
HAL Id: hal-04051629
https://hal.science/hal-04051629

Submitted on 30 Mar 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Innovative Countermeasures to Defeat Cyber Attacks
Against Blockchain Wallets: A Crypto Terminal Use

Case
Pascal Urien

To cite this version:
Pascal Urien. Innovative Countermeasures to Defeat Cyber Attacks Against Blockchain Wallets: A
Crypto Terminal Use Case. 5th Cyber Security in Networking Conference (CSNet), 2021, IEEE, Oct
2021, Rio de Jaineiro, Brazil. pp.49-54, �10.1109/csnet52717.2021.9614649�. �hal-04051629�

https://hal.science/hal-04051629
https://hal.archives-ouvertes.fr

Innovative Countermeasures to Defeat Cyber Attacks
Against Blockchain Wallets:
A Crypto Terminal Use Case

Pascal Urien
 Telecom Paris

19 Place Marguerite Perey 91120 Palaiseau, France
Pascal.Urien@telecom-paris.fr

Abstract— Blockchain transactions are signed by private keys.

Secure key storage and tamper-proof computers are essential
requirements for deploying a trusted infrastructure. In this
paper, we identify some threats against blockchain wallets and
propose a set of physical and logical countermeasures to thwart
them. We present the crypto terminal device, operating with a
removable secure element, built on open software and hardware
architectures, capable of detecting a cloned device or corrupted
software. These technologies are based on tamper-resistant
computing (javacard), smart card anti-cloning, smart card
content attestation, application firewall, bare-metal architecture,
remote attestation, dynamic Physical Unclonable Function
(dPUF), and programming tokens as a root of trust.

This paper is an extended version of the paper "Innovative

Countermeasures to Defeat Cyber Attacks Against Blockchain
Wallets," 2021 5th Cyber Security in Networking Conference
(CSNet), 2021, pp. 49-54, doi: 10.1109/CSNet52717.2021.9614649.

Keywords: blockchain, security, smartcard, PUF, remote

attestation

I. INTRODUCTION
Blockchain transactions are signed by private keys, which

imply security requirements similar to those of electronic
signature processes or EMV payments made using bank cards
and payment terminals.

The main security requirements are secure key generation,
secure key storage, and tamper resistance. Some threats of key
theft are listed in [29].

A secret key is an integer value whose size is 32 bytes for a
256-bit elliptic curve. The best practice should be to use a true
random number generator (TRNG). Nevertheless, many
wallets use passphrases as seeds for key generation; they are
based on a choice of words (e.g., 12 values chosen from 2048),
which leads to 2132 possible combinations. The article [30]
suggests recovering the passphrase by a brute-force dictionary
attack. Another technique, called “brain wallet”, calculates the
private keys from the passphrases using a hash procedure; the
article [31] demonstrates brute-force attacks.

Many blockchains, for example, Bitcoin or Ethereum, use
the ECDSA (Elliptic Curve Digital Signature Algorithm)
signature. This procedure generates a random number k, and a
point on the elliptic curve (secp256k1) with the generator G,

k.G= (x,y) from which is calculated an integer r= x mod n, n
being the order of the curve. The knowledge of k, the reuse of
k, or a known difference between two values of k, makes it
possible to recover the private key. The paper [32] studied
such a key leakage in Bitcoin. It extracted 647,110,920
signatures and found 1,068 distinct r-values appearing at least
twice and used by 4,433 keys, or about 0.35% of the r-values.
The most frequently observed value is k = 1/2 mod n. It
should be mentioned that malicious random number
generators, such as kleptograms [33][34][35], can be used to
recover private keys after two signatures.

Even if the signatures are computed by a secure and trusted
device, they can be performed by malicious software, whose
purpose is to generate fraudulent transactions.

In EMV payment systems, point-of-sale (POS) terminals
are equipped with security stickers and battery-powered
electronics to detect attempted fraudulent use. The PCI
Security Standards Council lists approved companies and
vendors. Nevertheless, no standards are available today for
assessing security in blockchain operations. In addition, low-
cost wallets are sold by e-commerce stores and delivered by
untrusted supply chains.

Secure elements, such as smart cards, are an effective
technology for providing secure storage and trusted
cryptographic operations, with high levels of security (EAL
6+ according to Common Criteria -CC- standards) and
countermeasures to counter side-channel threats. However, as
with EMV cards, it is necessary to detect malicious clones.

Secure elements require a terminal with additional
functionalities: user interface (touch screen, etc.) and
communication (USB, Bluetooth, etc.). Proof of integrity of
the software executed by the terminal is an essential
prerequisite. From an industrial property point of view,
detecting counterfeit electronic cards is an important feature.

In this paper, we describe a dedicated blockchain terminal
based on open hardware (i.e., Arduino platform) and software
technologies. It incorporates a set of countermeasures capable
of verifying the authenticity and integrity of the firmware and
detecting cloned devices. Thanks to the open hardware, the
terminal is realized with components supported by the
Arduino integrated development environment (IDE), but it can
also be integrated into a dedicated electronic board.

The first prototype [9] used a two-line 16-character LCD
and a 4x4 keyboard. These elements were replaced by a touch

screen in the second prototype [10], which also supports a
Bluetooth Low Energy (BLE) interface. An original ISO7816
library has been developed to support smart cards by Arduino
environments. The firmware integrates a set of original
security features detailed in [16] [17] [19], whose goal is to
provide a bare-metal architecture with a root of trust, a
software attestation procedure, and hardware fingerprints.

This paper is organized according to the following outline.
Section 2 briefly introduces the blockchain wallet state of the
art and identifies some threats; it also presents an original
algorithm to detect duplicated code shards. Section 3
describes the crypto terminal, an open device that integrates a
set of countermeasures. Section 4 details the javacard security
features: tamper-resistant computing, anti-cloning, content
self-attestation. Section 5 presents the terminal security
features: applicative firewall and bare-metal architecture.
Section 6 introduces remote attestation using the BMAC
algorithm. Section 7 describes static and dynamic PUF.
Section 8 introduces programming tokens as a root of trust.
Finally, Section 9 concludes this paper.

II. . STATE OF THE ART

A. Blockchain Wallet

Fig1. Overview of blockchain wallets.

A blockchain wallet comprises two parts: a set of private
keys used to sign transactions and a set of parameters needed
to generate transactions. The secure storage and use of private
keys is a major security prerequisite.

While cryptographic keys can be used without
communication with the blockchain infrastructure, the
information needed to build a transaction must be retrieved,
which requires an Internet connection. Figure 1 illustrates two
broad categories of blockchain wallets: hot wallets (with
TCP/IP stack) and cold wallets (without TCP/IP stack).

The first generation of hot wallets was based on software
without tamper-resistant features

Fig2. Private key storage in the wallet.dat file used by the bitcoin.exe
software for windows

As an example, the Bitcoin.exe software for win32 was
written in 2009 by Satoshi Nakamoto [1]; it consists of about
16,000 lines of C++ code, and its binary image is 6 MB. It
included information managed by a non-SQL database, the

Berkeley DB. In particular, the private keys were stored in the
file named wallet.dat. As shown in Figure 2, the private key
(colored in yellow) is not encrypted and can be identified by
its associated Bitcoin address:

 "16iLh7ztLh2mwkhSvZeHxKWQVVMGGgfWGq"

In the Bitcoin system, the coinbase transaction is the first

transaction in a block, used to transfer the potential reward to
an address identified by its Hash160 attribute:

ℎ160ݏܽܪ = ൯(ݕ݁ܭ݈ܾܿ݅ݑܲ)256ܣܪ160൫ܵܦܯܧܲܫܴ

 The bitcoin.exe software generates a random address before
mining a new block. The loss or theft of the unprotected
wallet.dat file was a major risk, not always understood by
early miners.

Many blockchains use the Elliptic Curve Digital Signature
Algorithm (ECDSA) signature. Given a message signature
made of two integers (r,s):

ݏ = ݇−1 (݁ + .ݖ ݊ ݀݋݉ (ݎ

with n being the group order, e the message hash, z the private
key, k a random number kG=(x,y), and r=x mod n.

And given two signatures of two different messages, M1
and M2, with the same r in (r,s1) and (r,s2), e1=hash(M1),
e2=hash(M2), the private key is computed as:

= ݖ (݁1. 2ݏ − ݁2 . 1−ݎ (1ݏ 1ݏ) ݊ ݀݋݉ 1−(2ݏ −

Therefore, ECDSA generation requires a random number

generator (RNG) or a deterministic procedure based on the
message fingerprint (as detailed by RFC 6979). In 2010, EC
private keys were extracted from PS3 consoles by exploiting
the lack of a random number generator [21]. ECDSA,
therefore, relies on trusted software.

Fig3. Illustration of hierarchical deterministic wallets, according to the BIP32

specification

In Bitcoin, according to the BIP32 specification, keys are
computed in deterministic wallets (see Figure 3). A root secret
(512 bits), divided into two parts (IL0 and IH0), is calculated

from a seed. Then, child nodes, identified by a 32-bit integer
index, compute 512-bit secrets based on their parents’ IL and
IR attributes, using the CKD(m,i) procedure. Finally, the
private keys (256 bits) are computed, from which the account
addresses are derived. Therefore, an address (and the
associated private key) is identified by a path in the BIP32 key
tree. The suggested hierarchy is as follows: master node,
wallet accounts, wallet chains and addresses.

The BIP32 seed can be computed from a passphrase
according to the BIP19 specification. The passphrase is a set
of words selected from a dedicated list of 2048 elements. The
computation procedure is based on the password-based key
derivation function (PBKDF2) defined by RFC 2898. This
mechanism allows the recovery of deterministic wallets, as the
key paths (i.e., the key identifiers) are public values.
Nevertheless, if the passphrase is stolen, the private keys can
be recovered by a brute-force attack on the key identifiers.

In 2014, a major Bitcoin company, Mt.Gox, went bankrupt
due to a data breach in untested software, leading to the
illegitimate use of private keys [29]. In addition, the privileges
of system administrators allow the hacking of private keys. As
an illustration, Bitfi [2] is a UNIX smartphone without a
baseband chip, including an SD memory card, and offering
Wi-Fi connectivity. It was rooted, and private keys were
extracted.

To prevent these attacks, data centers use Hardware
Security Modules (HSMs), whose security requirements are
described in the FIPS 140-2 standard (“Security Requirements
For Cryptographic Modules”) [3]. Four security levels are
defined, ranging, according to the Common Criteria (CC)
terminology, from EAL1 to EAL4. Cryptographic keys are
managed by tamper-resistant systems whose access requires
multi-factor authentication (e.g., password, hardware key, and
PIN). For example, Coinbase recommends [4] storing the
PIN-protected hardware key in a vault so that its use involves
two human brains, one of which knows the smart card PIN
and the other the vault combination.

Some smartphone wallets are based on a hardware keystore,
which runs in a TEE (Trusted Environment Execution)
processor [5]. Most Android mobiles are equipped with such
processors. TEE implements a secure computing environment;
however, according to [22], the hardware techniques and
processes used for smart cards do not apply to standard
System-on-Chip (SoC) technology.

The main idea of cold wallets is the offline storage of
private keys. Communication with the outside world uses
USB, Bluetooth, Wi-Fi, or QR codes read by a camera and
displayed on screens (e.g., cobo vault).

There are two broad categories of cold wallets: those that
are fully software-based and those that include a tamper-
resistant device.

The Trezor One is an all-software device with a screen, two
buttons, and a USB interface. According to [6], the private
keys were recovered by a single-powered attack (SPA)
exploiting the unprotected implementation of the double and
add algorithm, in which a public key (zG, G being a generator)
is computed by parsing bit by bit, the private key z.

ݖ = ෍ ܾ݅ . 2݅ , ܾ݅ ∈ {0,1}
255

݅=0

An elliptic curve addition is computed for every non-null bit,
which enables the bit recovery, for example, by monitoring
the power consumption.

ܩݖ = ෍ ܾ݅ . ݅ܦ , 0ܦ = ,ܩ 0<݅ܦ = 2. 1−݅ܦ

255

0

Some wallets use crypto memory (for example, Safe-T Archos)
or Trusted Execution Environment (for example, Archos Safe-
T Touch). Crypto memory devices provide secure storage;
they work with mutual authentication procedures and
encrypted content.

The Ledger Nano S stores keys in a secure element. The
device comprises a microcontroller, a secure element, a screen,
two buttons, and a USB interface. Upon reset, a software
handler sends memory chunks to the secure element, which
hashes their content, and finally checks a signature; upon
success, the secure element is unlocked. This mechanism was
broken [7] by using a duplicate area of memory. The reference
[8] demonstrated a successful replacement of the token
software.

Fig4. Illustration 64 bytes duplicate code shards

As illustrated by [7], software instruction blocks may be
duplicated. We call shards these blocks. We assume that
shards do not include instructions that explicitly modify the
program counter (PC), such as JUMP or CALL. An example
of code shards is provided in Figure 4. We implemented
original procedures based on Ukkonen’s algorithm for Suffix
Tree Construction [23] to detect and remove shards. This
algorithm finds the longest duplicated binary string; replicas
are replaced by random numbers. Finally, it produces a list of
duplicate code fragments and their size.

Fig5. Illustration of code compression, using duplicated code shards; freed
memory space is colored in blue

As illustrated by Figure 5 (using instruction mnemonics
from AVR processors), shards can be compressed by CALL,
JUMP, and RTS instructions. The shard instructions are
inserted in a subroutine, ended by RTS; the execution time is
increased, but some extra memory is available for malicious
code. An example of the result is presented in Figure 6.

Fig6. Illustration of code compression, using duplicated code shards; which

frees 52 bytes

B. Threats
As mentioned above, hot wallets require online technology.

They are therefore exposed to all the security threats cloud
providers face, the most critical being secure key storage and
their remote use. It should be noted that insider attacks are
predominant and require a specific physical and logical
security policy.

Cold wallets are obviously not exposed to such attacks;
however, they are subject to threats that are listed in the
following (non-exhaustive) list:

- T1) Lack of tamper-resistant storage and countermeasures
for side-channel attacks, which allows cryptographic keys to
be recovered at runtime;

- T2) Supply chain attacks aimed at malware injection or
malicious firmware modification;

- T3) Software integrity is not verified. A bootloader
checks the integrity of the updated firmware. It can be
corrupted, similar to rootkits;

- T4) PIN or password hacking. For example, a key logger
captures the text entered on the keyboard;

- T5) Misuse of the device from a laptop or cell phone,
running a Trojan horse or worm;

- T6) Cloning of genuine devices. Clones, with equivalent
features, include hidden functions targeting the recovery of
cryptographic keys.

III. ABOUT THE CRYPTO TERMINAL
The crypto terminal [10] is a keystore for blockchain

wallets, designed to prevent these threats, thanks to adapted
countermeasures. Its main services are the generation of
signatures or transactions, with a high level of security and
trust. However, it requires an external software component
running on a PC or mobile device, which collects the
information necessary to generate the transaction under the
user’s control.

It is based on open software and hardware, namely Arduino
and javacard 3.0.4, which means that many form factors are
possible. The core of the security is a removable javacard [11],
which generates, computes, and stores the account keys and
performs the transaction signatures.

Fig7. Crypto terminal hardware components

A. Open Hardware & Software
The crypto terminal (see Figure 7) comprises an 8-bit

ATMEGA2560 microcontroller (16 MHz clock, 256KB
FLASH, 8KB SRAM, 4KB EEPROM), a USB chip (CH340),
a Bluetooth Low Energy (BLE) module [12] (CC2541,
256KB FLASH, 8KB SRAM), a 320x480 In-Plane Switching
(IPS) touch screen (ILI 9486), a USBASP programming token
[13] (ATMEGA8, 8KB FLASH, 1KB SRAM, 512B
EEPROM), and a removable smart card (EAL6).

The BLE chip uses a five-wire interface for software
download, the specifications of which are public. It can be
flashed (up to 256KB) by open software, such as
CCLOADER [24].

The USB programmer for Atmel AVR microcontrollers
(USBASP) is an open project [13], including both hardware
and software developments. It is supported by the open AVR
Downloader/UploaDEr (AVRDUDE) initiative. Therefore, a
complete platform is available for firmware download.

The ILI9486 is a device manufactured by ILI Technology
Corporation. It includes a 40-pin interface with five control
lines, an 8-bit data bus, and four wires dedicated to the
resistive touch screen

Fig8. Crypto terminal software components

The crypto terminal uses a set of five software packages
(shown in Figure 8):

-S1) the main processor (AVR) firmware, up to 256KB;
-S2) the BLE module firmware, up to 256KB;
-S3) the firmware of the Java card;
-S4) USBASP bootloader;
-S5) the USBASP firmware, downloaded via the bootloader.

B. Countermeasures against Cyber Attacks
We believe that trust in signatures is a key feature for the

development of blockchain services. That is why we have
developed and published technologies and algorithms to
achieve integrity assurance for the software and hardware
involved in signing transactions.

The security model includes the following elements:
C1) The security core is an EAL5+/ EAL6 removable

security element (javacard), which stores the keys and
performs the transaction signatures. Access to the smart card
is protected by PINs.

C2) The authenticity of the smart card is guaranteed by an
anti-cloning mechanism to detect “Evil Maid”-like attacks.
The idea of such attacks is to use a cloned card to collect the
user’s keys. The public key of the smart card is signed by a
certification authority (CA).

C3) The crypto terminal can duplicate the cryptographic
contents of the secure element. The content of the smart card
is self-attested (i.e., hashed and signed by the smart card).

C4) The crypto terminal acts as a firewall between the
security element and the “hot” environment connected to the
Internet. It also performs operations (key generation,
signatures, etc.) in “cold” mode (i.e., without being connected
to the Internet).

C5) Our security model is based on the “bare-metal”
concept (i.e., the terminal is delivered without firmware and
the Bluetooth module). Using a programming token, the user
may flash these devices at any time.

C6) The firmware is authenticated by a built-in “Remote
Attestation” algorithm. This algorithm [14] [15] [16] produces
a result (which we call the authentication code) that cannot be
predicted and requires a computation time depending on the
result. A server can generate these codes, but so can the
legitimate user, thus creating personal and unique
authentication codes.

C7) Physical authentications of the cryptographic terminal
processor and the programming token processor are
performed using dynamic Physical Unclonable Function (PUF)
techniques of SRAM (dPUF) [17]. A software memory probe
extracts fingerprints from the SRAM after power-up.
Innovative procedures have been developed to acquire such
fingerprints, including singular points called flipping bits.
Flipping bits [18] cannot be cloned by software. This
technique ensures that devices received by clients are
authentic.

C8) The programming token is a root of trust [19]. It
manages the download of the processor firmware of the crypto
terminal. We insert bootloader software [20] inside the
programming token processor. The authenticity of this
software is proved by a remote attestation algorithm
generating authentication codes displayed by flashing LEDs.
As mentioned earlier, the physical identity (dPUF) of this
token allows clone detection.

IV. JAVACARD SECURITY ELEMENTS
The javacard runs a crypto currency (CC) application

written in the javacard programming language [11]. These
smart cards are available from multiple manufacturers, with
evaluation assurance levels (EAL) ranging from EAL5+ to
EAL6+, according to the terminology of the Common Criteria
standards. In a nutshell, the CC applet is a keystore, which
provides secure key storage and ECDSA signing on a
secp256k1 elliptic curve. The CC applet supports two-factor
authentication: the knowledge of two PINs enables two
working modes. The administrator mode gives access to all
smart card services; the user mode allows reading public
attributes and signatures.

According to Wikipedia, “An evil maid attack is an attack
on an unattended device, in which an attacker with physical
access alters it in some undetectable way so that they can
later access the device, or the data on it.” A smart card
software clone can include a backdoor. The principle of the
“evil maid” attack consists in recovering the cryptographic
keys of an unauthentic smart card.

To counter these threats, the CC application creates a
private (Privk) and public (Pubk) key pair during its
instantiation. The public key is the identity of the device. The
hash of this value is signed by a certification authority (CA),
according to the ECDSA algorithm and the private key PrivCA.
So a tuple of two integer values (r,s) realizes the device
certificate:

݇ݐݎ݁ܥ = ,ݎ) (ݏ = ݒ݅ݎܲܣܵܦܥܧ ܣܥ ൫ܾܵ݇ݑܲ)256ܣܪ)൯

In order to authenticate a genuine smart card, the crypto

terminal performs the following procedure:
- 1) Reading the public key, Pubk
- 2) Reading the certificate of the public key, Certk
- 3) Verifying Certk with the CA’s public key, PubCA
- 4) The knowledge of Privk is proven through a

challenge/response procedure. The terminal generates a
random value (rnd) signed by the javacard private key:

ݒ݅ݎܲܣܵܦܥܧ ݇ (݀݊ݎ)

This signature is verified with Pubk.
The self-attestation of the smartcard contents is produced

according to the following procedure:
- 1) The crypto terminal generates a random value. The CC

application calculates a hash value of its contents,
concatenates this value with the random value, and generates a
signature with its private key. The hash is returned with the
signature; the response contains the following data:

ℎܽݏℎ || ݒ݅ݎܲܣܵܦܥܧ ݇ (ℎܽݏℎ || ݀݊ݎ)

-2) The crypto terminal verifies the signature and, if

successful, displays the hash (i.e., the fingerprint of the smart
card’s contents).

V. TERMINAL SECURITY ELEMENTS
The firmware of the main processor controls the data

exchange with the secure element. PIN entry from the touch
screen prevents key logger attacks on the laptop or
smartphone. All security-sensitive operations, such as signing,
setting or exporting keys, are confirmed by the user to prevent
unwanted actions by malware.

In the bare-metal approach, embedded firmware is erased
and fully downloaded. Firmware flashing should prevent
supply chain attacks, as it provides implicit proof of software
integrity.

The programming sequence for the crypto terminal is as
follows:

- 1) The main processor code is downloaded via an ICSP
(In-Circuit Serial Programming) port. This firmware stores the
certification authority’s public key (used to authenticate the
smart card) and a loader for the BLE module.

- 2) The BLE module is flashed using the USB interface
and the built-in dedicated loader.

It should be noted that the touch screen device (ILI 9486)
also includes a microcontroller unit (MCU), whose internal
firmware cannot be updated. Nevertheless, the main processor
only transmits data to this device and controls communication,
thus reducing the attack surface.

The main processor firmware incorporates a remote
attestation algorithm (detailed in Section 6) and is also
capable of dumping and hashing the BLE module code.

The programming token (USBASP) stores a 2KB
bootloader. Its integrity is proven by a remote attestation
procedure detailed in Section 6.

VI. REMOTE ATTESTATION
Integrity checking at runtime is a major security issue.

Bare-metal functionality allows firmware to be downloaded at
any time, so there is always a need to ensure the integrity of
the software. To achieve this goal, we have designed a
dedicated remote attestation algorithm called bijective MAC
(bMAC).

Remote attestation is a process by which a trusted entity
(the verifier) remotely measures the internal state of an
untrusted and possibly compromised device (the verifier).

The bMAC verification is a self-verifying hash code (i.e.,
an instruction sequence that computes a fingerprint on itself
and the memory contents), such that the MAC checksum is
erroneous or the computation is slower if the instruction
sequence or the memory contents are changed.

bMAC computes a fingerprint (h) on a set (A) of memories
(FLASH, SRAM, EEPROM), whose size is m bytes,
according to a pseudo-random order, fixed by a permutation P,
such that:

(ܲ)ܥܣܯܾ = ℎ((0)ܲ)ܣ || … (݅)ܲ)ܣ … ݉)ܲ)ܣ || − 1))

The ICE algorithm presented in [14] computes a memory

checksum according to a particular permutation. The
permutation is an Invertible Mapping introduced in [25].

(ݔ)ܲ = ݔ 2ݔ + ∨ 2݊ ݀݋݉ ܥ

The least significant bit and the third bit of the constant C

are both set to 1. In [14], n=16 (16-bit word) and C=5. The
ICE algorithm has been implemented in a 16-bit von
Neumann architecture with a hardware multiplier, leading to
an optimized code size and execution time.

The paper [26] gives an exact characterization of the
permutation polynomials modulo n=2w, with w ≥2

(ݔ)ܲ = ܽ0 ݔ1ܽ + + ⋯ + ܽ݀ ݀ݔ ݓ2 ݀݋݉

P(x) is a permutation polynomial if and only if a1 is odd, the
sum (a2+a4+a6+…) is even, and the sum (a3+a5+a7+…) is even.

The paper [27] demonstrates that:

(ݔ)ܲ = 1 + ݔ 2ݔ + + ⋯ ݀ݔ + ݁݌)݀݋݉)

is a polynomial permutation in field F(q), with q=pe and p
prime, if and only if:

݀ = ݌)ݍ൫݀݋݉ 1 − 1)൯

 We use the SHA256 or KECCAK-256 procedures for the
MAC. The permutation P is based on exponential functions in
the group Z/pZ*, with p a Saint Germain prime (p=2q+1, with
q prime, p>m), and p=7mod8, which allows us to
deterministically compute the generators (gk)

݃݇ = ݌ − (2݇ ,(݌ ݀݋݉ ݇ ∈ [1, ݍ − 1]

 The P permutation is written as:

(ݕ)ܲ = 1)ܨ + (ݕ − 1, ݕ ∈ [0, ݌ − 2]

With:

(ݔ)ܨ = ݃2
1݃1ݏ

ݔ
,݌ ݀݋݉ ,ݔ 1ݏ ∈ [1, ݌ − 1]

 A pseudo-random generator, detailed in [28], produces the
parameters g2, g1, and s1 from an integer value (31 bits) called
SEED. Then, the bMAC function produces a MAC value.

The term z=s1.g1
x is computed by a simple recursive

procedure (i.e., s1g1
x+1 = g1 s1.g1

x mod p). It is serialized as a
bit stream (bi) of n bits. The term g2

z is computed according to
a square and multiply algorithm:

݃2
ݖ = ෑ ݃2

2݅
݊−1

݅=0

 ܾ݅ ,݌ ݀݋݉ ܾ݅ ∈ {0,1}

Fig.9 Distribution of BMAC computing time, for ATMEGA2560, 256KB,

16MHz clock

We observe that the bMAC computation time (cT) follows,
roughly speaking, a normal distribution (see Figure 9) as a
function of the SEED value. We believe this distribution is
induced by the multiplication and modulus computations,
depending on specific integer values.

Fig.10 BMAC authentication code

The authentication code is a 16-bit integer value
constructed with the two least significant bytes (see Figure 10)
obtained from:

 ܶܿ ݎ݋ݔ݁ (ܦܧܧܵ)ܥܣܯܾ

An internal timer measures the computation time. The idea

of the stop&start attack is to stop this timer to perform hidden
operations and then restart it. The timer uses a sub-clock
(N=64) of the processor (Fclock/N), which protects against such
an attack because the stop operation creates a random error in
the range 0 to Tclock (N-1).

We performed a stop&start attack by inserting instructions
into the BMAC code that stop the internal clock and then
restart it. This programming sequence has a prefix STS (short
for Store Direct to data Space), which costs 2 cycles, and a
suffix LDI+STS (LDI short for Load Immediate), which
requires 3 cycles (1+2). For a memory size m, we should
expect an increase in the measured time (i.e., number of
cycles) of T=5.m. Experimental results with about 1000
samples show a normal distribution; on average, the increase
in computing time is about T= m x 2.07 cycles (i.e., T/m =
2.07 cycles). The timer is stopped after the first STS
instruction, which creates a (false) delay of 61, 62 or 63 cycles
with a probability of about 1/64. Therefore, an estimate of
T/m is:

ܶ
݉

 # 5 ∗
61
64

−
61
64

−
62
64

−
63
64

= 1,86 cycles

Fig.11 BMAC computing time average and standard deviation for three

devices (ATMEGA8, ATMEGA368, ATMEGA2560) with different memory
size.

We use AVR processors with a 16 MHz clock. Figure 11
shows the average computation time and standard deviation
for three devices: ATMEGA8 (8KB), ATMEGA368 (32KB),
and ATMEGA2560 (256 KB). The average is proportional to
the memory size, about 1s/KB. The logarithm of the standard
deviation seems to be proportional to the memory size; in
other words, the BMAC entropy increases with the memory
size.

VII. DYNAMIC PUF
The sale of hardware and software clones, which are not

original devices, is a critical issue in complex supply chains.
Since microcontrollers incorporate static RAM, we have
developed authentication procedures based on the SRAM
Physical Unclonable Function (SRAM-PUF). The SRAM-
PUF is a physical identifier that can be used to authenticate
the main processor of the crypto terminal (ATMEGA2560)
and the programming token processor (ATMEGA8).

First, a memory probe firmware is downloaded into the
processor, which also includes a UART interface. Second, the
board, including this device, is powered via the ICSP port,
with a controlled rise time. Third, the content of the SRAM is
extracted via the serial interface.

Fig.12 SRAM memory cell (left part), output voltage versus input voltage

(right part).

On power-up, some SRAM cells take a fixed value. This
effect is induced by the physical and electrical asymmetry of
the PMOS and NMOS transistors (see Figure 12, left-hand
side).

During power-up (see Figure 12, right-hand side), the
output voltage of an SRAM cell remains close to VDD/2 until
the gain is sufficient to switch to VL (logic low) or VH (logic
high). For a highly mismatched cell, the output always takes a
fixed value. The voltage (Vs) at which the transition occurs
depends on the cell [17][18].

The paper [18] demonstrates the effect of voltage ramps on
the PUF SRAM. Given a ramp V(t)= t VDD/T (i.e.,
slope=VDD/T), flipping bits are observed for slopes of high
values. Flipping bits are created by capacitance mismatch,

while most PUF-bits are due to voltage threshold differences
(VTH). In other words, voltage ramps reproductively switch
the value of some SRAM cells on power-up. A test RAM chip
was designed with 180nm technology and simulated. Bit
flipping was observed for T values below 15ms.

Thanks to the firmware memory probe, we read 1KB of
SRAM. We perform these operations N times to extract the
PUF cells. The static authentication of the processor requires
only one reading of the SRAM, which is compared to a
reference; the observed error is about 0.1%.

Fig13. SRAM PUF measurement results obtained with batches of 250

consecutive tries.

These values decrease slightly, about 5% for N between
[250, 10000], and about 2% for N between [10000, 50000]. In
our experiment, we record a set of 250 measurements in about
10 minutes; these data are aggregated to define N results (i.e.,
N/250 records). These results suggest that errors (i.e., an
erroneous measurement of the state of a cell) occur randomly
and increase with the duration of the measurement, like a
Poisson distribution, according to a probability density
function:

ρ(ݐ) = λ e−λt

t being the measurement duration. What leads to an error
probability :

p(ݐ) = 1 ݐ.ߣ−݁ − # λ. t

So the number of cells always seen at zero or one decreases
like:

(ݐ)݊ = ݊0 (1 − .ߣ (ݐ

Some PUF cells (about 5%) are sensitive to the voltage rise
time and are called “flipping bits.” For a “high” slope
(>200mV/s), they have a content bk, which is switched to (1-
bk) for a “low” slope (<10mV/s). We define [17] Sy
waveforms constructed with two slopes (see Figure 14, right-
hand side), switching at voltage y, y=0 corresponding to zero
and y=1 to VDD. Therefore, S1 is the first slope, and S0 is the
second. S0 (high slope) creates a flipping bit; S1 (low slope)
does not create a flipping bit. We perform 25 measurements
for each power-up with Sy, which allows us to estimate the
threshold value y for each flipping bit. Figure 14 (left-hand
side) shows the results for some flipping bits; we observe a
low y threshold value.

Fig.14 Flipping-bits state according to y value for 25 measures (left part), Sy

powering-up signal (right part)

Dynamic processor authentication is based on flipping bits.
We use the Slope & Square power-up waveforms [17] to set
the state of the flipping bits. Rf is a square power-up
waveform that creates flipping bits. We define the Slope &
Square (Rs) waveform with a small slope of 625/512 mV/mS
up to 512mS and then a fast rise time (see Figure 15, bottom),
which does not create flipping bits. Since the processor does
not operate at the threshold voltage of the flipping bits
(<500mV), it cannot predict their value at runtime.

Fig15. Dynamic PUF (dPUF) (see text for comments)

Figure 15 illustrates the static and dynamic authentication
for the main processor of the crypto terminal.

The upper left corner shows the result of 250 power-ups.
SRAM cells always read to one are colored in green, those
always read to zero are colored in yellow, and noisy bits (not
always one or zero) are colored in white. The flipping bits
observed for the Rf waveform versus the Rs waveform are
colored in red. This bitmap is a kind of fingerprint of the
processor.

The upper right corner shows the threshold voltage
distribution for the flipping bits, which switch below the
processor operating voltage at low voltage.

The lower left corner displays the comparison of the SRAM
content for a single Rs waveform, with the reference obtained
after 250 Rs. Only two errors (colored in red) are observed.

The lower right corner shows the comparison of the SRAM
content for a single Rf waveform, with the reference obtained
after 250 Rs. Many errors (colored in red) are observed.

VIII. PROGRAMMING TOKEN AS ROOT OF TRUST
The USBASP programming token is built on an

ATMEGA8 microcontroller, with 1KB SRAM, 2KB FLASH
for the bootloader, and 6KB for the firmware. By default,

USBASP programmers do not have a bootloader. We use the
bootloader for three reasons:

- To verify the bootloader’s integrity using an integrity
probe. This firmware runs the bMAC algorithm, which
calculates the authentication code displayed by blinking LEDs.

- To authenticate the microcontroller, thanks to a memory
probe and dPUF measurements. First, two references are
collected with the power-up waveforms Rs and Rf. Then,
memory dumps are performed with the Rs and Rf waveforms.

- To download the firmware required by the USBASP
driver on the laptop side (e.g., Windows or Linux).

On the laptop side, the bootloader runs under the USBASP
protocol. Therefore, software such as AVRDUDE can be used
to download firmware to the MCU; the programming token is
able to flash itself.

The bootloader is not activated by default, so the loaded
firmware is executed. The bootloader is activated by a
shortcut with the ground, with a time slot of five seconds,
during which the internal flashing operation is activated.

It should be noted that programming tokens can program
each other, so a trusted USBASP card can flash untrusted
devices.

IX. CONCLUSION
In this article, we described a crypto terminal based on

open hardware and software technologies. It is equipped with
a set of countermeasures to thwart cyber attacks against
blockchain wallets. These innovative procedures, such as
remote attestation or dynamic PUF, could also be deployed for
other use cases, typically involving secure elements and an
associated terminal.

REFERENCES
[1] Nakamoto, S. (2008). Bitcoin: A peer-to-peer electronic cash system.

Retrieved January 4, 2022, from http://bitcoin.org/bitcoin.pdf
[2] Munro, K. (2018). Hacking the bitfi. Retrieved January 4, 2022, from

https://www.pentestpartners.com/security-blog/hacking-the-bitfi-part-1
[3] National Institute of Standards and Technology (2001). Security

Requirements for Cryptographic Modules. FIPS140-2.
[4] Armstrong, B. (2016). How Coinbase Builds Secure Infrastructure To

Store Bitcoin In The Cloud, Retrieved January 4, 2022, from
https://blog.coinbase.com/how-coinbase-builds-secure-infrastructure-
to-store-bitcoin-in-the-cloud-30a6504e40ba.

[5] Sabt, M., Achemlal, M., and Bouabdallah, A. (2015). Trusted
Execution Environment: What It is, and What It is Not. 2015 IEEE
Trustcom/BigDataSE/ISPA, pp. 57-64,
https://doi.org/10.1109/Trustcom.2015.357.

[6] Hoenicke, J. (2015). Extracting the Private Key from a TREZOR.
Retrieved January 4, 2022, from https://jochen-
hoenicke.de/crypto/trezor-power-analysis/.

[7] Rashd, S. (2018). Breaking the Ledger Security Model. Retrieved
January 4, 2022, from https://saleemrashid.com/2018/03/20/breaking-
ledger-security-model/

[8] Nedospasov, D., Roth, T., Datko, J. (2018). Wallet Fail. 35th Computer
Chaos Congress. Retrieved January 4, 2022, from https://wallet.fail/.

[9] Urien, P., (2018) Crypto Terminal Based On Secure Element For
Consumer Trusted Blockchain Transactions. 16th IEEE Annual
Consumer Communications & Networking Conference (CCNC), 2019,
pp. 1-2, doi: 10.1109/CCNC.2019.8651788.

[10] Urien, P. (2020). Crypto Terminal: A New Open Device For Securing
Blockchain Wallets. 2020 IEEE International Conference on
Blockchain and Cryptocurrency (ICBC).
https://doi.org/10.1109/ICBC48266.2020.9169410.

[11] Zhiqun, C. (2000) Java card technology for smart cards: architecture
and programmer's guide. Addison-Wesley Professional.

[12] Texas Instrument (2014). CC2540/41 System-on-Chip Solution for
2.4-GHz, Bluetooth® low energy Applications, User's Guide

[13] Fischl,.T (2011). USBasp - USB programmer for Atmel AVR
controllers. Retrieved January 4, 2022 from
https://www.fischl.de/usbasp

[14] Asokan, N. et al (2018). ASSURED: Architecture for Secure Software
Update of Realistic Embedded Devices. IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems 37.11.
https://doi.org/10.1109/TCAD.2018.2858422

[15] Seshadri, A., et al (2006). SCUBA: Secure Code Update By Attestation
in sensor networks. WiSe '06: Proceedings of the 5th ACM workshop
on Wireless security. https://doi.org/10.1145/1161289.1161306

[16] Urien, P. (2020). Proving IoT Devices Firmware Integrity With
Bijective MAC Time Stamped. IEEE 6th World Forum on Internet of
Things (WF-IoT). https://doi.org/10.1109/WF-
IoT48130.2020.9221395.

[17] Urien, P. (2020). Innovative Dynamic SRAM PUF Authentication for
Trusted Internet of Things. 16th International Conference on Wireless
and Mobile Computing, Networking and Communications (WiMob).
https://doi.org/10.1109/WiMob50308.2020.9253432.

[18] Elshafiey, A. T., Zarkesh-Ha, P. and Trujillo, J. (2017). The effect of
power supply ramp time on SRAM PUFs. 2017 IEEE 60th International
Midwest Symposium on Circuits and Systems (MWSCAS).
https://doi.org/10.1109/MWSCAS.2017.8053081.

[19] Urien, P. (2019). Integrity Probe: Using Programmer as Root of Trust
for Bare Metal Blockchain Crypto Terminal. 2019 Fifth Conference on
Mobile and Secure Services (MobiSecServ).
https://doi.org/10.1109/MOBISECSERV.2019.8686637.

[20] Thomson, J.(2011). Project Ouroboros - Reflashing A Betemcu
USBasp Programmer, Retrieved January 4 2022, from
https://jethomson.wordpress.com/2011/08/18/project-ouroboros-
reflashing-a-betemcu-usbasp-programmer/

[21] Marcan, B, (2010). Console Hacking 2010, PS3 Epic Fail. 27th Chaos
Communication Congress, Retreived January 4 2022 from
https://fahrplan.events.ccc.de/congress/2010/Fahrplan/attachments/178
0_27c3_console_hacking_2010.pdf

[22] ARM (2009). ARM Security Technology Building a Secure System
using TrustZone Technology, Retreived January 4 2022 from
https://developer.arm.com/documentation/PRD29-GENC-009492

[23] Ukkonen, E. (1995). On-line construction of suffix trees. Algorithmica.
14 (3): 249–260.

[24] RedBearLab (2017). CCLoader. Retreived January 4 2022 from
https://github.com/RedBearLab/CCLoader

[25] Klimov, A., Shamir, A., (2002). A New Class of Invertible Mappings.
CHES, volume 2523 of Lecture Notes in Computer Science, page 470-
483. Springer,

[26] Rivest, R. L.(2001) Permutation polynomials modulo 2w. Finite Fields
And Their Applications, 7, 287-292 .

[27] Matthews R., (1994) Permutation Properties Of The Polynomials 1 + x
+…+xk Over A Finite Field. Proceedings of the American
Mathematical Society, Volume 120, Number 1, January 1994

[28] Park, S.K., Miller, K.W, (1998) Random Numbers Generators: Good
Ones Are Hard to Find. Communication of ACM , Volume 31,
Number 10, pp1192-1201.

[29] Saad, M., et al., (2020) Exploring the Attack Surface of Blockchain: A
Comprehensive Survey.IEEE Communications Surveys & Tutorials,
vol. 22, no. 3, pp. 1977-2008, thirdquarter 2020, doi:
10.1109/COMST.2020.2975999.

[30] Volety, T., Saini, S., McGhin, T., Liu, C. Z , and Choo, K. R.,
Cracking bitcoin wallets: I want what you have in the wallet. Future
Generation Computer System, vol. 91, pp. 136–143, February 2019,.
doi.org/10.1016/j.future.2018.08.029

[31] Vasek, M., Bonneau, J., Castellucci, R., Keith, C., and Moore, T.,
(2016) The bitcoin brain drain: Examining the use and abuse of bitcoin
brain wallets. Proceedings of Financial Cryptography and Data
Security, February 2016, pp. 609–618, doi.org/10.1007/978-3-662-
54970-4_36

[32] Breitner, J., Heninger, N., (2019) Biased nonce sense: Lattice attacks
against weak ECDSA signatures in cryptocurrencies. Proceedings of

Financial Cryptography and Data Security, September 2019, pp 3–20,
doi.org/10.1007/978-3-030-32101-7_1

[33] Young, A., Yung, M., (1997) Kleptography: Using Cryptography
Against Cryptography. Proceedings of Advances in Cryptolog -
EUROCRYPT '97. Lecture Notes in Computer Science. Springer,
Berlin, Heidelberg. pp. 62–74, doi.org/10.1007/3-540-69053-0_6

[34] Young, A., Yung, M., (1997) The prevalence of kleptographic attacks
on discrete-log based cryptosystems. Kaliski, B.S. (eds) Advances in

Cryptology - CRYPTO '97. CRYPTO 1997. Lecture Notes in
Computer Science, vol 1294. Springer, Berlin, Heidelberg.
doi.org/10.1007/BFb0052241

[35] Verbücheln, S. (2017) How Perfect Offline Wallets Can Still Leak
Bitcoin Private Keys. arXiv:1501.00447, 2017,
doi.org/10.48550/arXiv.1501.00447

