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Abstract: In this paper, a recent control-oriented features generation method is used to
diagnose schizophrenia using electroencephalogram (EEG) signals. The methodology has already
been used for the diagnosis of Parkinson’s disease with competitive results. The method is
directly inspired by the functioning of the brain and is mainly based on optimal control theory
and sparse optimisation. An appealing feature in the proposed solution is that it allows to
combine both frequency and temporal-related aspects of the signal which are known to be
detrimental in this context. The proposed solution is evaluated on a publicly available dataset
that includes 81 subjects, of which 49 suffer from schizophrenia and 32 are healthy. Results
show that by mean of only one extracted feature, fed to a linear discriminant analysis (LDA)
classifier, high accuracy separation is obtained. Several validity tests were carried out to assess
the statistical relevance of the findings.

Keywords: Dynamical systems, Inverse problem, Schizophrenia diagnosis,
Electroencephalogram, Sparse features, Machine Learning

1. INTRODUCTION

Schizophrenia (SZ) is a chronic neuropsychiatric disor-
der that affects approximately 24 million individuals of
the population worldwide (GHDx, 2021). Schizophrenia
is characterised by the presence of positive (psychotic)
symptoms which are not a dysfunction or an extreme
version of normal physiological functioning, but are new
features which are unique to SZ. Among these symptoms
we can find: delusions, hallucinations, disorganized speech
etc. Negative symptoms (e.g. limited speech) and cognitive
deficit are other symptom categories of the disorder.
The diagnosis of SZ is until now entirely clinical, and is
based on the manifestation of psychotic symptoms as well
as the evaluation of the patients’ self-report of their own
subjective experiences. The clinical diagnosis is supported
by various tools and guidelines such as: the Diagnostic and
Statistical Manual of Mental Disorders (DSM-5) (APA,
2022) and the International Statistical Classification of
Disease (ICD-10) (WHO, 1997). Although clinical diagno-
sis has been improved with the latest versions of DSM-5
and ICD-10, clinical diagnosis is still limited by human
subjectivity (Walsh-Messinger et al., 2019).
Early diagnosis of the disease allows for better control of
some symptoms before complications arise, thus improving
the long-term outlook of the disease (Insel, 2010). Nev-
ertheless, early diagnosis of the disease is difficult since
some symptoms are not exclusive to SZ and even healthy
individuals report having psychosis experiences (Linscott
and van Os, 2012).
The abundance of data and its ease of access helped in the
development of various data-driven methods for the diag-
nosis of SZ. These methods aim to identify, directly from
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the data, new biomarkers of the disease. Different diagnos-
tic directions are investigated, the main ones being: func-
tional Magnetic Resonance Imaging (fMRI), Electromyo-
graphy (MEG) and Electroencephalography (EEG), each
one with its advantages and drawbacks.
EEG have stood out for the diagnosis of SZ especially for
its ability to record the dynamics of the brain underpin-
ning sensory, cognitive, affective, and motor processes in
response to a stimulus as well as for their high temporal
resolution, facility of usage and price. These brain and mo-
tor processes are often affected by and directly correlated
with the illness, and can even be observed before the onset
of the latter (Green et al., 2011).
Nevertheless, EEG signals are known to be very noisy
with a low signal-to-noise ratio due to the large ampli-
fication required to record the very low amplitude of the
brain’s electrical activity. In addition, various unwanted
artefacts perturbing the overall signal are present in the
recordings such as: ocular, muscular, cardiac, etc (Urigüen
and Garcia-Zapirain, 2015). Another encountered diffi-
culty analysing EEGs is volume conduction, i.e. the trans-
mission of electric fields from a primary current source
through biological tissue towards the recording electrodes
(Olejniczak, 2006). Due to the latter, we lose the ability
to target precisely a brain source, and unwanted artefacts
will spread and contaminate more electrodes.
The diagnosis of SZ based on EEG has been studied in
several works. Khare and Bajaj (2022) propose a robust
variational mode decomposition (RVMD) to model and
decompose the EEG signal into different modes, and us-
ing six features computed on the decomposed signal they
classify the SZ from the control group using a optimised
extreme learning machine (OELM) to achieve a presum-
able classification accuracy of 92.9 %. Prabhu and Martis
(2020) extract two features corresponding to Kolmogorov



Complexity and Sample Entropy from the Event Related
Potential (ERP) computed at four electrodes locations.
The features are separated using a Neural Network (NN)
to achieve an accuracy of 91.2 %. Zhang (2019) proposed
SZ classification based on the amplitude and latency of
N1 and P2 component over the Cz channel combined
with non-ERP related information (demographic) during a
button-press task to generate a tone. The accuracy was in
the order of 81.1 %. Devia et al. (2019) used the mean ERP
values computed between 400—600 ms port stimulus dur-
ing a visual task, these values were then averaged across
four regions of interest (occipital, central, frontal, and
parietal), then were fed to Linear Discriminant Analysis
(LDA) classifier to achieve an accuracy of 71 %. Santos-
Mayo et al. (2017) used 16 temporal and 4 frequency
features extracted from ERP computed during a 3-oddball
auditory task. Combining these features computer over
8 electrodes and by mean of a Multi Layer Perceptron
(MLP) they achieved a presumable accuracy of 93.4 %.
Other studies exist, however we have not cited them due
to space limitation, but the following criticisms may apply
to the majority of them.
We strongly believe that the majority of the work we
have seen suffers from various problems well known in the
machine learning community. The first and most critical
issue is data leakage, which is defined as the use of in-
formation during the learning phase that is not available
during the testing phase. In a real-life scenario, a new,
unlabeled sample of data is received for the purpose of
categorizing it, thus, the use of any information about
that new sample during the learning phase is impossible.
This data leakage will bias the evaluation and therefore
the claimed performances, the developed model will have
excellent performances on the training set but it will have
bad performances on new unseen data. Two types of leak-
age have been noticed: (1) Group leakage, where correlated
information from the same patient is found in the training
and test set. This bias affects complex architectures (e.g.
neural networks) much more, as they can sometimes even
detect the signature of a given patient. (2) Consist of
optimising hyper-parameters and performing feature selec-
tion directly on the test set (absence of a validation set).
The other observed problem is the fact of not taking into
consideration the data unbalance (numerical majority of a
category). This induces a bias on the developed model as it
will tend to favour the dominant category, thus biasing the
evaluation and increasing false positive or false negative
rate.
This article addresses the detection of SZ from EEG
signals using a feature generator inspired by the brain’s
functioning. The method used is not novel and has already
been tested on Parkinson’s disease yielding excellent re-
sults (Meghnoudj et al., 2022). It combines the temporal,
frequency and dynamic aspects of the signal in order to
generate Virtual Modal Stimuli (VMS), which consist of
virtual rhythms parsimoniously calculated to fit the signal
of interest. Basic features are then extracted from these
VMS and fed to an LDA classifier to assess subjects’
condition.
This paper is structured as follows: Section 2 describes the
dataset we use as well as the pre-processing we applied
to the latter, then presents our brain inspired feature
generator and gives details about how to have the least

unbiased evaluation of our approach. In section 3 the
results obtained are presented and section 4 concludes the
paper.

2. MATERIAL AND METHODS

2.1 Dataset

The data we use in the present article are publicly accessi-
ble (Roach, 2021). The study includes 81 subjects, of which
49 suffer from schizophrenia and 32 individuals serve as a
control group (CTL). The task that the participants were
subjected to was a sensory task involving button pressing
and/or an auditory tone. The subjects either: (a) pressed
a button to immediately generate a tone, (b) passively
listened to the same tone, or (c) pressed a button without
generating a tone.
Data used here were recorded over 64 electrodes with a
sampling rate of 1024 Hz. All the available data underwent
already the following preprocessing before being made
available: (1) Re-reference to averaged ear lobes. (2) High-
pass filtered at 0.1 Hz. (3) Outlier channels interpola-
tion. (4) Epoching of the continuous signal and creation
of 3s time windows centred around the stimulus arrival.
(5) Canonical correlation analysis to remove muscle and
high frequency white noise. (6) Outlier trial rejection.
(7) Independent Component Analysis removing unwanted
artefacts. (8) Outlier channels interpolation. The reader
can refer to the complete details about the experience here:
(Roach, 2021; Ford et al., 2013).
As for the pre-processing we applied, the data were first
down-sampled to 128 Hz, then a low-pass filter at 50 Hz
was applied and finally the data were re-sliced to form
windows starting from -300 ms pre-stimulus to 600 ms
post-stimulus.
The ERP of each subject was calculated separately for
each condition and channel by vertically averaging all
segments corresponding to the same stimulus type and
channel (Luck, 2005). The purpose of this step is to filter
the signal by summing up the events occurring at the same
instant to make them stand out from the ambient white
noise.

2.2 Main idea of the method

To process, encode, retrieve and transmit information,
biological neuronal networks oscillate (Ward, 2003). The
frequency and timing of these oscillations is very important
as it is the basis of cognitive processes and it is what
allows the synchronization of the oscillation of a group
of neurons (Buzsaki and Draguhn, 2004; Ward, 2003). It
should be noted that the EEG records mainly the electrical
activity of a group of neurons oscillating in synchrony.
The synchronization and desynchronization of a group of
neurons suggests that the rhythms that contribute to the
EEG occur in a pulsatory fashion (Olejniczak, 2006).
The ERP associated with a given stimulus can be decom-
posed into two types of rhythms:

(1) An ongoing activity: it refers to the oscillatory state
of the brain when no stimulus is perceived.

(2) An evoked activity: it refers to the brain rhythms in
response to a stimulus.



2.3 Dynamical feature generation

In order to get closer to the simplified model of brain
function and to capture this pulsating nature, we model
the ERP through a battery of pendulums, each with its
own angular frequency. These pendulums are switched on
and off at specific times to best match the ERP signal
y(k).
Consider m harmonic oscillators with distinct angular
frequency {ω1, ω2, . . . , ωm}. The system that combines
these m decoupled oscillators can be described with the
following discrete state-space representation:

Σ :

{
xk+1 = Axk +Buk

ŷk = Cxk
; xk∈R2m, uk∈Rm, ŷk∈R (1)

where:

A=diag(a1, . . . , am), B=diag(b1, . . . , bm), C=(c1 · · · cm)

and the matrices ai, bi, and ci are the matrices that
describe the dynamics of a single harmonic oscillator. For
a sampling period of Ts = 1/fs they are defined by:

ai =

(
1 Ts

−Tsω
2
i 1

)
, bi =

(
0
Ts

)
, ci = (fs ωi 0) (2)

With this form, the m oscillators remain decoupled but
they are merged through matrices A, B, and C such that
their individual contribution is summed to form the signal
ŷ(k).
Let us note Ui(k) as the excitation force acting on the ith

pendulum, so the control input u(k) which is defined by

u(k) =
(
U1(k) U2(k) . . . Um(k)

)T
contains the excitation

forces of all them pendulums at the instant k. The ωi term
present in the ci matrix is a scaling term and its role is
to make sure that a resting pendulum excited by a force
Ui(k1) = h, will start to oscillate at the instant k = k1
with a magnitude h. This gives a physical meaning to the
u(k) values since they are directly proportional to the ERP
amplitude. Moreover, this allows for a fair comparison
of Ui(k) values between them since they are now on the
same scale. This opens up the possibility of comparing the
modes in terms of energy, signal contribution magnitude,
activation time, switching frequency, etc. It should be
noted that with this representation we can study the
excitation forces of a single mode or a group of modes,
over the entire time duration or a defined period.
The system (1) can be rewritten in its explicit form as
follows:

ŷk = CAkx0 +

k−1∑
i=0

CAiB u(k−1−i), k = 1, 2, . . . (3)

where x0 represents the initial oscillation state of our
model (initial position and velocity of each pendulum).
If no force is applied to these pendulums as in the case
of a non-forced regime (u(k) = 0 for ∀k), the pendulums
will keep swinging in the same manner. Therefore, the
information of the ongoing rhythm will be carried by x0.
For a given ERP signal Y with length L we define:

Y =


y0
y1
...

yL−1

, Ŷ =


ŷ0
ŷ1
...

ŷL−1

, U=


u0

u1

...

uL−2

∈Rm(L−1) (4)

where Ŷ is the predicted output signal of the system Σ
and U is the control sequence that corresponds to the way

our pendulums are swung and excited in time. By forming
the vector U in this manner, i.e. by concatenating the
elements uk, the information of which mode is activated
is embedded in the uk element whereas the temporal
information about when a mode is activated is indicated
by the subscript k.
Given (4), the equation (3) can be written in a matrix
form as:

(ϕ1 ϕ2) ·
(
x0

U

)
= ϕ · β = Ŷ (5)

where:

ϕ1 =


C
CA
...

CAL−1

, ϕ2 =


0 0 . . . 0

CB 0 . . . 0
CAB CB . . . 0

...
...

. . .
...

CAL−2B CAL−3B . . . CB


To replicate the pulsating nature of brain rhythms de-
scribed in section 2.2, we have induced sparsity in the
solution of the equation (5). Effectively, with a sparse beta,
each mode will be switched-on only a few times which is
close to the pulsating nature of the brain rhythms. The
Lasso-LARS algorithm was chosen to induce sparsity in
the β solution for reasons that will be explained later.
The Lasso-LARS minimizes a classical prediction error
ϵ = ∥Y − ϕβ ∥22 whereas parsimony is induced by penalis-
ing non-zero β entries through a weighted l1 norm:

β̂ = argmin
β

1

2

∥∥Y − β0 − ϕβ
∥∥2
2
+ α

∥∥β ∥∥
1

(6)

where β0 is the intercept value
1 , α is a weighting constant,

and β̂ is an estimate of the optimal solution β⋆. Com-
plete details about Lasso-LARS can be found in (Hastie
et al., 2009, chap. 3). The Lasso-LARS was chosen over
other subset selection and shrinkage methods because it
is very efficient to find the solution of the lasso problem
when dim(β) ≫ L which corresponds to our case. Most
importantly, it allows to give different β solutions as al-
pha varies, resulting in multiple solutions with a varying
parsimony level.
The way the Lasso-LARS algorithm is designed makes
that the final result β is not fully fitted, i.e., to minimize
the equation (6) β must be small in magnitude so that
∥β∥1 is small. Lasso-LARS was used mainly to induce
sparsity and find the few most important entries of β
to fit Y . In the end, we took the non-zero entries of β
computed by Lasso-LARS and then completed the fit with
a Least Square method, thus reducing the prediction error
ϵ without increasing the number or the frequency of use of
the modes.
The weighting value α is used to adjust the sparsity level
of the solutions of β. Therefore, the value of alpha will
be used to adjust the degree of fit of our model. For a
high value of α, the model will have to use fewer modes
and less frequently to fit Y whereas for a low value the
model will excite more modes and more frequently. The
best solution that will give the best result does not have
to fit perfectly the Y signal as there is a trade-off between
fitting Y perfectly by capturing all the noise and not fitting
Y completely but at the expense of losing information
(see Fig.1). The Lasso-LARS intrinsically calculates the
solutions for a decreasing level of parsimony, starting with

1 Mean value of Y .
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Fig. 1. Effect of the α value on the predicted signal Ŷ .
(a) Activation of a single mode (∥β∥0 = 1).(b) The
use of more modes (∥β∥0=17). (c) Fit the Y signal
perfectly with (∥β∥0=84).

a value 2 αinit where the solution is very sparse and
corresponds to a sparsity level of 100% until reaching
the final value indicated to the algorithm αf where the
solution is not sparse and corresponds to a sparsity level
of 0%. Not knowing in advance which level of parsimony
is the best, we divided the interval (100%—0%) into
1% linearly spaced intervals. For the rest of the paper we
consider only the U part of β that we call VMS (for Virtual
Modal Stimuli), the latter is responsible for capturing the
evoked activity. Complete details about the algorithm can
be found in (Meghnoudj et al., 2022).
The VMS of the ERP of each channel and each stimulus
were generated, they constitute the input of the next step
which is the feature extraction.

2.4 Feature selection

For validity reasons due to data limitation, we had to ex-
tract features from the calculated VMS. The classifier will
rely on these extracted features to classify the subjects into
SZ or CTL. The feature extraction has multiple benefits:

(1) Reduce over-fitting.
(2) Improves the stability of the model and increase the

trustfulness placed on the model as the accuracy
should not change much for a new unseen data.

(3) Extracts only the important information that the
model should use.

(4) Reduces the classifier’s required complexity.
(5) Provide a physical meaning to our model.

It is very important to note that the more features we
have, the more data we will need to converge to the true
distribution of the data. Indeed, when the dimension of the
features increases, the volume of the space grows exponen-
tially (curse of dimensionality), so that the available data
will be scattered in that space. In order to have reliable
results, the number of data must also grow exponentially,
which is the opposite of what is currently happening in the
medical field (Bellman, 1957).

2 Calculated by the algorithm on the basis of correlation, see (Hastie
et al., 2009) for more details.

Before proceeding to the next step which is the evalua-
tion, it is important to remember that it is the features
extracted from each ERP that are evaluated individually
for each channel and for each stimulus.

2.5 Evaluation

In order to avoid data leakage, it is necessary that cor-
related information of the same patient is not present at
the same time in both the training and test sets. This
corresponds to our case since each patient is represented by
a single data instance that can only be in one set at a time.
Moreover, tuning the hyper-parameters directly on the
test-set or indirectly by choosing the best hyper-parameter
that worked best over multiple repeated training-test-
validation splits is also considered as data leakage.
Ideally, to prevent data leakage, we should keep a hold-
out set aside before the beginning of the experiment on
which we will evaluate the method once finalized and
once the hyper-parameters have been well chosen using
the learning set. However, for a limited number of data
as in our case, leaving for example 20% of the data aside
can be troublesome as we lose in data richness and this
is even more accentuated by the curse of dimensionality.
Furthermore, this will result in only one evaluation and
given the limited data available it is highly likely that
we get a bad or good draw of the hold-out test data.
This phenomenon is known as selection bias and has been
studied in more detail by Varma and Simon (2006), and
Krstajic et al. (2014).

The nested Leave-One-Out CV (LOO), to our knowledge,
is the less biased evaluation procedure that prevents data
leakage, reduce selection bias, while preserving the richness
of the learning data. The procedure is presented in more
details in Varma and Simon (2006), and Meghnoudj et al.
(2022).
To assess the generalization ability of our approach, we
conducted further evaluations under more constrained
settings by reducing the amount of available learning
data. Specifically, we employed nested 5-fold and 2-fold
procedures, where we had access to only 80% and 50%
of the learning data, respectively. These tests allowed
us to examine how well our approach could perform on
new, unseen data and provided valuable insights into its
robustness and reliability in real-world applications.

For reproducibility purposes, a step-by-step guide has
been prepared detailing how to download the data and
how to run our source code. An explanatory animation is
also provided at the following link: https://github.com/
HoussemMEG/Schizophrenia-Detection

3. RESULTS

The system Σ was created using m= 40 pendulums that
have a linearly spaced frequency taken from (0.1—50) Hz.
The weighting constant αf has been set to αf =0.001 by
visual inspection in order to guarantee a progressive fit at
each level of sparsity and that at the end a complete fit is
obtained as in Figure 1.c.
The VMSs for each channel and condition were first gen-
erated, and then several simple features were extracted
from them. Then, each feature was tested individually.



The features used are typical ones and include: mean,
max, energy, peak-to-peak value, variance, argmin, etc.
We also tried to test the pairwise combinations of the 16
features we picked as well as the pairwise combinations
of the channels without getting much improvement in the
results.

3.1 Results with different evaluation procedures

A first result was obtained using a LOO evaluation proce-
dure with the feature mean(VMS) over the EEG channel
C3 and for the condition (b) which corresponds to pas-
sively listened to the same tone. The other channels and
features did not show significant results. For informative
purposes, the generation of the VMS and the LOO evalu-
ation takes about 2 minutes overall.
Table.1 shows the results obtained for the nested LOO
procedure as well as for the nested 5-fold and 2-fold CV
procedures. For both 5-fold and 2-fold CV the partitioning
were repeated 20 000 times.

Table 1. Accuracy obtained by our model using
a single feature for different evaluation proce-

dures.

Evaluation scheme LOO 5-fold 2-fold

Learning (± std%) 85.1 % (—) 84.2 % (0.6) 84.5 % (1.6)

Validation (± std%) 85.0 % (—) 83.9 % (0.6) 84.3 % (1.5)

Test (± std%) 85.2% (—) 80.0 % (2.6) 77.2 % (3.5)

Figure 2 represents the confusion matrix for the case of
the LOO evaluation procedure. The sensitivity is 90% and
the specificity is 78%. We can observe that the results
obtained are not perfectly balanced.

Predicted label

Tr
ue

 la
be

l

SZ

CTL

SZ CTL

44 (90 %)

25 (78 %)

5 (10 %)

7 (22 %)

Fig. 2. Result confusion matrix for LOO procedure.

3.2 Significance and trustfulness

To assess the statistical validity and consistency of our
results for the C3 channel we performed two tests:

(1) Permutation test (Nichols and Holmes, 2003): The
probability that the results obtained are simply due
to luck is tested by as we have a small amount
of data and have performed several runs (each for
each type of stimuli, channel and feature). We define
the following null hypothesis H0: taking the mean
of the VMS does not allow to differentiate the SZ
group from the CTL group. Under this hypothesis,
we randomly shuffled the labels n=1000 times, then

we looked at the maximum accuracy obtained. We
obtained a p-value of (p < 0.005) indicating that the
results obtained are significant. As a reminder, for a
statistical significance, the p-value must be lower than
0.05.

(2) Parametric consistency: For this part we have eval-
uated the evolution of the accuracy as a function of
the parsimony level. Therefore, unlike the other parts
where we have a nested cross validation, during this
part we just have the outer loop where we used a LOO
CV for each parsimony level. The obtained results are
shown in Figure.3. It should be noted that the area of
interest is the area that has been selected 100% of the
time by the inner loop when choosing the alpha hyper-
parameter. This indicates that the results obtained
have a parametric consistency and that it is not due
to chance that one result spikes on a given parsimony
level.

smoothed test-set accuracy
test-set accuracy

area of interest

Fig. 3. Model’s test accuracy for a varying level of parsi-
mony.

4. CONCLUSION

In the present paper we evaluated an approach which is in-
spired by brain functioning for the diagnosis of Schizophre-
nia using EEG signals. The method was validated on
a publicly accessible dataset containing 81 subjects, 49
of whom have schizophrenia and 32 of whom serve as
controls. The method used is inspired by the functioning
of the brain and combines the temporal, frequency and
dynamic aspect of the signal to generate Virtual Modal
Stimuli. They are virtual stimuli or rhythms that have
been computed in a parsimonious way to fit a signal of in-
terest, in our case the ERP. The evaluation of our approach
was carefully conducted to induce as little bias as possible
so as not to have a model that is over-optimistic and that
only works on the present data. A single feature which is
the mean of the virtual modal stimuli calculated on the
C3 channel was sufficient to separate with a straight line
(LDA) the healthy from the SZ with an accuracy of 85.2%
(p < 0.005), a sensitivity of 90%, and a specificity of 78%.
Several tests have been performed to verify the validity of
our approach. The results obtained are still preliminary,
different perspectives can be considered including the use
of a voting strategy between different channels allowing the
aggregation of different information from different brain
regions.
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