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Sliding Mode Observer for Set-valued Lur’e Systems and

Chattering Removing

Samir Adly∗ Ba Khiet Le †

Abstract

In this paper, we study a sliding mode observer for a class of set-valued Lur’e systems
subject to uncertainties. We show that our approach has obvious advantages than the existing
Luenberger-like observers. Furthermore, we provide an effective continuous approximation to
eliminate the chattering effect in the sliding mode technique.
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1 Introduction

Hybrid systems are a class of dynamic systems that may present both continuous and discrete
behavior. They are characterized by the presence of continuous state variables, inputs/outputs, as
well as discrete state variables, inputs/outputs. On the other hand, Lur’e-type nonlinear systems
[21] are represented by the combination of a linear time-invariant system and a memoryless non-
linearity through a feedback connection. The link between Lur’e systems and hybrid systems lies
in the coupling of the continuous and discrete dynamics through the nonlinear state equation and
the linear output equation. This coupling makes Lur’e systems well-suited for modeling complex
physical, biological, or social systems that exhibit both continuous and discrete behavior, and have
found applications in areas such as control systems, signal processing, and system identification.
For a comprehensive guide to hybrid dynamical systems from the modeling, stability and robust-
ness point of view, we refer to [14]. In this paper we focus on Lur’e set-valued dynamical systems
where the nonlinear feedback is given by a set-valued relation. The Lur’e set-valued dynamical
system is a widely studied model in applied mathematics and control theory. In recent decades, it
has received significant attention, as evidenced by the numerous studies found in references such as
[1, 2, 3, 7, 8, 9, 10, 11, 13, 15, 16, 17, 18, 19, 20, 26]. Despite advancements in the understanding of
the system’s existence and uniqueness, stability and asymptotic analysis, the design of control and
observers still poses many interesting open questions. Specifically, most observers for Lur’e set-
valued systems follow the Luenberger design, which has limitations when the system is subjected to
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uncertainty, as discussed in references such as [15, 16, 17, 26]. Recently, using the powerful sliding
mode technique, B. K. Le in [20] proposed a sliding mode observer for a general class of set-valued
Lur’e systems subject to uncertainties as follows

ẋ(t) = Ax(t) +Bλ(t) + Eu(t) +Gξ(t,u,x) for a.e. t ∈ [0, +∞),

w(t) = Cx(t) +Dλ(t),

λ(t) ∈ −Ft(w(t)), t ≥ 0,

y(t) = Fx(t),

x(0) = x0,

(1)

where A ∈ Rn×n,B ∈ Rn×m,C ∈ Rm×n,D ∈ Rm×m,E ∈ Rn×l,F ∈ Rp×n,G ∈ Rn×k are given
matrices, λ and w are two connecting variables, u is the control input, y is the physically measurable
output and ξ is some uncertainty. The set-valued operator Ft : Rm ⇒ Rm is time-dependent and
assumed to be maximal monotone. Note that (1) can be rewritten into a first order time-dependent
differential inclusion as follows

ẋ ∈ Ax−B(F−1t +D)−1Cx+ Eu+Gξ, x(0) = x0. (2)

If D = 0 and Ft = F , we obtain the following classical case

ẋ ∈ Ax−BFCx+ Eu+Gξ.

The proposed sliding mode observer for (1) is

˙̃x ∈ Ax̃+Bλ̃− Ley + Eu− P−1F TΨ(ey),

w̃ = Cx̃+Dλ̃,

λ̃ ∈ −F(w̃ +Key),

ỹ = Fx̃,

(3)

where
e = x̃− x, ey = ỹ − y = Fe,

Ψ(ey) = σ1ey + (‖J‖ ρ(t,u, y) + σ2)Sign(ey)

and ρ is a bound of the uncertainty for some suitable matrix J and real number σ1 ≥ 0,σ2 > 0.
Then under some mild conditions, the observer state converges to the original state asymptotically
and the observation error converges to zero in finite time (we refer to [20] for more details).
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In this paper, our first contribution is to provide a sliding mode observer for the system con-
sidered in [15] as follows 

ẋ = Ax+Bω + f1(x,u) + f2(x,u)θ,

ω ∈ −F(Cx),

y = Fx,

(4)

where A ∈ Rn×n,B ∈ Rn×m,C ∈ Rm×n,F ∈ Rp×n are given matrix, x ∈ Rn is the state, F : Rm ⇒
Rm is a maximal monotone operator, u ∈ Rr is the control input and y ∈ Rp is the measurable
output. The functions f1, f2 are known smooth while θ ∈ Rl is an unknown constant parameter
vector. An adaptive Luenberger-like observer was proposed by Huang et al in [15]. In our paper,
the parameter θ may not always be constant, such as in the case of perturbations. Our sliding
mode approach is efficient and straightforward, without the need to solve an additional ordinary
differential equation, as seen in [15]. Our results show that the convergence of the observer state
to the actual state is exponential, while the rate of convergence in [15] is unknown. Additionally,
if the matrix function f2 is bounded, the conditions for solvability of the associated LMI are
significantly improved, leading to finite time convergence of the observation error under more
favorable assumptions than in [20]. Our contributions also extend to the reduced-order case, where
we have improved conditions. Lastly, we propose a new smooth approximation of the sliding mode
technique that reduces the chattering effect while still effectively managing uncertainty.

The paper is organized as follows. In Section 2, we revisit some key concepts. In Section 3, we
introduce a sliding mode observer for (4) and demonstrate that it holds more benefits compared
to the Luenberger-like observer discussed in [15]. Section 4 focuses on the reduced-order observer.
In Section 5, we present a new and refined version of the sliding mode technique. Numerical
examples to support the results are provided in Section 6. Finally, Section 7 concludes the paper
and highlights future possibilities.

2 Notations and mathematical background

We denote the scalar product and the corresponding norm of Euclidean spaces by 〈·, ·〉 and ‖ · ‖
respectively. A matrix P ∈ Rn×n is called positive definite, written P > 0, if there exists a > 0
such that

〈Px,x〉 ≥ a‖x‖2, ∀ x ∈ Rn.

The Sign function in Rm is defined by

Sign(x) =


x
‖x‖ if x 6= 0

B if x = 0,

where B denotes the unit ball in Rm.
A set-valued mapping F : Rm ⇒ Rm is called monotone if for all x, y ∈ Rm and x∗ ∈ F(x), y∗ ∈

F(y), one has
〈x∗ − y∗,x− y〉 ≥ 0.
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Figure 1: Sign function in R

Furthermore, F is called maximal monotone if there is no monotone operator G such that the graph
of F is contained strictly in the graph of G.

Lemma 1. [20] Let F ∈ Rp×n be a full row rank matrix (p ≤ n) and P ∈ Rn×n be a symmetric
positive definite matrix. If x ∈ im(P−1F T ) then

F T (FP−1F T )−1Fx = Px, (5)

where im(A) denotes the range of A.

3 Exponential convergence of the sliding mode observer

In this section, we will propose a sliding mode observer for the system (4) under the following
assumptions:

Assumption 1: The set-valued operator F : Rn ⇒ Rn is a monotone, upper semi-continuous
with non-empty, closed convex and bounded values.

Assumption 2: The functions f1 : Rn × Rr → Rn and f2 : Rn × Rr → Rn×l are Lipschitz
continuous w.r.t x, i. e., there exist L1 > 0 and L2 > 0 such that for all x1,x2 ∈ Rn,u ∈ Rr, we
have

‖f1(x1,u)− f2(x2,u)‖ ≤ L1‖x1 − x2‖ and ‖f2(x1,u)− f2(x2,u)‖ ≤ L2‖x1 − x2‖.

Assumption 3: The unknown θ(t,x,u) is bounded by L3 > 0.

4



Assumption 4: Let γ = L1 + L2L3. There exist ε > 0, P ∈ Rn×n > 0, L ∈ Rn×p, K ∈ Rm×p
and the matrix function h : Rn × Rr → Rl×p such that

P (A− LF ) + (A− LF )TP + γP 2 + γI + εI ≤ 0, (6)

BTP = C −KF , (7)

fT2 (x,u)P = h(x,u)F . (8)

Remark 1. From (8), we have f2(x,u) = P−1F ThT (x,u). It means that im(f2(x,u)) ∈ im(P−1F T )
for all (x,u).

The proposed sliding mode observer for (4) is
˙̃x = Ax̃+Bω̃ − Ley + f1(x̃,u)− βP−1F T ‖h(x̃,u)‖Sign(ey),

ω̃ ∈ −F(Cx̃−Key),

ỹ = Fx̃,

(9)

where β ≥ L3.

Remark 2. Under the conditions outlined in Assumptions 1 to 4, it has been established that
solutions for both the original system and the observer system exist. This is due to the fact that
the right-hand side operators in the corresponding differential inclusions are upper semi-continuous
and have non-empty, closed, convex, and bounded values (see for instance [5, 12, 15]).The following
result confirms the exponential convergence of the observer state to the original state.

Theorem 2. Let Assumptions 1–4 hold. Then the observer state x̃ of (9) exponentially converges
to the original state x of (4).

Proof. Let e = x̃− x, ey = ỹ − y = Fe. From (4) and (9), we have

ė ∈ (A− LF )e−B(ω̃ − ω) + f1(x̃,u)− f1(x,u)

− βP−1F T ‖h(x̃,u)‖Sign(ey)− f2(x,u)θ. (10)

Consider the Lyapunov function V (e) = 〈Pe, e〉. Then the orbital derivative of V is

V̇ (e) = 2〈P ė, e〉 = 2〈P (A− LF )e− PB(ω̃ − ω), e〉
+ 2〈P (f1(x̃,u)− f1(x,u)), e〉 − 2β‖h(x̃,u)‖‖ey‖ − 2〈Pf2(x,u)θ, e〉. (11)

From (7) and the monotonicity of F , we have

〈PB(ω̃ − ω), e〉 = 〈ω̃ − ω),BTPe〉 = 〈ω̃ − ω, (C −KF )e〉 ≤ 0. (12)

On the other hand

2〈P (f1(x̃,u)− f1(x,u)), e〉 ≤ 2L1‖e‖‖Pe‖ ≤ L1(‖e‖2 + ‖Pe‖2) (13)
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and

Y := −2β‖h(x̃,u)‖‖ey‖ − 2〈Pf2(x,u)θ, e〉
= −2β‖h(x̃,u)‖‖ey‖ − 2〈P (f2(x,u)− f2(x̃,u))θ, e〉 − 2〈Pf2(x̃,u)θ, e〉
≤ −2β‖h(x̃,u)‖‖ey‖+ 2L2L3‖e‖‖Pe‖ − 2〈θ,h(x̃,u)ey〉
≤ L2L3(‖e‖2 + ‖Pe‖2). (14)

Let αmax and αmin be the largest eigenvalue and the smallest eigenvalues of P , respectively. From
(6), (11), (12), (13) and (14), we have

dV

dt
≤ −ε‖e‖2 ≤ − ε

αmax
V (t).

Using Gronwall’s inequality, we obtain

αmin‖e‖2 ≤ V (t) ≤ exp(
−εt
αmax

)V (t0).

Hence, ‖e‖ ≤ exp( −εt
2αmax

)
√

V (t0)
αmin

and the conclusion follows.

Remark 3. (i) According to [15], under similar conditions, our implementation of a sliding mode
observer leads to an exponential convergence of the observer state, whereas the adaptive observer in
the same study only achieves convergence without a defined rate. Furthermore, our method avoids
the need to solve a high-dimensional additional ODE, which can be computationally expensive, as
seen in [15].
(ii) In Assumption 4, if h is bounded, then γ = L1 + L2L3 can be replaced by just L1, which is
usually much smaller than γ. This makes it easier to satisfy (6)-(8) and enables us to solve a wider
class of set-valued Lur’e systems that cannot be tackled using the method in [15]. Furthermore,
our technique also ensures finite time convergence of the observation error ey to zero. A bounded
matrix function h can be guaranteed if f2 is bounded and F is full row rank, as one can always
choose a full row rank matrix F for the output y = Fx without losing any information.

Lemma 3. Suppose that F ∈ Rp×n be a full row rank matrix. If f2 is bounded then h is also
bounded.

Proof. From Remark 1, we imply that h(x,u) = (FP−1F T )−1Ff2(x,u) and the condition follows.

Theorem 4. If h(x,u) is bounded by some constant L4 > 0 then γ in Assumption 4 can be reduced
to L1 to still obtain the exponential convergence of the original state by using the observer

x̃ = Ax̃+Bω̃ − Ley + f1(x̃,u) + βP−1F TSign(ey),

ω̃ ∈ −F(Cx̃−Key),

ỹ = Fx̃

(15)

where β > L3L4. In addition if F ∈ Rp×n be a full row rank matrix and im(B) ⊂ im(P−1F ) then
the observation error ey converges in explicitly finite time.
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Proof. Under the new assumption, in (14) we have

−β‖ey‖ − 〈Pf2(x,u)θ, e〉 = −β‖ey‖ − 〈θ,h(x,u)ey〉 ≤ −(β − L3L4)‖ey‖ ≤ 0

and similarly one obtains the exponential convergence of the observer state.
To attain the finite time convergence of the observation error, we consider the new Lyapunov

function W = 1
2〈ey, (FP−1F T )−1ey〉. Then

dW

dt
= 〈(FP−1F T )−1ėy, ey〉.

From (10), we have

ėy = F (A− LF )e− FB(ω̃ − ω) + F
(
f1(x̃,u)− f1(x,u)

)
− βFP−1F TSign(ey)− Ff2(x,u)θ. (16)

Since im(B) ⊂ im(P−1F ), using Lemma 1, we have

F T (FP−1F T )−1FB = PB

and hence

〈(FP−1F T )−1FB(ω̃ − ω), ey〉 = 〈F T (FP−1F T )−1FB(ω̃ − ω), e〉
= 〈PB(ω̃ − ω), e〉 = 〈ω̃ − ω,BTPe〉 = 〈ω̃ − ω, (C −KF )e〉 ≤ 0.

On the other hand, from (8) we deduce that f2 = P−1F ThT and thus

(FP−1F T )−1Ff2(x,u)θ = (FP−1F T )−1(FP−1F T )hT (x,u)θ = hT (x,u)θ. (17)

Since ‖e‖ ≤ exp( −εt
2αmax

)
√

V (t0)
αmin

as in the proof of Theorem 2, we can find some t1 > 0 such that for

all t ≥ t1, one has

‖(FP−1F T )−1
(
F (A− LF )e+ F

(
f1(x̃,u)− f1(x,u)

))
‖ ≤ σ

2

where σ = β − L3L4 > 0. Indeed, we can choose

t1 :=
2αmax
ε

ln
(2‖(FP−1F T )−1F‖(‖A− LF‖+ L1)

σ

√
V (t0)

αmin

)
.

Then for all t ≥ t1, we have

dW

dt
≤ σ

2
‖ey‖ − (β − ‖hT (x,u)θ‖)‖ey‖ ≤

σ

2
‖ey‖ − (β − L3L4)‖ey‖

= −σ
2
‖ey‖ ≤ −κ

√
W (t),

where κ := σ/
√

2γmax and γmax is the largest eigenvalue of (FP−1F T )−1 since ‖ey‖ ≥
√

2W (t)
µmax

.

Suppose that W (t) > 0 for all t ≥ t1 then we have

W ′

2
√
W
≤ −κ

2
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and thus √
W (t)−

√
W (t1) ≤ −

κ

2
(t− t1)→ −∞ as t→∞,

a contradiction. Let tf ≥ t1 be the first time such that W (tf ) = 0, then we deduce that W (t) = 0
for all t ≥ tf since W is non-negative and decreasing. It means that ey converges to 0 in finite
time. Similarly as above we have

−
√
W (t1) =

√
W (tf )−

√
W (t1) ≤ −

κ

2
(tf − t1)

and hence
tf ≤ t1 + 2

√
W (t1)/κ.

Remark 4. (i) Based on the observation (17), we can have a significantly better estimation for the
gain β than in [20]. Indeed, in the current paper the gain β does not change to obtain the finite
time convergence of the observation error from the exponential convergence of the observer state.
In addition, we can also provide an explicit estimation for tf .
(ii) If Assumption 1 is substituted by the maximal monotone property of the set-valued F , sim-
ilar results can still be obtained. The existence of solutions for the original system (4) remains
guaranteed, as shown in references such as [5, 12]. Existence of solutions to the observer systems
(9), (15) can be also obtained by approximating the Sign set-valued operator with smooth func-
tions. It’s worth mentioning that the normal cone operator NC , which is associated to a nonempty
closed convex set C, is a crucial maximal monotone set-valued mapping in mechanical and electrical
engineering that does not satisfy the boundedness requirement in Assumption 1.

4 Reduced-order observer

Suppose that the given matrices and matrix-functions can be decomposed as follows

x =

 x1

x2

 , A =

 A11 A12

A21 A22

 ,B =

 B1

B2

 ,C = (C1 C2),F = (Fq 0)

P =

 P11 P12

P21 P22

 , f1(x,u) =

 f11(x,u)

f12(x,u)

 , f2(x,u) =

 f21(x,u)

f22(x,u)

 ,

where Fq ∈ Rq×q is an invertible matrix and the following is satisfied:

Assumption 4’: There exist ε > 0, Q ∈ R(n−q)×(n−q) > 0, P22 ∈ R(n−q)×(n−q) invertible,
P21 ∈ R(n−q)×q such that

Q(A22 +KA12) + (A22 +KA12)
TQ+ L1Q(KKT + In−q)Q

+(L1 + ε)In−q ≤ 0, (18)

(B2 +KB1)
TQ = C2, (19)(

P21 P22

)
f2(x,u) = 0, (20)
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where K = P−122 P21.

Note that (4) can be rewritten as follows

ẋ1 = A11x1 +A12x2 +B1ω + f11

( x1

x2

 ,u
)

+ f21

( x1

x2

 ,u
)
θ

ẋ2 = A21x1 +A22x2 +B2ω + f12

( x1

x2

 ,u
)

+ f22

( x1

x2

 ,u
)
θ

ω ∈ −F(C1x1 + C2x2)

y = Fqx1.

(21)

Using (20), we have

ż = (A22 +KA12)z + (B2 +KB1)ω + [(A21 +KA11)− (A22 +KA12)K]x1

+ (K In−q)f1

( x1

z −Kx1

 ,u
)

ω ∈ −F(C2z + (C1 − C2K)x1),

x2 = z −Kx1.

(22)

The adaptive observer is

˙̃z = (A22 +KA12)z̃ + (B2 +KB1)ω̃ + [(A21 +KA11)− (A22 +KA12)K]x1

+ (K In−q)f1

( x1

z̃ −Kx1

 ,u
)

ω̃ ∈ −F(C2z̃ + (C1 − C2K)x1),

x̃2 = z̃ −Kx1.

(23)

Theorem 5. Let Assumptions 1, 2, 3, 4’ hold. Then (23) is a reduced-order observer of (4), i.e.,
lim
t→∞

(x2(t)− x̃2(t)) = 0.

Proof. Let ez = z̃ − z. Then we have

ėz = (A22 +KA12)ez + (B2 +KB1)(ω̃ − ω)

+ (K In−q)
[
f1

( x1

z̃ −Kx1

 ,u
)
− f1

( x1

z −Kx1

 ,u
)]

ω ∈ −F(C2z + (C1 − C2K)x1).

ω̃ ∈ −F(C2z̃ + (C1 − C2K)x1).

(24)
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Let us consider the Lyapunov function W (ez) = 〈Qez, ez〉, then Ẇ (ez) = 2〈Qėz, ez〉. From (19)
and the monotonicity of F , we have

〈Q(B2 +KB1)(ω̃ − ω), ez〉 = 〈ω̃ − ω, (B2 +KB1)
TQez〉 = 〈ω̃ − ω,C2ez〉 ≤ 0.

On the other hand

〈2Q(K In−q)
[
f1

( x1

z̃ −Kx1

 ,u
)
− f1

( x1

z −Kx1

 ,u
)]

, ez〉

≤ 2L1‖Q(K In−q)ez‖‖ez‖ ≤ L1e
T
z Q(K In−q)(K In−q)

TQez + L1e
T
z ez

≤ L1e
T
z Q(KKT + In−q)Qez + L1e

T
z ez.

Combining with (18), similarly as in the proof of Theorem 2, we have Ẇ (ez) ≤ −ε‖ez‖2. It deduces
that ez converges to zero exponentially and the conclusion follows.

Remark 5. (i) Note that if we have (8), then Pf2(x,u) = F Th(x,u) and thus(
P21 P22

)
f2(x,u) = 0. It would be interesting to improve or remove the condition (20).

(ii) When the matrices are decomposable, it is more effective to provide assumptions directly with
the new lower-dimension matrices. Note that Assumption 4’ is strictly weaker than Assumption 4
even when Q = P22 [15]. It is remarkable that Q > 0 can be different from P and it is unnecessary
to require that P > 0 but only invertible P22.

5 A new continuous approximate of the sliding mode technique

Although the sliding mode method is effective, it has a persistent issue: the chattering effect caused
by the discontinuity of the Sign function. To eliminate this issue, the Sign function in R is typically
approximated by the “sigmoid function” (as noted in [22])

Sign(x) ≈ x

|x|+ ε

or by [23]

Sign(x) ≈ x√
x2 + ε

for some small fixed δ > 0. Other continuous approximates can be also found in [23].
In this paper, we provide a new smooth approximate of the set-valued function Sign by using a

time-dependent guiding function. Given a continuous guiding function δ : R+ → R+, we define the
function Signδ : R+ × Rn → Rn as follows

Signδ(t,x) =



x
‖x‖ −

1−‖x‖/δ(t)
(1+M‖x‖)N

x
‖x‖ if x 6= 0 and ‖x‖ ≤ δ(t),

x
‖x‖ if ‖x‖ > δ(t),

0 if x = 0,

(25)
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Figure 2: Sign function in R and its approximations

for some M ,N > 0 and the function δ(·) is decreasing which converges to zero when t → ∞. For
example, we can choose δ(t) = exp(−k1t − k2) for some k1 > 0, k2 > 0. It can be seen that the
Signδ(t,x) function is a continuous and smooth function with respect to both time t and state x.
When the magnitude of x is greater than δ(t), the function Signδ(t,x) becomes equal to Sign(x).
This property makes it effective in reducing the chattering effect while still handling uncertainty.
In comparison, the norm of the sigmoid function x

|x|+ε is always less than 1 which does not deal
with the uncertainty entirely. The sigmoid function only leads to convergence of the state to an
approximate region of the sliding surface, as reported, e.g., in [22]. The suitable choice of the
guiding function δ can completely remove the chattering effect. This can be seen in Example 1,
Figure 3.

6 Numerical Examples

In this section we provide some numerical examples to show the effectiveness of our approach.

Example 1. To test the effectiveness of our new approximation method, we will analyze a simple
one-dimensional system: ẋ ∈ µ − LSign(x), where µ is an uncertainty with a constraint |µ| < L.
As an example, let us set µ = 3 sinx and L = 4. It is known that the state variable x will converge
to zero in a finite time. To evaluate the numerical simulations, we use the explicit scheme with an
initial value of x0 = 0.1 (see Figure 3). The Sign function creates a chattering effect (as seen in the
state x1). However, by replacing the Sign function with Signδ(t,x) defined in equation (25), using
a guiding function δ(t) = e−0.5t and M = 1,N = 3, the chattering effect can be eliminated and the
convergence to zero is achieved (as seen in the state x3). The performance of this approximation
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is better than using the sigmoid function with ε = 10−3 or ε = 10−6 (as seen in the state x2). It is
important to note that the implicit scheme can only remove the chattering effect numerically.
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Figure 3: An effective continuous approximation of Sign function in R

Example 2. Next we consider the system (4) with the following data

A =


−1 5 0

9 −0.9 0

0 0 −1

 ,B =


2

−3

4

 , f1(x,u) =


3u+ 0.8 sinx2

2u+ 0.9 cosx1

−u+ 0.8 sinx3



f2(x,u) =


3 sinx2

0

0

 ,C =
(

5 −3 4
)

,F =
(

1 0 0
)

.

Suppose that the unknown θ = 3 sin t, the control input u = 8 cos t and

F(x) =


sign(x)(2|x|+ 5) if x 6= 0,

[−5, 5] if x = 0.

Then L1 = 0.8,L2 = 3,L3 = 3 and γ = 9.8. We cannot find the matrices P ,K,L such that the
LMIs in Assumption 4 (and also the LMIs in [15]) are satisfied but Theorem 4 can be applied with

P =


1 0 0

0 1 0

0 0 1

 , L =


0

14

0

 , ε = 0.2, K = 3.

Using the sliding mode observer (15) with the gain β = 10 and initial point x0 = (3 2 1)T , x̃0 =
(15 27 16)T , the convergence of the error e = x̃− x to zero can be seen in the Figure 4.
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Figure 4: The convergence of the sliding mode observer (15)

7 Conclusion and perspectives

In this paper, the advantages of sliding mode observers are demonstrated for set-valued Lur’e
dynamical systems that are faced with uncertainties. The robustness of this observer technique is
a significant factor in the analysis and control of such systems. We also present a new and efficient
continuous approximation of the sliding mode technique, which provides improved performance
compared to conventional methods. However, the traditional condition (8) is a limiting factor in
the applicability. Further research is needed to explore the possibility of relaxing or removing
this condition to increase the range of systems that can be analyzed. This is an area that merits
further investigations and has the potential to enhance the performance of sliding mode observers
for set-valued Lur’e dynamical systems.
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