A new retroreflector named "quatriplan" based on the corner-cube principle, for advanced ultrasonic telemetry applications

Marie-Aude Ploix, Cécile Gueudré, Gilles Corneloup, François Baqué

- To cite this version:

Marie-Aude Ploix, Cécile Gueudré, Gilles Corneloup, François Baqué. A new retroreflector named "quatriplan" based on the corner-cube principle, for advanced ultrasonic telemetry applications. Ultrasonics, 2023, 132, pp.106999. 10.1016/j.ultras.2023.106999 . hal-04051806

HAL Id: hal-04051806

https://hal.science/hal-04051806

Submitted on 13 Feb 2024

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

A new retroreflector named "quatriplan" based on the corner-cube principle, for advanced ultrasonic telemetry applications

Marie-Aude Ploix*1, Cécile Gueudré ${ }^{1}$, Gilles Corneloup ${ }^{1}$, François Baqué ${ }^{2}$
${ }^{1}$ Aix Marseille Univ, CNRS, Centrale Marseille, LMA UMR 7031, Avenue Gaston Berger, 13625

Aix-en-Provence Cedex, France
${ }^{2}$ CEA Cadarache, IRESNE/DEN/DTN/STCP/LISM, 13108 St Paul lez Durance, France
*Corresponding author:

E-mail: marie-aude.ploix@univ-amu.fr

Abstract

:

Telemetry consists in remotely detecting and locating an object. For applications in immersed structures as in nuclear primary vessel, ultrasonic waves are well adapted. Moreover, fixing a target on the structures of interest maximizes the signal-to-noise ratio and provides a reference point. Classical Corner-Cube Retroreflector (CCR) demonstrated high performance in this framework (1D and 2D measurements) but does not allow knowing the full (3D) positioning of the structure. This paper proposes an innovative compact target named "quatriplan", based on the CCR principle, and which must allow the ability to determine the orientation of the target in addition to its distance to the transducer. The simple design of the quatriplan is first explained, then its performances are investigated with modelling and experimentations. The results highlight its strong performance and benefit for advanced telemetry applications in industrial systems where complex design can impede easy and efficient access for inspection of specific parts.

Keywords: Corner-Cube Retroreflector; trihedral; compact reflector; ultrasonic telemetry; 3D geometrical positioning; acoustical target

1. INTRODUCTION AND STATE-OF-THE-ART

The improvement of in-service inspection and repair (ISI\&R) is a major issue in the case of (current and future) nuclear power plants. Ultrasonic solutions are particularly adapted to this severe environment, in particular in the area of primary vessel. In this framework ultrasonic telemetry aims at checking the actual presence of an internal structure, its position, its potential deformation and/or its possible vibration, by measuring and monitoring relevant distances. Attaching a target on the structure to be monitored helps improving signature and detectability (e.g., in case of a misaligned or nonplanar structure, which would deviate the beam, implying no reflection towards the transducer) and acquiring an interpretable signal with an increased signal-to-noise ratio. Then knowing the time-of-flight of the waves and their velocity, it is easy to calculate the corresponding distance.

The most efficient target is the Corner-Cube Retroreflector (CCR), also named trihedral reflector. It consists of three mutually perpendicular, intersecting flat (mirror) surfaces, which reflects waves directly towards the source, over a certain angular range. It is widely used since the 1980s in the fields of electronics, optics and geophysics, e.g. for satellite/lunar ranging systems (with laser) or earthquake monitoring applications (with radar waves) [1-8].

In the field of acoustics, only few work concerning retroreflectors were found in the literature [9-14]. De Vadder and Lhémery [9] considered different retroreflectors, and proposed a conical reflector for the purpose of improving the characterization of an ultrasonic beam. Locqueteau [10] studied the reflectivity of different targets (sphere, disk and CCR, the latter being identified as the best one), and developed more specifically diffraction analytic modelling in order to rebuild the exact CCR diffraction diagram. It is furthermore mentioned the use of CCR in SuperPhenix French reactor for ultrasonic telemetry measurements. Efforts have continued at French CEA (Alternative Energies and Atomic Energy Commission) to model
diffraction by a scattering wedge [15]. Stephanis and Mourmouras [11] briefly proposed the use of a CCR made in Perspex to perform distance measurement. Narayanan et al. [12] perform amplitude and time-of-flight measurements on a CCR in order to evaluate the absolute misalignment of an immersed focused transducer without need of priori calibration. Finally Leysen et al. [13] developed a linear retroreflective surface (successive rectangular Vshapes) with the aim of detecting lost objects, or more precisely detecting their shadow on this reflective surface with a wide range of incidence angles.

Previous work of the authors [14] thoroughly investigated the acoustical properties of a CCR and its potential when hidden behind plates, in immersion. They showed its ability to fully reverse an incoming ultrasonic beam in the same direction at non-normal incidence, within the angular range of $\pm 30^{\circ}$ in the case of a steel CCR immersed in water (reflection properties are closely linked to the involved materials - examples are shown in the reference for steel CCR in liquid sodium and copper CCR in water). It appeared possible to clearly locate the steel CCR (and thus the structure on which it is attached) alone and hidden behind one and two steel plates immersed in water.

However, the use of this "classical" CCR only provides its distance to the ultrasonic transducer and its lateral position in the plane perpendicular to the beam when scanning the area. It does not allow measuring the eventual tilt of the structure. One possibility to overcome this drawback is to fix several CCRs in an array for instance, as considered in $[6,16]$ for optical applications (lunar laser ranging). No similar development was found in the acoustics field in the literature. In this framework, a new compact acoustical target named "quatriplan" is developed and studied in this paper, following a patent filed by one of the authors [17]. Its design is explained in section 2 , then ultrasonic modelling and experimental work are exposed in section 3, proving it great potential, which is further discussed in section 4.

Note that the precision will mainly depend on the equipment and processes used to evaluate time-of-flight, to measure ultrasonic velocity in the surrounding environment, and also on the chosen scan step. The size of the target has a fundamental influence: increasing its size will increase the resolution. Under the experimental conditions presented in this paper, an accuracy of $0,5^{\circ}$ is found (which means a displacement of $0,87 \mathrm{~mm}$ for 10 cm large structure). In the nuclear plant context, the size of the components to be controlled is large, which leads to specification on the displacements to measurement which are several tens of centimeters. So, this first result seems consistent for nuclear large-scale equipment.

2. QUATRIPLAN TARGET DESIGN AND FABRICATION

The key principle of a CCR is that an incoming wave is fully reversed in the same direction, after three successive reflections on each internal face (see examples on Figure 1a), within the angular range of $\pm 30^{\circ}$ (in case of steel in water) [14]; the incidence angle is defined relatively to the plane containing the three external edges of the CCR.

a)

b)

Figure 1: Illustration of the general principle of a CCR: a) Triple successive reflections of three rays at normal incidence; b) Effective (white) and shadow (gray) areas, from [4].

The design of the quatriplan is based around the idea that (1) several trihedral corners are needed to obtain further positioning information, and (2) CCR presents ineffective (shadow) areas since they reflect an incident ray only partially (one or two reflections instead of three). Such areas for normal incidence $[4,5]$ are the three triangular zones sizing a third of the CCR edge length, located at the three endpoints of the CCR, as shown in Figure 1b (white zone is the only zone where triple successive reflections mechanism occurs when CCR is normal to the wavefront).

Thus, in the quatriplan design (presented in Figure 2a), three small corner cubes are added at the three endpoints of the initial CCR. For this first mock-up made of steel, small triangular plates are inserted at $1 / 4$ edge length (the aim is to work also with oblique incidence hence effective and shadow areas will not remain exactly the previously described ones). On the manufactured quatriplan (shown in Figure 2b), a support part (red part) with a threaded rod is fixed behind the target so the target can be fixed on a plate in order to perform measurements.

Figure 2: Drawing (a) and picture (b) of the quatriplan target.

In the following, the acoustical responses of the so-called principal and secondary inner corners are studied. Note that the dimensions of the external (principal) target are chosen identical to those of the CCR studied in [14] for the purpose of comparing their performance (material is also identical).

3. ULTRASONIC PRELIMINARY MODELLING, AND EXPERIMENTAL ANALYSIS

3.1. CIVA modelling

The first step of the study of the quatriplan potential and its acoustical properties involves modelling. This stage was performed before fabrication of the first quatriplan mock-up. The

CIVA platform is utilized here to model the ultrasonic beam reflection on quatriplan with normal and oblique incidence (equivalent to a tilt of the target). UT (Ultrasonic Testing) module of CIVA [18] allows bulk wave beam field predictions using the elastodynamics pencil method, and flaw response predictions, and can model many bulk wave inspection scenarios including A-scan, B-scan, C-scan, and S-scan.

The quatriplan CAD drawing was imported in CIVA, and an ultrasonic transducer (flat, 1"diameter, broadband with $2,25 \mathrm{MHz}$ central frequency) with the same characteristics as that used experimentally, is positioned at 250 mm from principal inner corner (along Y -axis), and operates as a pulser-receiver (see left drawing of Figure 3).

Figure 3: CIVA modelling: 2D scanning along X and Z-axis, with normal incidence.

The first simulation consists in a 2D scanning (C-scan type) of the transducer with normal incidence, along X and Z -axis. The results are represented in Figure 3: the C -scan image represents the maximal amplitudes received at each point, two B-scan images are extracted,
representing the juxtaposition of the received signals on a scanning line, and two individual signals are also plotted, one at the maximal amplitude from the principal CCR and the second at the maximal amplitude from the secondary CCR numbered " 1 ". The three secondary CCRs are clearly identified around the principal inner corner. Their maximal reflected amplitudes are about a tenth of that reflected by the principal CCR, and their echoes arrive about $18 \mu \mathrm{~s}$ ahead of that of the principal CCR.

Note that, as highlighted by [4,5] in case of radar waves, the level of reflected amplitude depends on the size of the target, compared to the size of the incident beam.

The second simulation launched, presented in Figure 4, consists in an angular scanning of the transducer around the Z-axis and centred on the principal inner corner point. The results show that, as for the simple CCR [14], the principal inner corner of the quatriplan sends back to the transducer a maximum amplitude at 0° and a decrease is then observed until about 35°. The echoes of the three secondary inner corners are clearly visible despite their low amplitude. Their amplitude presents the same behaviour as that of the principal corner: maximal at 0° and decreasing until about 35°. Their times-of-flight progressively separate when increasing incidence angle, thus there are individually distinguishable.

Figure 4: CIVA modelling: angular scanning around Z-axis and principal inner corner point.

3.2. Experimental ultrasonic field reflected by quatriplan

3.2.1. With normal incidence

The first measurement campaign consists in acquiring and comparing the ultrasonic responses of the quatriplan and of a classical CCR, with normal incidence in water. As shown in the picture of Figure 5, they are both fixed on a plate and the ultrasonic pulser/receiver (flat, $1^{\prime \prime}$ diameter, $2,25 \mathrm{MHz}$ central frequency, positioned at 260 mm from the plate) performs a 2 D scan along X and Z-axis (with 1 mm step in both directions). Different echoes are reflected towards the transducer, with different times-of-flight (see signal on right of Figure 5): the reflection on the plate, at about $350 \mu \mathrm{~s}$, the reflections of the inner corner of CCR and of the principal inner corner of quatriplan, at about $330 \mu \mathrm{~s}$, the reflections of the secondary inner corners of quatriplan, at about $312 \mu \mathrm{~s}$, and the diffraction on the edges of both targets, at about $309 \mu \mathrm{~s}$. That defines the four temporal gatings (numbered in Figure 5) performed afterwards to analyse the different reflections.

Figure 5: Experimental setup at normal incidence, and positions of the four time-domain gatings for signal processing

Figure 6 illustrates the resulting C-scan images in the four different temporal windows, in terms of maximal amplitude and associated time-of-flight.

- The first (global) gating highlights all the maximal echoes whatever their time-of-flight. CCR as well as quatriplan are clearly identified in the amplitude image as well as in the time-offlight image. Moreover, secondary inner corners of quatriplan are also revealed without ambiguity, both in the amplitude and time-of-flight images.
- The second gating, focusing on the edges, highlights the diffraction echoes of the edges, with a low amplitude (about 5\% of the principal inner corner amplitude). Echoes from the edges of the quatriplan seem more irregular than those of the CCR, and the additional edges of the secondary targets are not detectable. A slight inclination of the quatriplan with respect to the plate is here observable through the non-constant time-of-flight of diffraction echoes along the edges.
- The third gating emphasizes the echoes of the secondary inner corners. The slight difference of their times-of-flight confirms the slight misalignment of the quatriplan with respect to the
plate. The kind of halo around central time-of-flight map of each secondary CCR is due to a slight modification of the echo pattern, leading to a $1 / 2$ period drop of the maximum.
- Finally, the last gating shows that the principal inner corner has the same acoustical response as the CCR one, with identical maximal amplitude and identical distributions in amplitude and time-of-flight.

Figure 6: Amplitude and time-of-flight C-scan images for the four temporal windows (in each image, the quatriplan is on the left and the CCR on the right).

Table 1 provides the quantitative data in terms of position, amplitude and time-of-flight of each maximum, and deduced distance between the transducer and each inner corner. Reported times-of-flight correspond here to the arrival time of each maximum amplitude.

Results show first that the maximal amplitude reflected by the secondary corners is about 1/3 maximal amplitude of the principal inner corner. They are then detected and identified without any ambiguity.

		(X,Z) position of the max. amplitude (mm)	Max. amplitude (V)	Time-of- flight ($\mu \mathrm{s}$)	Deduced distance ${ }^{1}$ transducer/max. point (on Y-axis) (mm)
	CCR inner corner	(147;27)	0,87	330,50	246,2
$\begin{aligned} & \frac{c}{\pi} \\ & \frac{0}{0} \\ & \hdashline \mathbf{2} \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	Principal inner corner	$(30 ; 24)$	0,87	330,33	246,1
	Secondary inner corners				
	Top	$(29 ; 43)$	0,28	313,10	233,3
	Bottom-left	$(14 ; 14)$	0,28	312,95	233,1
	Bottom-right	$(47 ; 15)$	0,28	312,35	232,7

Table 1: Position, amplitude and time-of-flight of the maximum amplitude from each inner corner

Calculating afterwards each distance to the transducer based on each time-of-flight provide the complete spatial position of each inner corner. The discrepancies of a few tenths of mm confirm the slight inclination of the quatriplan with respect to the plate. One can determine the equation of the plane containing these three points (here: $11,8(X-14)+942(Y-$ $233,1)-12,6(Z-14)=0$), and therefore calculate the global inclination of the quatriplan relatively to the plate surface plane (parallel to the plane of equation $Y=0$), which is found here equal to $1,05^{\circ}$. This could also be due to the fabrication of the quatriplan, performed with the best possible accuracy, but some deviations from the original plan are inevitable. No

[^0]consequence exists in the context of industrial use, since measurements (especially in the nuclear field) are always made relative to a saved initial measurement.

3.2.2. With oblique incidence

For the second set of measurements, the transducer is tilted, from 2° to 30° with a step of 2°, and performs as previously a 2D scanning of the quatriplan. The objective in this paragraph is to analyze and compare the acoustical responses of the principal and secondary inner corners (the aspect of tilt evaluation will be discussed in the next section).

The main conclusion is that the secondary inner corners present the same behavior as the principal one, and as a classical CCR. They are all identified whatever angle of incidence (in the studied angle range), from amplitude and time-of-flight point of view. Figure 7 plots their respective maximal amplitudes and illustrates on the normalized figure the similar behavior of the different inner corners. Secondary inner corners send back sufficient energy over a wide angular range to be potentially used for estimating the possible tilt of the quatriplan, and then of the structure supporting it.

Figure 7: (a) Absolute and (b) normalized maximum amplitude received from each inner corner, in oblique incidence.

4. EVALUATION OF THE QUATRIPLAN TILT AND DISCUSSION

To test experimentally the principle of tilt evaluation, a rotation (tilt) around the Z-axis of Figure 5 is applied to the plate supporting the quatriplan. The angle was acoustically measured (by adjusting the transducer so that the beam is normal to the plate, and reading the necessary rotation) and equals $8,8^{\circ}$. This rotation was combined, in a CAD software (SolidWorks ${ }^{\circledR}$), with the slight inclination of the quatriplan relative to the plate measured previously, and the resulting disorientation of the quatriplan relative to the transducer is of $8,2^{\circ}$. It is this angle that is searched in the following.

Two procedures are then possible to evaluate the tilt, depending on whether scanning is possible or not (for industrial application): either the position of the transducer is fixed, and all echoes are extracted and analysed from a single signal, or a scanning is performed to find the maximum echoes from each inner corner (as already realized above for normal incidence).

4.1. From a single transducer position

It involves the coexistence of all the echoes in a single signal, including those of the three secondary inner corners. Thus, the incident beam must be large enough to "view" them simultaneously. The previous setup does not allow this coexistence. For this issue, either a larger transducer is operated, or the current transducer ($\varnothing 1^{\prime \prime}$) is moved back to take benefit of the beam aperture in far-field.

The first solution is tested with modelling using CIVA. Results show (see Figure 8) that using a $2,5^{\prime \prime}$ transducer results in a significant gain of about 15 dB on the echoes of secondary inner corners compared to the principal one. But this kind of transducer is less common.

Figure 8: CIVA modelling with angular scanning, with $1^{\prime \prime}$ (top) and 2,5" (bottom) transducers

The second solution is tested experimentally: for the used transducer ($1^{\prime \prime}, 2,25 \mathrm{MHz}$), the -6 dB beam diameter reaches 50 mm at about 800 mm from the transducer. The transducer is then moved back to about 870 mm (maximum tank capacity) from the (tilted) quatriplan and adjusted to face the principal inner corner. The registered signal, plotted in Figure 9, highlights all the echoes, clearly separated. At this distance, the secondary corners send back about 10$12 \%$ of energy compared to that of the principal corner. The time-of-flight of each of them can be recorded and allows inferring to the distance of each corner to the transducer.

The drawback of the procedure with a single transducer position is that it is not possible to link an echo with one corner. Then one degree-of-freedom will remain unknown, which is the rotation around the axis of revolution of the transducer (what will be known are the distances
of the different inner corners to the transducer). But this procedure can however be interesting to check if a tilt exists, and to evaluate a global tilt.

Figure 9: Signal acquired at about 870 mm from the tilted quatriplan.

Here, the chosen solution to estimate the tilt angle consists in entering the measured distances reported in Table 2 in SolidWorks ${ }^{\circledR}$ software, and then measure the global inclination of the quatriplan. Considering the transducer as a point source (conical beam), the measured angle is of $8,0^{\circ}$, and considering plane wave hypothesis (planar source), the measured angle is of $7,9^{\circ}$. These results are satisfactory compared to $8,2^{\circ}$.

Max. amplitude (V)
Time-of-flight ($\mu \mathrm{s}$)
Deduced distance transducer max. point (mm)

Principal inner corner	0,88	1196,3	891,2
Secondary inner corners:			875,8
	a	0,02	1175,58
b	0,01	1179,17	878,5
	c	0,01	1181,67

Table 2: Position, amplitude and time-of-flight of the maximum amplitude from each inner corner in the tilted configuration

Note that this experimental procedure works properly only if the echoes are temporally wellseparated ("sufficient" tilt), or perfectly superimposed (no tilt).

4.2. With transducer scanning

For the second procedure, a 2D scanning (always along X and Z-axis, with 1 mm step) is now performed on the tilted quatriplan (and plate). The resulting C-scan images in amplitude and time-of-flight are represented in Figure 10.

The first gating is global, and do not make appear the plate in contrast with previous results (in Figure 6). The second gating around the time-of-flight of the principal inner corner enables to check its acoustical response that is still similar to a "simple" CCR. Finally, the last gating is around the times-of-flight of the secondary inner corners. Their echo amplitudes are here between 20% and 25% of the principal one, and their times-of-flight are clearly different from each other.

Figure 10: Amplitude and time-of-flight C-scan images on tilted quatriplan at about 230 mm

As previously, one can extract the positions and times-of-flight of each maximum amplitude, reported in Table 3. The equation of the plane containing the three secondary inner corners can be calculated $(139(X+14)-912(Y-218,5)+20,8(Z+9)=0)$, and then a disorientation of about $8,7^{\circ}$ is found relative to $Y=0$ plane.

(X, Z) position of	Max.	Time-of-	Deduced distance	
the max. amplitude	amplitude	flight ($\mu \mathrm{s}$)	transducer - max. point	
	(mm)	(V)		(on Y-axis) (mm)
Principal inner corner	$(0 ; 0)$	0,65	314,22	234,1

Secondary inner corners:

Top	$(2 ; 20)$	0,17	297,47	221,6
Bottom-left	$(-14 ;-9)$	0,13	293,35	218,5
Bottom-right	$(18 ;-8)$	0,14	299,81	223,4

Table 3: Position, amplitude and time-of-flight of the maximum amplitude from each inner corner in tilted configuration

Note that this scanning procedure allows complete locating of the quatriplan in the 3D space, contrary to the procedure with a single position of transducer.

5. CONCLUSION

In the framework of ultrasonic telemetry, an enhanced target named quatriplan is proposed and studied acoustically using modelling and experimentations. The benefit of its design, compared to the "simple" CCR, is that it allows to determine the orientation of the target in addition to its distance to the transducer, and then of the structure supporting it. It consists of a principal CCR with small secondary CCRs in its corners. Thus, the quatriplan has a simple
but highly efficient design: its acoustical response was analysed and shows a great potential. Thorough modelling and experimentations on a first mock-up provide validation of the possible estimation of positioning and tilting of the target and hence of the structure supporting it. Small discrepancies were found in this study, certainly attributable to the nonperfect fabrication and positioning of the quatriplan on the plate. This shows that a prior calibration is necessary, as for any metrology process. But whatever the measurement, in particular in nuclear field, this prior calibration is always performed in order to make afterwards relative measurements and/or monitoring. Further improvements or adaptations could however be made, in particular in terms of dimensions, depending on the intended application.

This is a great advance for ultrasonic telemetry, in water as shown here but also in the case of opaque liquids (as liquid sodium etc.). Moreover, as studied previously for CCR , the quatriplan may be used behind screen(s) to measure or monitor 3D movements of "hidden" structures. Thus many applications could take a large benefit of such an advanced acoustical reflector.

ACKNOWLEDGEMENTS

This research was supported by the French Alternative Energies and Atomic Energy Commission (CEA) of Cadarache in the framework of the studies for improving In Service Inspection for Generation IV Nuclear Reactors, and within the framework of the MISTRAL joint research laboratory between Aix-Marseille University, CNRS, Centrale Marseille and CEA.

REFERENCES

[1] C. Li, J. Yin, J. Zhao, G. Zhang, X. Shan, The selection of artificial corner reflectors based on RCS analysis, Acta Geophys. 60 (2012) 43-58. https://doi.org/10.2478/s11600-011-0060-y.
[2] X.-J. Shan, J.-Y. Yin, D.-L. Yu, C.-F. Li, J.-J. Zhao, G.-F. Zhang, Analysis of artificial corner reflector's radar cross section: a physical optics perspective, Arab. J. Geosci. 6 (2013) 2755-2765. https://doi.org/10.1007/s12517-012-0582-x.
[3] Y. Qin, D. Perissin, L. Lei, The Design and Experiments on Corner Reflectors for Urban Ground Deformation Monitoring in Hong Kong, Int. J. Antennas Propag. 2013 (2013) 1-8. https://doi.org/10.1155/2013/191685.
[4] M.C. Garthwaite, S. Nancarrow, A. Hislop, M. Thankappan, J.H. Dawson, S. Lawrie, The Design of Radar Corner Reflectors for the Australian Geophysical Observing System: a single design suitable for InSAR deformation monitoring and SAR calibration at multiple microwave frequency bands., Geosci. Aust. (2015). https://doi.org/10.11636/Record.2015.003.
[5] E.F. Knott, J.F. Schaeffer, M.T. Tulley, Radar Cross Section, SciTech Publishing, 2004.
[6] T. Wang, W. Wang, P. Du, D. Geng, X. Kong, M. Gong, Calculation of the light intensity distribution reflected by a planar corner-cube retroreflector array with the size of centimeter and above, Opt. - Int. J. Light Electron Opt. 124 (2013) 5307-5312.
https://doi.org/10.1016/j.ijleo.2013.03.056.
[7] Y. Weng, S. Li, H. Zhou, J. Yang, G. Zheng, P. Zhang, Research on far-field diffraction of cubecorner retroreflector in the satellite laser ranging system, in: 5th Int. Symp. Adv. Opt. Manuf. Test. Technol. Opt. Test Meas. Technol. Equip., 2010: pp. 76564R-76564R-8. https://doi.org/10.1117/12.865518.
[8] Y. He, Q. Liu, H.-Z. Duan, J.-J. He, Y.-Z. Jiang, H.-C. Yeh, Manufacture of a hollow corner cube retroreflector for next generation of lunar laser ranging, Res. Astron. Astrophys. 18 (2018) 136. https://doi.org/10.1088/1674-4527/18/11/136.
[9] D. Devadder, A. Lhemery, New Reflector for Experimental Characterization of Ultrasonic Transducers, J. Phys. 51 (1990) 1295-1298. https://doi.org/10.1051/jphyscol:19902304.
[10] C. Locqueteau, Etude des cibles triplanes utilisées en télémétrie ultrasonore (Study of triplane targets used in ultrasonic telemetry), PhD, Université d'Aix-Marseille II. Faculté des sciences, 1992.
[11] C.G. Stephanis, D.E. Mourmouras, Trihedral rectangular ultrasonic reflector for distance measurements, NDT E Int. 28 (1995) 95-96. https://doi.org/10.1016/0963-8695(94)00012-9.
[12] M.M. Narayanan, N. Singh, A. Kumar, C. Babu Rao, T. Jayakumar, An absolute method for determination of misalignment of an immersion ultrasonic transducer, Ultrasonics. 54 (2014) 2081-2089. https://doi.org/10.1016/j.ultras.2014.06.021.
[13] W. Leysen, M. Dierckx, D. Van Dyck, Development and applications of retroreflective surfaces for ultrasound in LBE, in: 4th Int. Conf. Adv. Nucl. Instrum. Meas. Methods Their Appl. ANIMMA, leee, Lisbon (Portugal), 2015. https://www.webofscience.com/wos/woscc/fullrecord/WOS:000398710600010.
[14] M.-A. Ploix, P. Kauffmann, J.-F. Chaix, I. Lillamand, F. Baque, G. Corneloup, Acoustical properties of an immersed corner-cube retroreflector alone and behind screen for ultrasonic telemetry applications, Ultrasonics. 106 (2020) 106149. https://doi.org/10.1016/j.ultras.2020.106149.
[15] B. Lü, M. Darmon, L. Fradkin, C. Potel, Numerical comparison of acoustic wedge models, with application to ultrasonic telemetry, Ultrasonics. 65 (2016) 5-9. https://doi.org/10.1016/j.ultras.2015.10.009.
[16] M. Martini, S. Dell'Agnello, D. Currie, G. Delle Monache, R. Vittori, J.F. Chandler, C. Cantone, A. Boni, S. Berardi, G. Patrizi, M. Maiello, M. Garattini, C. Lops, R. March, G. Bellettini, R. Tauraso, N. Intaglietta, M. Tibuzzi, T.W. Murphy, G. Bianco, E. Ciocci, MoonLIGHT: A USA-Italy lunar laser ranging retroreflector array for the 21st century, Planet. Space Sci. 74 (2012) 276-282. https://doi.org/10.1016/j.pss.2012.09.006.
[17] F. Baqué, Cible ultrasonique pour le contrôle non destructif, FR3112399, 2022.
https://data.inpi.fr/brevets/FR3112399?q=\#FR3112399.
[18] S. Mahaut, S. Chatillon, M. Darmon, N. Leymarie, R. Raillon, P. Calmon, An overview of ultrasonic beam propagation and flaw scattering models in the civa software, AIP Conf. Proc. 1211 (2010) 2133-2140. https://doi.org/10.1063/1.3362393.

FIGURES CAPTIONS

Figure 1: Illustration of the general principle of a CCR: a) Triple successive reflections of three rays at normal incidence; b) Effective (white) and shadow (gray) areas, from [4].

Figure 2: Drawing (a) and picture (b) of the "quatriplan" target.
Figure 3: CIVA modelling: 2D scanning along X and Z-axis, with normal incidence.
Figure 4: CIVA modelling: angular scanning around Z-axis and principal inner corner point.
Figure 5: Experimental setup at normal incidence, and time-domain gating for signal processing

Figure 6: Amplitude and time-of-flight C-scan images for the four temporal windows.
Figure 7: (a) Absolute and (b) normalized maximum amplitude received from each inner corner, in oblique incidence.

Figure 8: CIVA modelling with angular scanning, with $1^{\prime \prime}$ (top) and 2,5" (bottom) transducers Figure 9: Signal acquired at about 870 mm from the tilted quatriplan.

Figure 10: Amplitude and time-of-flight C-scan images on tilted quatriplan at about 230 mm

TABLE CAPTIONS

Table 1: Position, amplitude and time-of-flight of the maximum amplitude from each inner corner

Table 2: Position, amplitude and time-of-flight of the maximum amplitude from each inner corner in the tilted configuration

Table 3: Position, amplitude and time-of-flight of the maximum amplitude from each inner corner in tilted configuration

[^0]: ${ }^{1}$ With a velocity of $1,49 \mathrm{~mm} / \mu \mathrm{s}$ in water

