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We investigate various estimators based on extreme value theory (EVT) for determining the local fractal dimension
of chaotic dynamical systems. In the limit of an infinitely long timeseries of an ergodic system, the average of the
local fractal dimension is the system’s global attractor dimension. The latter is an important quantity that relates to the
number of effective degrees of freedom of the underlying dynamical system, and its estimation has been a central topic
in the dynamical systems literature since the 1980s. In this work, we propose a framework that combines phase space
recurrence analysis with EVT to estimate the local fractal dimension around a particular state of interest. While the EVT
framework allows for the analysis of high-dimensional complex systems, such as the Earth’s climate, its effectiveness
depends on robust statistical parameter estimation for the assumed extreme value distribution. In this study, we conduct
a critical review of several EVT-based local fractal dimension estimators, analyzing and comparing their performance
across a range of systems. Our results offer valuable insights for researchers employing the EVT-based estimates of the
local fractal dimension, aiding in the selection of an appropriate estimator for their specific applications.

Dynamical systems are characterized by an attractor, i.e.
a compact region embedded in the space of the physical
variables, hosting all of the system’s trajectories. The at-
tractor is a fractal object, thus its dimension is not integer.
In real-world systems, such as the Earth’s climate, the lo-
cal fractal dimension around a point corresponding to a
state of interest provides insights on the predictability of
said state. Recent applications of statistical extreme value
theory have led to developing estimators of the local fractal
dimension. These have been used in several studies, espe-
cially in geophysics, sometimes making strong simplifying
assumptions that may not be met in the real world. In this
article, we compare the performance of several of these es-
timators, providing some general guidelines for their use
in applied studies.

I. INTRODUCTION

Dynamical systems theory is a powerful mathematical
framework that provides information on the behavior of time-
evolving systems, ranging from simple cases such as pendu-
lum motion to extremely complex ones such as the Earth’s
climate system. The general idea is to characterize all possi-
ble trajectories of a system, including their density, recurrence
properties and persistence. The attractor of the system is an
object which hosts all the information regarding these trajec-
tories. It resides within the system’s phase space, i.e. the
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space spanned by all the variables of the system. For natural
chaotic systems originating from forced-dissipative dynamics,
the attractor is a compact object in phase space: the trajecto-
ries have finite energy and cannot escape from the preferential
region defined by the attractor.

The geometrical properties of the attractor of a dynami-
cal system provide a number of insights on the system’s be-
haviour. Here, we specifically consider the local fractal di-
mension (hereinafter simply d or ’local dimension’), whose
average in the limit of an infinitely long time series of an er-
godic system, is the system’s attractor dimension D. The at-
tractor dimension is an important quantity that relates to the
number of effective degrees of freedom of the underlying dy-
namical system, and its estimation has been a central topic in
the dynamical systems literature since the 1980s. Recently,
a technique combining the analysis of recurrences in phase
space with extreme value theory (EVT), has allowed to esti-
mate D without relying on a correlation sum approach of the
type proposed by Grassberger and colleagues1. The key idea
of this method is that the limiting distribution of suitably re-
scaled recurrences of the system around a state of interest ζ

can be modelled by the generalized Pareto distribution, fol-
lowing the Pickands–Balkema–De Haan theorem2,3. The lat-
ter provides an asymptotic result for the tail distribution of a
sequence of independent identically distributed (iid) random
variables following an unknown probability law. The applica-
tion of the block maxima and peak over threshold approaches
to time-dependent stationary processes, such as time series of
observables issued from dynamical systems, rely on the work
of4 and5, respectively.

In other words, recurrences in phase space can be viewed as
extreme events and follow an extreme value law. The scaling
of the ball centered around ζ and containing the recurrences
serves as an estimate of the local fractal dimension around the
state ζ , d(ζ ). When a sufficient number of states ζ is consid-
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ered, the balls densely cover the attractor and, by averaging d
over several states ζ , one obtains an estimate for D. Therefore,
the EVT approach offers a way to measure D, while provid-
ing valuable information on the dynamical system in a local
(in phase space) sense. More specifically, the local dimen-
sion informs on the geometry of the system’s trajectories in
the neighborhood of the state of interest. In general terms, a
larger local dimension is associated to a lack of predictability
and a lower local dimension to higher predictability.

The EVT-based method has been applied to several
high dimensional complex systems, and in particular to
better understand the Earth system. These applications
include: dynamical characterisations of global climate
states6–8, key mechanisms of climate change9, evaluation
of climate models10,11, and investigations of atmospheric
predictability12–17, atmospheric dynamics18–21, dynamics and
attribution of climate extremes22–25, palaeoclimates26, slow
earthquakes27 and more. These studies chiefly leveraged
the local information provided by d to discriminate between
different states (or, more properly, special Poincaré sections)
of the climate system. As a concrete example, low local
dimensions of sea-level pressure maps in the North Atlantic
region are associated with frequent extratropical storms.
High dimensions, on the contrary, correspond to so-called
blocked flows, atmospheric configurations in which the
typical mid-latitude westerly flow is diverted by a persistent
high pressure system18.

Given the broad range of applications of EVT-based esti-
mates of d, it is important to choose a robust statistical esti-
mator. Indeed, a number of different estimators, all based on
extreme value laws, can be used to obtain d, yet a system-
atic comparison is lacking in the literature. The goal of this
paper is to present different EVT-based estimators for d, and
provide a critical review of the drawbacks and advantages of
each of them, by comparing their performances on a range of
dynamical systems.

Our study is structured as follows: in Section II we intro-
duce the concepts of local and global attractor dimensions and
their estimation via the Generalized Pareto distribution, fol-
lowed by Section III which provides an overview of different
statistical estimators proposed in the literature. In Section IV
we describe the synthetic and real-world data that we use for
the statistical evaluation of all the estimators, whose results
are described in Section V. Finally, Section VI contains our
conclusions and recommendations on the estimation of the lo-
cal dimension of dynamical systems.

II. THEORETICAL FRAMEWORK

A. Local and global attractor dimensions via EVT

The concept of "fractional" dimension is the extension of
the classical concept of topological dimension to non-integer
values, introduced in 1918 by Hausdorff28 as a way to mea-
sure the "size" of fractal objects. For instance, the Hausdorff
dimension of a straight line is 1, whereas for a volume it is 3.

In the case of a fractal object, like the Koch curve, the Haus-
dorff dimension is greater than 1, but smaller than 2. While the
Hausdorff dimension of an attractor is a well-defined math-
ematical concept, its numerical estimation poses a number
challenges. Precise knowledge of the Hausdorff dimension
requires infinitely long time series and computations, involv-
ing mathematical limits for infinitesimally small radii around
the point of interest. This global view of a system’s attractor
can be contrasted with the local dimensions, which provide
a means to assess the dimensionality of a fractal object at a
specific location within the phase space.

A classical method to approximate global and local dimen-
sions of a fractal object is box counting. This involves count-
ing how many boxes of a given size are required to cover
the fractal object. By repeating this process for different box
sizes, one obtains a curve representing the relationship be-
tween the box size and the number of boxes needed to cover
the object. The slope of this curve can be used to estimate the
global dimension and local dimensions of the fractal object.

Despite its usefulness in estimating dimensions of low-
dimensional systems, the box counting method is limited by
the fact that it only provides information about the behavior
of the fractal object at a finite range of scales. It is therefore
heavily affected by the so-called curse of dimensionality. As
a result, dimension estimates for complex systems, such as
Earth’s climate, are unrealistically small29–31.

More recently, a methodology based on EVT has been in-
troduced to estimate local and global dimensions. This ap-
proach leverages EVT to extrapolate the behavior of the frac-
tal object to very large or very small scales. In other terms,
the probability distribution of the distance between a refer-
ence point and nearby points on the attractor is modeled as a
power law. The exponent of this power law is related to the
local dimension at that specific point. By employing EVT, it
becomes possible to obtain computationally fast estimates of
the local and global attractor dimensions of the fractal object,
even in high-dimensional systems. Nonetheless, it should be
noted that EVT does not overcome the existence of a bias as-
sociated with the curse of dimensionality32.

Consider a time series of length N, denoted by y j for
j = 1, . . . ,N, which corresponds to observed realizations of a
dynamical system Y . We designate a specific realization, de-
noted as ζ , as the reference state. Following33,34, we consider
the distance observable defined as

g j =− ln(dist(y j,ζ )), (1)

where dist(y j,ζ ) is the Euclidean distance between each state
y j and the reference state ζ . We define the recurrences of the
reference state ζ as {y j : dist(y j,ζ )< r}, i.e. the ensemble of
states of the system located in the neighbourhood of ζ defined
by the ball B(ζ ,r). Let us consider the sequence of N values of
g, and let gq be an extreme quantile of the probability density
function of g, fG(g), corresponding to the probability q. We
define the Peaks Over Threshold (POTs) as the ensemble of
n = [N(1− q)] values such that g > gq, where [·] denotes the
closest integer operator.

We stress here that there is no univocal definition of ’ex-
treme quantile’. When applying EVT to POTs to character-
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ize extreme events in a time series (e.g. to study heatwaves
or extreme precipitation over a certain region) the value of
what is considered ’extreme’ may be linked to some objective
quantity, such as the impacts of the extremes. In our case,
the choice should be dictated by the capability of the result-
ing estimator to converge to the correct dimension. Previous
analyses32 have shown that the EVT estimator is always bi-
ased, and that the bias depends on the chosen extreme quan-
tile, with results shown for q ∈ [0.98,0.999]. However, for
a chosen quantile, the relationship between the attractor di-
mensions of different systems, or local dimensions of differ-
ent states of a system, is preserved. In light of this, the choice
of the threshold quantile is in part arbitrary: a common sense
indication would be to use the highest quantile that still guar-
antees a sufficient exceedance sample size n for accurate GPD
parameter estimation. All results presented in the following
sections of this paper, if not specified otherwise, are obtained
with q = 0.98.

The observable g in Eq. 1 is defined in such a way that
the recurrences, states characterized by minima of the dis-
tance function, correspond to POTs of the observable itself.
Given an n-dimensional sequence of POTs, we define the ex-
ceedances X as the POTs shifted by subtracting the threshold
gq, so that X = {X`}n

`=1 = {g−gq : g≥ gq}, where `= 1, . . . ,n
and minX = 0.

The choice of the Euclidean distance to define g guaran-
tees that the threshold gq used to defined the exceedances
is in direct relation to the scaling of the ball B(ζ ,r), since
r = exp{−gq}. In other words, the asymptotic frequency with
which the system enters a ball of radius r centred on ζ can
now be expressed as the probability of exceeding a threshold
corresponding to a high quantile gq of the distribution of g.

In the limit N→∞, the exceedances follow a two-parameter
Generalized Pareto Distribution GPD(σ ,ξ )2,3. This distri-
bution constitutes a classical statistical model for time series
POTs, making it naturally applicable in this setting, where re-
currences of ζ correspond to extreme values of g. The local
dimension around the state ζ is then given by34:

d(ζ ) =
1
σ
. (2)

By averaging d over a sufficiently large ensemble of states
ζ on the attractor, one then obtains an estimate of the global
attractor dimension D35.

It is important to acknowledge that the EVT approach is
not the only recently developed method for estimating lo-
cal dimensions using recurrences or related concepts. For
instance,36 proposed an estimator based on hitting times, that
exhibits rapid convergence for low-dimensional dynamical
systems with known global attractor dimension. However,
we have chosen not to include this particular estimator in our
study. Instead, our focus lies on assessing the effectiveness of
different EVT estimation methods specifically based on gen-
eralized Pareto distribution (GPD) parameters. These estima-
tors have been extensively employed in applied studies, often
making the unrealistic assumption of an Axiom A system.

B. Axiom A systems and extreme value laws

The term "Axiom A" denotes a specific class of dynamical
system behavior characterized by the presence of a uniform
fractal set as an attractor. This uniform fractal set is a math-
ematical construct defined by self-similarity, where smaller
portions of the set replicate the overall structure of the en-
tire set. In Axiom A systems, the following characteristics
hold true: i) the attractor represents a non-empty collection of
points toward which the system tends to converge over time.
ii) The attractor exhibits self-similarity, meaning that a closer
examination of any small region within the attractor reveals
a resemblance to the overall shape and structure of the entire
attractor.

The fractal properties within Axiom A attractors are uni-
form, implying uniform predictability across the entire attrac-
tor. It is important to note that while Axiom A serves as
a framework for understanding certain aspects of dynamical
systems, natural systems such as physical, biological, or eco-
logical systems do not strictly adhere to this paradigm. Natu-
ral systems often exhibit a broader range of behaviors encom-
passing both regular and irregular dynamics. They can involve
chaos, intricate interactions, and non-linear relationships that
may not conform to the strict requirements of Axiom A.

Nevertheless, certain aspects of Axiom A systems may be
observed within natural systems. For example, specific pat-
terns or structures within natural systems may exhibit self-
similarity, fractal-like properties, or predictable behaviors
across certain scales or under particular conditions.

For Axiom A systems in the asymptotic case n→∞, ξ → 0,
and the two-parameter GPD(σ ,ξ ) converges to an exponen-
tial distribution, Exp(σ)37. In this case, the local dimension
estimator is the inverse of the exceedances’ sample mean (Eq.
18). However, as discussed above, real-world systems do not
realistically satisfy the Axiom A assumption, and the expo-
nential model for the exceedances distribution likely intro-
duces some bias to the estimates.

C. Generalized Pareto Distribution

A random variable X follows a generalized Pareto dis-
tributon GPD(µ,ξ ,σ) if its cumulative distribution function
(CDF), giving the probability P(X > x), is defined as

F(x|ξ ,µ,σ) =

{
1−
(
1+ξ

x−µ

σ

)−1/ξ
, ξ 6= 0

1− exp
(
− x−µ

σ

)
, ξ = 0

(3)

and the corresponding probability density function (pdf)
reads:

f (x|ξ ,µ,σ) =

{
1
σ

(
1+ξ

x−µ

σ

)−1/ξ−1
, ξ 6= 0

1
σ

exp
(
− x−µ

σ

)
, ξ = 0

(4)

where ξ ∈ R is the shape parameter, µ ∈ R is the location
parameter and σ > 0 is the scale parameter. The support of X
depends on the shape parameter: if ξ ≤ 0, µ ≤ x ≤ µ + σ

ξ
; if
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ξ > 0, µ ≤ x≤ ∞. The moment generating function is:

MX (t) = EX [etx] = etµ
∞

∑
j=0

[
(tσ) j

∏
j
k=0(1− kξ )

]
, for kξ < 1

where EX [·] denotes expectation computed with respect to the
density of X . The r-th moment around zero can be obtained
as:

E[X r] =
drMX (t)

dtr

∣∣∣∣
t=0

= r!
σ r

(−ξ )r+1

Γ

(
− 1

ξ
− r
)

Γ

(
1− 1

ξ

) , for ξ <
1
r

(5)
In the special case µ = 0 the three-parameter GPD(µ,ξ ,σ)

reduces to a two-parameter GPD(σ ,ξ ). In the following, we
will consider this specific case, since the procedure described
in Section III requires to shift the POTs so that their minimum
is 0.

There are several methods to estimate the parameters of
the GPD distribution, ranging from frequentist techniques
such as Maximum likelihood (ML), the method of moments
(MM), probability-weighted method of moments (PWM), lin-
ear combination of order statistics and others, to Bayesian
methods and approaches based on entropy38,39.

Here, we focus on the Axiom A degenerate case and on sev-
eral frequentist methodologies, including ML, MM and PWM
estimation, plus an alternative formulation of ML, which
we will call pseudo-ML (PML). We choose these estimators
based on their computational simplicity (MM and PWM), or
because an implementation is readily available in an R pack-
age (ML, PML).

III. GPD PARAMETER ESTIMATION

In this section, we introduce five estimators of the parame-
ter σ = 1

d , namely the inverse local dimension. The first one
(given in Eq. 18), is constructed assuming the degenerate case
of POTs following a GPD(ξ = 0,σ) ≡ Exp(σ). The others
(given in Eq.s 19-22) are constructed under the assumptions
of POTs following a GPD(σ ,ξ ).

A. Estimation based on Exp(σ)

As already mentioned, for Axiom A systems in the asymp-
totic case n→ ∞, ξ → 0, so that the distribution of the ex-
ceedances converges to an exponential distribution.

In such a case, a ML estimator for the local dimension is
readily available in close form, given by σ̂m = x. Using this
estimator,32 have shown that the estimated attractor dimension
is biased, with a bias growing nonlinearly with the topologi-
cal dimension of the system, as a particular case of the curse
of dimensionality40, due to the concentration of the Euclidean
norm. This effect was analytically proven for very long time
series of random vectors, and shown to equally affect real-
world complex data, such as sea-level pressure fields or mul-
tivariate time series of financial indices.

However, for both real-world and simulated systems dis-
playing chaotic behaviour, the asymptotic case may not be
met as easily as for purely stochastic systems. Much longer
sampling is required to observe the invariant distribution of
chaotic systems compared to random vectors, and assuming
exponential exceedances may constitute a serious model mis-
specification, which may introduce further bias.

B. Estimation based on GPD(σ ,ξ )

Maximum Likelihood (ML)

Maximum Likelihood is one of the most popular methods
to estimate the parameters of a statistical model, and it has
been widely used since its first introduction41. It is beyond our
scope to give an overview of ML, which can be found in many
classic statistics textbooks (e.g.42). In brief, given a sample x
consisting of n independent realizations of a random variable
with probability density function f (x|θ), where θ denotes the
vector of parameters, we call likelihood function the quantity:

L(θ |x) =
n

∏
i=1

f (xi|θ). (6)

The ML estimator of the parameter vector is the point θ̂ of
the parameter space at which L(θ |x) attains its maximum.
Finding the ML parameter estimates can be a simple analyti-
cal task or a challenging numerical procedure, depending on
the smoothness of the likelihood function. In the case of the
GPD, it is not possible to obtain closed-form estimators ana-
lytically, so that alternative strategies must be found to maxi-
mize L(θ |x). To obtain ML estimates for the GPD, we use the
gpd.mle() function from the R package ’mev’43, based on
the profile likelihood maximization method of44.

Pseudo Maximum Likelihood (PML)

An alternative way to obtain ML estimates of the GPD
parameters has been introduced by Villaseñor-Alva and
González-Estrada 45 and implemented in the R package
gPdtest46. The estimator is constructed differently depend-
ing on the sign of ξ ; given this composite strategy and the
passage through intermediate steps not based on the likeli-
hood function, we will refer to this method as "pseudo maxi-
mum likelihood". Here we only provide a sketch and refer the
reader to the aforementioned article for full details.

For ξ ≥ 0, gPdtest implements a maximization of the
asymptotic likelihood, based on the logarithm of the k largest
values in the ordered sample x1:n,x2:n, . . . ,xn:n: Wj = logx j:n
with j = n− k + 1,n− k + 2, . . . ,n. For n → ∞ the log-
likelihood can be expressed as a function of Wj, and the two
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ML estimators follow:

ξ̂k =−

(
Wn−k+1−

1
k

k

∑
j=1

Wn− j+1

)
(7)

σ̂k = ξ̂k exp
{

Wn−k+1 + ξ̂k log
k
n

}
. (8)

The case ξ < 0 requires a composite strategy, combining
a moment equation step and a maximum likelihood estimator
of the upper boundary of the GPD. Recalling that we consider
the case µ = 0, the variable U = [1−F(X |ξ ,σ)]−ξ = 1+ ξ

σ
X

follows a Beta(− 1
ξ
,1) distribution. The first sample moment

is u = 1
n ∑

n
i=1

(
1+ ξ

σ
xi

)
= 1+ ξ

σ
x, to be equated to the ex-

pected value of the Beta distribution E[U ] = 1
1−ξ

, resulting in
ξ = 1− σ

x . Let us now recall that, for ξ < 0, 0 ≤ x ≤ σ/ξ :
then, the sample maximum xn:n is a ML estimator for the up-
per bound σ/ξ . Combining the two steps, one obtains:

σ̂PML =−ξ̂ xn:n (9)

ξ̂PML =
x

x− xn:n
(10)

Since the estimation strategy depends on the sign of the shape
parameter, a priori knowledge on the value of ξ must be used.
Results discussed in this paper from PML estimation are based
on the sign of ξ̂PWM , introduced later. We have also tested
the possibility to use ξ̂MM (not shown in the article) obtaining
equivalent results.

Method of Moments (MM)

The method of moments is another common parameter es-
timation method. It consists of expressing the theoretical mo-
ments as a function of the parameters and solving the resulting
equations for the parameter estimates using the values of the
sample moments.

Let X be a random variable X ∼ GPD(σ ,ξ ), x =
x1,x2, . . . ,xn being a sample of n observations from X . The
first two GPD moments, required to estimate the two parame-
ters, can be obtained using Eq. 5:

E[X ] =
σ

1+ξ
, for ξ < 1

Var[X ] = E[X2]−E[X ]2 =
σ2

(1+ξ )2(1+2ξ )
, for ξ <

1
2

(11)
and the MM parameter estimators follow by equating sample
and theoretical moments, and solving for σ ,ξ :

ξ̂MM =
1
2

(
x2

s2 −1
)

σ̂MM =
x
2

(
x2

s2 +1
) (12)

where x = n−1
∑xi is the sample mean and s2 = (n −

1)−1
∑(xi− x)2 is the sample variance. Given the condition

ξ < 1
r in Eq. 5, the estimators in Eq. 12 only hold for ξ < 0.5.

Notice that σ̂ = x(ξ̂ + 1). If ξ = 0, the GPD reduces to a
standard exponential distribution, X ∼ Exp(σ), and the MM
estimator of σ is the sample mean. On the other hand, if it is
erroneously assumed that ξ = 0, the estimate of σ is affected
by a bias equal to −xξ̂ .

Probability Weighted Moments (PWM)

Finally, we consider a variation of the MM, based on proba-
bility weighted moments (PWM). This method is particularly
suited for distributions that can be uniquely expressed in terms
of their inverse CDF in a simple way, but it is also popular
in hydrological modeling due to its computational simplicity.
For a random variable X with CDF F(X), the PWM are de-
fined as

Mp,r,s = E[X p(F(X))r(1−F(X))s], p,r,s ∈ R (13)

For the estimation of GPD(σ ,ξ ), it is suggested38 to use the
moments defined by p = 1, r = 0:

αs = M1,0,s = E[X(1−F(X))s]

=
σ

(s+1)(s+1+ξ )
, ξ < 1, s = 0,1,2, . . .

(14)
so that the PWM expression of the GPD parameters is:

ξ = 2− α0

α0−2α1

σ =
2α0α1

α0−2α1
.

(15)

Given a sample x of size n from X ∼ GPD(σ ,ξ ), the sample
version of the PWM αs is

as =
1
n

n

∑
i=1

xi:n(1− pi:n)
s, (16)

where xi:n is the i-th element of the ordered sample and pi:n
are the corresponding plotting positions, such that (1− pi:n)
is a sample estimate of (1−F(X)). Notice that a0 = x. There
are several possible ways to estimate the plotting positions.
Here, we adopt the simple expression recommended in the
literature47,48:

pi:n =
i−0.35

n
.

The two estimators can be obtained by plugging Eq. 16
in Eq.s 15. Once again, we recall that the upper limit of
GPD(σ ,ξ ) is given by −σ/ξ and therefore estimated by
−σ̂/ξ̂ ; however, if −σ̂/ξ̂ < xn:n, the sample maximum xn:n
itself is a better estimator of the upper limit. The final expres-
sion of the PWM estimators follows:

σ̂PWM =
2a0a1

a0−2a1
, ξ̂

′ = 2− a0

a0−2a1

ξ̂PWM =

{
ξ̂ ′ −σ̂/ξ̂ ′ ≥ xn:n

− σ̂

xn:n
−σ̂/ξ̂ ′ < xn:n

(17)
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The PWM estimators are unbiased, and for large samples are
normally distributed with mean (σ ,ξ ) and known covariance
matrix.

C. Summary of local dimension estimators

To summarize, we will consider the following five expres-
sions of the inverse local dimension:

d̂−1
m = σ̂m = x (18)

d̂−1
ML = σ̂ML = argmax{L(σ ,ξ |x)} (19)

d̂−1
PML = σ̂PML =−

xx(n)
x− x(n)

(20)

d̂−1
MM = σ̂MM =

x
2

(
x2

s2 +1
)

(21)

d̂−1
PWM = σ̂PWM =

2xa1

x−2a1
(22)

with a1 =
1
n ∑

n
i=1 x1:n(

i−0.35
n ). We do not provide an analytical

expression for σ̂ML, as this is obtained by numerical optimiza-
tion of the likelihood function.

IV. DATA

In order to evaluate and compare the statistical performance
of the estimators, we use data from three sources. First, we
perform a Monte Carlo study, so that we can compare esti-
mates to known true values of σ , as a function of ξ and of the
sample size. Then, we generate a very long trajectory from the
well-known Lorenz63 attractor49, whose global attractor di-
mension is known, and which is sufficiently low-dimensional
that the curse of dimensionality is not relevant. Finally, we
compare results obtained from the different estimators when
applied to real-world climatological data, that are the main
motivation for this study.

A. Monte Carlo experiment

As a first step, we conduct a Monte Carlo experiment to as-
sess the performance of the estimators as a function of the true
values of σ , ξ and of the number of exceedances n. In order to
do so, for every combination (σ ,ξ ,n) we generate M = 5000
random samples drawn from a GPD(σ ,ξ ) with sample size
n ∈ [10,100]10 ∪ {150,200,500,1000}, ξ ∈ [−1,1]0.2; σ =
1/d, with d ∈ [1,5]0.2∪ [5,100]5, where [a,b]δ denotes a par-
tition of the closed a,b interval with step δ . Notice that n is
the number of available exceedances, so that the original sam-
ple size is implied, and in real cases it depends on the chosen
POT threshold: for example, n = 100 and a threshold at the
99th percentile implies an initial time series of 104 observa-
tions.

B. Lorenz 1963

Moving further beyond Monte Carlo data, we consider a
simple chaotic dynamical system: the well-known Lorenz63
model49. This is a three-variable system meant to describe
Rayleigh-Bénard convection, and consisting of the following
ordinary differential equations:

dX
dt

= σ(Y −X)

dY
dt

= X(ρ−Z)−Y

dZ
dt

= XY −βZ

(23)

Here X represents convective overturning rate, Y horizontal
temperature variations, and Z departure from a linear vertical
temperature gradient. We use the standard parameter config-
uration to obtain chaotic behaviour (the well-known "butter-
fly"), namely σ = 10, ρ = 28 and β = 8/3. We use a timestep
of 0.001 s and generate 4 ·105 iterations. We discard the first
2000 iterations and sub-sample the trajectory taking one every
4 iterations.

C. ERA5 climate reanalysis

As a final step, we consider climate reanalysis data. This is
data issued from a full-complexity atmospheric global model,
constrained by a very large amount of in-situ and remotely
sensed data.

In particular, we choose the ERA5 reanalysis dataset50, pro-
duced by the European Centre for Medium-Range Weather
Forecasts (ECMWF). We use 500 hPa geopotential height
data with a 0.25◦ horizontal resolution and daily temporal res-
olution. We consider data over the period 1979–2018 and a
domain spanning 26◦ – 70◦ North and 22◦ West – 46◦ East.
This provides a lat-lon grid of 273×177 points covering Eu-
rope, and parts of the Eastern Atlantic, Russia and North
Africa.

This is a conceptually different case from the Lorenz63
model. In the latter, each phase space dimension corresponds
to a physical variable. In the former, physical variables are
measured on a regular spatial grid, and the phase space’s di-
mension corresponds to the number of gridpoints in the data.

V. RESULTS

A. Monte Carlo experiment

As described in Section IV A, we specify a set of combina-
tions (σ ,ξ ,n), for each combination we generate 5000 Monte
Carlo samples, and for each sample we estimate the dimen-
sion with the five estimators described by Eq.s 18-22. All re-
sults discussed in this section are obtained as the average over
the 5000 Monte Carlo samples for each (σ ,ξ ,n) combination,
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and refer to the local dimension d = 1/σ . The dependence of
the estimator performance on ξ is important to understand the
actual applicability of each estimator to particular classes of
systems.

In the following, we will consider two error measures to
evaluate the performance of the different estimators: the root
mean square error (RMSE) and the relative error. The RMSE
is defined as the square root of the average squared deviation:

RMSE =

√
E[(d̂−d)2] =

√
Bias(d̂)2 +Var(d̂) (24)

where the expectation is taken over the M Monte Carlo repli-
cates, and it is thus a function of n, ξ and the true value d.
Since the mean square error can be decomposed in terms of
bias and variance of the estimator as shown in Eq. 24, the
RMSE allows to find the most efficient estimator, in the sense
of the best bias-variance trade-off. As an example, Figure 1
shows values of RMSE as a function of d and n, for ξ =−0.5.
The complete set of results for all tested ξ is shown in supple-
mentary figures S1-S21.

In general, larger sample sizes correspond to smaller
RMSE, and larger RMSE are found for large values of the
true dimension d. For the mean estimator, however, a strong
positive effect of the sample size is observed only at ξ ∼ 0,
where the underlying assumption of an exponential distribu-
tion of the exceedances is approximately met. The MM esti-
mator produces large RMSE for large n when ξ ' 0.5, which
is expected as the second moment of the GPD only exists for
ξ < 0.5. Notice that the PML shows a qualitatively similar de-
pendence of RMSE on n, d, but the RMSE magnitude is much
larger compared to the other estimators.

(a)    ξ = −0.5,  mean estimator
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(c)    ξ = −0.5,  MM estimator
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(d)    ξ = −0.5,  ML estimator
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(e)    ξ = −0.5,  PML estimator
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FIG. 1. Root mean square error of the mean estimator (a), PWM
(b), MM (c), ML (d) and PML (e) on d as a function of d and n, for
ξ =−0.5. Note that the colour ranges differ in each panel.

Figure 2 and Table I summarize the effect of the true value
of ξ on RMSE for n = 20, 100, 1000, averaged over the true
dimension. As expected, the mean estimator has the smallest
RMSE when ξ ' 0, but it loses efficiency when this assump-
tion is not met. The PML is the most efficient over a restricted
range of negative values of ξ , however for ξ ' −0.1 it pro-
duces by far the largest RMSE values. The efficiency of the
ML as a function of ξ changes visibly from small to large
sample sizes, where it shows larger RMSE for −0.5 < ξ < 0.
The MM estimator shows a good performance for ξ / 0.5,
but it is affected by large RMSE values at larger values of ξ ,
which does not improve with sample size. Finally, the PWM
is the most stable estimator: for small n it is not the most ef-
ficient, but its performance is largely independent of the true
value of ξ . At larger sample sizes the RMSE is overall small,
and again displays only small variations as a function of ξ –
the most notable being a decreased efficiency for ξ close to 1.

Overall, it is difficult to point out the best estimator in terms
of efficiency when the sample size is small. For larger sam-
ples, the PWM is the best choice; however, if it can be safely
assumed that ξ < 0, MM and PWM are in close competition
in terms of efficiency.
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FIG. 2. Graphic visualization of the results shown in Table I. Root
mean square error of the five considered estimators of the local di-
mension, averaged over d and shown as a function of ξ , for sample
sizes n = 20 (a), 100 (b), 1000 (c).

As a further way to characterize the performance of the es-
timators, we consider the average relative error E[(d̂−d)/d],
where the expectation is computed over the M Monte Carlo
replicates as for the RMSE. This measure allows to evaluate
the magnitude of the estimation error relative to the true value,
while also assessing the sign of the bias.

As an example, Figure 3 shows the values of the relative
error for the five considered estimators, as a function of the
sample size n and of the true dimension d for ξ =−0.5. The
complete set of results for all ξ is shown in supplementary
figures S22-S42.

For all values of ξ and for all estimators, results improve
with the sample size, with overall convergence at values
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around n ∼ 200. Results appear to be stable with respect to
the true dimension d for all methods, except maximum likeli-
hood. For ξ > 0, the error of the ML estimator seems to be in-
dependent of d, or shows a weak dependence for 0 < ξ / 0.2.
However, for ξ < 0 the ML estimator shows a strong depen-
dence on d, especially for sample sizes 50 / n / 200: for
−1 / ξ /−0.5 the relative error becomes more negative with
increasing d, while for −0.5 / ξ / 0 it becomes more posi-
tive.

For the special case ξ = 0 (Fig. 3), when the GPD con-
verges to an exponential distribution, the performance of the
mean estimator shows a great improvement, with relative er-
rors ∼ 0.5% at n = 100 and ∼ 0.01% for n > 200. This is
expected, since in this case the sample mean is also the exact
maximum likelihood estimator of σ .

The PML estimator has the overall worst performance, with
relative errors comparable to other methods for ξ < 0 but
jumping to errors of 100−200% for ξ ≥ 0. Even though the
package authors recommend the use of gPdtest for all values
of ξ , Eq.s 7-8 show that an unbiased estimation is not possible
for ξ = 0, since if ξ was correctly estimated, it would neces-
sarily result in σ̂ = 0, corresponding to a degenerate distribu-
tion with 0 variance, and to an infinite estimated dimension.

As done for RMSE, we next fix n and average over d to
obtain a synthetic representation of the relationship between
ξ and the relative estimation error affecting d̂. As we pointed
out earlier, the ML estimator error shows some dependence
on d for ξ / 0.2. However, the range of relative value er-
rors is small, in particular compared to the mean and the PML
estimators. We thus still include ML in this analysis for a
global comparison. Results are summarized in Table II and
shown in Fig. 4, where the relative error averaged over d for
n = 20,100,1000 is plotted as a function of ξ .

The performance of PML shows large relative errors for
ξ >−0.2, and a non-monotonic, discontinuous behaviour as a
function of ξ . The ML estimator also shows a non-monotonic
dependence of the relative error for negative values of ξ . This
irregularity is likely due to the aforementioned dependence
of the ML estimator on d, overlooked in this analysis. All
the other estimators produce a relative error that is monoton-
ically decreasing with the true value of ξ . The two moment-
based estimators have a similar performance, with relative er-
rors ≈ 0.1% for ξ ≤ 0. The performance of the MM estima-
tor degrades for values larger than some value in the range
0 < ξ / 0.5 depending on the sample size, with large sam-
ples allowing for accurate estimations close to the limit of the
domain of existence ξ < 0.5. Similarly, the PWM exist for
ξ < 1 and the corresponding estimator shows a tendency to
under-estimate σ when ξ → 1, with smaller errors at larger
sample size.

The performance of the mean estimator is particularly in-
teresting. We recall that this is a well-specified unbiased es-
timator only under the assumption of an Axiom A system in
the asymptotic case, condition that can be rarely satisfied in
real-world data. On the other hand, it is very simple to com-
pute, and it has been used in several studies, providing phys-
ically coherent results. Indeed, while the relative error of this
estimator is large compared to the others, it has the peculiar

property of being (σ̂ −σ)/σ = −ξ , except for ξ ≈ 1, where
it slightly deviates from this relationship.

Overall, for systems where it is expected that ξ ≤ 0, the
MM and PWM perform the best. ML performs slightly worse
for ξ ≤ 0, but it is the only estimator providing unbiased es-
timates for ξ > 0. All three estimators are quite stable with
the sample size, providing fairly good estimates already for
n = 20. The mean estimator is severely biased, but its error
is monotonic and approximately linear with ξ , so that conclu-
sions obtained from comparing local dimensions of different
states or systems in relative terms still hold.

(a)    ξ = 0,  mean estimator
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(b)    ξ = 0,  PWM estimator
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(c)    ξ = 0,  MM estimator
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FIG. 3. Relative error of the mean estimator (a), PWM (b), MM (c),
ML (d) and PML (e) on d as a function of d and n, for ξ = 0. Note
that the colour ranges differ in each panel.
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FIG. 4. Graphic visualization of the results shown in Table II. Rel-
ative error of the five considered estimators on the local dimension,
averaged over d and shown as a function of ξ , for sample sizes n =
20 (a), 100 (b), 1000 (c).

B. Lorenz 1963 system

Next, we analyze the performance of the estimators on the
local dimension of the L63 system. For this system, it is
known that D = 2.06± 0.01 since the early work of Grass-
berger and Procaccia 51 , and more recently it has been esti-
mated to be D = 2.062716052. We choose the L63 system
not only because its D is known, but also because in this case
the estimation of the local dimension via Euclidean distance
is not affected by the curse of dimensionality documented for
higher-dimensional systems32, since the phase space of L63
has dimension 3.

Before looking at the estimates of d and D, we consider
the performance of the different estimators on the shape pa-
rameter ξ . For the MM, PWM and PML estimators, σ̂ can
be written as a function of ξ̂ , and analysing ξ may bring in-
sights on the source of estimation errors on d. Figure 5 shows
the probability density functions of ξ̂ for all estimators, ex-
cept the mean estimator which assumes ξ = 0. We can notice
marked differences: PML results in a roughly symmetric dis-
tribution, centered around ξ̂PML ∼ −0.15, while regular ML
produces a much wider distribution with its peak just below
zero. The MM and PWM estimators both produce a bi-modal
distribution, with a peak very close to zero and another one
between -0.1 and -0.15. To better characterize this result, we
used the break-point search based on segmented regression
implemented in the R package segmented53 to separate the
two modes of each distribution. The change points are lo-
cated at -0.058 for the MM and at -0.049 for the PWM esti-
mator. Fig. 6 shows the two probability distributions of ξ̂ for
the MM and PWM estimators (left panels), and the L63 at-
tractor colored based on the local value of ξ̂ obtained with the
two estimators (right panels). More specifically, we separate
the two modes of each distribution using the aforementioned

break-point algorithm, and we color the histogram depending
on the mode to which it is assigned. We then also color the
attractor based on the mode to which each state is assigned.
While the two modes of each distribution seem to separate
similar regions of the attractor, the values are inverted, so that
the regions producing the low mode of ξ̂MM correspond to
the high mode of ξ̂PWM , and vice versa. This is reflected in
the negative correlation coefficient of -0.42 between ξ̂MM and
ξ̂PWM .
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FIG. 5. Probability density functions of the shape parameter ξ for the
L63 system estimated using the ML, PWM, MM and PML methods.
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FIG. 6. Bimodal distributions of ξ̂ estimated with the MM (a) and
PWM (c) methods. The distributions have been partitioned with a
breakpoint search algorithm. (b, d) Attractor of the L63 system col-
ored according to the partitioning of the distributions shown in (a)
and (c), respectively.

In Fig. 7 we show the probability density functions of the
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local dimension d for all the estimators, in logarithmic scale
to reduce the visual effect of the large skewness. As expected
from the Monte Carlo results, the PML estimator has the worst
performance. To obtain the shown results, we have used ξ̂PWM

as initial estimate. Using ξ̂MM (not shown) provided almost
identical results. The resulting fractal dimension estimate is
D̂PML = 1.801, the only estimate showing a difference on the
first digit.

The estimates of D obtained with the other estimators are
overall much closer to the true value. We apply a Student’s t
test at the 5% level with Bonferroni correction to each mean,
under the null hypothesis that D̂ = 2.0627160 against the bi-
lateral alternative. All estimates are significantly different
from the true value, except for D̂MM . The mean estimator has
the smallest RMSE, thanks to its smaller variance compared
to the competitors and to a statistically significant but small
difference in estimated global attractor dimension. However,
we note that the variability in the estimates of the local dimen-
sion in this experiment is partially due to the structure of the
attractor, so that this metric is less important than in the case
of the Monte Carlo experiment.

Figure 8 shows the X −Y plot of the L63 attractor, col-
ored according to the local dimension obtained with the five
estimators. Values are saturated at 3, since larger dimen-
sions are non-physical, but possible due to finite sampling ef-
fects. The estimators show comparable performances, with
largely superimposed high- and low-dimensional values, al-
though higher dimensional regions of the attractor are less ev-
ident using PML estimates. This is confirmed by the large
positive correlations between time series of estimated local di-
mension, ranging from 0.89 for the correlation between d̂PML
and d̂PWM to 0.99 for the correlation between d̂ML and both
d̂MM and d̂PWM . Thus, the differences in the estimation of ξ ,
especially concerning the bimodality of the MM and PWM es-
timates discussed above, do not translate into equally visible
differences in the estimation of d. These findings corroborate
the result from the Monte Carlo experiment: for ξ ≤ 0, the
MM estimator provides the smallest bias and the best bias-
variance trade-off.

Since the value of the global attractor dimension for the
Lorenz attractor is known, and the low dimensionality of the
system allows for an accurate EVT-based estimation as found
in32, the L63 system is a good candidate to check the stabil-
ity of the estimators with respect to the sample size and the
threshold quantile. We consider the same realization of the
L63 system described in Section IV B, but sub-sampled with
a time step equal to 0.01. Let N be the length of the origi-
nal time series and L the chosen length for a sub-interval of
the same time series: we generate M random indices m from a
discrete uniform distribution in [1,N−L], and for each one we
consider the sub-sample of length L of the original time series
given by (X(m,m+L),Y (m,m+L),Z(m,m+L)). For each of
these time series we estimate the local and global attractor di-
mension using all the estimators. We choose the combinations
L = {100,500,1000,10000} and M = {500,200,100,20}.
We repeat this procedure for three values of the threshold
q = {0.95,0.98,0.99}. For q = 0.99 we do not consider sam-
ple size 100, which results in a single POT value. The distri-

butions of estimated values of D as a function of L, q and the
type of estimator are shown in Fig. 9. For the chosen thresh-
olds, all estimators except PML converge to the true value.
However, also ML has some convergence issues, with an ex-
tremely high variance of the estimates at low sample size, but
also at relatively large sample sizes when q = 0.99.

Overall, the effect of q appears to be linked to the number
of POTs, rather than to how extreme the quantile is. In other
words, convergence is better guaranteed when the sample size
is large: for example, convergence is reached more easily for
L = 1000 with q = 0.95 than with q = 0.99. Following these
results, we recommend to choose the highest value of q that
guarantees a sufficient POTs sample size for consistent GPD
parameter estimation, avoiding the PML estimator, which is
affected by a negative bias that does not disappear even at
large sample sizes.
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FIG. 7. Probability density functions of d̂ for the L63 system in loga-
rithmic scale obtained with different estimators. The horizontal grey
line shows the value of the L63 global attractor dimension DL63; hor-
izontal coloured segments show estimates of D̂ obtained as the aver-
age of all local dimensions. The values are shown above each plot;
stars indicate a statistical difference with respect to the theoretical
value of DL63. Values of root mean square error are also shown.
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values of the threshold quantile q = 0.95 (a), q = 0.98 (b), q = 0.99
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C. Climate Data

Finally, we replicate the previous analysis for the ERA5
dataset. In this case, it is not possible to compare estimates
to the true value, as in the Monte Carlo experiment, or to
previous knowledge about the attractor dimension, as for the
L63 system. The goal of considering real-world data is rather
to check the stability of dimension estimates when using dif-

ferent estimators. This is particularly relevant because many
existing climatological studies have been based on the mean
estimator, while the climate system is expected to behave as
a non-Axiom A system, characterized by ξ < 0. Moreover,
time series issued from climate data are non-stationary due to
internal variability and changes in external forcing, including
the anthropogenic influence in the industrial period.

Figure 10 shows the probability density functions of esti-
mated values of ξ with all methods, except the mean estimator
which assumes ξ = 0. Qualitatively, the distributions of ξMM
and ξPML present the highest resemblance, with the main dif-
ference due to a secondary peak of estimated values close to
0 for the MM estimator. All possible combinations of a two-
sample Kolmogorov-Smirnov test reject the null hypothesis of
identical distributions at the 5% significance level. The PWM
and ML distributions are shifted towards larger values, with a
large peak around 0 in the distribution of ξ̂ML.
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FIG. 10. Probability density functions of the shape parameter ξ for
ERA5 500 hPa geopotential height data, estimated using the using
the ML, PWM, MM and PML methods.

However, as in the case of L63, the differences in the es-
timation of ξ do not reflect on the dimension estimates. All
the estimators produce values 8 ≤ D̂ ≤ 9 (see Fig. 11), with
the exception of PML which gives an estimate D̂PML = 7.3.
Also in this case, all possible combinations of a Kolmogorov-
Smirnov test reject the null hypothesis of identical distribu-
tions at the 5% significance level. We also test the differences
among the means, i.e. the estimates of D, through pairwise
Student’s t tests with Bonferroni correction for multiple test
comparisons, without assuming equal variances in the distri-
butions of d. All comparisons reject the null hypothesis of
equal means at the 5% level.

While these differences are statistically significant, from
the point of view of many climatological applications, the es-
timates are equivalent. The one possible exception are the
estimates produced by PML which are visibly smaller. As an
example of this type of application,54 use a machine learning
algorithm to decompose the sea level pressure (slp) anomaly
fields over the North Atlantic in a number of coherent struc-
tures. Each structure corresponds to a low or high pressure
anomaly pattern, and can be seen as a degree of freedom of
slp variability. To decide the optimal number of patterns, the
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authors construct a few statistics that allow to draw scree plots,
and choose 28. They note that this value is compatible with
the range of local dimensions estimated for the same atmo-
spheric fields using the mean estimator18. In the context of
this analysis, where an integer approximation of D̂ is used to
gain heuristic understanding, the estimates depicted in Fig. 11
can be regarded as compatible, yielding consistent outcomes.
The possible exception are the PML estimates, which have
both a smaller mean and lower maximum local dimension val-
ues than the other estimators. Whether these differences may
be overlooked or not would depend on the specific application
being considered.
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14

16
18

d

8.878 8.478 8.179 8.335 7.348

mean ML PWM MM PML

FIG. 11. Probability density functions of d̂ obtained using the mean,
ML, PWM, MM and PML methods. The horizontal color segments
and the numbers above the violin plots show estimates of D̂ obtained
as the average of all local dimensions.

There are several other studies in the climate science lit-
erature that have used estimates of the local dimension.
For example, investigating temporal properties of d̂m, such
as its seasonality and relation to a dynamical measure of
persistence6,18, or long-term trends in reanalysis and climate
projections9. These and other studies have typically analysed
the local dimension in relative terms. A simple way to check
whether biases in the estimates of d may have affected the
above results it to verify the similarity between time series of
the different estimators using Pearson’s correlation. The latter
is insensitive to mean shifts or scaling factors, but it attains
small values if two time series are not synchronized. The up-
per triangle of the correlation plot in Fig. 12 shows values of
Pearson’s correlation between pairs of estimated local dimen-
sion time series. Corresponding scatterplots with regression
lines are depicted in the lower triangle. The high correlation
values and fairly linear scatterplots show that the differences
between d̂PML and the other estimators are mainly due to a
scale factor.

The correlations among all estimators are positive and
large, ranging between 0.88 and 0.97. This shows that, even
under the erroneous assumption of ξ = 0, the mean estimator
produces time series of d̂m which are well-synchronized with
the ones obtained by its competitors that assume a GPD as
the exceedances distribution. To ensure that seasonality and
modes of interannual variability are consistently reflected by

all the estimators, we also inspect the autocorrelation func-
tions (ACFs) and the spectral density functions (SDFs) of the
corresponding time series of d̂, both shown in Fig. 13. We
show the ACF up to 730 daily lags, corresponding to 2 years,
and the SDF at periods of up to 4 years. All estimators follow
a similar behavior, with a clear yearly cycle. The SDF shows
a dominant peak at 2 years, and two secondary peaks at 1 and
3 years. All estimators reflect these dominant frequencies, al-
though the mean estimator shows lower peaks, especially at
the yearly frequency. This suggest that the mean estimator
may display a subdued seasonal cycle. However, the overall
performance of the five methods is largely comparable.
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FIG. 12. Correlation plot among the time series of d̂ obtained with
the five considered estimators. Panels in the upper triangle show
pairwise Pearson’s correlation coefficients. Panels in the lower trian-
gle show pairwise scatterplots, with superimposed correlation ellipse
and linear regression line. The red dots denote the scatterplot cen-
ters of mass. Panels along the diagonal show the histograms of the
marginal distributions of d̂.
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FIG. 13. (a) Global autocorrelation function (ACF) of d̂ for all five
considered estimators, at lags up to 730 days. Dashed blue lines show
the 95% confidence interval constructed under the white noise null
hypothesis. (b) Logarithm of the spectral density function (SDF) of
d̂ for all estimators, at periods up to 4 years. Vertical grey lines mark
the main periodicities, showing annual and interannual variability.

VI. DISCUSSION

We have assessed different estimators of the local dimen-
sion of a dynamical system, by using extreme value theory
for peaks over threshold (POTs). This method also provides
a way to estimate the global attractor dimension, which can
be obtained as the average over all local dimensions, pro-
vided that the observed trajectories are long enough. We have
considered four methods assuming that POTs follow a Gen-
eralized Pareto Distribution (GPD) with parameters ξ ,σ : the
method of moments (MM), probability weighted method of
moments (PWM), maximum likelihood (ML) and pseudo-ML
(PML) estimators. The MM estimation is only defined for
ξ < 0.5, while the PML estimation requires two different pro-
cedures depending on the sign of ξ . We also added a naive
estimator, namely the inverse of the POT mean, based on the
simplified assumption of exponentially distributed POTs. This
is valid in the asymptotic case for Axiom A dynamical sys-
tems.

We have performed a Monte Carlo experiment by simulat-
ing the POTs directly from a GPD over a realistic range of
true parameter values. In this way, we were able to measure
the bias of each estimator as a function of the true parameter
space. We assessed the performance in terms of the root mean
square error and of the relative error on the local dimension,
given by the inverse of the GPD scale parameter σ .

In terms of statistical efficiency as measured by the root
mean square error (RMSE), the overall best estimates are pro-

vided by the PWM. However, for simulated POTs character-
ized by ξ < 0, the MM estimator always produces the best
estimates and it is very simple to compute, without any tuning
parameter such as the c = 0.35 coefficient in the definition of
the plotting positions for the PWM. The mean estimator, ML
and PML display large RMSEs over varying ranges of ξ , indi-
cating a poorer performance in terms of statistical efficiency.
The PML in particular displays very large RMSE values.

The Monte Carlo results also show that the relative error
does not depend on the true value of d, and convergence to-
wards a fixed value is generally reached for a POT sample
size∼200. The PWM estimator shows the overall best perfor-
mance, and the MM estimator performs equally well in its do-
main of existence ξ / 0.5, despite the theoretical superiority
of ML estimators under well-specified statistical models. The
PML performance degrades rapidly for growing ξ ≥ −0.2.
The average relative errors of the naive estimator display n
almost perfectly linear relationship with the true dimension
values as a function of the true value of ξ .

We further test the five estimators when applied to the
Lorenz 1963 system – a 3-equation system in a 3-dimensional
phase space – and some high-complexity climate data from
the ERA5 reanalysis. For the Lorenz system, the global at-
tractor dimension has been previously estimated, so we can
use that as a reference value. The results are consistent with
those for the Monte Carlo data, with the MM estimator show-
ing the best performance for ξ < 0 and the PML estimator
showing a negative bias over this range of ξ . For the cli-
mate data we have no prior estimate of the dimension, yet
we know that the data is characterized by a negative estimated
ξ . We thus consider the MM estimator as our baseline. We
are particularly interested in testing the performance of the
mean estimator, as it has been repeatedly used in the literature
but there has been no systematic comparison of how it per-
forms on complex systems relative to alternative estimators.
The correlations between the mean and the MM estimator are
very close to or even equal to 1, corroborating the idea that,
even far from the asymptotic sampling of Axiom A systems,
the simple mean estimator can be effectively used when inter-
preted in a relative sense. Correlations of MM with the other
estimators are also very high. For L63, we have also tested
the effect of the sample size and of the probability q used to
define the threshold quantile. Overall, for reasonable choices
of q, the effect of the threshold appears to be limited to its
role in defining the sample size of the POTs given an initial
time series length. The recommendation would be to choose
the highest value of q that guarantees a sufficient POT sample
size for consistent GPD parameter estimation.

Since for the MM, PWM and PML estimators d̂ can be writ-
ten as a function of ξ̂ , we have also inspected the performance
of the different methods in estimating the shape parameter, to
check whether it could be a source of estimation error on d.
Results suggest the opposite: the important differences among
the distribution of ξ̂ do not seem to translate into differences
in estimates of d̂. At the same time, the two estimators with
the most similar distribution of ξ̂ , i.e. MM and PML, respec-
tively provide the best and worst estimate d̂.

Overall, we find that if one is interested only in the esti-
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mation of the local attractor dimension (or simply the σ pa-
rameter in a different setting), the performance of the chosen
estimator on ξ does not seem to be crucial.

To conclude, our results can be used to draw simple, general
guidelines for the choice of attractor dimension estimators. If
it is known a priori that ξ < 0, the MM estimator is the best
choice. However, if no prior assumption can be made on the
true value of ξ , the mean estimator could be a suitable choice.
In contrast, despite the popularity of maximum likelihood in
statistical estimation and testing, it appears that the considered
PML estimator only performs well in a narrow interval of val-
ues of ξ , which does not include ξ values usually observed in
climate data. Moreover, the different estimators show a high
correlation. When one is interested in relative values of the
dimension, the choice of estimator thus does not appear cru-
cial. This is often the case when studying the behaviour of a
system through the attractor dimension, as the relationship be-
tween dimension values of different states is more important
than the value itself. Indeed, dimensions are usually compared
to one another to detect changes in system behaviour, rather
than interpreted in terms of their absolute values.

SUPPLEMENTARY MATERIAL

The Supplementary Material associated with this article
contains all the figures showing the statistical performance of
the considered estimators in terms of root mean square error
and relative error for the Monte Carlo experiment.
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