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Abstract

We study different extreme value theory (EVT)-based estimators for the local Hausdorff

dimension (also known as local attractor dimension) of dynamical systems. The attractor

dimension is an important quantity related to the number of effective degrees of freedom of

the underlying dynamical system, and its estimation has been a central topic in the dynam-

ical systems literature since the 80s. The framework considered here combines the analysis

of recurrences in phase space with EVT to estimate the local attractor dimension in the

neighborhood of a state of interest. While the EVT framework enables the analysis of high-

dimensional complex systems, such as the Earth’s climate, its applicability relies on robust

statistical parameter estimation for the assumed extreme value distribution. In this study,
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we provide a critical review of several EVT-based local dimension estimators, analyzing and

comparing their performance across a range of data-generating systems. Our results provide

insights for researchers using the EVT-based estimates of the local dimension, aiding in the

selection of an appropriate estimator for their specific application.

Dynamical systems are characterized by an attractor, i.e. a compact region em-

bedded in the space of the physical variables, hosting all the system’s trajectories.

The attractor is a fractal object, thus its dimension is not integer. In real-world sys-

tems, such as the Earth’s climate, the local dimension of the attractor around a point

corresponding to a state of interest provides insight on the predictability of the said

state. Recent applications of statistical extreme value theory have led to developing

estimators of the attractor dimension. These have been used in several studies, espe-

cially in geophysics, sometimes making strong simplifying assumptions that may not

be met in the real world. In this article, we compare the performance of several of

these estimators, providing some general guidelines for their use in applied studies.

1 Introduction

Dynamical systems theory is a powerful mathematical framework that provides information on

the behavior of time-evolving systems, from something as simple as the motion of a pendulum

to as complex as the global climate system. The underlying idea is to characterize all possible

trajectories of a system, including their density, recurrence properties and persistence. The object

which hosts all the information on these trajectories is called the attractor of the system. It lives

in the phase space, i.e. the space spanned by all the variables of the system. For natural chaotic

systems originating from forced-dissipative dynamics, the attractor is a compact object in phase

space: the trajectories have finite energy and cannot escape from the preferential region defined

by the attractor.

The geometrical properties of the attractor of a dynamical system provide a number of insights

on the system’s behaviour. Here, we specifically consider the Hausdorff dimension, also known
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simply as attractor dimension, D. The Hausdorff dimension is an important quantity related to

the number of effective degrees of freedom of the underlying dynamical system, whose estimation

has been a central topic in the dynamical systems literature since the 80s. Early efforts to es-

timate attractor dimensions were based on the embedding approach (Grassberger, 1988). This

consists of performing a nearest-neighbours search in spaces of dimensions k � n, where n in-

dicates the number of variables (or, equivalently, the dimension of the full phase space). While

the embedding approach is very successful when applied to low-dimensional attractors, it shows

severe limitations for high-dimensional systems, where the choice of the embedding dimension k

appears to be crucial. It was shown that, for k > 6, the so-called curse of dimensionality strongly

reduces the capability to identify neighbors in phase space, resulting in biased estimates of D ' k

(Grassberger and Procaccia, 1984; Nicolis and Nicolis, 1984; Grassberger, 1986; Lorenz, 1991). For

several years, estimating D in high-dimensional systems remained a major numerical challenge.

Recently, a technique combining the analysis of recurrences in phase space with extreme value

theory (EVT), has allowed to estimate D without relying on embedding (Lucarini et al., 2016).

The key idea is that the limiting distribution of suitably re-scaled recurrences of the system around

a state of interest ζ can be modelled by the generalized extreme value distribution or by the gen-

eralized Pareto distribution. In other words, recurrences in phase space can be viewed as extreme

events and follow an extreme value law. The scaling of the hypersphere centered around ζ and

containing the recurrences serves as an estimate of the local attractor dimension around the state

ζ, d(ζ). When a sufficient number of states ζ is considered, the hyperspheres densely cover the

attractor and, by averaging d over several states ζ, one obtains an estimate for D. Therefore, the

EVT approach offers a way to measure D, while providing valuable information on the dynamical

system in a local (in phase space) and instantaneous (in time) sense. More specifically, the local

dimension informs on the geometry of the system’s trajectories in the neighborhood of the state of

interest. In general terms, a larger dimension is associated to a lack of predictability and a lower

dimension to higher predictability.

The above EVT-based technique also suffers from some limitations linked to the curse of dimen-

3



sionality (Pons et al., 2020). Nonetheless, its applicability to high dimensional complex systems,

and in particular the Earth system, has provided a new dimensionality reduction strategy and en-

abled new research directions. These include dynamical characterisations of global climate states

(Faranda et al., 2017a; Buschow and Friederichs, 2018; Brunetti et al., 2019), key mechanisms

of climate change (Faranda et al., 2019a), evaluation of climate models (Rodrigues et al., 2018;

Falasca and Bracco, 2022), and investigations of atmospheric predictability (Messori et al., 2017;

Scher and Messori, 2018; Hochman et al., 2019a,b, 2021b, 2022), atmospheric dynamics (Faranda

et al., 2017b, 2019b; Messori et al., 2021; Hochman et al., 2021a), dynamics and attribution of

climate extremes (De Luca et al., 2020; Giamalaki et al., 2021; Faranda et al., 2023; Ginesta et al.,

2022), palaeoclimates (Messori and Faranda, 2021), slow earthquakes (Gualandi et al., 2020) and

more. These studies chiefly leveraged the local information provided by d to discriminate between

different states (or, more properly, of special Poincaré sections) of the climate system. As a concrete

example, low dimensions of sea-level pressure maps in the North Atlantic region were associated to

frequent extratropical storms, and high dimensions to so-called blocked flows, namely times when

the climatological west to east atmospheric flow over the region is diverted by a persistent high

pressure system (Faranda et al., 2017b).

Given the broad range of applications of d, it is important to choose a robust statistical es-

timator. Indeed, a range of different estimators, all based on extreme value laws, can be used

to obtain d, yet a systematic comparison is lacking in the literature. The goal of this paper is

to present different EVT-based estimators for d, and provide a critical review of the drawbacks

and advantages of each of them, by comparing their performances on a range of data-generating

systems.

Our study is structured as follows: in Section 2 we introduce the concept of local and global

(Hausdorff) attractor dimension and its estimation via the Generalized Pareto distribution, and

Section 3 provides an overview of different statistical estimators proposed in the literature. In

Section 4 we describe the generated and real-world data that we use for the statistical evaluation

of all the estimators, whose results are described in Section 5. Finally, Section 6 contains our
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conclusions and recommendations on the estimation of the local dimension of dynamical systems.

2 Theoretical Framework

2.1 Hausdorff and local attractor dimension via EVT

The Hausdorff dimension is the extension of the classical concept of topological dimension to non-

integer values, introduced in 1918 by Hausdorff (Hausdorff, 1918) as a way to measure the ”size”

of fractal objects.

For example, the Hausdorff dimension of a straight line is 1, of a volume is 3, while for a fractal

object like the Koch curve it is greater than 1, but less than 2. Local dimensions are a way to

measure the dimension of a fractal object at a specific point in the phase space, i.e. around a

specific instantaneous state.

A classical method to estimate the Hausdorff dimension and local dimensions of a fractal object

is box counting. This involves covering the fractal object with boxes of a given size and counting

the number of boxes needed to cover the object. By repeating this process for boxes of different

sizes, one obtains a curve that represents the relationship between the box size and the number of

boxes needed to cover the object. The slope of this curve can be used to estimate the Hausdorff

dimension and local dimensions of the fractal object.

Despite its usefulness in estimating the attractor dimension of low-dimensional systems, the

box counting method is limited by the fact that it only provides information about the behavior

of the fractal object at a finite range of scales, and therefore it is heavily affected by the so-called

curse of dimensionality. As a result, estimates of the attractor dimensions for complex systems such

as Earth’s climate are unrealistically small (Nicolis and Nicolis, 1984; Grassberger, 1986; Lorenz,

1991).

More recently, a new methodology based on EVT has been introduced to estimate attractor

dimensions. This framework allows to extrapolate the behavior of the fractal object to very large

or very small scales by modeling the extreme values of the box counting curve. In other terms, the

probability distribution of the distance between a reference point and nearby points in the attractor
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is modeled as a power law. The exponent of this power law is related to the local dimension of the

attractor at that point. EVT thus provides a more accurate estimate of the Hausdorff dimension

and local dimensions of the fractal object than the box counting approach, especially for high-

dimensional systems. However, it does not entirely overcome the curse of dimensionality (Pons

et al., 2020).

Let yj be j = 1, . . . , N realizations in time of a dynamical system Y , and let ζ be a particular

realization taken as a reference state. Following Freitas et al. (2010); Faranda et al. (2011), we

consider the distance observable defined as

gj = − ln(dist(yj, ζ)), (1)

where dist(yj, ζ) is the Euclidean distance between each state yj and the reference state ζ. We

define the recurrences of the reference state ζ as {yj : dist(yj, ζ) < r}, i.e. the ensemble of states of

the system located in the neighbourhood of ζ defined by the hypersphere B(ζ, r). Let us consider

the sequence of N values of g, and let gq be an extreme quantile of the probability density function

of g, fG(g), corresponding to the probability q. We define the Peaks Over Threshold (POTs) as the

ensemble of n = [N(1− q)] values such that g > gq, where [·] denotes the closest integer operator.

The observable g in Eq. 1 is defined in such a way that the recurrences, states characterized

by minima of the distance function, correspond to POTs of the observable itself. Given an n-

dimensional sequence of POTs, we define the exceedances X as the POTs shifted by subtracting

the threshold gq, so that X = {X`}n`=1 = {g − gq : g ≥ gq}, where ` = 1, . . . , n and minX = 0.

The choice of the Euclidean distance to define g guarantees that the threshold gq used to defined

the exceedances is in direct relation to the scaling of the hypersphere B(ζ, r), since r = exp{−gq}

(Faranda et al., 2011). In other words, the asymptotic frequency with which the system enters

a hypersphere of radius r centred on ζ can now be expressed as the probability of exceeding a

threshold corresponding to a high quantile gq of the distribution of g.

In the limit N → ∞, the shifted exceedances follow a two-parameter Generalized Pareto

Distribution GPD(σ, ξ). In this setting, the local dimension around the state ζ is given by (Faranda
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et al., 2011):

d(ζ) =
1

σ
. (2)

By averaging d over a sufficiently large ensemble of states ζ on the attractor, one then obtains an

estimate the Hausdorff dimension D (Caby et al., 2018).

For Axiom A systems in the asymptotic case n→∞, ξ → 0, and the two-parameter GPD(σ, ξ)

converges to an exponential distribution, Exp(σ). In this case, the local dimension estimator is

the inverse of the exceedances sample mean

d̂ =
1

x
. (3)

Many of the existing applied studies leveraging on EVT to estimate d use Eq. 3; however, real-

world systems do not realistically satisfy the Axiom A assumption, and the exponential model for

the exceedances distribution is misspecified, likely leading to biased estimates.

2.2 Generalized Pareto Distribution

A random variable X follows a generalised Pareto distributon GPD(µ, ξ, σ) if its cumulative dis-

tribution function (CDF), giving the probability P (X > x), is defined as

F (x|ξ, µ, σ) =


1−

(
1 + ξ x−µ

σ

)−1/ξ
, ξ 6= 0

1− exp
(
−x−µ

σ

)
, ξ = 0

(4)

and the corresponding probability density function (pdf) reads:

f(x|ξ, µ, σ) =


1
σ

(
1 + ξ x−µ

σ

)−1/ξ−1
, ξ 6= 0

1
σ

exp
(
−x−µ

σ

)
, ξ = 0

(5)

where ξ ∈ R is the shape parameter, µ ∈ R is the location parameter and σ > 0 is the scale

parameter. The support of X depends on the shape parameter: if ξ ≤ 0, µ ≤ x ≤ µ+ σ
ξ
; if ξ > 0,
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µ ≤ x ≤ ∞. The moment generating function is:

MX(t) = EX [etx] = etµ
∞∑
j=0

[
(tσ)j∏j

k=0(1− kξ)

]
, for kξ < 1

where EX [·] denotes expectation computed with respect to the density of X. The r-th moment

around zero can be obtained as:

E[Xr] =
drMX(t)

dtr

∣∣∣∣
t=0

= r!
σr

(−ξ)r+1

Γ
(
−1
ξ
− r
)

Γ
(

1− 1
ξ

) , for ξ <
1

r
(6)

In the special case µ = 0 the three-parameter GPD(µ, ξ, σ) reduces to a two-parameter

GPD(σ, ξ). In the following, we will consider this specific case, since the procedure described

in Section 3 requires to shift the peak-over-thresholds (POTs) so that their minimum is 0.

There are several methods to estimate the parameters of the GPD distribution, ranging from fre-

quentist techniques such as Maximum likelihood (ML), the method of moments (MM), probability-

weighted method of moments (PWM), linear combination of order statistics and others, to Bayesian

methods and approaches based on entropy (de Zea Bermudez and Kotz, 2010a,b).

Here, we focus on several frequentist methodologies, including ML, MM and PWM estima-

tion, plus an alternative formulation of ML, which we will call pseudo-ML (PML). We choose

these estimators based on their computational simplicity (MM and PWM), or because an effective

implementation is readily available in a R package.

3 Estimating the attractor dimension

In this section, we introduce five estimators of the parameter σ = 1
d
, namely the inverse local

dimension. The first one (given in Eq. 19), is constructed assuming the degenerate case of POTs

following a GPD(ξ = 0, σ) ≡ Exp(σ). The others (given in Eq.s 20-23) are constructed under the

assumptions of POTs following a GPD(σ, ξ).
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3.1 Estimation based on Exp(σ)

As already mentioned, for Axiom A systems in the asymptotic case n → ∞ ξ → 0, so that the

distribution of the exceedances converges to an exponential distribution.

In such a case, a ML estimator for the local dimension is readily available in close form, given

by σ̂m = x. Using this estimator, Pons et al. (2020) have shown that the estimated attractor

dimension is biased, with a bias growing nonlinearly with the topological dimension of the system,

as a particular case of curse of dimensionality (Bellman, 1957), due to the concentration of the

Euclidean norm. This effect was analytically proven for very long time series of random vectors,

and shown to equally affect real-world complex data, such as sea-level pressure fields or multivariate

time series of financial indices.

However, for both real-world and simulated systems displaying chaotic behaviour, the asymp-

totic case may not be met as easily as for purely stochastic systems. Much longer sampling is

required to observe the invariant distribution of chaotic systems compared to random vectors, and

assuming exponential exceedances may constitute a serious model misspecification, which may

introduce further bias.

3.2 Estimation based on GPD(σ, ξ)

Maximum Likelihood (ML)

Maximum Likelihood is one of the most popular methods to estimate the parameters of a statistical

model, and it has been widely used since its first introduction Fisher (1912). It is beyond our scope

to give an overview of ML, which can be found in many classic statistics textbooks (Casella and

Berger, 2002). In brief, given a sample x consisting of n independent realizations of a random

variable with probability density function f(x|θ), where θ denotes the vector of parameters, we

call likelihood function the quantity

L(θ|x) =
n∏
i=1

f(xi|θ). (7)
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The ML estimator of the parameter vector is the point θ̂ of the parameter space at which L(θ|x)

attains its maximum. Finding the ML parameter estimates can be a simple analytical task or a

challenging numerical procedure, depending on the smoothness of the likelihood function. In the

case of the GPD, it is not possible to obtain close-form estimators analytically, so that alternative

strategies must be found to maximize L(θ|x). To obtain ML estimates for the GPD, we use the

gpd.mle() function from the R package ’mev’ (Belzile et al., 2022), based on the profile likelihood

maximization method Grimshaw (1993).

Pseudo Maximum Likelihood (PML)

An alternative way to obtain ML estimates of the GPD parameters has been introduced by Vil-

laseñor-Alva and González-Estrada (2009) and implemented in the R package gPdtest (Estrada

and Alva, 2012). The estimator is constructed differently depending on the sign of ξ; given this

composite strategy and the passage through intermediate steps not based on the likelihood func-

tion, we will refer to this method as ”pseudo maximum likelihood”. Here we only provide a sketch

and refer the reader to the aforementioned article for full details.

For ξ ≥ 0, gPdtest implements a maximization of the asymptotic likelihood, based on the

logarithm of the k largest values in the ordered sample x1:n, x2:n, . . . , xn:n: Wj = log xj:n with

j = n − k + 1, n − k + 2, . . . , n. For n → ∞ the log-likelihood can be expressed as a function of

Wj, and the two ML estimators follow:

ξ̂k = −

(
Wn−k+1 −

1

k

k∑
j=1

Wn−j+1

)
(8)

σ̂k = ξ̂k exp

{
Wn−k+1 + ξ̂k log

k

n

}
. (9)

The case ξ < 0 requires a composite strategy, combining a moment equation step and a

maximum likelihood estimator of the upper boundary of the GPD. Recalling that we consider the

case µ = 0, the variable U = [1− F (X|ξ, σ)]−ξ = 1 + ξ
σ
X follows a Beta(−1

ξ
, 1) distribution. The

first sample moment is u = 1
n

∑n
i=1

(
1 + ξ

σ
xi
)

= 1 + ξ
σ
x, to be equated to the expected value of the

Beta distribution E[U ] = 1
1−ξ , resulting in ξ = 1− σ

x
. Let us now recall that, for ξ < 0, 0 ≤ x ≤ σ/ξ:
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then, the sample maximum xn:n is a ML estimator for the upper bound σ/ξ. Combining the two

steps, one obtains:

σ̂PML = −ξ̂xn:n (10)

ξ̂PML =
x

x− xn:n
(11)

Notice that the fact that the estimation strategy depends on the sign of the shape parameter,

a prior knowledge on the value of ξ must be used. Results discussed in this paper from PML

estimation are based on the sign of ξ̂PWM , introduced later. We have also tested the possibility to

use ξ̂MM (not shown in the article) obtaining equivalent results.

Method of Moments (MM)

The method of moments is another common parameter estimation method. It consists of expressing

the theoretical moments as a function of the parameters and solving the resulting equations for

the parameter estimates using the values of the sample moments.

Let X be a random variable X ∼ GPD(σ, ξ), x = x1, x2, . . . , xn a sample of n observations

from X. The first two GPD moments, required to estimate the two parameters, can be obtained

using Eq. 6:

E[X] =
σ

1 + ξ
, for ξ < 1

V ar[X] = E[X2]− E[X]2 =
σ2

(1 + ξ)2(1 + 2ξ)
, for ξ <

1

2

(12)

and the MM parameter estimators follow by equating sample and theoretical moments, and solving

for σ, ξ:

ξ̂MM =
1

2

(
x2

s2
− 1

)
σ̂MM =

x

2

(
x2

s2
+ 1

) (13)

where x = n−1
∑
xi is the sample mean and s2 = n−1

∑
(xi − x)2 is the sample variance. Given

the condition ξ < 1
r

in Eq. 6, the estimators in Eq. 13 only hold for ξ < 0.5.

Notice that σ̂ = x(ξ̂ + 1). If ξ = 0, the GPD reduces to a standard exponential distribution,

X ∼ Exp(σ), and the MM estimator of σ is the sample mean. On the other hand, if it is erroneously
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assumed that ξ = 0, the estimate of σ is affected by a bias equal to −xξ̂.

Probability Weighted Moments (PWM)

Finally, we consider a variation of the MM, based on probability weighted moments (PWM).

This method is particularly suited for distributions that can be uniquely expressed in terms of

their inverse CDF in a simple way, but it is also popular in hydrological modeling due to its

computational simplicity. For a random variable X with CDF F (X), the PWM are defined as

Mp,r,s = E[Xp(F (X))r(1− F (X))s], p, r, s ∈ R (14)

For the estimation of GPD(σ, ξ), is is suggested (de Zea Bermudez and Kotz, 2010a) to use the

moments defined by p = 1, r = 0:

αs = M1,0,s = E[X(1− F (X))s]

=
σ

(s+ 1)(s+ 1 + ξ)
, ξ < 1, s = 0, 1, 2, . . .

(15)

so that the PWM expression of the GPD parameters is:

ξ = 2− α0

α0 − 2α1

σ =
2α0α1

α0 − 2α1

.

(16)

Given a sample x of size n from X ∼ GPD(σ, ξ), the sample version of the PWM αs is

as =
1

n

n∑
i=1

xi:n(1− pi:n)s, (17)

where xi:n is the i-th element of the ordered sample and pi:n are the corresponding plotting positions,

such that (1−pi:n) is a sample estimate of (1−F (X)). Notice that a0 = x. There are several possible

ways to estimate the plotting positions. Here, we adopt the simple expression recommended in the
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literature (Landwehr et al., 1979; Hosking et al., 1985):

pi:n =
i− 0.35

n
.

The two estimators can be obtained by plugging Eq. 17 in Eq.s 16. Once again, we recall

that the upper limit of GPD(σ, ξ) is given by −σ/ξ and therefore estimated by −σ̂/ξ̂; however, if

−σ̂/ξ̂ < xn:n, the sample maximum xn:n itself is a better estimator of the upper limit. The final

expression of the PWM estimators follows:

σ̂PWM =
2a0a1
a0 − 2a1

, ξ̂′ = 2− a0
a0 − 2a1

ξ̂PWM =


ξ̂′ −σ̂/ξ̂′ ≥ xn:n

− σ̂
xn:n

−σ̂/ξ̂′ < xn:n

(18)

The PWM estimators are unbiased, and for large samples are normally distributed with mean

(σ, ξ) and known covariance matrix.

To summarize, we will consider the following five expressions of the inverse attractor dimension:

d̂−1m = σ̂m = x (19)

d̂−1ML = σ̂ML = arg max{L(σ, ξ|x)} (20)

d̂−1PML = σ̂PML = −
xx(n)
x− x(n)

(21)

d̂−1MM = σ̂MM =
x

2

(
x2

s2
+ 1

)
(22)

d̂−1PWM = σ̂PWM =
2xa1
x− 2a1

(23)

with a1 = 1
n

∑n
i=1 x1:n( i−0.35

n
). We give no analytical expression available for σ̂ML, as this is obtained

by numerical optimization of the likelihood function.
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4 Data

In order to evaluate and compare the statistical performance of the estimators, we use data from

three sources. First, we perform a Monte Carlo study, so that we can compare estimates to

known true values of σ, as a function of ξ and of the sample size. Then, we generate a very long

trajectory from the well-known Lorenz attractor, whose Hausdorff dimension is known, and which

is not affected by the curse of dimensionality. Finally, we compare results obtained from real-world

climatological data, that are the main motivation for this study.

4.1 Monte Carlo experiment

As a first step, we perform a Monte Carlo experiment to assess estimator performance as a function

of the true values of σ, ξ and of the number of exceedances n. In order to do so, for every

combination (σ, ξ, n) we generate M = 5000 random samples from a GPD(σ, ξ) with ξ ∈ [−1, 1]0.2;

σ = 1/d, with d ∈ [1, 5]0.2 ∪ [5, 100]5; n ∈ [10, 100]10 ∪ {150, 200, 500, 1000}, where [a, b]δ denotes a

partition of the closed a, b interval with step δ. Notice that n is the number of available exceedances,

so that the original sample size is implied, and in real cases it depends on the chosen POT threshold:

for example, n = 100 and a threshold at the 99th percentile implies an initial time series of 105

observations.

4.2 Lorenz 1963

Moving further beyond Monte Carlo data, we consider a simple chaotic dynamical system: the

well-known Lorenz63 model (hereinafter L63; Lorenz, 1963). This is a three-variable system meant

to describe Rayleigh-Bénard convection, and consisting of the following ordinary differential equa-
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tions:

dX

dt
= σ(Y −X)

dY

dt
= X(ρ− Z)− Y

dZ

dt
= XY − βZ

(24)

Here X represents convective overturning rate, Y horizontal temperature variations, and Z de-

parture from a linear vertical temperature gradient. We use the standard parameter configuration

to obtain chaotic behaviour (the well-known ”butterfly”), namely σ = 10, ρ = 28 and β = 8/3.

We use a timestep of 0.001 s and generate 4 · 105 iterations. We discard the first 2000 iterations

and sub-sample the trajectory taking one every 4 iterations.

4.3 ERA5 climate reanalysis

As a last step, we consider climate reanalysis data. This data is issued from a full-complexity

atmospheric global model, constrained by a very large amount of in situ and remotely sensed data.

We use the ERA5 reanalysis dataset (Hersbach et al., 2020), produced by the European Centre

for Medium-Range Weather Forecasts (ECMWF). We use 500 hPa geopotential height data on a

0.25◦ horizontal resolution, daily temporal resolution and the underlying climate model includes

accurate physical parameterizations. We consider data over the period 1979–2018 and a domain

spanning 26◦ – 70◦ North and 22◦ West – 46◦ East. This provides a lat-lon grid of 273×177 points

covering Europe, and parts of the Eastern Atlantic, Russia and North Africa.

5 Results

5.1 Monte Carlo experiment

As described in Section 4.1, we specify a set of combinations (σ, ξ, n), for each combination we

generate 5000 Monte Carlo samples, and for each sample we estimate the dimension with the five
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estimators described by Eq.s 19-23. All results discussed in this section are obtained as the average

over the 5000 Monte Carlo samples for each (σ, ξ, n) combination, and refer to the local dimension

d = 1/σ. The dependence of the estimator performance on ξ is important for understanding the

actual applicability of each estimator to particular classes of systems.

In the following, we will consider two error measures to evaluate the performance of the different

estimators: the root mean square error (RMSE) and the relative error. The RMSE is defined as

the square root of the average squared deviation:

RMSE =

√
E[(d̂− d)2] =

√
Bias(d̂)2 + V ar(d̂) (25)

where the expectation is taken over the M Monte Carlo replicates, and it is thus a function of n, ξ

and the true value d. Since the mean square error can be decomposed in terms of bias and variance

of the estimator as shown in Eq. 25, the RMSE allows to find the most efficient estimator, in the

sense of the best bias-variance trade-off. Figures 1-4 show values of RMSE as a function of d and

n, for ξ = −1,−0.5, 0, 0.5. The complete set of results for all ξ is shown in supplementary Figures

19-39.

In general, larger sample sizes correspond to smaller RMSE, and larger RMSE are found for

large values of the true dimension d. For the mean estimator, however, the positive effect of

the sample size is observed only at ξ ∼ 0, where the underlying assumption of an exponential

distribution of the exceedances if met. The MM estimator also produces large RMSE for large

n when ξ ' 0.5, which is expected as the second moment of the GPD only exists for ξ < 0.5.

Notice that the PML shows a qualitatively similar dependence of RMSE on n, d, but the RMSE

magnitude is much larger compared to the other estimators.
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(a)    ξ = −1,  mean estimator
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(b)    ξ = −1,  PWM estimator
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(c)    ξ = −1,  MM estimator
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(d)    ξ = −1,  ML estimator
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(e)    ξ = −1,  PML estimator
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Figure 1: Root mean square error of the mean estimator (a), PWM (b), MM (c), ML (d) and
PML (e) on d as a function of d and n, for ξ = −1.
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(a)    ξ = −0.5,  mean estimator
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(b)    ξ = −0.5,  PWM estimator
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(c)    ξ = −0.5,  MM estimator
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(d)    ξ = −0.5,  ML estimator
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(e)    ξ = −0.5,  PML estimator
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Figure 2: Root mean square error of the mean estimator (a), PWM (b), MM (c), ML (d) and
PML (e) on d as a function of d and n, for ξ = −0.5.

18



(a)    ξ = 0,  mean estimator
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(b)    ξ = 0,  PWM estimator
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(c)    ξ = 0,  MM estimator
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(d)    ξ = 0,  ML estimator
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(e)    ξ = 0,  PML estimator
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Figure 3: Root mean square error of the mean estimator (a), PWM (b), MM (c), ML (d) and
PML (e) on d as a function of d and n, for ξ = 0.
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(a)    ξ = 0.5,  mean estimator
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(b)    ξ = 0.5,  PWM estimator
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(c)    ξ = 0.5,  MM estimator
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(d)    ξ = 0.5,  ML estimator
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(e)    ξ = 0.5,  PML estimator
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Figure 4: Root mean square error of the mean estimator (a), PWM (b), MM (c), ML (d) and
PML (e) on d as a function of d and n, for ξ = 0.5.

Table 1 and Figure 5 summarize the effect of the true value of ξ on RMSE for n = 20, 100,

1000, averaged over the true dimension. As expected, the mean estimator has the smallest RMSE

when ξ ' 0, but it loses efficiency when this assumption is not met. The PML is the most efficient

over a restricted range of negative values of ξ, however for ξ ' −0.1 it produces by far the largest

RMSE values. The efficiency of the ML as a function of ξ changes visibly from small to large
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ξ -1.0 -0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 0.8 1.0

n = 20

mean 29.72 24.31 19.10 14.13 9.71 6.98 7.85 11.03 14.50 17.55 20.06

MM 16.68 15.89 15.25 14.61 13.78 12.98 12.52 13.86 17.58 22.08 26.42

PWM 17.33 16.84 16.56 16.42 16.06 15.83 15.72 15.11 15.14 15.81 17.70

ML 7.27 9.35 12.97 15.25 16.16 16.85 17.93 19.04 20.70 22.01 23.50

PML 11.14 10.65 10.38 10.55 11.49 146.81 103.16 75.64 59.71 54.74 61.16

n = 100

mean 28.09 22.60 17.10 11.67 6.45 2.84 5.94 10.91 15.68 19.61 22.52

MM 6.91 6.66 6.38 6.12 5.95 5.91 6.08 8.07 14.49 22.23 28.92

PWM 6.96 6.86 6.75 6.65 6.64 6.62 6.70 6.91 7.21 8.02 10.92

ML 1.50 5.20 8.77 16.42 10.21 5.63 6.67 7.33 7.85 8.28 8.80

PML 4.92 4.76 4.69 5.04 6.29 85.97 60.54 43.70 32.95 26.70 24.06

n = 1000

mean 27.74 22.20 16.67 11.14 5.64 0.87 5.58 11.06 16.39 20.97 24.23

MM 2.13 2.06 1.98 1.91 1.87 1.88 2.44 4.05 12.06 23.20 32.24

PWM 2.14 2.11 2.08 2.06 2.06 2.04 2.10 2.29 2.84 3.58 6.20

ML 0.75 1.50 1.89 2.93 8.45 1.66 2.09 2.24 2.41 2.54 2.69

PML 1.55 1.50 1.49 1.74 2.95 80.94 56.75 40.24 28.89 21.12 15.95

Table 1: Root mean square error of the five considered estimators on the local dimension, averaged
over d and shown as a function of ξ, for sample sizes n = 20, 100, 1000.

sample sizes, where it shows larger RMSE for −0.5 < ξ < 0. The MM estimator shows a good

performance for ξ / 0.5, but it is affected by large RMSE values at larger values of ξ, which does

not improve with sample size. Finally, the PWM is the most stable estimator: for small n it is

not the most efficient, but its performance is independent of the true value of ξ. At larger sample

sizes the RMSE is overall small, and with the smallest variations as a function of ξ, with only a

slightly decreased efficiency for ξ close to 1.

Overall, it is difficult to point out the best estimator in terms of efficiency when the sample

size is small. For larger samples, the PWM is the best choice; however, if it can be safely assumed

that ξ < 0, MM and PWM are in close competition in terms of efficiency.
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Figure 5: Graphic visualization of the results shown in Table 1. Root mean square error of the
five considered estimators on the local dimension, averaged over d and shown as a function of ξ,
for sample sizes n = 20 (a), 100 (b), 1000 (c).

As a further way to characterize the performance of the estimators, we consider the average

relative error E[(d̂− d)/d], where the expectation is computed over the M Monte Carlo replicates

as for the RMSE. This measure allows to evaluate the magnitude of the estimation error relative

to the true value, while also assessing the sign of the bias.

Figures 6-9 show the values of the relative error for the five considered estimators, as a function

of the sample size n and of the true dimension d. The Figures refer to ξ = −1,−0.5, 0, 0.5; the

complete set of results for all ξ is shown in supplementary Figures 40-60.

For all values of ξ and for all estimators, results improve with the sample size, with overall

convergence at values around n ∼ 200. Results appear to be stable with respect to the true
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dimension d for all methods, except maximum likelihood. For ξ > 0, the error of the ML estimator

seems to be independent on d, or shows a weak dependence for 0 < ξ / 0.2. However, for ξ < 0

the ML estimator shows a strong dependence on d, especially for sample sizes 50 / n / 200: for

−1 / ξ / −0.5 the relative error becomes more negative with increasing d, while for −0.5 / ξ / 0

it becomes more positive.

For the special case ξ = 0 (Fig. 8), when the GPD converges to an exponential distribution,

the performance of the mean estimator shows a great improvement, with relative errors ∼ 0.5%

at n = 100 and ∼ 0.01% for n > 200. This is expected, since in this case the sample mean is also

the exact maximum likelihood estimator of σ.

The PML estimator has the overall worst performance, with relative errors comparable to

other methods for ξ < 0 but jumping to errors of 100 − 200% for ξ ≥ 0. Even though the

package authors recommend the use of gPdtest for all values of ξ, Eq.s 8-9 show that an unbiased

estimation is not possible for ξ = 0, since if ξ was correctly estimated, it would necessarily result

in σ̂ = 0, corresponding to a degenerate distribution with 0 variance, and to an infinite estimated

dimension.

Since the performance of the estimators is mostly independent of the true value of σ (or d), and

convergence with n is reached for n . 200, we can fix n and average over d to obtain a synthetic

representation on the relationship between ξ and the relative estimation error affecting d̂. As we

pointed out earlier, the ML estimator error shows some dependence on d for ξ / 0.2. However, the

range of relative value errors is small, in particular compared to the mean and the PML estimators.

We still include ML in this analysis for a global comparison. Results are summarized in Table 2

and shown in Fig. 10, where the relative error averaged over d for n = 20, 100, 1000 is plotted as

a function of ξ.

The performance of PML shows large relative errors for ξ > −0.2, and a non-monotonic, discon-

tinuous behaviour as a function of ξ. The ML estimator also shows a non-monotonic dependence

of the relative error for negative values of ξ. This irregularity is likely due to the aforementioned

dependence of the ML estimator on d, overlooked in this analysis. All the other estimators produce

a relative error that is monotonically decreasing with the true value of ξ. The two moment-based
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estimators have a similar performance, with relative errors ≈ 0.1% for ξ ≤ 0. The performance

of the MM estimator degrades for values larger than 0 < ξ / 0.5, depending on the sample size

with large samples allowing for accurate estimations close to the limit of the domain of existence

ξ < 0.5. Similarly, the PWM exist for ξ < 1 and the corresponding estimator shows a tendency to

under-estimate σ when ξ → 1, with smaller errors at larger sample size.

The performance of the mean estimator is particularly interesting. We recall that this is a well-

specified unbiased estimator only under the assumption of an Axiom A system in the asymptotic

case, condition that can be rarely satisfied in real-world data; on the other hand, it is very simple

to compute, and it has been used in several studies, providing physically coherent results. Indeed,

while the relative error of this estimator is large compared to the others, it has the peculiar property

of being (σ̂ − σ)/σ = −ξ, except for ξ ≈ 1, where it slightly deviates from this relationship.

Overall, for systems where it is expected that ξ ≤ 0, the MM and PWM perform the best.

ML performs slightly worse for ξ ≤ 0, but it is the only estimator providing unbiased estimates

for ξ > 0. All three estimators are quite stable with the sample size, providing fairly good

estimates already for n = 20. The mean estimator is severely biased, but its error is monotonic and

approximately linear with ξ, so that conclusions obtained comparing local dimension of different

states or systems still hold.
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ξ -1.0 -0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 0.8 1.0

n = 20

mean 1.035 0.836 0.639 0.441 0.246 0.052 -0.134 -0.308 -0.461 -0.589 -0.691

MM 0.061 0.055 0.051 0.042 0.026 -0.011 -0.078 -0.185 -0.314 -0.445 -0.564

PWM 0.082 0.075 0.070 0.065 0.057 0.043 0.025 -0.011 -0.068 -0.151 -0.250

ML 0.084 -0.038 -0.091 -0.085 -0.054 -0.032 -0.010 0.007 0.023 0.036 0.049

PML -0.017 -0.040 -0.071 -0.116 -0.177 2.834 1.920 1.312 0.894 0.617 0.449

n = 100

mean 1.007 0.808 0.607 0.408 0.209 0.010 -0.187 -0.378 -0.552 -0.698 -0.807

MM 0.012 0.012 0.010 0.008 0.006 -0.004 -0.040 -0.140 -0.308 -0.498 -0.663

PWM 0.016 0.016 0.014 0.012 0.012 0.009 0.004 -0.007 -0.036 -0.098 -0.200

ML 0.023 -0.088 -0.121 0.034 0.085 0.017 0.000 0.001 0.005 0.008 0.010

PML -0.003 -0.012 -0.029 -0.060 -0.112 1.997 1.388 0.972 0.686 0.489 0.353

n = 1000

mean 1.001 0.801 0.601 0.401 0.201 0.001 -0.199 -0.397 -0.589 -0.755 -0.873

MM 0.001 0.001 0.001 0.001 0.001 0.000 -0.008 -0.076 -0.275 -0.537 -0.754

PWM 0.002 0.001 0.002 0.001 0.001 0.001 0.000 -0.001 -0.010 -0.045 -0.131

ML 0.009 -0.015 -0.024 -0.033 0.078 0.005 0.000 0.000 0.001 0.001 0.001

PML 0.000 -0.002 -0.008 -0.023 -0.060 1.905 1.334 0.943 0.672 0.483 0.351

Table 2: Relative error of the five considered estimators on the local dimension, averaged over d
and shown as a function of ξ, for sample sizes n = 20, 100, 1000.
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(a)    ξ = −1,  mean estimator
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(b)    ξ = −1,  PWM estimator
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(c)    ξ = −1,  MM estimator
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(d)    ξ = −1,  ML estimator
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(e)    ξ = −1,  PML estimator
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Figure 6: Relative error of the mean estimator (a), PWM (b), MM (c), ML (d) and PML (e) on
d as a function of d and n, for ξ = −1.
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(a)    ξ = −0.5,  mean estimator
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(b)    ξ = −0.5,  PWM estimator
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(c)    ξ = −0.5,  MM estimator
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(d)    ξ = −0.5,  ML estimator
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(e)    ξ = −0.5,  PML estimator
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Figure 7: Relative error of the mean estimator (a), PWM (b), MM (c), ML (d) and PML (e) on
d as a function of d and n, for ξ = −0.5.

27



(a)    ξ = 0,  mean estimator
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(b)    ξ = 0,  PWM estimator
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(c)    ξ = 0,  MM estimator
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(d)    ξ = 0,  ML estimator
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(e)    ξ = 0,  PML estimator
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Figure 8: Relative error of the mean estimator (a), PWM (b), MM (c), ML (d) and PML (e) on
d as a function of d and n, for ξ = 0.
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(a)    ξ = 0.5,  mean estimator
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(b)    ξ = 0.5,  PWM estimator
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(c)    ξ = 0.5,  MM estimator
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(d)    ξ = 0.5,  ML estimator
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(e)    ξ = 0.5,  PML estimator
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Figure 9: Relative error of the mean estimator (a), PWM (b), MM (c), ML (d) and PML (e) on
d as a function of d and n, for ξ = 0.5.
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Figure 10: Graphic visualization of the results shown in Table 1. Relative error of the five consid-
ered estimators on the local dimension, averaged over d and shown as a function of ξ, for sample
sizes n = 20 (a), 100 (b), 1000 (c).

5.2 Lorenz 1963 model

Next, we analyze the performance of the estimators on the local dimension of the L63 system.

Its Hausdorff dimension is known to be D = 2.06 ± 0.01 since the early work of Grassberger

and Procaccia (1983), and more recently it has been estimated to be D = 2.0627160 (Viswanath,

2004). We choose the L63 system not only because its D is known, but also because in this

case the estimation of the local dimension via Euclidean distance is not affected by the curse of

dimensionality documented for higher-dimensional systems (Pons et al., 2020), since the phase

space of L63 has dimension 3.

Before looking at the estimates of d and D, we consider the performance of the different
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estimators on the shape parameter ξ. For the MM, PWM and PML estimators, σ̂ can be written

as a function of ξ̂, and analysing ξ may bring insights on the source of estimation errors on d. Figure

11 shows the probability density functions of ξ̂ for all estimators, except the mean estimator which

assumes ξ = 0. We can notice marked differences: PML results in a roughly symmetric distribution,

centered around ξ̂PML ∼ −0.15, while regular ML produces a much wider density with its peak just

below zero. The MM and PWM estimators both produce a bi-modal distribution, with a peak very

close to zero and another one between -0.1 and -0.15. To better characterize this result, we used

the break-point search based on segmented regression implemented in the R package segmented

(Muggeo, 2003) to separate the two modes of each distribution. The change points are located at

-0.058 for the MM and at -0.049 for the PWM estimator. Fig. 12 shows the two distributions, and

the L63 attractor colored based on the local value of ξ̂ obtained with the two estimators. While

the two modes of each distribution seem to separate similar regions of the attractor, the values are

inverted, so that the regions producing the lowest mode of ξ̂MM correspond to the highest peak

of ξ̂PWM , and vice versa. This is reflected in the negative correlation coefficient of -0.42 between

ξ̂MM and ξ̂PWM .
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Figure 11: Probability density functions of the estimated local dimension of L63.
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Figure 12: Attractor of the L63 system colored according to the shape parameter ξ estimated
with the MM and PWM methods. The bimodal distributions of ξ̂ have been separated with a
breakpoint search algorithm.

In Fig. 13 we show the probability density function of the local dimension d for all the esti-

mators, in logarithmic scale to reduce the visual effect of the large skewness. As expected from

the Monte Carlo results, the PML estimator has by far the worst performance. To obtain the

shown results, we have used ξ̂PWM as initial estimate. Using ξ̂MM (not shown) provided almost

identical results. The resulting Hausdorff dimension estimate is D̂PML = 4.259003, not only very
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different from the true value, but also larger than the phase-space dimension of the system, and

thus non-physical.

The estimates of D obtained with the other estimators are overall much closer to the true

value. We apply a Student’s t test at the 5% level with Bonferroni correction to each mean,

under the null hypothesis that D̂ = 2.0627160 against the bilateral alternative. All estimates are

significantly different, except for D̂MM . The MM estimator also has the smallest RMSE, meaning

that it provides not only the most accurate estimate, but also the best trade-off between bias and

variance. However, it is worth to mention that variability in the estimates of the local dimension

in this experiment is partially due to the structure of the attractor, so that this metric is less

important than in the case of the Monte Carlo experiment.

Figure 14 shows the X − Y plot of the L63 attractor, colored according to the local dimension

obtained with the four remaining estimators. Values are saturated at 3, since larger dimensions

are non-physical, but possible due to finite sampling effects. The four estimators show comparable

performances, with largely superimposed high- and low-dimensional regions. This is confirmed by

the large positive correlations between time series of estimated local dimension, ranging from 0.89

for the correlation between d̂m and d̂PWM to 0.99 for the correlation between d̂ML and both d̂MM

and d̂PWM . Thus, the differences in the estimation of ξ, especially concerning the bimodality of

the MM and PWM estimates discussed above, do not translate in equally visible differences in the

estimation of d.

These findings corroborate the result already emerged in the Monte Carlo experiment that, for

ξ ≤ 0, the MM estimator provides the smallest bias and the best bias-variance trade-off.
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Figure 13: Probability density functions of the estimated local dimension for the L63 system in
logarithmic scale. The horizontal grey line shows the value of the L63 Hausdorff dimension DL63;
horizontal coloured segments show estimates D̂ obtained as the average of all local dimensions.
The values are shown above each plot; stars indicates a statistical difference with respect to the
theoretical value of DL63. Values of root mean square error are also shown, with the exclusion of
PML.
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Figure 14: Attractor of the L63 system colored according to the estimated local dimension obtained
with the estimator based on the mean (a), ML (b), PWM (c) and MM (d).

5.3 Climate Data

Finally, we replicate the previous analysis for the ERA5 dataset. In this case, it is not possible to

compare estimates to the true value, as in the Monte Carlo experiment, or to previous knowledge

about the attractor dimension, as for the L63 system. The goal of considering real-world data

is rather to check the stability of local and attractor dimension estimates when using different

estimators. This is particularly relevant because many existing climatological studies have been

based on the mean estimator, while the climate system is expected to behave as a non-Axiom A

system, characterized by ξ < 0.

Figure 15 shows the probability density functions of estimated values of ξ with all methods,

except the mean estimator which assumes ξ = 0. Qualitatively, the distributions of ξMM and

ξPML present the highest resemblance, with the main difference due to a peak of estimated values
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close to 0 for the MM estimator. However, all possible combinations of two-sample Kolmogorov-

Smirnov test reject the null hypothesis of identical distribution at the 5% level. The PWM and

ML distributions are shifted towards larger values, with a large peak around 0 in the distribution

of ˆξML.
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Figure 15: Probability density functions of ξ̂ obtained with the considered estimators.

However, as in the case of L63, the differences in the estimation of ξ do not reflect on the

local dimension estimates. All the estimators produce values 8 ≤ D̂ ≤ 9 (see Fig. 16), with the

exception of PML which gives an estimate D̂PML = 23.4, with values of the local dimension up to

d̂PML = 41.6.

Also in this case, all possible combinations of Kolmogorov-Smirnov test reject the null hypoth-

esis of identical distributions at the 5% level. We also test the differences among the means, i.e.

the estimates of D, through pairwise Student’s t test with Bonferroni correction for multiple test

comparisons, without assuming equal variances in the distributions of d. All comparisons reject

the null hypothesis of equal means at the 5% level.

While these differences are statistically significant, from the point of view of many climatological
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applications, the estimates are equivalent. As an example of this type of application, we mention a

study (Fery et al., 2022) that uses a machine learning algorithm to decompose the sea level pressure

(slp) anomaly fields over the North Atlantic in a number of coherent structures. Each structure

corresponds to a low or high pressure anomaly pattern, and can be seen as a degree of freedom of

slp variability. To decide the optimal number of patterns, the authors construct a few statistics

that allow to draw scree plots, and choose 28. They note that this value is compatible with the

range of local dimensions estimated for the same atmospheric fields using the mean estimator

(Faranda et al., 2017b). In this type of analysis, where an integer approximation of D̂ is used to

determine an appropriate order of magnitude, any of the four estimates shown in Fig. 16 can be

considered compatible and would provide consistent results.
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Figure 16: Probability density functions of d̂ obtained with different estimators. The horizontal
color segments and the numbers above the violin plots indicate the estimated Hausdorff dimension
D̂.

Other previous applications have used estimates of the (instantaneous) local dimension. For

example, past studies have investigated temporal properties of d̂m, such as its seasonality and

relation to a dynamical measure of persistence (Faranda et al., 2017b,a), or long-term trends in
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reanalysis and climate projections (Faranda et al., 2019a). A simple way to check the similarity

between time series is Pearson’s correlation, as it is insensitive to mean shifts or scaling factors,

but it attains small values if two time series are not synchronized. The upper triangle of the

correlation plot in Fig. 17 shows values of Pearson’s correlation between pairs of estimated local

dimension time series. Corresponding scatterplots with regression lines are depicted in the lower

triangle. Both low correlation values and scatterplots show that the differences between d̂PML

and the other estimators are not simply due to a scale factor, but rather to the bimodality in the

distribution of d̂PML. We will not investigate the issues of this particular estimator, that may

be due to the implementation of the R package gPdtest. At this point, it is clear that the other

estimators constitute better alternatives, both because they are more accurate, and because they

do not require a prior knowledge of the sign of ξ.

The correlations among the other estimators are positive and large, ranging between 0.88 and

0.97. This shows that, even under the erroneous assumption of ξ = 0, the mean estimator produces

time series of d̂m well synchronized with the ones obtained by its competitors that assume a GPD

as the exceedances distribution. To ensure that seasonality and modes of interannual variability are

consistently reflected by all the estimators, we also inspect the autocorrelation function (ACF) and

the spectral density function (SDF) of the corresponding time series of d̂, both shown in Fig. 18.

We show the ACF up to 730 daily lags, corresponding to 2 years. The four best estimators follow

a similar behavior, with a clear yearly cycle. PML estimates show a faster decay of the correlation

and very weak seasonal signal, with values mostly inside the confidence interval constructed under

the white noise null hypothesis. The SDF shows a dominant peak at 2 years, and two secondary

peaks at 1 and 3 years. All estimators (except PML which has an overall flat spectrum, not shown)

reflect these dominant frequencies, although the mean estimator shows a lower peak at the yearly

frequency. This suggest that the mean estimator may display a subdued seasonal cycle. However,

the overall performance of the four methods is largely comparable.
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Figure 17: Correlation plot among the time series of d̂ obtained with all estimators. Panels in the
upper triangle show pairwise Pearson’s correlation coefficient. Panels in the lower triangle show
pairwise scatterplots, with superimposed correlation ellipse and linear regression line. The red
dots denote the scatterplot centers of mass. Panels along the diagonal show the histograms of the
marginal distributions of d̂.
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Figure 18: (a) Global autocorrelation function of d̂ for all estimators, at lags up to 730 days. Dashed
blue lines show the 95% confidence interval. (b) Logarithm of the spectral density function of d̂ for
all estimators except PML, at periods up to 4 years. Vertical grey lines mark the main frequencies,
showing annual and interannual variability.

6 Discussion

We have assessed different estimators of the local attractor dimension of a dynamical system,

by using extreme value theory for peaks over threshold (POT). This method also provides a
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way to estimate the Hausdorff dimension, which can be obtained as the average over all local

dimension, provided that the observed trajectories are long enough. We have considered four

methods assuming that POTs follow a Generalized Pareto Distribution (GPD) with parameters

ξ, σ: the method of moments (MM), probability weighted method of moments (PWM), maximum

likelihood (ML) and pseudo-ML (PML) estimators. Notice that the MM estimator is only defined

for ξ < 0.5, and that PML estimation requires two different procedures depending on the sign of

ξ. We also added a naive estimator, namely the inverse of the POTs mean, based on the simplified

assumption of exponentially distributed POTs, which is valid in the asymptotic case for Axiom A

dynamical systems.

We have performed a Monte Carlo experiment by simulating the POTs directly from a GPD

over a realistic range of true parameter values. In this way, we were able to measure the bias of

each estimator as a function of the true parameter space. We assessed the performance in terms

of the root mean square error and of the relative error on the local attractor dimension, given by

the inverse of the GPD scale parameter σ.

In terms of statistical efficiency as measured by the root mean square error (RMSE), the

overall best estimates are provided by the PWM. However, for dynamical systems whose POTs

are characterized by ξ < 0, the MM estimator produces the best estimates and it is very easy to

compute, without any tuning parameter such as the c = 0.35 coefficient in the definition of the

plotting positions for the PWM. Mean estimator, ML and PML produce large RMSE over some

range of ξ < 0, indicating that their performance is less optimal in terms of statistical efficiency.

Results also show that the relative error does not depend on the true value of σ, and convergence

towards a fixed value is overall reached for a POT sample size∼200. The PWM estimator shows the

overall best performance, and the MM estimator performs equally well in its domain of existence

ξ / 0.5, despite the theoretical superiority of ML estimators under well-specified statistical models.

The PML performance degrades rapidly for growing ξ ≥ −0.2. The average relative errors of the

naive estimator display a smooth, monotonic relationship with the true dimension value as a

function of the true value of ξ. The relationship is linear for the mean estimator (with slope equal

to -1).
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We further test the five estimators when applied to the Lorenz 1963 system – a 3-equation

system in a 3-dimensional phase space – and some high complexity climate data from the ERA5

reanalysis. For the Lorenz system, the Hausdorff dimension has been previously estimated, so

we can use that as a reference value. The results are consistent with those for the Monte Carlo

data, with the MM estimator showing the best performance for ξ < 0. For the climate data we

have no prior estimate of the dimension, yet we know that the data is characterized by a negative

estimated ξ. We thus consider the MM estimator as our baseline. We are particularly interested

in testing the performance of the mean estimator, as it has been repeatedly used in the literature

but there has been no systematic comparison of how it performs on complex systems relative to

alternative estimators. The correlations between the mean and the MM estimator are very close

to or even equal to 1, corroborating the idea that, even far from the asymptotic sampling of Axiom

A systems, the simple mean estimator can be effectively used. Correlations of MM with the other

estimators, with the exception of PML, are also very high.

Since for the MM, PWM and PML estimators σ̂ can be written as a function of ξ̂, we have

also inspected the performance of the different methods in estimating the shape parameter, to

check whether it could be a source of estimation error on σ. Results suggest the opposite: in both

cases, the PML estimates are the only one characterized by a unimodal distribution centered on

a realistic value, while PML estimates of the local and Hausdorff dimension are both inaccurate

and characterized by large variability, compared to the competitors. ML is centered around zero

for the L63 system and has a steep mode around zero for climate data, and both MM and PWM

show negative values with a second mode near zero. In the L63 case, MM and PWM show a very

well defined bimodality, but the values belonging to the two modes tend to correspond to well

defined but different regions of the attractor. Despite this, estimates of the local dimension have

the highest correlation among all pairs, with a coefficient of 0.97. Overall, we find that if one is

interested only in the estimation of the local attractor dimension (or simply the σ parameter in a

different setting), the performance of the chosen estimator on ξ does not seem to be crucial.

To conclude, our results can be used to draw simple, general guidelines for the choice of attractor

dimension estimators. If it is known a priori that ξ < 0, the MM estimator is the best choice.
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However, if no prior assumption can be made on the true value of ξ, the mean estimator could be

the most suitable choice. In contrast, despite the popularity of maximum likelihood in statistical

estimation and testing, it appears that the considered PML estimator only performs well in a

narrow interval of values of ξ, which does not include ξ values usually observed in climate data.

Moreover, the different estimators (with the exception of PML) show a high correlation. When

one is interested in relative values of the dimension, the choice of estimator thus does not appear

crucial. This is often the case when studying the behaviour of a system through the attractor

dimension, as the relationship between dimension values of different states is more important than

the value itself, since dimensions are usually compared to one another to detect changes in system

behaviour, rather than interpreted in terms of their absolute values.
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A Supplementary Figures
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Figure 19: Root mean square error of the mean estimator (a), PWM (b), MM (c), ML (d) and
PML (e) on d as a function of d and n, for ξ = −1.
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(b)    ξ = −0.9,  PWM estimator
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n

d

20 40 60 80 100 200 1000

1
2

3
4

5
35

70

+0.0
+1.8
+3.5
+5.2
+6.9
+8.6
+10.4
+12.1
+13.8
+15.5
+17.2
+19.0
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Figure 20: Root mean square error of the mean estimator (a), PWM (b), MM (c), ML (d) and
PML (e) on d as a function of d and n, for ξ = −0.9.
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(e)    ξ = −0.8,  PML estimator
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Figure 21: Root mean square error of the mean estimator (a), PWM (b), MM (c), ML (d) and
PML (e) on d as a function of d and n, for ξ = −0.8.
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(a)    ξ = −0.7,  mean estimator
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(b)    ξ = −0.7,  PWM estimator
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(c)    ξ = −0.7,  MM estimator

n

d

20 40 60 80 100 200 1000

1
2

3
4

5
35

70

+0.0
+3.4
+6.8
+10.2
+13.5
+16.9
+20.3
+23.6
+27.0
+30.4
+33.7
+37.1

(d)    ξ = −0.7,  ML estimator
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(e)    ξ = −0.7,  PML estimator
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Figure 22: Root mean square error of the mean estimator (a), PWM (b), MM (c), ML (d) and
PML (e) on d as a function of d and n, for ξ = −0.7.
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(a)    ξ = −0.6,  mean estimator
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(b)    ξ = −0.6,  PWM estimator
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(c)    ξ = −0.6,  MM estimator
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(d)    ξ = −0.6,  ML estimator
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(e)    ξ = −0.6,  PML estimator
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Figure 23: Root mean square error of the mean estimator (a), PWM (b), MM (c), ML (d) and
PML (e) on d as a function of d and n, for ξ = −0.6.
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(a)    ξ = −0.5,  mean estimator
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(b)    ξ = −0.5,  PWM estimator
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(c)    ξ = −0.5,  MM estimator
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(d)    ξ = −0.5,  ML estimator
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(e)    ξ = −0.5,  PML estimator
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Figure 24: Root mean square error of the mean estimator (a), PWM (b), MM (c), ML (d) and
PML (e) on d as a function of d and n, for ξ = −0.5.
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(a)    ξ = −0.4,  mean estimator
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(b)    ξ = −0.4,  PWM estimator
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(c)    ξ = −0.4,  MM estimator
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(d)    ξ = −0.4,  ML estimator
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(e)    ξ = −0.4,  PML estimator
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Figure 25: Root mean square error of the mean estimator (a), PWM (b), MM (c), ML (d) and
PML (e) on d as a function of d and n, for ξ = −0.4.
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(a)    ξ = −0.3,  mean estimator
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(b)    ξ = −0.3,  PWM estimator
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(c)    ξ = −0.3,  MM estimator
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(d)    ξ = −0.3,  ML estimator
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(e)    ξ = −0.3,  PML estimator
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Figure 26: Root mean square error of the mean estimator (a), PWM (b), MM (c), ML (d) and
PML (e) on d as a function of d and n, for ξ = −0.3.

53



(a)    ξ = −0.2,  mean estimator
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(b)    ξ = −0.2,  PWM estimator
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(c)    ξ = −0.2,  MM estimator
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(d)    ξ = −0.2,  ML estimator
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(e)    ξ = −0.2,  PML estimator
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Figure 27: Root mean square error of the mean estimator (a), PWM (b), MM (c), ML (d) and
PML (e) on d as a function of d and n, for ξ = −0.2.

54



(a)    ξ = −0.1,  mean estimator
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(b)    ξ = −0.1,  PWM estimator
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(c)    ξ = −0.1,  MM estimator
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(d)    ξ = −0.1,  ML estimator
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(e)    ξ = −0.1,  PML estimator
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Figure 28: Root mean square error of the mean estimator (a), PWM (b), MM (c), ML (d) and
PML (e) on d as a function of d and n, for ξ = −0.1.
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(a)    ξ = 0,  mean estimator
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(b)    ξ = 0,  PWM estimator
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(c)    ξ = 0,  MM estimator
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(d)    ξ = 0,  ML estimator
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(e)    ξ = 0,  PML estimator
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Figure 29: Root mean square error of the mean estimator (a), PWM (b), MM (c), ML (d) and
PML (e) on d as a function of d and n, for ξ = 0.
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(a)    ξ = 0.1,  mean estimator
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(b)    ξ = 0.1,  PWM estimator
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(c)    ξ = 0.1,  MM estimator
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(d)    ξ = 0.1,  ML estimator
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(e)    ξ = 0.1,  PML estimator
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Figure 30: Root mean square error of the mean estimator (a), PWM (b), MM (c), ML (d) and
PML (e) on d as a function of d and n, for ξ = 0.1.
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(a)    ξ = 0.2,  mean estimator
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(b)    ξ = 0.2,  PWM estimator
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(c)    ξ = 0.2,  MM estimator
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(d)    ξ = 0.2,  ML estimator
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(e)    ξ = 0.2,  PML estimator
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Figure 31: Root mean square error of the mean estimator (a), PWM (b), MM (c), ML (d) and
PML (e) on d as a function of d and n, for ξ = 0.2.
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(a)    ξ = 0.3,  mean estimator
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(b)    ξ = 0.3,  PWM estimator
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(c)    ξ = 0.3,  MM estimator
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(d)    ξ = 0.3,  ML estimator
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(e)    ξ = 0.3,  PML estimator
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Figure 32: Root mean square error of the mean estimator (a), PWM (b), MM (c), ML (d) and
PML (e) on d as a function of d and n, for ξ = 0.3.
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(a)    ξ = 0.4,  mean estimator
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(b)    ξ = 0.4,  PWM estimator
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(c)    ξ = 0.4,  MM estimator
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(d)    ξ = 0.4,  ML estimator
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(e)    ξ = 0.4,  PML estimator
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Figure 33: Root mean square error of the mean estimator (a), PWM (b), MM (c), ML (d) and
PML (e) on d as a function of d and n, for ξ = 0.4.
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(a)    ξ = 0.5,  mean estimator
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(b)    ξ = 0.5,  PWM estimator
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(c)    ξ = 0.5,  MM estimator
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(d)    ξ = 0.5,  ML estimator
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(e)    ξ = 0.5,  PML estimator
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Figure 34: Root mean square error of the mean estimator (a), PWM (b), MM (c), ML (d) and
PML (e) on d as a function of d and n, for ξ = 0.5.
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(a)    ξ = 0.6,  mean estimator
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(b)    ξ = 0.6,  PWM estimator
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(c)    ξ = 0.6,  MM estimator
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(d)    ξ = 0.6,  ML estimator
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(e)    ξ = 0.6,  PML estimator

n

d

20 40 60 80 100 200 1000

1
2

3
4

5
35

70

+1
+14
+26
+39
+52
+65
+78
+91
+104
+116
+129
+142

Figure 35: Root mean square error of the mean estimator (a), PWM (b), MM (c), ML (d) and
PML (e) on d as a function of d and n, for ξ = 0.6.
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(a)    ξ = 0.7,  mean estimator
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(b)    ξ = 0.7,  PWM estimator
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(c)    ξ = 0.7,  MM estimator
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(d)    ξ = 0.7,  ML estimator
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(e)    ξ = 0.7,  PML estimator
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Figure 36: Root mean square error of the mean estimator (a), PWM (b), MM (c), ML (d) and
PML (e) on d as a function of d and n, for ξ = 0.7.
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(a)    ξ = 0.8,  mean estimator
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(b)    ξ = 0.8,  PWM estimator
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(c)    ξ = 0.8,  MM estimator
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(d)    ξ = 0.8,  ML estimator
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(e)    ξ = 0.8,  PML estimator
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Figure 37: Root mean square error of the mean estimator (a), PWM (b), MM (c), ML (d) and
PML (e) on d as a function of d and n, for ξ = 0.8.
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(a)    ξ = 0.9,  mean estimator
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(b)    ξ = 0.9,  PWM estimator
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(c)    ξ = 0.9,  MM estimator
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(d)    ξ = 0.9,  ML estimator
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(e)    ξ = 0.9,  PML estimator
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Figure 38: Root mean square error of the mean estimator (a), PWM (b), MM (c), ML (d) and
PML (e) on d as a function of d and n, for ξ = 0.9.
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(a)    ξ = 1,  mean estimator
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(b)    ξ = 1,  PWM estimator
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(c)    ξ = 1,  MM estimator
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(d)    ξ = 1,  ML estimator
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(e)    ξ = 1,  PML estimator
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Figure 39: Root mean square error of the mean estimator (a), PWM (b), MM (c), ML (d) and
PML (e) on d as a function of d and n, for ξ = 1.
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(a)    ξ = −1,  mean estimator
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(b)    ξ = −1,  PWM estimator
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(c)    ξ = −1,  MM estimator
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(e)    ξ = −1,  PML estimator
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Figure 40: Relative error of the mean estimator (a), PWM (b), MM (c), ML (d) and PML (e) on
d as a function of d and n, for ξ = −1.
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(a)    ξ = −0.9,  mean estimator
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(b)    ξ = −0.9,  PWM estimator
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(c)    ξ = −0.9,  MM estimator
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Figure 41: Relative error of the mean estimator (a), PWM (b), MM (c), ML (d) and PML (e) on
d as a function of d and n, for ξ = −0.9.
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(a)    ξ = −0.8,  mean estimator
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(b)    ξ = −0.8,  PWM estimator
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(c)    ξ = −0.8,  MM estimator
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Figure 42: Relative error of the mean estimator (a), PWM (b), MM (c), ML (d) and PML (e) on
d as a function of d and n, for ξ = −0.8.
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(a)    ξ = −0.7,  mean estimator
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(b)    ξ = −0.7,  PWM estimator
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Figure 43: Relative error of the mean estimator (a), PWM (b), MM (c), ML (d) and PML (e) on
d as a function of d and n, for ξ = −0.7.
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(a)    ξ = −0.6,  mean estimator
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(c)    ξ = −0.6,  MM estimator
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Figure 44: Relative error of the mean estimator (a), PWM (b), MM (c), ML (d) and PML (e) on
d as a function of d and n, for ξ = −0.6.
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(a)    ξ = −0.5,  mean estimator
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(b)    ξ = −0.5,  PWM estimator
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(c)    ξ = −0.5,  MM estimator
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Figure 45: Relative error of the mean estimator (a), PWM (b), MM (c), ML (d) and PML (e) on
d as a function of d and n, for ξ = −0.5.
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(a)    ξ = −0.4,  mean estimator
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(b)    ξ = −0.4,  PWM estimator
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(c)    ξ = −0.4,  MM estimator
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(e)    ξ = −0.4,  PML estimator
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Figure 46: Relative error of the mean estimator (a), PWM (b), MM (c), ML (d) and PML (e) on
d as a function of d and n, for ξ = −0.4.
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(a)    ξ = −0.3,  mean estimator
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(b)    ξ = −0.3,  PWM estimator
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(c)    ξ = −0.3,  MM estimator
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(d)    ξ = −0.3,  ML estimator
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(e)    ξ = −0.3,  PML estimator
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Figure 47: Relative error of the mean estimator (a), PWM (b), MM (c), ML (d) and PML (e) on
d as a function of d and n, for ξ = −0.3.
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(a)    ξ = −0.2,  mean estimator
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(b)    ξ = −0.2,  PWM estimator
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(c)    ξ = −0.2,  MM estimator
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(d)    ξ = −0.2,  ML estimator
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(e)    ξ = −0.2,  PML estimator
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Figure 48: Relative error of the mean estimator (a), PWM (b), MM (c), ML (d) and PML (e) on
d as a function of d and n, for ξ = −0.2.
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(a)    ξ = −0.1,  mean estimator
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(b)    ξ = −0.1,  PWM estimator
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(c)    ξ = −0.1,  MM estimator
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(d)    ξ = −0.1,  ML estimator
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(e)    ξ = −0.1,  PML estimator
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Figure 49: Relative error of the mean estimator (a), PWM (b), MM (c), ML (d) and PML (e) on
d as a function of d and n, for ξ = −0.1.
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(a)    ξ = 0,  mean estimator
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(b)    ξ = 0,  PWM estimator
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(c)    ξ = 0,  MM estimator
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(d)    ξ = 0,  ML estimator
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(e)    ξ = 0,  PML estimator
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Figure 50: Relative error of the mean estimator (a), PWM (b), MM (c), ML (d) and PML (e) on
d as a function of d and n, for ξ = 0.
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(a)    ξ = 0.1,  mean estimator
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(b)    ξ = 0.1,  PWM estimator
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(c)    ξ = 0.1,  MM estimator
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(d)    ξ = 0.1,  ML estimator
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(e)    ξ = 0.1,  PML estimator
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Figure 51: Relative error of the mean estimator (a), PWM (b), MM (c), ML (d) and PML (e) on
d as a function of d and n, for ξ = 0.1.
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(a)    ξ = 0.2,  mean estimator
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(b)    ξ = 0.2,  PWM estimator
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(c)    ξ = 0.2,  MM estimator
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(d)    ξ = 0.2,  ML estimator
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(e)    ξ = 0.2,  PML estimator
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Figure 52: Relative error of the mean estimator (a), PWM (b), MM (c), ML (d) and PML (e) on
d as a function of d and n, for ξ = 0.2.
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(a)    ξ = 0.3,  mean estimator
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(b)    ξ = 0.3,  PWM estimator
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(c)    ξ = 0.3,  MM estimator
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(d)    ξ = 0.3,  ML estimator
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(e)    ξ = 0.3,  PML estimator
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Figure 53: Relative error of the mean estimator (a), PWM (b), MM (c), ML (d) and PML (e) on
d as a function of d and n, for ξ = 0.3.
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(a)    ξ = 0.4,  mean estimator
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(b)    ξ = 0.4,  PWM estimator
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(c)    ξ = 0.4,  MM estimator
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(d)    ξ = 0.4,  ML estimator
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(e)    ξ = 0.4,  PML estimator
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Figure 54: Relative error of the mean estimator (a), PWM (b), MM (c), ML (d) and PML (e) on
d as a function of d and n, for ξ = 0.4.
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(a)    ξ = 0.5,  mean estimator
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(b)    ξ = 0.5,  PWM estimator
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(c)    ξ = 0.5,  MM estimator
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(d)    ξ = 0.5,  ML estimator
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(e)    ξ = 0.5,  PML estimator
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Figure 55: Relative error of the mean estimator (a), PWM (b), MM (c), ML (d) and PML (e) on
d as a function of d and n, for ξ = 0.5.
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(a)    ξ = 0.6,  mean estimator
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(b)    ξ = 0.6,  PWM estimator
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(c)    ξ = 0.6,  MM estimator
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(d)    ξ = 0.6,  ML estimator
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(e)    ξ = 0.6,  PML estimator
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Figure 56: Relative error of the mean estimator (a), PWM (b), MM (c), ML (d) and PML (e) on
d as a function of d and n, for ξ = 0.6.
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(a)    ξ = 0.7,  mean estimator
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(b)    ξ = 0.7,  PWM estimator
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(c)    ξ = 0.7,  MM estimator
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(d)    ξ = 0.7,  ML estimator
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(e)    ξ = 0.7,  PML estimator
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Figure 57: Relative error of the mean estimator (a), PWM (b), MM (c), ML (d) and PML (e) on
d as a function of d and n, for ξ = 0.7.
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(a)    ξ = 0.8,  mean estimator
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(b)    ξ = 0.8,  PWM estimator
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(c)    ξ = 0.8,  MM estimator
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(d)    ξ = 0.8,  ML estimator
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(e)    ξ = 0.8,  PML estimator
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Figure 58: Relative error of the mean estimator (a), PWM (b), MM (c), ML (d) and PML (e) on
d as a function of d and n, for ξ = 0.8.
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(a)    ξ = 0.9,  mean estimator
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(b)    ξ = 0.9,  PWM estimator
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(c)    ξ = 0.9,  MM estimator
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(d)    ξ = 0.9,  ML estimator
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(e)    ξ = 0.9,  PML estimator
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Figure 59: Relative error of the mean estimator (a), PWM (b), MM (c), ML (d) and PML (e) on
d as a function of d and n, for ξ = 0.9.
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(a)    ξ = 1,  mean estimator
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(b)    ξ = 1,  PWM estimator
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−0.154
−0.141
−0.129

(c)    ξ = 1,  MM estimator
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−0.739
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(d)    ξ = 1,  ML estimator
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−0.053
−0.041
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(e)    ξ = 1,  PML estimator
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+0.375
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+0.479

Figure 60: Relative error of the mean estimator (a), PWM (b), MM (c), ML (d) and PML (e) on
d as a function of d and n, for ξ = 1.
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