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Sliding Mode Observer for Set-valued Lur’e Systems and

Chattering Removing

Samir Adly∗ Ba Khiet Le †

Abstract

In this paper, we study a sliding mode observer for a class of set-valued Lur’e systems subject
to uncertainties. We show the well-posedness of the problem and highlight the clear advantages
of our approach over the existing Luenberger-like observers. Furthermore, we provide a new
continuous approximation to remove the chattering effect in the sliding mode technique. Some
numerical examples are given to illustrate our theoretical approach.
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1 Introduction

Hybrid systems are a class of dynamic systems that may present both continuous and discrete
behavior. They are characterized by the presence of continuous state variables, inputs/outputs, as
well as discrete state variables, inputs/outputs. On the other hand, Lur’e-type nonlinear systems
[22] are represented by the combination of a linear time-invariant system and a memoryless non-
linearity through a feedback connection. The link between Lur’e systems and hybrid systems lies
in the coupling of the continuous and discrete dynamics through the nonlinear state equation and
the linear output equation. This coupling makes Lur’e systems well-suited for modeling complex
physical, biological, or social systems that exhibit both continuous and discrete behavior, and have
found applications in areas such as control systems, signal processing, and system identification.
For a comprehensive guide to hybrid dynamical systems from the modeling, stability and robust-
ness point of view, we refer to [15]. In this paper we focus on Lur’e set-valued dynamical systems
where the nonlinear feedback is given by a set-valued relation. The Lur’e set-valued dynamical
system is a widely studied model in applied mathematics and control theory. In recent decades, it
has received significant attention, as evidenced by the numerous studies found in references such
as [1, 2, 3, 8, 9, 10, 11, 12, 14, 16, 17, 18, 19, 20, 21, 28]. Despite advancements in the under-
standing of the system’s existence and uniqueness, stability and asymptotic analysis, the design
of control and observers still poses many interesting open questions. Specifically, most observers
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for Lur’e set-valued systems follow the Luenberger design, which has limitations when the system
is subjected to uncertainty, as discussed in references such as [16, 17, 18, 28]. Recently, using the
powerful sliding mode technique, B. K. Le in [21] proposed a sliding mode observer for a general
class of set-valued Lur’e systems subject to uncertainties as follows

ẋ(t) = Ax(t) +Bλ(t) + Eu(t) +Gξ(t,u,x) for a.e. t ∈ [0, +∞),

w(t) = Cx(t) +Dλ(t),

λ(t) ∈ −Ft(w(t)), t ≥ 0,

y(t) = Fx(t),

x(0) = x0,

(1)

where A ∈ Rn×n,B ∈ Rn×m,C ∈ Rm×n,D ∈ Rm×m,E ∈ Rn×l,F ∈ Rp×n,G ∈ Rn×k are given
matrices, λ and w are two connecting variables, u is the control input, y is the physically measurable
output and ξ is some uncertainty. The set-valued operator Ft : Rm ⇒ Rm is time-dependent and
assumed to be maximal monotone. Note that (1) can be rewritten into a first order time-dependent
differential inclusion as follows

ẋ ∈ Ax−B(F−1t +D)−1Cx+ Eu+Gξ, x(0) = x0. (2)

If D = 0 and Ft = F , we obtain the following classical case

ẋ ∈ Ax−BFCx+ Eu+Gξ.

The proposed sliding mode observer for (1) is

˙̃x ∈ Ax̃+Bλ̃− Ley + Eu− P−1F TΨ(ey),

w̃ = Cx̃+Dλ̃,

λ̃ ∈ −F(w̃ +Key),

ỹ = Fx̃,

(3)

where
e = x̃− x, ey = ỹ − y = Fe,

Ψ(ey) = σ1ey + (‖J‖ ρ(t,u, y) + σ2)Sign(ey)

and ρ is a bound of the uncertainty for some suitable matrix J and real number σ1 ≥ 0,σ2 > 0.
Then under some mild conditions, the observer state converges to the original state asymptotically
and the observation error converges to zero in finite time (we refer to [21] for more details).

2



In this paper, our first contribution is to provide a sliding mode observer for the system con-
sidered in [16] as follows 

ẋ = Ax+Bω + f1(x,u) + f2(x,u)θ(t),

ω ∈ −F(Cx),

y = Fx,

(4)

where A ∈ Rn×n,B ∈ Rn×m,C ∈ Rm×n,F ∈ Rp×n are given matrix, x ∈ Rn is the state, F : Rm ⇒
Rm is a maximal monotone operator, u ∈ Rr is the control input and y ∈ Rp is the measurable
output. The functions f1, f2 are known smooth while θ ∈ Rl is an unknown constant parameter
vector. An adaptive Luenberger-like observer was proposed by Huang et al in [16]. In our paper,
the parameter θ may not always be constant, such as in the case of perturbations. Our sliding
mode approach is efficient and straightforward, without the need to solve an additional ordinary
differential equation, as seen in [16]. Our results show that the convergence of the observer state
to the actual state is exponential, while the rate of convergence in [16] is unknown. Additionally,
if the matrix function f2 is bounded, the conditions for solvability of the associated LMI are
significantly improved, leading to finite time convergence of the observation error under more
favorable assumptions than in [21]. Our contributions also extend to the reduced-order case, where
we have improved conditions. Lastly, we propose a new smooth approximation of the sliding mode
technique that removes the chattering effect while still effectively managing uncertainty.

The paper is organized as follows. In Section 2, we revisit some key concepts. In Section 3, we
establish the well-posedness of the problem, addressing the existence and uniqueness of a solution.
Additionally, we propose a sliding mode observer for (4) and show its significant advantages over
the Luenberger-like observer discussed in [16]. Section 4 focuses on the reduced-order observer.
In Section 5, we present a new and refined version of the sliding mode technique. Numerical
examples to support the results are provided in Section 6. Finally, Section 7 concludes the paper
and highlights future possibilities.

2 Notations and mathematical background

We denote the scalar product and the corresponding norm of Euclidean spaces by 〈·, ·〉 and ‖ · ‖
respectively. A matrix P ∈ Rn×n is called positive definite, written P > 0, if there exists a > 0
such that

〈Px,x〉 ≥ a‖x‖2, ∀ x ∈ Rn.

The sign and Sign functions in Rn are defined by

sign(x) = (sign(x1), sign(x2), . . . , sign(xn))

and

Sign(x) =


x
‖x‖ if x 6= 0

B if x = 0,

where B denotes the unit ball in Rn. Both functions coincides in R, which are widely used in
sliding mode technique (see, e.g., [23, 24] and the references therein). Sign function is usually used
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in Walcott and Zak observer (see, e.g., [26, 29, 30]). It seems to be inherited from the Filippov
approach to the meaning of differential equations with discontinuous right-hand side.

x

Sign(x)

�1

1

0

Figure 1: Sign function in R

A set-valued mapping F : Rm ⇒ Rm is called monotone if for all x, y ∈ Rm and x∗ ∈ F(x), y∗ ∈
F(y), one has

〈x∗ − y∗,x− y〉 ≥ 0.

Furthermore, F is called maximal monotone if there is no monotone operator G such that the graph
of F is contained strictly in the graph of G.

Lemma 1. [21] Let F ∈ Rp×n be a full row rank matrix (p ≤ n) and P ∈ Rn×n be a symmetric
positive definite matrix. If x ∈ im(P−1F T ) then

F T (FP−1F T )−1Fx = Px, (5)

where im(A) denotes the range of A.

Finally, let us recall the concept of orbital derivative. Let x : [0, +∞) → Rn be an absolutely
continuous function, V : Rn → R and W (t) := V (x(t)). Then the orbital derivative of V along x(·)
is defined by: V̇ = dW

dt .

3 Well-posedness and the convergence analysis

In this section, we will propose a sliding mode observer for the system (4) under the following
assumptions:
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Assumption 1: The set-valued operator F : Rn ⇒ Rn is a monotone, upper semi-continuous
with non-empty, closed convex and bounded values.

Assumption 2: The continuous functions f1 : Rn × Rr → Rn and f2 : Rn × Rr → Rn×l are
Lipschitz continuous w.r.t x, i. e., there exist L1 > 0 and L2 > 0 such that for all x1,x2 ∈ Rn,u ∈
Rr, we have

‖f1(x1,u)− f1(x2,u)‖ ≤ L1‖x1 − x2‖ and ‖f2(x1,u)− f2(x2,u)‖ ≤ L2‖x1 − x2‖.

Assumption 3: The unknown θ(t) is continuous and bounded by L3 > 0.

Assumption 4: Let γ = L1 + L2L3. There exist ε > 0, P ∈ Rn×n > 0, L ∈ Rn×p, K ∈ Rm×p
and the matrix function h : Rn × Rr → Rl×p such that

P (A− LF ) + (A− LF )TP + γP 2 + γI + εI ≤ 0, (6)

BTP = C −KF , (7)

fT2 (x,u)P = h(x,u)F . (8)

Assumption 4’: the same to Assumption 4 but with γ is replaced by γ′ = L1.

Remark 1. i) From (8), we have f2(x,u) = P−1F ThT (x,u). It means that im(f2(x,u)) ∈
im(P−1F T ) for all (x,u).
ii) Assumption 4 is widely used in the Control literature, which is based on the passivity and the
matching property of disturbances (see, e.g., [11, 16, 21]).

Lemma 2. Let F ∈ Rp×n be a matrix with full row rank. If f2 is bounded, then h is also bounded.
Furthermore, if f2 is Lipschitz continuous with respect to x then h is also Lipschitz continuous
with respect to x.

Proof. From Remark 1, we imply that h(x,u) = (FP−1F T )−1Ff2(x,u) and the condition follows.

The proposed sliding mode observer for (4) is
˙̃x = Ax̃+Bω̃ − Ley + f1(x̃,u)− βP−1F T ‖h(x̃,u)‖Sign(ey),

ω̃ ∈ −F(Cx̃−Key),

ỹ = Fx̃,

(9)

where β ≥ L3. In the following theorem, we establish the well-posedness of the problem by proving
the existence and uniqueness of solutions for both the original system (4) and the sliding mode
observer (9), under Assumptions 1–4.

Theorem 3. Suppose Assumptions 1–4 are satisfied. Then, the following statements hold:
(i) The original system given by (4) and the sliding mode observer given by (9) both possess solu-
tions.
(ii) If F is a matrix of full row rank, then the solution to the sliding mode observer (9) is unique.
(iii) If there exists a symmetric matrix Q > 0 such that BTQ = C, then the solutions of (4) is
unique.
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Proof. (i) The existence of solutions of both systems follows immediately since both systems can
be reduced into first order differential inclusions where the right-hand side operators are upper
semi-continuous and have non-empty, convex and compact values (see for instance [5, 13, 16]).

(ii) Let x̃1, x̃2 be two solutions of (9) and x is a solution of (4). Let ẽ(t) := x̃1(t)− x̃2(t), ẽy1 :=
F (x̃1 − x), ẽy2 := F (x̃2 − x). Consider the Lyapunov function V1(ẽ) = 1

2〈P ẽ, ẽ〉 and compute its
orbital derivative

V̇1 = 〈P ẽ, ˙̃e〉
= 〈P ẽ,Aẽ+B(ω̃1 − ω̃2) + f1(x̃1,u)− f1(x̃2,u)

− βP−1F T (‖h(x̃1,u)‖Sign(ẽy1)− ‖h(x̃2,u)‖Sign(ẽy2))〉

The following inequalities hold true

〈P ẽ,B(ω̃1 − ω̃2)〉 = 〈BTP ẽ, ω̃1 − ω̃2〉 = 〈(C −KF )ẽ, ω̃1 − ω̃2〉 ≤ 0,

〈P ẽ,Aẽ+ f1(x̃1,u)− f1(x̃2,u)〉 ≤ (‖PA‖+ L1)‖ẽ‖2.
Further calculations yield

Γ := − 〈P ẽ,P−1F T (‖h(x̃1,u)‖Sign(ẽy1)− ‖h(x̃2,u)‖Sign(ẽy2))〉
= −〈F ẽ, ‖h(x̃1,u)‖Sign(ẽy1)− ‖h(x̃2,u)‖Sign(ẽy2)〉
= −‖h(x̃1,u)‖〈F ẽ, Sign(ẽy1)− Sign(ẽy2)〉 − 〈F ẽ, (‖h(x̃1,u)‖ − ‖h(x̃2,u)‖)Sign(ẽy2)〉
≤ ‖F‖Lh‖ẽ‖2,

where Lh is the Lipschitz constant of h (Lemma 2) and we have used the monotonicity of the
Sign function. Therefore V̇1 ≤ ρ1‖ẽ‖2 where ρ1 := ‖PA‖ + L1 + Lh‖F‖, allowing us to draw the
conclusion by using the Gronwall’s inequality.

(iii) Let x1 and x2 be two solutions of (4). Define the error e(t) as e(t) := x1(t) − x2(t). We
choose the Lyapunov function V2(e) = 1

2〈Qe, e〉 and compute its orbital derivative

V̇2 = 〈Qe, ė〉
= 〈Qe,Ae+B(ω1 − ω2) + f1(x1,u)− f1(x2,u)

+ f2(x1,u)θ(t)− f1(x2,u)θ(t)〉.

By using the monotonicity of F , we obtain

〈Qe,B(ω1 − ω2)〉 = 〈BTQe,ω1 − ω2〉 = 〈Ce,ω1 − ω2〉 ≤ 0.

Additionally, we have the following inequalities

‖f1(x1,u)− f1(x2,u)‖ ≤ L1‖e‖.

‖f2(x1,u)θ(t)− f2(x2,u)θ(t)‖ ≤ L2L3‖e‖.

Therefore, V̇2 ≤ ρ2‖e‖2 where ρ2 := ‖QA‖+ L1 + L2L3 and the conclusion follows.
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The following result confirms the exponential convergence of the observer state to the original
state.

Theorem 4. Let Assumptions 1–4 hold. Then the observer state x̃ of (9) exponentially converges
to the original state x of (4).

Proof. Let e = x̃− x, ey = ỹ − y = Fe. From (4) and (9), we have

ė ∈ (A− LF )e−B(ω̃ − ω) + f1(x̃,u)− f1(x,u)

− βP−1F T ‖h(x̃,u)‖Sign(ey)− f2(x,u)θ. (10)

Consider the Lyapunov function V (e) = 〈Pe, e〉. Then the orbital derivative of V is

V̇ (e) = 2〈P ė, e〉 = 2〈P (A− LF )e− PB(ω̃ − ω), e〉
+ 2〈P (f1(x̃,u)− f1(x,u)), e〉 − 2β‖h(x̃,u)‖‖ey‖ − 2〈Pf2(x,u)θ, e〉. (11)

From (7) and the monotonicity of F , we have

〈PB(ω̃ − ω), e〉 = 〈ω̃ − ω),BTPe〉 = 〈ω̃ − ω, (C −KF )e〉 ≤ 0. (12)

On the other hand

2〈P (f1(x̃,u)− f1(x,u)), e〉 ≤ 2L1‖e‖‖Pe‖ ≤ L1(‖e‖2 + ‖Pe‖2) (13)

and

Y := −2β‖h(x̃,u)‖‖ey‖ − 2〈Pf2(x,u)θ, e〉
= −2β‖h(x̃,u)‖‖ey‖ − 2〈P (f2(x,u)− f2(x̃,u))θ, e〉 − 2〈Pf2(x̃,u)θ, e〉
≤ −2β‖h(x̃,u)‖‖ey‖+ 2L2L3‖e‖‖Pe‖ − 2〈θ,h(x̃,u)ey〉
≤ L2L3(‖e‖2 + ‖Pe‖2). (14)

Let αmax and αmin be the largest eigenvalue and the smallest eigenvalues of P , respectively. From
(6), (11), (12), (13) and (14), we have

dV

dt
≤ −ε‖e‖2 ≤ − ε

αmax
V (t).

Using Gronwall’s inequality, we obtain

αmin‖e‖2 ≤ V (t) ≤ exp(
−εt
αmax

)V (t0).

Hence, ‖e‖ ≤ exp( −εt
2αmax

)
√

V (t0)
αmin

and the conclusion follows.

Remark 2. (i) According to [16], under similar conditions, our implementation of a sliding mode
observer leads to an exponential convergence of the observer state, whereas the adaptive observer in
the same study only achieves convergence without a defined rate. Furthermore, our method avoids
the need to solve a high-dimensional additional ODE, which can be computationally expensive, as
seen in [16].
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(ii) In Assumption 4, if h is bounded, then γ = L1 + L2L3 can be replaced by just L1, which is
usually much smaller than γ. This makes it easier to satisfy (6)-(8) and enables us to solve a wider
class of set-valued Lur’e systems that cannot be tackled using the method in [16]. Furthermore,
our technique also ensures finite time convergence of the observation error ey to zero. A bounded
matrix function h can be guaranteed if f2 is bounded and F is full row rank (Lemma 2), as one
can always choose a full row rank matrix F for the output y = Fx without losing any information.

Theorem 5. Let Assumptions 1, 2, 3, 4’ hold and suppose that h(x,u) is upper-bounded by some
constant L4 > 0. Then we can still ensure the exponential convergence to the original state by using
the observer 

x̃ = Ax̃+Bω̃ − Ley + f1(x̃,u) + βP−1F TSign(ey),

ω̃ ∈ −F(Cx̃−Key),

ỹ = Fx̃

(15)

where β > L3L4. Furthermore, if the matrix F ∈ Rp×n has full row rank and im(B) ⊂ im(P−1F )
then the observation error ey converges in explicitly finite time.

Proof. Under the new assumption, in (14) we have

−β‖ey‖ − 〈Pf2(x,u)θ, e〉 = −β‖ey‖ − 〈θ,h(x,u)ey〉 ≤ −(β − L3L4)‖ey‖ ≤ 0

and similarly one obtains the exponential convergence of the observer state.
To attain the finite time convergence of the observation error, we consider the new Lyapunov

function W = 1
2〈ey, (FP−1F T )−1ey〉. Then

dW

dt
= 〈(FP−1F T )−1ėy, ey〉.

From (10), we have

ėy = F (A− LF )e− FB(ω̃ − ω) + F
(
f1(x̃,u)− f1(x,u)

)
− βFP−1F TSign(ey)− Ff2(x,u)θ. (16)

Since im(B) ⊂ im(P−1F ), using Lemma 1, we have

F T (FP−1F T )−1FB = PB

and hence

〈(FP−1F T )−1FB(ω̃ − ω), ey〉 = 〈F T (FP−1F T )−1FB(ω̃ − ω), e〉
= 〈PB(ω̃ − ω), e〉 = 〈ω̃ − ω,BTPe〉 = 〈ω̃ − ω, (C −KF )e〉 ≤ 0.

On the other hand, from (8) we deduce that f2 = P−1F ThT and thus

(FP−1F T )−1Ff2(x,u)θ = (FP−1F T )−1(FP−1F T )hT (x,u)θ = hT (x,u)θ. (17)
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Since ‖e‖ ≤ exp( −εt
2αmax

)
√

V (t0)
αmin

as in the proof of Theorem 4, we can find some t1 > 0 such that for

all t ≥ t1, one has

‖(FP−1F T )−1
(
F (A− LF )e+ F

(
f1(x̃,u)− f1(x,u)

))
‖ ≤ σ

2

where σ = β − L3L4 > 0. Indeed, we can choose

t1 :=
2αmax
ε

ln
(2‖(FP−1F T )−1F‖(‖A− LF‖+ L1)

σ

√
V (t0)

αmin

)
.

Then for all t ≥ t1, we have

dW

dt
≤ σ

2
‖ey‖ − (β − ‖hT (x,u)θ‖)‖ey‖ ≤

σ

2
‖ey‖ − (β − L3L4)‖ey‖

= −σ
2
‖ey‖ ≤ −κ

√
W (t),

where κ := σ/
√

2γmax and γmax is the largest eigenvalue of (FP−1F T )−1 since ‖ey‖ ≥
√

2W (t)
γmax

.

Suppose that W (t) > 0 for all t ≥ t1 then we have

W ′

2
√
W
≤ −κ

2

and thus √
W (t)−

√
W (t1) ≤ −

κ

2
(t− t1)→ −∞ as t→∞,

a contradiction. Let tf ≥ t1 be the first time such that W (tf ) = 0, then we deduce that W (t) = 0
for all t ≥ tf since W is non-negative and decreasing. It means that ey converges to 0 in finite
time. Similarly as above we have

−
√
W (t1) =

√
W (tf )−

√
W (t1) ≤ −

κ

2
(tf − t1)

and hence
tf ≤ t1 + 2

√
W (t1)/κ,

which completes the proof of the theorem.

Remark 3. (i) Based on the observation (17), we can have a significantly better estimation for the
gain β than in [21]. Indeed, in the current paper the gain β does not change to obtain the finite
time convergence of the observation error from the exponential convergence of the observer state.
In addition, we can also provide an explicit estimation for tf .
(ii) If Assumption 1 is substituted by the maximal monotone property of the set-valued F , similar
results can still be obtained. The existence and uniqueness of solutions for the original system (4)
remains guaranteed, as shown in references such as [5, 13]. Existence of solutions to the observer
systems (9), (15) can be also obtained by rewriting these systems into the form ẋ ∈ −Ax+G(t,x)
where A is a maximal monotone operator and G is a upper semi-continuous set-valued function
w.r.t x with non-empty convex compact values (see, e.g., [6, 11]). The uniqueness can be proved
similarly as the proof of Theorem 3. It’s worth mentioning that the normal cone operator NC ,
which is associated to a nonempty closed convex set C, is an important maximal monotone set-
valued mapping in mechanical and electrical engineering that does not satisfy the boundedness
requirement in Assumption 1.
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4 Reduced-order observer

Suppose that the given matrices and matrix-functions can be decomposed as follows

x =

 x1

x2

 , A =

 A11 A12

A21 A22

 ,B =

 B1

B2

 ,C = (C1 C2),F = (Fq 0)

P =

 P11 P12

P21 P22

 , f1(x,u) =

 f11(x,u)

f12(x,u)

 , f2(x,u) =

 f21(x,u)

f22(x,u)

 ,

where Fq ∈ Rq×q is an invertible matrix and the following is satisfied:

Assumption 4”: There exist ε > 0, Q ∈ R(n−q)×(n−q) > 0, P22 ∈ R(n−q)×(n−q) invertible,
P21 ∈ R(n−q)×q such that

Q(A22 +KA12) + (A22 +KA12)
TQ+ L1Q(KKT + In−q)Q

+(L1 + ε)In−q ≤ 0, (18)

(B2 +KB1)
TQ = C2, (19)(

P21 P22

)
f2(x,u) = 0, (20)

where K = P−122 P21.

Note that (4) can be rewritten as follows

ẋ1 = A11x1 +A12x2 +B1ω + f11

( x1

x2

 ,u
)

+ f21

( x1

x2

 ,u
)
θ

ẋ2 = A21x1 +A22x2 +B2ω + f12

( x1

x2

 ,u
)

+ f22

( x1

x2

 ,u
)
θ

ω ∈ −F(C1x1 + C2x2)

y = Fqx1.

(21)

Using (20), we have

ż = (A22 +KA12)z + (B2 +KB1)ω + [(A21 +KA11)− (A22 +KA12)K]x1

+ (K In−q)f1

( x1

z −Kx1

 ,u
)

ω ∈ −F(C2z + (C1 − C2K)x1),

x2 = z −Kx1.

(22)
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The adaptive observer is

˙̃z = (A22 +KA12)z̃ + (B2 +KB1)ω̃ + [(A21 +KA11)− (A22 +KA12)K]x1

+ (K In−q)f1

( x1

z̃ −Kx1

 ,u
)

ω̃ ∈ −F(C2z̃ + (C1 − C2K)x1),

x̃2 = z̃ −Kx1.

(23)

Theorem 6. Let Assumptions 1, 2, 3, 4” hold. Then (23) is a reduced-order observer of (4), i.e.,
lim
t→∞

(x2(t)− x̃2(t)) = 0.

Proof. Let ez = z̃ − z. Then we have

ėz = (A22 +KA12)ez + (B2 +KB1)(ω̃ − ω)

+ (K In−q)
[
f1

( x1

z̃ −Kx1

 ,u
)
− f1

( x1

z −Kx1

 ,u
)]

ω ∈ −F(C2z + (C1 − C2K)x1).

ω̃ ∈ −F(C2z̃ + (C1 − C2K)x1).

(24)

Let us consider the Lyapunov function W (ez) = 〈Qez, ez〉, then Ẇ (ez) = 2〈Qėz, ez〉. From (19)
and the monotonicity of F , we have

〈Q(B2 +KB1)(ω̃ − ω), ez〉 = 〈ω̃ − ω, (B2 +KB1)
TQez〉 = 〈ω̃ − ω,C2ez〉 ≤ 0.

On the other hand

〈2Q(K In−q)
[
f1

( x1

z̃ −Kx1

 ,u
)
− f1

( x1

z −Kx1

 ,u
)]

, ez〉

≤ 2L1‖(K In−q)
TQez‖‖ez‖ ≤ L1e

T
z Q(K In−q)(K In−q)

TQez + L1e
T
z ez

≤ L1e
T
z Q(KKT + In−q)Qez + L1e

T
z ez.

Combining with (18), similarly as in the proof of Theorem 4, we have Ẇ (ez) ≤ −ε‖ez‖2. It deduces
that ez converges to zero exponentially and the conclusion follows.

Remark 4. (i) Note that if we have (8), then Pf2(x,u) = F Th(x,u) and thus(
P21 P22

)
f2(x,u) = 0. It would be interesting to improve or remove the condition (20).

(ii) When the matrices are decomposable, it is more effective to provide assumptions directly with
the new lower-dimension matrices. Note that Assumption 4” is strictly weaker than Assumption 4
even when Q = P22 [16]. It is remarkable that Q > 0 can be different from P22 and it is unnecessary
to require that P > 0 but only invertible P22. This enhancement significantly broadens the potential
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applications. For simplicity one can choose P21 = 0, which would consequently result in K = 0. It’s
noteworthy that in Assumption 4”, only L1 is involved, just as in Assumption 4’ used for sliding
mode observer (15). However, one of the drawbacks of the reduced-order observer is the necessity to
perform some linear transformations if F is given in a general form. Additionally, despite satisfying
Assumptions 1–3 and 4”, the numerical convergence of the reduced-order observer (23) may fail in
certain sensitive cases, as illustrated in Example 3, due to its reliance on the approximate output
x1 from the original system. In contrast, the sliding mode observer is known for its enhanced
robustness.

5 A new continuous approximate of the sliding mode technique

Although the sliding mode method is effective, it has a persistent issue: the chattering effect caused
by the discontinuity of the Sign function. To eliminate this issue, the Sign function in R is typically
approximated by the “sigmoid function” (as noted in [24])

Sign(x) ≈ x

|x|+ ε

or by [25]

Sign(x) ≈ x√
x2 + ε

for some small fixed δ > 0. Other continuous approximates can be also found in [25].

Figure 2: Sign function in R and its approximations

In this paper, we provide a new smooth approximate of the set-valued function Sign by using a
time-dependent guiding function. Given a continuous guiding function δ : R+ → R+, we define the

12



function Signδ : R+ × Rn → Rn as follows

Signδ(t,x) =



x
‖x‖ −

1−‖x‖/δ(t)
(1+M‖x‖)N

x
‖x‖ if x 6= 0 and ‖x‖ ≤ δ(t),

x
‖x‖ if ‖x‖ > δ(t),

0 if x = 0,

(25)

for some M ,N > 0 and the function δ(·) is non-increasing. For example, we can choose δ(t) =
exp(−k1t− k2) for some k1 > 0, k2 > 0. It can be seen that the Signδ(t,x) function is a continuous
function with respect to both time t and state x. When the magnitude of x is greater than δ(t), the
function Signδ(t,x) becomes equal to Sign(x). These properties make it effective in reducing the
chattering effect while still handling uncertainty. In comparison, the norm of the sigmoid function
x
|x|+ε is always less than 1 which does not deal with the uncertainty entirely. The sigmoid function
only leads to convergence of the state to an approximate region of the sliding surface, as reported,
e.g., in [24]. The suitable choice of the guiding function δ can remarkably reduce the chattering
effect. In practice, one can choose δ(t) = max{10−3, exp(−k1t − k2)} to avoid very small values
when t is large. This can be seen in Example 1, Figures 3–7.

6 Numerical Examples

In this section we provide some numerical examples to show the effectiveness of our approach.

Example 1. To test the effectiveness of our new approximation method, we will analyze a simple
one-dimensional system: ẋ ∈ µ − LSign(x), where µ is an uncertainty with a constraint |µ| < L.
As an example, let us set µ = 3 sinx and L = 4. It is known that the state variable x will converge
to zero in a finite time. To evaluate the numerical simulations, we use the explicit scheme with an
initial value of x0 = 0.1 (see Figure 3). The Sign function creates a chattering effect (as seen in the
state x1). However, by replacing the Sign function with Signδ(t,x) defined in equation (25), using
a guiding function δ(t) = e−0.5t and M = 1,N = 3, the chattering effect can be eliminated and the
convergence to zero is achieved (as seen in the state x3). The performance of this approximation
is better than using the sigmoid function with ε = 10−3 (as seen in the state x2).

Similarly, we can consider the same system ẋ ∈ µ − Lu in R3 where the control u can be
sign(x), Sign(x) or certain continuous approximation. Let us consider µ = (3 2 −1)T cos t,L = 40
with the initial condition x0 = (0.01 0.02 0.01)T . One can see in Figures 4 and 5 that the Sign
function reduces chattering better than the sign function since the Sign function is only discontinu-
ous at zero. On the other hand, Signδ(t,x) has the best performance in reducing chattering (Figure
7). It confirms that our time-dependent approximation worths considering as a good alternative
besides existing fixed approximations and merits further investigations.

Example 2. Next we consider the system (4) with

A =


−11 5 0

9 −10 0

0 0 −11

 ,B =


2

−3

4

 , f1(x,u) =


3u+ 0.8 sinx2

2u+ 0.9 cosx1

−u+ 0.8 sinx3
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Figure 3: An effective continuous approximation of Sign function in R
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Figure 4: The sytem state in R3 using sign function

f2(x,u) =


3 sinx2

0

0

 ,C =
(

5 −3 4
)

,F =
(

1 0 0
)

.
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Figure 5: The sytem state in R3 using Sign function
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Figure 6: The sytem state in R3 using sigmoid function with ε = 10−3

Suppose that the unknown θ = 3, the control input u = 8 cos t and

F(x) =


sign(x)(2|x|+ 5) if x 6= 0,

[−5, 5] if x = 0.
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Figure 7: The sytem state in R3 using Signδ(t,x) with δ(t) = max{10−3, e−5.5t}, M = 1, N = 3

The well-posedness of the original system and the sliding mode observer system follows (Theorem
3) since we have BTQ = C where

Q =


5/2 0 0

0 1 0

0 0 1


Then L1 = 0.9,L2 = 3,L3 = 3 and γ = 9.9. Then Assumptions 1–4 are satisfied with

P =


1 0 0

0 1 0

0 0 1

 , L =


0

14

0

 , ε = 0.2, K = 3.

We have a comparison between a standard Luenberger observer and the sliding mode observers
(9), (15) with x0 = (3 2 1)T , x̃0 = (15 − 20 11)T . Both sliding mode observers has quite same
performance and converge faster than the Luenberger observer obviously (Figure 8).

Example 3. Finally, we present an example to show the applicability of our approach, which
cannot be achieved using the Luenberger observer mentioned in [16]. Specifically, we consider the
identical data as in Example 2, with the only difference being that
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Figure 8: Errors using a Luenberger observer (in red) and the sliding mode observer (9) (in blue)

A =


−1.1 5 0

9 −1 0

0 0 −1.1


and the unknown θ = 3 sin t.

Let us assign the following values: L1 = 0.9,L2 = 3,L3 = 3, γ = 9.9 and γ′ = 0.9. It
becomes apparent that, for any matrix L, it is impossible to satisfy the condition A−LF ≤ −1.1I.
Basic calculations show that Assumption 4 cannot be fulfilled, thereby rendering the application
of the Luenberger observer in [16] unfeasible. However, by using the same values of P ,L, ε,K as
in Example 2, it is straightforward to verify Assumptions 1, 2, 3, 4’ of Theorem 5. By using the
sliding mode observer (15) with the gain β = 10, initializing the system with x0 = (3 2 1)T , x̃0 =
(15 27 16)T and employing an explicit scheme for F , Figure 9 shows the convergence of the error
e = x̃− x to zero.

Note that, Theorem 6 can be also applied with K = 0,Q = I2, ε = 0.2. The reduced-order
observer (23) becomes

˙̃z =

 −1 0

0 −1.1

 z̃ +

 −3

4

 ω̃ +

 9

0

x1

+ (0 I2)f1

( x1

z̃

 ,u
)

ω̃ ∈ −F(
(
−3 4

)
z̃ + 5x1).

(26)
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Figure 9: The convergence of the sliding mode observer (15)

However, the numerical convergence of the reduced-order observer (23) fails and is explosive in
this sensitive case as it relies on an approximation of x1 from the original system. Conversely, the
reduced-order observer (23) can be successfully applied to Example 2, primarily due to the highly
negative definiteness of A.

7 Conclusion and perspectives

In this paper, the advantages of sliding mode observers are demonstrated for set-valued Lur’e dy-
namical systems that are faced with uncertainties. The robustness of this observer technique is a
significant factor in the analysis and control of such systems. We also present a new continuous
approximation of the sliding mode technique, which provides improved performance compared to
conventional methods. However, the traditional condition (8) is a limiting factor in the applica-
bility. Further research is needed to explore the possibility of relaxing or removing this condition
to increase the range of systems that can be analyzed. This is an area that merits further investi-
gations and has the potential to enhance the performance of sliding mode observers for set-valued
Lur’e dynamical systems.
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the Reviewers for their careful reading of our manuscript and for raising many interesting questions,
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