we have:

∀v ∈ W 2,∞(R2;R2) with compact support,∫
{y<0}

ε
(
(φ ◦ ϕ−1)u0) : Λ0ε(v) dx = T · v(0) +

∫
{y<0}

Φ0(x) · v(x) dx+
∫

{y=0}
τ 0(x) · v(x) dx,

for some functions Φ0 ∈ L∞ and τ 0 ∈ L∞ that depend on u0, φ and ϕ, where we have used
the fact that φ ◦ ϕ−1 ∈ W 2,∞ and it is 1 in a neighborhood of 0. Using ϕ to perform a change
of variable in the integrals of the above identity and applying the rotation R−1, we get by a
standard calculation:

∀v ∈ W 2,∞(Ω;R2),
∫

Ω
ε(ũ0) : Λ̃ε(v) dx =

= T̃ · v(x′) +
∫

Ω
Φ̃(x) · v(x) dx+

∫
Γ

τ̃ (x) · v(x) dx,
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where Φ̃ and τ̃ are L∞ functions with support in Vx′ . The conveyed elastic modulus tensor
Λ̃ satisfies the usual symmetry and ellipticity properties, but does not need to be isotropic
homogeneous anymore. However, it is a W 1,∞ function. Note that we have ũ0 ∈ W 1,p(Ω;R2),
for all p ∈ [1, 2[. Finally, we can write:

Λε(ũ0) = Λ̃ε(ũ0) +
(
ΛΛ̃−1 − Id

)
Λ̃ε(ũ0).

As ∇ϕ(x′) is a rotation, Λ̃(x′) = Λ(x′) = Λ0, and the second term of the right-hand side is
the product of a W 1,∞ function which vanishes at x = x′ and of a Lp (for all p ∈ [1, 2[) stress
field σ̃ := ε(ũ0) such that div σ̃ + Φ̃ = 0 in Ω and σ̃n = T̃δx′ + τ̃ on Γ. This is sufficient to
prove (2.6).

Step 3. Regularity with respect to x′ of the trace of g(·, x′) on ΓC . The function x′ 7→
g̃(·, x′) ∈ C0(ΓC ;H1/2(ΓC)). In addition, the function x′ 7→ g(·, x′) ∈ C0(ΓC ;W 1,p(Ω;R2)), for
all p ∈ [1, 2[.

In Step 2, it was noted that the fundamental solution u0 of Lemma 2.15 satisfies u0
|D ∈

W 1,p(D;R2), for all p ∈ [1, 2[. Taking x̄ on the axis y = 0 in a neighborhood of 0, this classically
entails that x̄ 7→ u0(· − x̄) ∈ C0(]−ϵ, ϵ[ ;W 1,p(D;R2)). Picking x′ ∈ Γ := ∂Ω \ ΓU and the
diffeomorphism ϕ : Vx′ → B as in Step 2, we consider an arbitrary x′′ ∈ Vx′ ∩ Γ and x̄ := ϕ(x′′).
Using the fundamental solution u0(·− x̄) (with E(x′′) and ν(x′′)) instead of u0(·) in the reasoning
made in Step 2, we can check that the functions x′ 7→ Φ(·, x′) and x′ 7→ τ (·, x′) are continuous
functions of x′ with values in Lp (p ∈ [1, 2[). Therefore, by (2.5) and (2.6) and the standard
regularity theory for elliptic boundary value problems, the mapping x′ 7→ g(·, x′) − ũ0(·, x′) is
continuous with respect to the H1 norm. This is sufficient to obtain the conclusion of Step 3.

Step 4. Conclusion.
Consider an arbitrary t ∈ H−1/2(ΓC) ∩ M (ΓC). Setting

u(x) :=
∫

x′∈ΓC

tg(x, x′), for x ∈ Ω,

where g(x, x′) is the function defined in Step 1, we have u ∈ W 1,p(Ω;R2), for all p ∈ [1, 2[, by
Step 3. We have also:

∀v ∈ C∞(R2;R2) with v|ΓU
= 0

∫
Ω

ε(u) : Λε(v) dx =
∫

ΓC

tvt.

This entails that u ∈ H1(Ω;R2) and that the linear mapping t 7→ u is continuous with respect to
the strong topologies of H−1/2(ΓC) and H1(Ω;R2). Clearly u is the unique minimizer on V of:

v 7→ 1
2

∫
Ω

ε(v) : Λε(v) dx−
∫

ΓC

t vt.

This concludes the proof. □

Proof of Theorem 2.10.
Let us consider a sequence tk ∈ K (we recall that K is the nonpositive cone of H−1/2(ΓC))

converging weakly in H−1/2(ΓC) towards a limit t ∈ K, and a sequence t̃k in H−1/2(ΓC)∩M (ΓC)
such that |t̃k| ≤ −tk and converging weakly in H−1/2(ΓC) towards a limit t̃. Both tk and t̃k are
bounded measures on ΓC .
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The proof is based on the expression of the operator L : t ∈ H−1/2(ΓC) ∩ M (ΓC) 7→ un

provided by Lemma 2.21:

〈
tk, L(t̃k)

〉
=
∫

x∈ΓC

tk
∫

x′∈ΓC

[
c(x′)h(x, x′) + g̃(x, x′)

]
t̃k,

where c ∈ W 1,∞(ΓC), h takes only the two values −1,+1 and is continuous on ΓC × ΓC \ ∆,
with ∆ := {(x, x)| x ∈ ΓC} being the diagonal, and where x′ → g̃(·, x′) ∈ C0(ΓC ;H1/2(ΓC)). As
tk ∈ H−1/2(ΓC), the sequence of functions:

x′ 7→
∫

x∈ΓC

g̃(x, x′) tk,

is a sequence of continuous functions on ΓC that converges pointwisely towards the continuous
function x′ 7→

∫
x∈ΓC

g̃(x, x′) t. We are going to prove that the convergence is uniform on ΓC . As
the function x′ → g̃(·, x′) is uniformly continuous on ΓC , given ϵ > 0, there exist a finite covering
of ΓC with balls Bxi , x′

i ∈ ΓC , such that:

∀x′ ∈ Bxi ∩ ΓC ,
∥∥g̃(·, x′) − g̃(·, x′

i)
∥∥

H1/2(ΓC) < ϵ.

Also, for large enough k, we have:

∀i,
∣∣∣∣∫

x∈ΓC

g̃(x, x′
i) tk −

∫
x∈ΓC

g̃(x, x′
i) t
∣∣∣∣ < ϵ.

Denoting by M > 0 an upper bound of the bounded sequence ∥tk∥H−1/2(ΓC) and gathering all
together, we obtain, for k large enough:

∀x′ ∈ ΓC ,

∣∣∣∣∫
x∈ΓC

g̃(x, x′) tk −
∫

x∈ΓC

g̃(x, x′) t
∣∣∣∣ < (2M + 1)ϵ.

This is sufficient to conclude that:

lim
k→+∞

∫
x′∈ΓC

t̃k
(∫

x∈ΓC

g̃(x, x′) tk
)

=
∫

x′∈ΓC

t̃

(∫
x∈ΓC

g̃(x, x′) t
)
.

Now, there remains to obtain the same conclusion with c(x′)h(x, x′) instead of g̃(x, x′). Replacing
t̃k by ct̃k, we may assume that c ≡ 1 without loss of generality. Then, the proof runs essentially
as the one of Theorem 2.17.

1. The sequence tk is a sequence which converges weakly in H−1/2(ΓC) and weakly-* in
M (ΓC) towards t. All these measures have no atoms in ΓC . Since x 7→ h(x, x′) has
bounded variation on ΓC , this entails the pointwise convergence of the following sequence
of continuous functions:

∀x′ ∈ ΓC , lim
k→+∞

∫
x∈ΓC

h(x, x′) tk =
∫

x∈ΓC

h(x, x′) t,

as in the proof of Theorem 2.17.

2. The pointwise convergence is actually uniform on ΓC . This fact relies on the two following
properties.
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• The pointwise limit x′ 7→
∫

x∈ΓC
h(x, x′) t, being continuous on the compact ΓC , is

uniformly continuous.
• The same reasoning as in Theorem 2.17 shows that the sequence x′ 7→

∫
x∈ΓC

h(x, x′) tk
converges strongly in C0(ΓC) towards x′ 7→

∫
x∈ΓC

h(x, x′) t. More precisely, as ΓC is
an open subset of the smooth curve ∂Ω, it has countably many connected components
Ii. If there are infinitely many Ii’s, then, given ϵ > 0, there exists n̄ > 0 such that:

−
+∞∑
i=n̄

∫
x∈Ii

t < ϵ/3,

and therefore, there exists k̄ > 0 such that:

∀k ≥ k̄, −
+∞∑
i=n̄

∫
x∈Ii

tk < 2ϵ/3.

Hence,

∀k ≥ k̄, ∀x′ ∈ ΓC ,∣∣∣∣∣
∫

x∈
⋃∞

i=n̄
Ii

h(x, x′) tk −
∫

x∈
⋃∞

i=n̄
Ii

h(x, x′) t
∣∣∣∣∣ ≤ −

+∞∑
i=n̄

∫
Ii

tk −
+∞∑
i=n̄

∫
Ii

t < ϵ,

as h takes values in {−1,+1} and tk ≤ 0. Therefore, it is now sufficient to prove that
the sequence of functions x′ 7→

∫
x∈I0

h(x, x′)tk converges uniformly on ΓC to obtain
the expected conclusion. As,

∀x′ ∈ ΓC \ I0,

∫
x∈I0

h(x, x′)tk −
∫

x∈I0
h(x, x′)t = ±

∫
x∈I0

tk − t,

we only have to prove that the sequence of functions x′ 7→
∫

x∈I0
h(x, x′)tk converges

uniformly on I0. As I0 is an open connected subset of the smooth curve ∂Ω, it can
be parametrized by the arc-length denoted by s ∈ ]0, l[. With this notation, we have
either h(x, x′) = sgn(s− s′) or h(x, x′) = −sgn(s− s′) and it is now sufficient to prove
that the sequence of functions s′ 7→

∫
s∈]0,l[ sgn(s− s′) tk converges uniformly on [0, l].

But the proof of this fact was already given in Theorem 2.17.

Hence, we can conclude that:

lim
k→+∞

∫
x′∈ΓC

t̃k
(∫

x∈ΓC

h(x, x′) tk
)

=
∫

x′∈ΓC

t̃

(∫
x∈ΓC

h(x, x′) t
)
,

and that the same result holds true with h(x, x′) replaced by c(x′)h(x, x′) + g̃(x, x′). Recalling
the definition of c, h, g̃ in the statement of Lemma 2.21, it turns out that the above equality is
nothing but the conclusion of Theorem 2.10 for the sequences tk and t̃k. □

3 The case of anisotropic elasticity
In Section 2, the formal static Signorini-Coulomb problem (1.4) was reformulated as a variational
inequality in terms of a nonlinear operator A. Then, the path followed to prove the existence
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of a solution to that variational inequality, and therefore to problem (1.4), was to prove that
this operator is coercive and Leray-Lions, that is, fulfils the four properties defining a Leray-
Lions operator (see Definition A.5 in Appendix A). Coercivity and the first three properties
were easily checked to hold in any space dimension and any case of isotropic or anisotropic
heterogeneous elasticity. However, the checking of the fourth property defining a Leray-Lions
operator turned out to be very tricky and required to prove a new fine property of the elastic
Neumann-to-Dirichlet operator. The fine property was proved to hold true for the bidimensional
case (N = 2) in the case of isotropic elasticity (either homogeneous or heterogeneous). In this
section, we discuss completely the extension to anisotropic elasticity (still in the bidimensional
case). Surprisingly, the picture turns out to be different from the isotropic case as a condition
on the friction coefficient for the solvability of the Signorini-Coulomb problem shows up: the
friction coefficient must be smaller than a critical value. We show that our condition is optimal
by displaying a proof of nonexistence of a solution for friction coefficients violating the condition.
This surprising feature of the coupling between friction and anisotropic elasticity seems to have
remained unnoticed up to now.

This section is organized as follows. As the structure of the Neumann-to-Dirichlet operator
of the elastic half-space was shown in Subsection 2.3 to play a crucial role in the proof of the
fine property for the bounded body of arbitrary geometry, we first provide the structure of the
Neumann-to-Dirichlet operator of the anisotropic bidimensional half-space at the beginning of
Subsection 3.1 (Theorem 3.1). This is then exploited to prove that the steady-sliding frictional
contact problem for the anisotropic half-space can have no solution in the case of large friction
coefficients, whereas this problem has a unique solution for arbitrarily large friction coefficients in
the isotropic case. The optimal condition on the friction coefficient is supplied. In Subsection 3.2,
the solvability of the general anisotropic bidimensional Signorini-Coulomb problem is proved
provided that this condition is fulfilled. The proof of Theorem 3.1, being technical, is postponed
to Subsection 3.3.

3.1 A frictional contact problem on the half-space with no solution

In this section, Λ : M2×2
sym → M2×2

sym denotes an arbitrary linear operator, satisfying require-
ments (1.1) and (1.2), and constant (independent of x).

The corresponding Neumann-to-Dirichlet operator of the bidimensional half-space has the
structure given by the following theorem, whose proof is postponed to Section 3.3. We will
identify the boundary R × {0} of the half-space R × R− with R. We will also use the indices n
and t to denote the normal and tangential components of distributions defined on R × {0} with
values in R2.

Theorem 3.1 Let t ∈ H−1/2(−1, 1;R2) be a compactly supported surface traction distribution,
prescribed at the boundary of the bidimensional half-space. Then, all the tempered distributional
displacements u : R × R− → R2 that satisfy the anisotropic elastic equilibrium equations with
vanishing body forces are in H1

loc(R × R−;R2). They therefore have a trace on the boundary of
the half-space. The corresponding surface displacement reads as:

un = −C1 log |x| ∗ tn − C2 log |x| ∗ tt − C3 sgn(x) ∗ tt + an,

ut = −C4 log |x| ∗ tt − C2 log |x| ∗ tn + C3 sgn(x) ∗ tn + at,

for x ∈ R, where C1,C2,C3,C4 are uniquely determined real constants that are independent
of t, and a is an affine function that depends on four arbitrary real constants (three of these
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constants correspond to an overall rigid motion and the last one to a component of stress at
infinity). The constants C1 and C4 must be positive and are therefore nonzero. Finally, the
mapping Λ 7→ (C1,C2,C3,C4) is of class C∞.

In the particular case of isotropic elasticity,

C1 = C4 = 2(1 − ν2)
πE

, C2 = 0, C3 = (1 − 2ν)(1 + ν)
2E ,

where ν ∈ ]−1, 1/2[ is the Poisson ratio and E > 0 the Young modulus. The key difference
between isotropic and anisotropic elasticity is the fact that C2 can be nonzero in some cases of
anisotropic elasticity.

To demonstrate the impact of a possibly nonzero C2 on the existence of solutions to frictional
contact problems, we consider the frictional contact problem raised by a moving indentor steadily
sliding along the boundary of the half-space with given velocity w ̸= 0. This problem was already
studied in the particular case of isotropic elasticity in [2]. The shape of the indentor is represented
by a given function g : ]−1, 1[ → R so that the contact conditions in a frame moving with the
indentor read as:

tn ≤ 0, un ≤ g, tn(un − g) = 0.

As the indentor slides steadily along the boundary of the half-space, the Coulomb friction law
reduces to the following linear condition:

tt = −sgn(w) f tn.

In the sequel, the friction coefficient f ∈ R+ will be assumed to be constant, that is, independent
of x. The arbitrary affine function a in the Neumann-to-Dirichlet operator plays no role and
will be taken as zero. The steady sliding frictional contact problem is now that of finding
un, tn : ]−1, 1[ → R such that:{

−
(
C1 − sgn(w) f C2

)
log |x| ∗ tn + sgn(w) f C3 sgn(x) ∗ tn = un, in ]−1, 1[ ,
tn ≤ 0, un ≤ g, tn(un − g) = 0, in ]−1, 1[ .

where the convolution product is understood in terms of the extension by zero of tn to the whole
line. The above formal contact problem is going to be formulated as a variational inequality.
The following proposition, which we recall here from [3], provides the appropriate functional
framework.

Proposition 3.2 For t ∈ H−1/2(−1, 1), we have log |x| ∗ t ∈ H
1/2
loc (R) and sgn(x) ∗ t ∈ H

1/2
loc (R),

so that the bilinear forms:

S(t1, t2) := −
〈
log |x| ∗ t1, t2

〉
, A(t1, t2) :=

〈
sgn(x) ∗ t1, t2

〉
,

are well-defined on H−1/2(−1, 1). They are also continuous on H−1/2(−1, 1). The bilinear form
A is skew-symmetric. The bilinear form S is symmetric and positive definite. It therefore induces
a norm on H−1/2(−1, 1) and this norm is equivalent to that of H−1/2(−1, 1).

Proof. For φ ∈ L1(R), we define the Fourier transform of φ as:

F [φ](ξ) := 1√
2π

∫ ∞

−∞
e−iξx φ(x) dx. (3.1)
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With this convention, the distributional Fourier transforms of the locally integrable functions
log |x| and sgn(x) read as:

F
[
log |x|

]
= −

√
π

2 fp 1
|ξ|

−
√

2π ΓEul δ, F
[
sgn(x)

]
= −i

√
2
π

pv1
ξ
, (3.2)

where δ is the Dirac measure at 0, ΓEul := limn→∞(− logn+∑n
k=1 1/k) is the Euler-Mascheroni

constant, and fp1/|x| and pv1/x stand for the distributional derivatives of sgn(x) log |x| and
log |x|, respectively (‘fp’ stands for ‘finite part’ and ‘pv’ for ‘principal value’). Identifying
H−1/2(−1, 1) with the space of elements in H−1/2(R) whose support is contained in [−1, 1], and
recalling the definition of H−1/2(R) in terms of the Fourier transform:

H−1/2(R) :=
{
t ∈ S ′(R)

∣∣ |F [t](ξ)|/(1 + |ξ|2)1/4 ∈ L2(R)
}
,

where S ′ denotes the space of tempered distributions, we can check that the mapping t 7→
(log |x| ∗ t)′ is continuous on H−1/2(R). Hence, log |x| ∗ t ∈ H

1/2
loc (R) and sgn(x) ∗ t ∈ H

1/2
loc (R)

whenever t ∈ H−1/2(−1, 1), and the bilinear forms S and A are well-defined and continuous on
H−1/2(−1, 1). As the function log |x| is even and sgn(x) is odd, one has that S is symmetric and
that A is skew-symmetric. Considering the restriction of S to the codimension 1 subspace:

H :=
{
t ∈ H−1/2(−1, 1)

∣∣ ⟨t, 1⟩ = 0
}
,

where 1 denotes the function in H1/2(−1, 1) that takes the constant value 1 all over ]−1, 1[, we
have by Plancherel’s formula:

∀t ∈ H , S(t, t) = π

∫ ∞

−∞

|F [t](ξ)|2
|ξ|

dξ ≥ π

∫ ∞

−∞

|F [t](ξ)|2√
1 + |ξ|2

dξ,

where the first integral is well-defined as the Fourier transform of any t ∈ H is a C∞ function
which vanishes at ξ = 0 and the second integral can be identified with ∥t∥2

H−1/2 . Hence, S
is a scalar product on H and, by the open mapping theorem, it induces a norm on H that
is equivalent to that of H−1/2(−1, 1). To get the final conclusion, it remains only to prove
that S is positive definite on H−1/2(−1, 1). Taking an arbitrary t ∈ H−1/2(−1, 1), we have the
decomposition:

t =
(
t− ⟨t, 1⟩

π
√

1 − x2

)
+ ⟨t, 1⟩
π

√
1 − x2

,

where the first term belongs to H . Using (see, for example, [3, Step 3 in proof of Theorem 3])

∀x ∈ ]−1, 1[ ,
∫ 1

−1

log |s− x|√
1 − s2

ds = −π log 2,

we get:
S(t, t) = S

(
t− ⟨t, 1⟩

π
√

1 − x2
, t− ⟨t, 1⟩

π
√

1 − x2

)
+ log 2 ⟨t, 1⟩2,

which shows that S is positive definite on H−1/2(−1, 1), indeed. □

The following consequence is immediate.
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Corollary 3.3 The following bilinear form:

a(t1, t2) :=
(
C1 − sgn(w) f C2

)
S(t1, t2) + sgn(w) f C3 A(t1, t2),

is continuous on H−1/2(−1, 1). If C1 − sgn(w) f C2 > 0, then a is coercive on H−1/2(−1, 1). If
C1 − sgn(w) f C2 < 0, then −a is coercive on H−1/2(−1, 1).

Under the hypothesis g ∈ H1/2(−1, 1), the steady sliding frictional contact problem can now
be precisely formulated as a variational inequality.

Problem P. Find tn ∈ H−1/2(−1, 1), such that tn ≤ 0, and:

∀t̂ ∈ H−1/2(−1, 1), such that t̂ ≤ 0, a(tn, t̂− tn) ≥
〈
g, t̂− tn

〉
.

When condition C1 −sgn(w) f C2 > 0 is fulfilled, the bilinear form a is continuous and coercive
and the Lions-Stampacchia theorem [17, Theorem 4.4] ensures that problem P has one and only
one solution. This happens in particular for any value of the friction coefficient f in the case
of isotropic elasticity (as C1 > 0 and C2 = 0 in that case). However, for cases of anisotropic
elasticity where C2 ̸= 0, one can have C1 − sgn(w) f C2 < 0 whenever the friction coefficient
is large enough. In that case, the bilinear form −a is coercive and there are many examples
of smooth shapes g of the indentor for which problem P has no solution, as seen in the next
proposition.

Proposition 3.4 Let H be a Hilbert space, K ⊂ H a closed convex cone such that K \ {0} ≠ ∅
and K ∩ (−K) = {0}. Let also a : H ×H → R be a continuous bilinear form such that −a is
coercive and let g̃ ∈ −K \ {0}.

Then, there is no t ∈ K such that:

∀t̂ ∈ K, a(t− g̃, t̂− t) ≥ 0.

Proof. Assume that there is such t ∈ K. As −g̃ ∈ K and K is a cone, t− (g̃ − t) ∈ K. Taking
t− (g̃ − t) as a test function in the variational inequality, we get:

a(g̃ − t, g̃ − t) ≥ 0.

As g̃ /∈ K, we have g̃ ̸= t, and we obtain a contradiction since −a is coercive. □

As a consequence, we get an optimal condition on the friction coefficient to ensure the
solvability of the steady sliding frictional contact problem.

Corollary 3.5 If C1 − f |C2| > 0, then problem P has a unique solution for all indentor shape
g ∈ H1/2(−1, 1). If C1 −f |C2| ≤ 0, then there are smooth indentor shapes g for which problem P
has no solution.

Proof. The case C1 − f |C2| ≠ 0 follows from the previous discussion. In the case C1 − f |C2| = 0,
the bilinear form is skew-symmetric, which easily gives examples of nonexistence. □
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3.2 Existence in the case of anisotropic elasticity

As seen in Theorem 3.1, the normal component of the surface displacement induced by a
compactly supported surface traction (tn, tt) applied at the boundary of a (possibly anisotropic)
homogeneous elastic bidimensional half-space is given by:

un = −C1 log |x| ∗
(
tn + tt C2/C1

)
− C3 sgn(x) ∗ tt,

where C1 > 0, C2 and C3 are constants that depend only on the elastic modulus operator Λ.
Setting α := C2/C1, we have:

un = −C1 log |x| ∗
(
tn + α tt

)
− C3 sgn(x) ∗ tt,

so that the difference between isotropic and anisotropic elasticity lies only in the possibility of
nonzero α. It was seen in Section 3.1 that nonzero α has a dramatic influence on the existence of
solutions to the frictional contact problem.

To be able to adapt Theorem 2.10 to the anisotropic case, we need to have tn replaced by
tn + αtt in the Coulomb friction law. This drives us to use a nonorthogonal local basis on ΓC

instead of the ‘natural’ basis (n, τ ). This is the motivation of the following definitions. We
consider the following primal and dual basis:

e1 := n + ατ , e2 := τ ,

e1 := n, e2 := τ − αn,

which clearly fulfils ei · ej = δj
i . Using this pair of bases, we have:

u = u1e1 + u2e2, t = t1e1 + t2e2, t · u = t1u
1 + t2u

2,

with:

u1 := u · e1 = un, u2 := u · e2 = ut − αun,

t1 := t · e1 = tn + αtt, t2 := t · e2 = tt.

Here, we emphasize that these identities are valid with α possibly varying with x ∈ ΓC . This will
be the case as α is determined by Λ(x) and heterogeneous material will be possibly considered.

The aim of the following proposition is to reformulate the unilateral contact condition and
the friction law in terms of t1, t2, u1, u2 instead of tn, tt, un, ut.

Proposition 3.6 Let f > 0, g, α ∈ R, and t,u ∈ R2. We assume that 0 ≤ |α|f < 1. Then, we
have (i) ⇐⇒ (ii) with:

(i)

 un − g ≤ 0, tn ≤ 0, tn (un − g) = 0,

∀v̂ ∈ R, tt
(
v̂ − ut

)
− ftn

(
|v̂| − |ut|

)
≥ 0,

(ii)



u1 − g ≤ 0, t1 ≤ 0, t1 (u1 − g) = 0,

∀v̂ ∈ R, t2
[
v̂ − (u2 + αg)

]
− ft1

1 + αf

[
⟨v̂⟩+ − ⟨u2 + αg⟩+

]
− ft1

1 − αf

[
⟨v̂⟩− − ⟨u2 + αg⟩−

]
≥ 0,

where ⟨x⟩+ := max{0, x} and ⟨x⟩− := max{0,−x} denote respectively the positive and the
negative parts.
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Remark 3.7 The second line of (ii) is equivalent to the following conditions
ft1

1 + αf
≤ t2 ≤ − ft1

1 − αf
,

u2 + αg > 0 =⇒ t2 = ft1
1 + αf

,

u2 + αg < 0 =⇒ t2 = − ft1
1 − αf

.

Proof.
(i) =⇒ (ii)

Assuming that (i) is fulfilled, we obviously have u1 − g ≤ 0 as u1 = un. By (i), we have
|tt| ≤ −ftn which entails that t1 = tn + αtt ≤ 0, since 0 ≤ |α|f < 1. If u1 = un < g then
tn = tt = 0 by (i), so that t1 = 0. The first line of (ii) is proved. Furthermore,

ftn < tt < −ftn ⇐⇒ f(tn + αtt)
1 + αf

< tt < −f(tn + αtt)
1 − αf

⇐⇒ ft1
1 + αf

< t2 < − ft1
1 − αf

.

If one, and then, each of the previous conditions is satisfied, we have un − g = ut = 0 by (i),
so that u2 + αg = 0. If tn < 0 and tt = −ftn, that is, t2 = −ft1/(1 − αf), then un = g
and u2 + αg = ut > 0. Analogously, if tn < 0 and tt = ftn, then t2 = ft1/(1 + αf) and
u2 + αg = ut < 0. Finally, the second line of (ii) is fulfilled.
(ii) =⇒ (i)

The proof follows the same lines as that of (i) =⇒ (ii) and is left to the reader. □

Definition 3.8 Let Ω ⊂ RN be open, bounded, connected and of class C 1,1. Consider an arbitrary
Λ ∈ W 1,∞(Ω) satisfying requirements (1.1) and (1.2). Taking an arbitrary x ∈ ∂Ω, one can
always consider the Neumann-to-Dirichlet operator for the homogeneous elastic bidimensional
half-space with elastic modulus taken as Λ(x). Theorem 3.1 provides associated functions
C1(x),C2(x) ∈ W 1,∞(∂Ω), with C1(x) > 0. Setting α(x) := C2(x)/C1(x), we have a well-defined
function α ∈ W 1,∞(∂Ω) which is completely determined by Λ ∈ W 1,∞(Ω). In the case of an
isotropic (possibly heterogeneous) material, the function α vanishes identically on ∂Ω.

We assume N = 2 (bidimensional problem). For Λ ∈ W 1,∞(Ω) and f ∈ W 1,∞(ΓC) satisfying
the conditions:

f ≥ 0, sup
x∈ΓC

f(x)|α(x)| < 1, (3.3)

and for t, τ ∈ K (K was defined in formula (2.1)), we define the modified energy:

Eα
t,τ (v) := 1

2

∫
Ω

ε(v) : Λε(v) dx−
∫

Ω
F · v dx−

∫
ΓT

T · v|ΓT
dx−

∫
ΓC

τ vn

−
∫

ΓC

ft

1 + αf

〈
vt − wt − αvn + αg

〉+ −
∫

ΓC

ft

1 − αf

〈
vt − wt − αvn + αg

〉−
,

The functional Eα
t,τ is clearly strictly convex and continuous on V (the space V was defined in

formula (2.2)). Its unique minimizer u on V satisfies, in particular, t1 = tn + αtt = τ on ΓC and:

∀v̂ ∈ H1/2(ΓC),
∫

ΓC

tt
(
v̂ − ut + wt + αun − αg

)
−
∫

ΓC

ft

1 + αf

(〈
v̂
〉+ −

〈
ut −wt −αun +αg

〉+)−
∫

ΓC

ft

1 − αf

(〈
v̂
〉− −

〈
ut −wt −αun +αg

〉−) ≥ 0,
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where t := σ(u)n denotes the associated surface traction on ΓC . To obtain the above variational
inequality, we have decomposed displacements and traction along the bases {ei} and {ej} and
used the change of variables v̂ = vt − αvn + αg − wt. We define A α(t, τ) := u|ΓC

· n = u1 as the
normal part of the trace of u on ΓC and Aαt := A α(t, t), so that:

A α : K ×K → H1/2(ΓC), Aα : K → H1/2(ΓC).

Thanks to Proposition 3.6, the static Signorini-Coulomb problem (1.4) reduces, under condi-
tion (3.3), to find t ∈ K such that:

∀t̂ ∈ K,
〈
Aαt− g , t̂− t

〉
≥ 0,

where g ∈ H1/2(ΓC).
Hence, the problem is reduced to prove that Aα : K → H1/2(ΓC) is coercive and Leray-Lions.

This is going to be done along the same lines as in the isotropic case in Section 2.2. It is readily
checked that the conclusions of Propositions 2.5, 2.6, 2.7, 2.8 and 2.9 still holds true with the
operator A replaced with A α.

The key reason for considering operators Aα and A α instead of A and A in the anisotropic
case is that Theorem 2.10 does not hold in the anisotropic case, due to the different form of the
Neumann-to-Dirichlet operator of the homogeneous elastic bidimensional half-space (Theorem 3.1).
Instead, the following modified version holds true.

Theorem 3.9 Let N = 2, Λ ∈ W 1,∞ and α be as in Definition 3.8. For t̃ ∈ H−1/2(ΓC)∩M (ΓC),
we denote by u the unique minimizer on V of:

v 7→ 1
2

∫
Ω

ε(v) : Λε(v) dx−
∫

ΓC

t̃ (vt − αvn) = 1
2

∫
Ω

ε(v) : Λε(v) dx−
∫

ΓC

t̃ v2, (3.4)

and by un = u1 ∈ H1/2(ΓC) the normal part of the trace of u on ΓC . The linear mapping
t̃ 7→ un = u1 =: Lαt̃ is continuous for the strong topologies of H−1/2(ΓC) and H1/2(ΓC) (and
also for the weak topologies, as it is linear).

Then, for any sequence tk ∈ K converging weakly in H−1/2(ΓC) towards a limit t ∈ K, and
any sequence t̃k ⇀ t̃ in H−1/2(ΓC) ∩ M (ΓC) such that |t̃k| ≤ −tk, we have:

lim
k→+∞

〈
Lαt̃k, tk

〉
=
〈
Lαt̃, t

〉
.

Proof. The minimizer of (3.4) fulfils t1 = tn + αtt = 0 on ΓC . Then, proofs of Lemma 2.21 and
of Theorem 2.10 are straightforwardly adapted based on this property together with the form of
the Neumann-to-Dirichlet operator provided by Theorem 3.1. □

Corollary 3.10 Let N = 2, Λ ∈ W 1,∞(Ω), and f ∈ W 1,∞(ΓC) fulfilling condition (3.3). Let
τ ∈ K, tk ⇀ t be a weakly convergent sequence in K such that A α(tk, τ) ⇀ F converges weakly
in H1/2(ΓC) towards some limit F . Then, limk→+∞⟨A α(tk, τ), tk⟩ = ⟨F, t⟩. In other words,
under the previous hypotheses, property (iv) of Definition A.5 holds true and the operator Aα is
a Leray-Lions operator.

Proof. Adapt the proof of Corollary 2.12 by invoking Theorem 3.9 instead of Theorem 2.10. □

Bringing all together, and invoking Proposition A.6 in Appendix A, we have proved:
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Theorem 3.11 Let N = 2, Λ ∈ W 1,∞(Ω), and f ∈ W 1,∞(ΓC) fulfilling condition (3.3). Then,
the operator Aα is a Leray-Lions operator and is therefore pseudomonotone. In addition, it is
coercive.

We can now rely on Brézis’s theorem (Theorem A.3 in Appendix A) to solve variational
inequalities based on the operator A.

Theorem 3.12 Let N = 2, Λ ∈ W 1,∞(Ω), and f ∈ W 1,∞(ΓC) fulfilling condition (3.3),
F ∈ L2(Ω,RN ), T ∈ L2(ΓT ,RN ), g ∈ H1/2(ΓC) and wt ∈ H1/2(ΓC ;RN ). Then, there exists
t ∈ K satisfying the variational inequality:

∀t̂ ∈ K,
〈
Aαt− g, t̂− t

〉
≥ 0.

It is readily checked that the unique minimizer u ∈ V of Et,t on V (see Definition 2.4) with t
given by Theorem 3.12, solves the formal static Signorini-Coulomb problem (1.4) (meaning that,
whenever the minimizer is smooth enough, the conditions are fulfilled pointwisely).

3.3 The Neumann-to-Dirichlet operator of the anisotropic elastic bidimen-
sional half-space

The aim of this section is to provide a synthetic and self-contained proof of Theorem 3.1. This
result is formally known in Solid Mechanics. A formal version can be found, for example, in [16,
Section 8.5]. For the historical background of this result, the reader should refer to that book.

Proof of Theorem 3.1.
Step 1. Preliminaries and notations.

The orthonormal coordinate system (x, y) will be used in the bidimensional space. We
consider an arbitrary displacement u with components ux(x, y) and uy(x, y). We adopt the
following notation for the three independent entries of the matrix of the symmetric gradient ε:

ε1 := εxx = ux,x,

ε2 := εyy = uy,y,

ε3 := εxy = εyx = (ux,y + uy,x)/2,

where indices after a comma mean a derivative, as usual. A similar convention is adopted for the
stress matrix σ:

σ1 := σxx, σ2 := σyy, σ3 := σxy = σyx,

so that an arbitrary anisotropic elastic modulus tensor Λ can now be represented by a positive
definite symmetric 3 × 3 matrix: σ1

σ2√
2σ3

 =

Λ11 Λ12 Λ13
Λ12 Λ22 Λ23
Λ13 Λ23 Λ33


 ε1

ε2√
2ε3

 .
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With this notation, the elastic equilibrium equations in the whole space with body forces (Fx, Fy)
read as:

Λ33
2 ux,yy +

√
2Λ23
2 uy,yy +

√
2Λ13ux,xy +

(Λ33
2 + Λ12

)
uy,xy + Λ11ux,xx +

√
2Λ13
2 uy,xx = −Fx,

√
2Λ23
2 ux,yy + Λ22uy,yy +

(Λ33
2 + Λ12

)
ux,xy +

√
2Λ23uy,xy +

√
2Λ13
2 ux,xx + Λ33

2 uy,xx = −Fy.

(3.5)
Adopting convention (3.1) for defining the Fourier transform, and denoting by ˆ̂ux(ξ, η) the Fourier
transform of ux with respect to the pair (x, y), we obtain the algebraic system:[

Λ11ξ
2 +

√
2Λ13ξη + Λ33

2 η2
]
ˆ̂ux +

[√
2Λ13
2 ξ2 +

(Λ33
2 + Λ12

)
ξη +

√
2Λ23
2 η2

]
ˆ̂uy = ˆ̂F x,[√

2Λ13
2 ξ2 +

(Λ33
2 + Λ12

)
ξη +

√
2Λ23
2 η2

]
ˆ̂ux +

[Λ33
2 ξ2 +

√
2Λ23ξη + Λ22η

2
]
ˆ̂uy = ˆ̂F y.

(3.6)

Thanks to the positive definiteness of Λ, the symmetric matrix M(ξ, η) appearing in this system
satisfies a strong ellipticity property:

∃α > 0, ∀(ξ, η),X ∈ R2, tX M(ξ, η) X ≥ α(ξ2 + η2)|X|2

=⇒ ∀(ξ, η) ̸= 0, ∆(ξ, η) := det M(ξ, η) > 0. (3.7)

Step 2. General form of the solutions of the elastic equilibrium equations in a half-space.
From now on, we look for ux and uy that are tempered distributions in the half-space {y < 0}.

Denoting by ûx(ξ, y) the Fourier transforms of ux with respect to the variable x only, the system
of ordinary differential equations for ûx and ûy reads as:

Λ33
2 ûx,yy +

√
2Λ23
2 ûy,yy + iξ

√
2Λ13ûx,y + iξ

(Λ33
2 + Λ12

)
ûy,y − ξ2Λ11ûx − ξ2

√
2Λ13
2 ûy = 0,

√
2Λ23
2 ûx,yy + Λ22ûy,yy + iξ

(Λ33
2 + Λ12

)
ûx,y + iξ

√
2Λ23ûy,y − ξ2

√
2Λ13
2 ûx − ξ2 Λ33

2 ûy = 0.
(3.8)

We analyse first the solutions in (R \ {0}) × R−. This system admits nontrivial solutions of the
form û(ξ, y) = v(ξ) eiλξy, if and only if λ is a solution of the characteristic equation:

P (λ) := Λ22Λ33 − Λ2
23

2 λ4 +
√

2
(
Λ13Λ22 − Λ23Λ12

)
λ3 +

(
Λ11Λ22 + Λ13Λ23 − Λ33Λ12 − Λ2

12
)
λ2

+
√

2
(
Λ11Λ23 − Λ13Λ12

)
λ+ Λ11Λ33 − Λ2

13
2 = 0. (3.9)

We have ∆(ξ, η) = ξ4 P (η/ξ), for ξ ̸= 0, where ∆(ξ, η) is the determinant defined in (3.7). The
polynomial P has therefore no real root. As a consequence, the solutions of the characteristic
equation (3.9) are two pairs of conjugate complex numbers, these two pairs being either distinct
(case 1) or identical (case 2).

Case 1. The characteristic equation (3.9) has two distinct pairs of complex conjugate roots,
say α1 ± iσ1 and α2 ± iσ2, where we can assume σ1 > 0 and σ2 > 0 without loss of
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generality. On the one hand, all the solutions in (R \ {0}) × R− of the system (3.8)
are of the form:

ûx(ξ, y) =
2∑

k=1
Ak(ξ) fk(ξ) eσk|ξ|yeiαkξy +

2∑
k=1

Ãk(ξ) fk(ξ) e−σk|ξ|yeiαkξy,

ûy(ξ, y) = −
2∑

k=1
Ak(ξ) gk(ξ) eσk|ξ|yeiαkξy −

2∑
k=1

Ãk(ξ) gk(ξ) e−σk|ξ|yeiαkξy,

with

fk(ξ) :=
√

2Λ23
2

(
σ2

k − α2
k + 2iσkαksgn(ξ)

)
−
(Λ33

2 + Λ12
)(
αk − iσksgn(ξ)

)
−

√
2Λ13
2 ,

gk(ξ) := Λ33
2
(
σ2

k − α2
k + 2iσkαksgn(ξ)

)
−

√
2Λ13

(
αk − iσksgn(ξ)

)
− Λ11,

for four arbitrary coefficients Ak(ξ), Ãk(ξ). The fact that ûx and ûy are tempered
distributions on {y < 0} requires that Ã1 and Ã2 should vanish identically.
On the other hand, all the solutions of (3.8) supported in {0} × R− are of the form:

ûx(ξ, y) = (M1 +M2y)δ(ξ) +M3δ
′(ξ),

ûy(ξ, y) = (N1 +N2y)δ(ξ) +N3δ
′(ξ),

where the Mi, Ni are complex constants and δ is the Dirac measure. Finally, all the
tempered distributions ûx and ûy in {y < 0} that solve system (3.8) are of the form:

ûx(ξ, y) =
2∑

k=1

(
Lxk1 + i sgn(ξ)Lxk2

)
Ak(ξ) eσk|ξ|yeiαkξy + (M1 +M2y)δ(ξ) +M3δ

′(ξ),

ûy(ξ, y) =
2∑

k=1

(
Lyk1 + i sgn(ξ)Lyk2

)
Ak(ξ) eσk|ξ|yeiαkξy + (N1 +N2y)δ(ξ) +N3δ

′(ξ),

for two arbitrary coefficients A1(ξ), A2(ξ) defined in R\{0} and six arbitrary constants
Mi, Ni. Above, Lxkl and Lykl denote eight real constants that are uniquely determined
by Λ. We now make explicit the dependence of ûx and ûy on the Dirichlet datum. To
this aim, setting:

Ûx(ξ, y) :=
2∑

k=1

(
Lxk1 + i sgn(ξ)Lxk2

)
Ak(ξ) eσk|ξ|yeiαkξy,

Ûy(ξ, y) :=
2∑

k=1

(
Lyk1 + i sgn(ξ)Lyk2

)
Ak(ξ) eσk|ξ|yeiαkξy,

(3.10)

we observe that the mapping (A1(ξ), A2(ξ)) 7→ (Ûx(ξ, 0), Ûx(ξ, 0)) is linear, and the
corresponding matrix has all entries of the form Lij1 + iLij2sgn(ξ). Such matrix is
invertible and its inverse matrix has all entries of the same structure. Indeed, assume
for simplicity (A1, A2) ∈ C∞

c (R+). Then, one defines the inverse transform U(x, y) of
Û(ξ, y) with respect to ξ, and by Plancherel theorem and the energy equality one finds
that:∫

{y=0}
Û(ξ, 0) · σ̂(U)n dξ =

∫
{y=0}

U(x, 0) · σ(U)n dx =
∫

{y<0}
ε(U) : Λε(U) dx.

(3.11)
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Therefore, Û(ξ, 0) ≡ 0 implies that U is a rigid motion and, taking into account formu-
lae (3.10), that U ≡ 0. In conclusion, Ak(ξ) ≡ 0 and the mapping (A1(ξ), A2(ξ)) 7→
(Ûx(ξ, 0), Ûy(ξ, 0)) is injective. Finally, all the tempered distributions ûx and ûy in
{y < 0} that solve system (3.8) are of the form:

ûx(ξ, y) =
∑

k∈{1,2}
l∈{x,y}

(
Lxkl1 + iLxkl2 sgn(ξ)

)
Ul(ξ) eσk|ξ|yeiαkξy + (M1 +M2y)δ(ξ) +M3δ

′(ξ),

ûy(ξ, y) =
∑

k∈{1,2}
l∈{x,y}

(
Lykl1 + iLykl2 sgn(ξ)

)
Ul(ξ) eσk|ξ|yeiαkξy + (N1 +N2y)δ(ξ) +N3δ

′(ξ),

(3.12)
for two arbitrary coefficients Ux(ξ), Uy(ξ) defined in R\{0} and six arbitrary constants
Mi, Ni. Above, Lijkl denote sixteen real constants that are uniquely determined by Λ
and that ensure that Ûi(ξ, 0) = Ui(ξ).

Case 2. The characteristic equation (3.9) has a pair of double complex conjugate roots α± iσ,
where σ > 0. This degenerate situation is the one encountered in the case of isotropic
elasticity. In that case, one can conclude by a similar argument as in case 1, that all
the tempered distributions ûx and ûy in {y < 0} that solve system (3.8) are of the
form:

ûx(ξ, y) =
(
Ux(ξ) + y|ξ|

[ ∑
k∈{x,y}

(
Lxk1 + iLxk2 sgn(ξ)

)
Uk(ξ)

])
eσ|ξ|yeiαξy

+ (M1 +M2y)δ(ξ) +M3δ
′(ξ),

ûy(ξ, y) =
(
Uy(ξ) + y|ξ|

[ ∑
k∈{x,y}

(
Lyk1 + iLyk2 sgn(ξ)

)
Uk(ξ)

])
eσ|ξ|yeiαξy

+ (N1 +N2y)δ(ξ) +N3δ
′(ξ),

(3.13)

for two arbitrary coefficients Ux(ξ), Uy(ξ) defined in R \ {0} and six constants Mi, Ni.
Above, Lxkl and Lykl denote eight real constants that are uniquely determined by Λ.

Step 3. General form of the Neumann-to-Dirichlet operator of the half-space.
One compute the Fourier transform t̂x and t̂y of the components of the surface force by use

of the formulae:

t̂x(ξ) = σ̂xy(ξ) = iξ

√
2Λ13
2 ûx(ξ, 0) +

√
2Λ23
2

∂ûy(ξ, 0)
∂y

+ iξ
Λ33
2 ûy(ξ, 0) + Λ33

2
∂ûx(ξ, 0)

∂y
,

t̂y(ξ) = σ̂yy(ξ) = iξΛ12ûx(ξ, 0) + Λ22
∂ûy(ξ, 0)

∂y
+ iξ

Λ23
2 ûy(ξ, 0) + Λ23

2
∂ûx(ξ, 0)

∂y
.

Applying the above formulae to either (3.12) or (3.13), we get:

t̂x(ξ) = |ξ|
([
L+

xx + iL−
xxsgn(ξ)

]
Ux(ξ) +

[
L+

xy + iL−
xysgn(ξ)

]
Uy(ξ)

)
+Mδ(ξ),

t̂y(ξ) = |ξ|
([
L+

yx + iL−
yxsgn(ξ)

]
Ux(ξ) +

[
L+

yy + iL−
yysgn(ξ)

]
Uy(ξ)

)
+Nδ(ξ),

(3.14)
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where the L±
ij are eight real constants that are uniquely determined by Λ, and M and N are

complex constants that depend on Λ, but also on the Mi’s and the Ni’s. Considering M = N = 0
and Ux, Uy ∈ C∞

c (R), the energy equality (3.11) shows that the bilinear mapping:

(
U1,U2) 7→

∫ +∞

−∞

(
U1

x U
1
y

)(L+
xx + iL−

xxsgn(ξ) L+
xy + iL−

xysgn(ξ)
L+

yx + iL−
yxsgn(ξ) L+

yy + iL−
yysgn(ξ)

)(
U

2
x

U
2
y

)
|ξ| dξ

should be positive definite, with Hermitian symmetry. Therefore, the matrix:(
L+

xx + iL−
xxsgn(ξ) L+

xy + iL−
xysgn(ξ)

L+
yx + iL−

yxsgn(ξ) L+
yy + iL−

yysgn(ξ)

)

should be positive definite, Hermitian, for all ξ ̸= 0. Hence, L−
xx = L−

yy = 0, L+
yx = L+

xy,
L−

yx = −L−
xy, L+

xx > 0, L+
yy > 0 and its inverse matrix has the form:(

πC4 πC2 − 2iC3 sgn(ξ)
πC2 + 2iC3 sgn(ξ) πC1

)
(3.15)

where the Ci’s are uniquely determined by Λ, C1 > 0 and C4 > 0. Finally, taking t̂x(ξ) = Tx/
√

2π,
t̂y(ξ) = Ty/

√
2π for (Tx, Ty) ∈ R2 in (3.14), all the tempered distributions Ux, Uy on R \ {0}

satisfying (3.14) where necessarily M = N = 0, are given by:

Ux(ξ) = C4 Tx

√
π

2
1
|ξ|

+ C2 Ty

√
π

2
1
|ξ|

− iC3 Ty

√
2
π

1
ξ
,

Uy(ξ) = C1 Ty

√
π

2
1
|ξ|

+ C2 Tx

√
π

2
1
|ξ|

+ iC3 Ty

√
2
π

1
ξ
.

Using (3.2), it turns out that all the tempered distributions ux, uy in the half-space, that satisfy
the elastic equilibrium equations with vanishing body forces and surface forces equal to (Tx, Ty)δ
on the boundary have a trace on the boundary given by:

ux = −C4 Tx log |x| − C2 Ty log |x| + C3 Ty sgn(x) + ax(x),
uy = −C1 Ty log |x| − C2 Tx log |x| − C3 Tx sgn(x) + ay(x),

where a denote an arbitrary affine displacement in the half-space, which is compatible with
boundary free of surface force (such an arbitrary displacement is determined by four arbitrary
real constants: three components of an overall rigid motion and one component of a constant σxx

stress). The contribution of ΓEul in formulae (3.2) has been included in ax and ay. This result is
enough to obtain the form of the Neumann-to-Dirichlet operator of the anisotropic homogeneous
half-space as given in Theorem 3.1.
Step 4. The maps Λ 7→ Ci are of class C∞.

The preceding Steps 1, 2, 3 contain actually an effective method of calculating the Ci’s
in terms of the entries of Λ and the complex roots of the characteristic equation (3.9). The
expression can even be made explicit if desired. All the Ci’s are rational functions of the entries
of Λ and the complex roots of the characteristic equation (3.9). This does not readily give the
expected conclusion, as the roots of a polynomial are C∞ functions of the coefficients of the
polynomial only in the case where the roots are simple and the root functions do not even need
to be Lipschitz-continuous at a multiple root.
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We are therefore going to provide an alternative expression of the Ci’s in terms of Λ, better
suited to prove the regularity of the dependence. The method runs as follows. We are going to
look for a tempered distribution u on the whole space R2, satisfying the elastic equilibrium with
body forces of the form F(x)δ(y) and adjust F(x) so that the restriction of u to the half-space
{y < 0} is a fundamental solution for the Neumann problem on the half-space. We will prove
that all the fundamental solutions can be obtained by means of an appropriate choice of the
distribution F(x) and, thus, get an alternative expression of the Ci’s in terms of Λ.

The inversion of the algebraic system (3.6) fulfilled by the double Fourier transform ˆ̂u gives:

ˆ̂ux(ξ, η) = 1√
2π∆(ξ, η)

{[Λ33
2 ξ2 +

√
2Λ23ξη + Λ22η

2
]
F̂x(ξ)

−
[√

2Λ13
2 ξ2 +

(Λ33
2 + Λ12

)
ξη +

√
2Λ23
2 η2

]
F̂y(ξ)

}
,

ˆ̂uy(ξ, η) = 1√
2π∆(ξ, η)

{
−
[√

2Λ13
2 ξ2 +

(Λ33
2 + Λ12

)
ξη +

√
2Λ23
2 η2

]
F̂x(ξ)

+
[
Λ11ξ

2 +
√

2Λ13ξη + Λ33
2 η2

]
F̂y(ξ)

}
,

(3.16)

where the determinant ∆(ξ, η) was seen to be expressed in terms of the characteristic polyno-
mial (3.9) by the formula ∆(ξ, η) = ξ4P (η/ξ), so that ∆(ξ, η) > 0, for ξ ̸= 0. Actually, the
inversion of the algebraic system (3.6) provides ˆ̂u up to an arbitrary additive term of the form
C0δ(ξ)δ(η) + C1δ

′(ξ)δ(η) + C2δ(ξ)δ′(η), with Ci ∈ R2. This term represents an arbitrary affine
displacement which plays no role in the sequel and will therefore be ignored. As the right-hand
sides are integrable functions of η, one can use the formula:

ûx(ξ, 0) = 1√
2π

∫ +∞

−∞
ˆ̂ux(ξ, η) dη, (3.17)

to get:

ûx(ξ, 0) = 1
2π|ξ|

{[Λ33
2 I0 +

√
2Λ23I1 + Λ22I2

]
F̂x(ξ)

−
[√

2Λ13
2 I0 +

(Λ33
2 + Λ12

)
I1 +

√
2Λ23
2 I2

]
F̂y(ξ)

}
,

ûy(ξ, 0) = 1
2π|ξ|

{
−
[√

2Λ13
2 I0 +

(Λ33
2 + Λ12

)
I1 +

√
2Λ23
2 I2

]
F̂x(ξ)

+
[
Λ11I0 +

√
2Λ13I1 + Λ33

2 I2

]
F̂y(ξ)

}
,

(3.18)

where:
I0 :=

∫ +∞

−∞

dx
P (x) > 0, I1 :=

∫ +∞

−∞

x dx
P (x) , I2 :=

∫ +∞

−∞

x2 dx
P (x) > 0,
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depend only on Λ and are C∞ functions of Λ, by dominated convergence. From (3.16), we get:

ˆ̂σxy(ξ, η) = i

∆(ξ, η)

{[Λ22Λ33−Λ2
23

2 η3 +
√

2
2
(
Λ13Λ22−Λ23Λ12

)
η2ξ + Λ13Λ23−Λ33Λ12

2 ηξ2
]
F̂x(ξ)√

2π

+
[Λ13Λ23−Λ33Λ12

2 η2ξ +
√

2
2
(
Λ23Λ11−Λ13Λ12

)
ηξ2 + Λ11Λ33−Λ2

13
2 ξ3

]
F̂y(ξ)√

2π

}
,

ˆ̂σyy(ξ, η) = i

∆(ξ, η)

{
−
[Λ22Λ33−Λ2

23
2 η2ξ +

√
2

2
(
Λ13Λ22−Λ23Λ12

)
ηξ2 + Λ13Λ23−Λ33Λ12

2 ξ3
]
F̂x(ξ)√

2π

+
[Λ22Λ33−Λ2

23
2 η3 +

√
2
(
Λ13Λ22−Λ23Λ12

)
η2ξ

+
(
Λ11Λ22 − Λ2

12 + Λ13Λ23−Λ33Λ12
2

)
ηξ2 +

√
2

2
(
Λ11Λ23−Λ12Λ13

)
ξ3
]
F̂y(ξ)√

2π

}
.

As the function η 7→ η3/∆(ξ, η) is not integrable, we cannot simply rely on formula (3.17) to
compute σ̂xy(ξ, 0). Instead, we write:

Λ22Λ33−Λ2
23

2
η̃3

P (η̃) = η̃

1 + η̃2 +
[Λ22Λ33−Λ2

23
2

η̃3

P (η̃) − η̃

1 + η̃2

]
,

where the second term in the right-hand side is an integrable rational function of η̃. Making use
of the knowledge of the inverse Fourier transform of η̃/(1 + η̃2):

1√
2π

∫ +∞

−∞

η̃ eiyη̃

1 + η̃2 dη̃ = i

√
π

2 e
−|y| sgn(y),

we obtain:
lim

y→0±

Λ22Λ33−Λ2
23

2

∫ +∞

−∞

η3 eiyη

∆(ξ, η) dη = ±iπ + I3 sgn ξ,

where:
I3 :=

∫ +∞

−∞

[Λ22Λ33−Λ2
23

2
x3

P (x) − x

1 + x2

]
dx,

is a C∞ function of Λ only. As a result:

σ̂xy(ξ, 0−) =
{
π + i sgn ξ

[
I3 +

√
2

2
(
Λ13Λ22−Λ23Λ12

)
I2 + Λ13Λ23−Λ33Λ12

2 I1

]}
F̂x(ξ)

2π

+ i sgn ξ
{

Λ13Λ23−Λ33Λ12
2 I2 +

√
2

2
(
Λ23Λ11−Λ13Λ12

)
I1 + Λ11Λ33−Λ2

13
2 I0

}
F̂y(ξ)

2π ,

σ̂yy(ξ, 0−) = −i sgn ξ
{

Λ22Λ33−Λ2
23

2 I2 +
√

2
2
(
Λ13Λ22−Λ23Λ12

)
I1 + Λ13Λ23−Λ33Λ12

2 I0

}
F̂x(ξ)

2π

+
{
π + i sgn ξ

[
I3 +

√
2
(
Λ13Λ22−Λ23Λ12

)
I2

+
(
Λ11Λ22 − Λ2

12 + Λ13Λ23−Λ33Λ12
2

)
I1 +

√
2

2
(
Λ11Λ23−Λ12Λ13

)
I0

]}
F̂y(ξ)

2π .

(3.19)
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The next step is now to find (F̂x, F̂y) such that:

σ̂xy(ξ, 0−) = Tx√
2π
, σ̂yy(ξ, 0−) = Ty√

2π
,

where (Tx, Ty) is arbitrarily fixed in R2. We therefore have to prove that system (3.19) is invertible
and this is where the preliminary Steps 1, 2, 3 will be essential. Take σ̂xy(ξ, 0−) = σ̂yy(ξ, 0−) = 0
in system (3.19). Then, on the one hand, the restriction of u(x, y) to the half-space {y < 0}
solves an elasticity problem in that half-space with free boundary. The analysis in Step 1, 2, 3
shows that the restriction of the corresponding u(x, y) to the half-space {y < 0} must be affine
so that û(ξ, 0) = C0δ(ξ) + C1δ

′(ξ), where C0,C1 ∈ R2. On the other hand, by system (3.19),
we obtain:

σ̂xy(ξ, 0+) = −F̂x(ξ), σ̂yy(ξ, 0+) = −F̂y(ξ),

so that the restriction of u(x, y) to the half-space {y > 0} solves a Neumann elastic problem on
that half-space with boundary data (F̂x(ξ), F̂y(ξ)). As û(ξ, 0) = C0δ(ξ) + C1δ

′(ξ), the analysis
in Steps 1, 2, 3 shows that (F̂x, F̂y) = (0, 0). Hence, the 2 × 2 matrix appearing in system (3.19)
is invertible. We can therefore compute (F̂x, F̂y) in terms of (Tx, Ty):(

F̂x(ξ)
F̂y(ξ)

)
=
(
C1 + i C2 sgn ξ C3 + i C4 sgn ξ
C5 + i C6 sgn ξ C7 + i C8 sgn ξ

)(
Tx

Ty

)
,

where the Ci’s are rational functions of the entries of Λ and of the Ii’s only. Injecting this
expression in (3.18), we obtain:(

ûx(ξ, 0)
ûy(ξ, 0)

)
= 1√

2π|ξ|

(
C ′

1 + i C ′
2 sgn ξ C ′

3 + i C ′
4 sgn ξ

C ′
5 + i C ′

6 sgn ξ C ′
7 + i C ′

8 sgn ξ

)(
Tx

Ty

)
,

where the C ′
i’s are rational functions of the entries of Λ and of the Ii’s only. As a consequence,

the C ′
i’s are C∞ functions of Λ. As the above matrix equals (3.15), we have therefore proved

that all the Ci’s are C∞ functions of Λ. □

Appendix A: Pseudomonotone and Leray-Lions operators
Let B be a reflexive Banach space, B∗ its dual space, K ⊂ B a nonempty closed convex subset,
f ∈ B∗ and A : K → B∗. In [4], Brézis sought minimal conditions on A to ensure the solvability
of the problem of finding u ∈ K satisfying the variational inequality:

∀v ∈ K,
〈
Au− f, v − u

〉
≥ 0. (A.20)

More precisely, Brézis sought the minimal conditions on A ensuring that a sequence of Galerkin
approximations for the solution of (A.20) can be built based on Brouwer’s theorem and that a
limit to a solution of (A.20) can be taken.

Definition A.1 A mapping A : K → B∗ is said hemicontinuous if each real-valued function:
λ 7→

〈
A
(
λu+(1−λ)v

)
, v−u

〉
is continuous on [0, 1]. The mapping A : K → B∗ is said bounded

if it maps bounded subsets into bounded subsets. The mapping A : K → B∗ is said monotone if
⟨Au−Av, u− v⟩ ≥ 0, for all u, v ∈ K.
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Definition A.2 A mapping A : K → B∗ is said pseudomonotone (in the sense of Brézis) if it is
bounded and if, for all weakly converging sequence un ⇀ u in K, such that lim sup⟨Aun, un −u⟩ ≤
0, then we have:

∀v ∈ K, lim inf⟨Aun, un − v⟩ ≥ ⟨Au, u− v⟩.

A mapping A : K → B∗ is said coercive if:

lim
∥u∥B→+∞,

u∈K

⟨Au, u⟩
∥u∥B

= +∞.

The motivation for the previous definition lies in the following result due to Brézis [4, Corollary
30].

Theorem A.3 (Brézis) Let A : K → B∗ be a pseudomonotone, coercive operator. Then, for
all f ∈ B∗, the variational inequality (A.20) has at least one solution.

Pseudomonotone operators are a generalization of monotone operators in the following sense:

Proposition A.4 Let A : K → B∗ be a bounded, hemicontinuous, monotone operator. Then, A
is pseudomonotone.

Part of the success of Brézis’s result is due to the fact that the class of pseudomonotone
operators encompasses the subclass of the so-called Leray-Lions operators previously introduced
in [12] in view of the study of certain nonlinear elliptic partial differential equations.

Definition A.5 A mapping A : K → B∗ is said to be a Leray-Lions operator, if it is bounded
and can be written as Au = A (u, u), for all u ∈ K, where A : K ×K → B∗ has the following
properties.

(i) For all u ∈ K, the mapping: {
K → B∗

v 7→ A (u, v)

is bounded, hemicontinuous and satisfies the monotonicity property:

∀v ∈ K,
〈
A (u, u) − A (u, v) , u− v

〉
≥ 0.

(ii) For all v ∈ K, the mapping u 7→ A (u, v) is bounded, hemicontinuous from K ⊂ B to B∗.

(iii) For all v ∈ K, if un ⇀ u is a weakly converging sequence in K, such that lim⟨A (un, un) −
A (un, u), un − u⟩ = 0, then we have A (un, v) ⇀ A (u, v) weakly in B∗.

(iv) For all v ∈ K, if un ⇀ u is a weakly converging sequence in K, such that A (un, v) ⇀ F
weakly in B∗, then we have lim⟨A (un, v), un⟩ = ⟨F, u⟩.

The proof of the following result is easy (see, for example, [17, Lemma 4.13])).

Proposition A.6 Every Leray-Lions operator A : K → B∗ is pseudomonotone.
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