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Abstract— Blockchain transactions are signed by private keys. 

Secure key storage and tamper-proof computers are essential 
requirements for deploying a trusted infrastructure. In this 
paper, we identify some threats against blockchain wallets and 
propose a set of physical and logical countermeasures to thwart 
them. We present the crypto terminal device, operating with a 
removable secure element, built on open software and hardware 
architectures, capable of detecting a cloned device or corrupted 
software. These technologies are based on tamper-resistant 
computing (javacard), smart card anti-cloning, smart card 
content attestation, application firewall, bare-metal architecture, 
remote attestation, dynamic Physical Unclonable Function 
(dPUF), and programming tokens as a root of trust. 

 
This paper is an extended version of the paper "Innovative 

Countermeasures to Defeat Cyber Attacks Against Blockchain 
Wallets," 2021 5th Cyber Security in Networking Conference 
(CSNet), 2021, pp. 49-54, doi: 10.1109/CSNet52717.2021.9614649.  
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I. INTRODUCTION 
Blockchain transactions are signed by private keys, which 

imply security requirements similar to those of electronic 
signature processes or EMV payments made using bank cards 
and payment terminals. 

The main security requirements are secure key generation, 
secure key storage, and tamper resistance. Some threats of key 
theft are listed in [29]. 

A secret key is an integer value whose size is 32 bytes for a 
256-bit elliptic curve. The best practice should be to use a true 
random number generator (TRNG). Nevertheless, many 
wallets use passphrases as seeds for key generation; they are 
based on a choice of words (e.g., 12 values chosen from 2048), 
which leads to 2132 possible combinations. The article [30] 
suggests recovering the passphrase by a brute-force dictionary 
attack. Another technique, called “brain wallet”, calculates the 
private keys from the passphrases using a hash procedure; the 
article [31] demonstrates brute-force attacks. 

Many blockchains, for example, Bitcoin or Ethereum, use 
the ECDSA (Elliptic Curve Digital Signature Algorithm) 
signature. This procedure generates a random number k, and a 
point on the elliptic curve (secp256k1) with the generator G, 

k.G= (x,y) from which is calculated an integer r= x mod n, n 
being the order of the curve. The knowledge of k, the reuse of 
k, or a known difference between two values of k, makes it 
possible to recover the private key. The paper [32] studied 
such a key leakage in Bitcoin. It extracted 647,110,920 
signatures and found 1,068 distinct r-values appearing at least 
twice and used by 4,433 keys, or about 0.35% of the r-values. 
The most frequently observed value is k = 1/2 mod n. It 
should be mentioned that malicious random number 
generators, such as kleptograms [33][34][35], can be used to 
recover private keys after two signatures. 

Even if the signatures are computed by a secure and trusted 
device, they can be performed by malicious software, whose 
purpose is to generate fraudulent transactions. 

In EMV payment systems, point-of-sale (POS) terminals 
are equipped with security stickers and battery-powered 
electronics to detect attempted fraudulent use. The PCI 
Security Standards Council lists approved companies and 
vendors. Nevertheless, no standards are available today for 
assessing security in blockchain operations. In addition, low-
cost wallets are sold by e-commerce stores and delivered by 
untrusted supply chains. 

Secure elements, such as smart cards, are an effective 
technology for providing secure storage and trusted 
cryptographic operations, with high levels of security (EAL 
6+ according to Common Criteria -CC- standards) and 
countermeasures to counter side-channel threats. However, as 
with EMV cards, it is necessary to detect malicious clones. 

Secure elements require a terminal with additional 
functionalities: user interface (touch screen, etc.) and 
communication (USB, Bluetooth, etc.). Proof of integrity of 
the software executed by the terminal is an essential 
prerequisite. From an industrial property point of view, 
detecting counterfeit electronic cards is an important feature. 

In this paper, we describe a dedicated blockchain terminal 
based on open hardware (i.e., Arduino platform) and software 
technologies. It incorporates a set of countermeasures capable 
of verifying the authenticity and integrity of the firmware and 
detecting cloned devices. Thanks to the open hardware, the 
terminal is realized with components supported by the 
Arduino integrated development environment (IDE), but it can 
also be integrated into a dedicated electronic board. 

The first prototype [9] used a two-line 16-character LCD 
and a 4x4 keyboard. These elements were replaced by a touch 



screen in the second prototype [10], which also supports a 
Bluetooth Low Energy (BLE) interface. An original ISO7816 
library has been developed to support smart cards by Arduino 
environments. The firmware integrates a set of original 
security features detailed in [16] [17] [19], whose goal is to 
provide a bare-metal architecture with a root of trust, a 
software attestation procedure, and hardware fingerprints. 

This paper is organized according to the following outline. 
Section 2 briefly introduces the blockchain wallet state of the 
art and identifies some threats; it also presents an original 
algorithm to detect duplicated code shards. Section 3 
describes the crypto terminal, an open device that integrates a 
set of countermeasures. Section 4 details the javacard security 
features: tamper-resistant computing, anti-cloning, content 
self-attestation. Section 5 presents the terminal security 
features: applicative firewall and bare-metal architecture. 
Section 6 introduces remote attestation using the BMAC 
algorithm. Section 7 describes static and dynamic PUF. 
Section 8 introduces programming tokens as a root of trust. 
Finally, Section 9 concludes this paper. 

II. . STATE OF THE ART 

A. Blockchain Wallet 

 
Fig1. Overview of blockchain wallets. 

A blockchain wallet comprises two parts: a set of private 
keys used to sign transactions and a set of parameters needed 
to generate transactions. The secure storage and use of private 
keys is a major security prerequisite. 

While cryptographic keys can be used without 
communication with the blockchain infrastructure, the 
information needed to build a transaction must be retrieved, 
which requires an Internet connection. Figure 1 illustrates two 
broad categories of blockchain wallets: hot wallets (with 
TCP/IP stack) and cold wallets (without TCP/IP stack). 

The first generation of hot wallets was based on software 
without tamper-resistant features 

 

 
Fig2. Private key storage in the wallet.dat file used by the bitcoin.exe 
software for windows 

As an example, the Bitcoin.exe software for win32 was 
written in 2009 by Satoshi Nakamoto [1]; it consists of about 
16,000 lines of C++ code, and its binary image is 6 MB. It 
included information managed by a non-SQL database, the 

Berkeley DB. In particular, the private keys were stored in the 
file named wallet.dat. As shown in Figure 2, the private key 
(colored in yellow) is not encrypted and can be identified by 
its associated Bitcoin address: 

 
    "16iLh7ztLh2mwkhSvZeHxKWQVVMGGgfWGq" 
 
In the Bitcoin system, the coinbase transaction is the first 

transaction in a block, used to transfer the potential reward to 
an address identified by its Hash160 attribute: 

 
ℎ160ݏܽܪ =  ൯(ݕ݁ܭ݈ܾܿ݅ݑܲ)256ܣܪ160൫ܵܦܯܧܲܫܴ 

    The bitcoin.exe software generates a random address before 
mining a new block. The loss or theft of the unprotected 
wallet.dat file was a major risk, not always understood by 
early miners. 

Many blockchains use the Elliptic Curve Digital Signature 
Algorithm (ECDSA) signature. Given a message signature 
made of two integers (r,s): 

 
ݏ =  ݇−1  (݁ + .ݖ  ݊ ݀݋݉ (ݎ

with n being the group order, e the message hash, z the private 
key, k a random number kG=(x,y), and r=x mod n.  

And given two signatures of two different messages, M1 
and M2, with the same r in (r,s1) and (r,s2), e1=hash(M1), 
e2=hash(M2), the private key is computed as: 

 
= ݖ (݁1. 2ݏ −  ݁2 . 1−ݎ (1ݏ 1ݏ)   ݊ ݀݋݉ 1−(2ݏ −

 
Therefore, ECDSA generation requires a random number 

generator (RNG) or a deterministic procedure based on the 
message fingerprint (as detailed by RFC 6979). In 2010, EC 
private keys were extracted from PS3 consoles by exploiting 
the lack of a random number generator [21]. ECDSA, 
therefore, relies on trusted software. 

 

 
Fig3. Illustration of hierarchical deterministic wallets, according to the BIP32 

specification 

In Bitcoin, according to the BIP32 specification, keys are 
computed in deterministic wallets (see Figure 3). A root secret 
(512 bits), divided into two parts (IL0 and IH0), is calculated 



from a seed. Then, child nodes, identified by a 32-bit integer 
index, compute 512-bit secrets based on their parents’ IL and 
IR attributes, using the CKD(m,i) procedure. Finally, the 
private keys (256 bits) are computed, from which the account 
addresses are derived. Therefore, an address (and the 
associated private key) is identified by a path in the BIP32 key 
tree. The suggested hierarchy is as follows: master node, 
wallet accounts, wallet chains and addresses. 

The BIP32 seed can be computed from a passphrase 
according to the BIP19 specification. The passphrase is a set 
of words selected from a dedicated list of 2048 elements. The 
computation procedure is based on the password-based key 
derivation function (PBKDF2) defined by RFC 2898. This 
mechanism allows the recovery of deterministic wallets, as the 
key paths (i.e., the key identifiers) are public values. 
Nevertheless, if the passphrase is stolen, the private keys can 
be recovered by a brute-force attack on the key identifiers. 

In 2014, a major Bitcoin company, Mt.Gox, went bankrupt 
due to a data breach in untested software, leading to the 
illegitimate use of private keys [29]. In addition, the privileges 
of system administrators allow the hacking of private keys. As 
an illustration, Bitfi [2] is a UNIX smartphone without a 
baseband chip, including an SD memory card, and offering 
Wi-Fi connectivity. It was rooted, and private keys were 
extracted. 

To prevent these attacks, data centers use Hardware 
Security Modules (HSMs), whose security requirements are 
described in the FIPS 140-2 standard (“Security Requirements 
For Cryptographic Modules”) [3]. Four security levels are 
defined, ranging, according to the Common Criteria (CC) 
terminology, from EAL1 to EAL4. Cryptographic keys are 
managed by tamper-resistant systems whose access requires 
multi-factor authentication (e.g., password, hardware key, and 
PIN). For example, Coinbase recommends [4] storing the 
PIN-protected hardware key in a vault so that its use involves 
two human brains, one of which knows the smart card PIN 
and the other the vault combination. 

Some smartphone wallets are based on a hardware keystore, 
which runs in a TEE (Trusted Environment Execution) 
processor [5]. Most Android mobiles are equipped with such 
processors. TEE implements a secure computing environment; 
however, according to [22], the hardware techniques and 
processes used for smart cards do not apply to standard 
System-on-Chip (SoC) technology. 

The main idea of cold wallets is the offline storage of 
private keys. Communication with the outside world uses 
USB, Bluetooth, Wi-Fi, or QR codes read by a camera and 
displayed on screens (e.g., cobo vault). 

There are two broad categories of cold wallets: those that 
are fully software-based and those that include a tamper-
resistant device. 

The Trezor One is an all-software device with a screen, two 
buttons, and a USB interface. According to [6], the private 
keys were recovered by a single-powered attack (SPA) 
exploiting the unprotected implementation of the double and 
add algorithm, in which a public key (zG, G being a generator) 
is computed by parsing bit by bit, the private key z. 

ݖ =  ෍ ܾ݅ . 2݅ , ܾ݅ ∈ {0,1}
255

݅=0

 

An elliptic curve addition is computed for every non-null bit, 
which enables the bit recovery, for example, by monitoring 
the power consumption. 

ܩݖ =  ෍ ܾ݅ . ݅ܦ , 0ܦ   = ,ܩ 0<݅ܦ  = 2. 1−݅ܦ

255

0

 

Some wallets use crypto memory (for example, Safe-T Archos) 
or Trusted Execution Environment (for example, Archos Safe-
T Touch). Crypto memory devices provide secure storage; 
they work with mutual authentication procedures and 
encrypted content. 

The Ledger Nano S stores keys in a secure element. The 
device comprises a microcontroller, a secure element, a screen, 
two buttons, and a USB interface. Upon reset, a software 
handler sends memory chunks to the secure element, which 
hashes their content, and finally checks a signature; upon 
success, the secure element is unlocked. This mechanism was 
broken [7] by using a duplicate area of memory. The reference 
[8] demonstrated a successful replacement of the token 
software. 

 

 
Fig4. Illustration 64 bytes duplicate code shards 

As illustrated by [7], software instruction blocks may be 
duplicated. We call shards these blocks. We assume that 
shards do not include instructions that explicitly modify the 
program counter (PC), such as JUMP or CALL. An example 
of code shards is provided in Figure 4. We implemented 
original procedures based on Ukkonen’s algorithm for Suffix 
Tree Construction [23] to detect and remove shards. This 
algorithm finds the longest duplicated binary string; replicas 
are replaced by random numbers. Finally, it produces a list of 
duplicate code fragments and their size. 

 
Fig5. Illustration of code compression, using duplicated code shards; freed 
memory space is colored in blue 



As illustrated by Figure 5 (using instruction mnemonics 
from AVR processors), shards can be compressed by CALL, 
JUMP, and RTS instructions. The shard instructions are 
inserted in a subroutine, ended by RTS; the execution time is 
increased, but some extra memory is available for malicious 
code. An example of the result is presented in Figure 6. 

 

 
Fig6. Illustration of code compression, using duplicated code shards; which 

frees 52 bytes 

B. Threats 
As mentioned above, hot wallets require online technology. 

They are therefore exposed to all the security threats cloud 
providers face, the most critical being secure key storage and 
their remote use. It should be noted that insider attacks are 
predominant and require a specific physical and logical 
security policy. 

Cold wallets are obviously not exposed to such attacks; 
however, they are subject to threats that are listed in the 
following (non-exhaustive) list: 

- T1) Lack of tamper-resistant storage and countermeasures 
for side-channel attacks, which allows cryptographic keys to 
be recovered at runtime; 

- T2) Supply chain attacks aimed at malware injection or 
malicious firmware modification; 

- T3) Software integrity is not verified. A bootloader 
checks the integrity of the updated firmware. It can be 
corrupted, similar to rootkits; 

- T4) PIN or password hacking. For example, a key logger 
captures the text entered on the keyboard; 

- T5) Misuse of the device from a laptop or cell phone, 
running a Trojan horse or worm; 

- T6) Cloning of genuine devices. Clones, with equivalent 
features, include hidden functions targeting the recovery of 
cryptographic keys. 

III. ABOUT THE CRYPTO TERMINAL 
The crypto terminal [10] is a keystore for blockchain 

wallets, designed to prevent these threats, thanks to adapted 
countermeasures. Its main services are the generation of 
signatures or transactions, with a high level of security and 
trust. However, it requires an external software component 
running on a PC or mobile device, which collects the 
information necessary to generate the transaction under the 
user’s control. 

It is based on open software and hardware, namely Arduino 
and javacard 3.0.4, which means that many form factors are 
possible. The core of the security is a removable javacard [11], 
which generates, computes, and stores the account keys and 
performs the transaction signatures. 

 
 

 
Fig7. Crypto terminal hardware components 

A. Open Hardware & Software 
The crypto terminal (see Figure 7) comprises an 8-bit 

ATMEGA2560 microcontroller (16 MHz clock, 256KB 
FLASH, 8KB SRAM, 4KB EEPROM), a USB chip (CH340), 
a Bluetooth Low Energy (BLE) module [12] (CC2541, 
256KB FLASH, 8KB SRAM), a 320x480 In-Plane Switching 
(IPS) touch screen (ILI 9486), a USBASP programming token 
[13] (ATMEGA8, 8KB FLASH, 1KB SRAM, 512B 
EEPROM), and a removable smart card (EAL6). 

The BLE chip uses a five-wire interface for software 
download, the specifications of which are public. It can be 
flashed (up to 256KB) by open software, such as 
CCLOADER [24]. 

The USB programmer for Atmel AVR microcontrollers 
(USBASP) is an open project [13], including both hardware 
and software developments. It is supported by the open AVR 
Downloader/UploaDEr (AVRDUDE) initiative. Therefore, a 
complete platform is available for firmware download. 

The ILI9486 is a device manufactured by ILI Technology 
Corporation. It includes a 40-pin interface with five control 
lines, an 8-bit data bus, and four wires dedicated to the 
resistive touch screen 

 
Fig8. Crypto terminal software components 

The crypto terminal uses a set of five software packages 
(shown in Figure 8): 

-S1) the main processor (AVR) firmware, up to 256KB; 
-S2) the BLE module firmware, up to 256KB; 
-S3) the firmware of the Java card; 
-S4) USBASP bootloader; 
-S5) the USBASP firmware, downloaded via the bootloader. 
 
 



B. Countermeasures against Cyber Attacks 
We believe that trust in signatures is a key feature for the 

development of blockchain services. That is why we have 
developed and published technologies and algorithms to 
achieve integrity assurance for the software and hardware 
involved in signing transactions. 

The security model includes the following elements: 
C1) The security core is an EAL5+/ EAL6 removable 

security element (javacard), which stores the keys and 
performs the transaction signatures. Access to the smart card 
is protected by PINs. 

C2) The authenticity of the smart card is guaranteed by an 
anti-cloning mechanism to detect “Evil Maid”-like attacks. 
The idea of such attacks is to use a cloned card to collect the 
user’s keys. The public key of the smart card is signed by a 
certification authority (CA). 

C3) The crypto terminal can duplicate the cryptographic 
contents of the secure element. The content of the smart card 
is self-attested (i.e., hashed and signed by the smart card). 

C4) The crypto terminal acts as a firewall between the 
security element and the “hot” environment connected to the 
Internet. It also performs operations (key generation, 
signatures, etc.) in “cold” mode (i.e., without being connected 
to the Internet). 

C5) Our security model is based on the “bare-metal” 
concept (i.e., the terminal is delivered without firmware and 
the Bluetooth module). Using a programming token, the user 
may flash these devices at any time. 

C6) The firmware is authenticated by a built-in “Remote 
Attestation” algorithm. This algorithm [14] [15] [16] produces 
a result (which we call the authentication code) that cannot be 
predicted and requires a computation time depending on the 
result. A server can generate these codes, but so can the 
legitimate user, thus creating personal and unique 
authentication codes. 

C7) Physical authentications of the cryptographic terminal 
processor and the programming token processor are 
performed using dynamic Physical Unclonable Function (PUF) 
techniques of SRAM (dPUF) [17]. A software memory probe 
extracts fingerprints from the SRAM after power-up. 
Innovative procedures have been developed to acquire such 
fingerprints, including singular points called flipping bits. 
Flipping bits [18] cannot be cloned by software. This 
technique ensures that devices received by clients are 
authentic. 

C8) The programming token is a root of trust [19]. It 
manages the download of the processor firmware of the crypto 
terminal. We insert bootloader software [20] inside the 
programming token processor. The authenticity of this 
software is proved by a remote attestation algorithm 
generating authentication codes displayed by flashing LEDs. 
As mentioned earlier, the physical identity (dPUF) of this 
token allows clone detection. 

 
 
 

IV. JAVACARD SECURITY ELEMENTS 
The javacard runs a crypto currency (CC) application 

written in the javacard programming language [11]. These 
smart cards are available from multiple manufacturers, with 
evaluation assurance levels (EAL) ranging from EAL5+ to 
EAL6+, according to the terminology of the Common Criteria 
standards. In a nutshell, the CC applet is a keystore, which 
provides secure key storage and ECDSA signing on a 
secp256k1 elliptic curve. The CC applet supports two-factor 
authentication: the knowledge of two PINs enables two 
working modes. The administrator mode gives access to all 
smart card services; the user mode allows reading public 
attributes and signatures. 

According to Wikipedia, “An evil maid attack is an attack 
on an unattended device, in which an attacker with physical 
access alters it in some undetectable way so that they can 
later access the device, or the data on it.” A smart card 
software clone can include a backdoor. The principle of the 
“evil maid” attack consists in recovering the cryptographic 
keys of an unauthentic smart card. 

To counter these threats, the CC application creates a 
private (Privk) and public (Pubk) key pair during its 
instantiation. The public key is the identity of the device. The 
hash of this value is signed by a certification authority (CA), 
according to the ECDSA algorithm and the private key PrivCA. 
So a tuple of two integer values (r,s) realizes the device 
certificate: 

 
݇ݐݎ݁ܥ  = ,ݎ)  (ݏ = ݒ݅ݎܲܣܵܦܥܧ ܣܥ ൫ܾܵ݇ݑܲ)256ܣܪ )൯ 

 
In order to authenticate a genuine smart card, the crypto 

terminal performs the following procedure: 
- 1) Reading the public key, Pubk 
- 2) Reading the certificate of the public key, Certk 
- 3) Verifying Certk with the CA’s public key, PubCA 
- 4) The knowledge of Privk is proven through a 

challenge/response procedure. The terminal generates a 
random value (rnd) signed by the javacard private key: 

 
ݒ݅ݎܲܣܵܦܥܧ ݇  (݀݊ݎ)

This signature is verified with Pubk. 
The self-attestation of the smartcard contents is produced 

according to the following procedure: 
- 1) The crypto terminal generates a random value. The CC 

application calculates a hash value of its contents, 
concatenates this value with the random value, and generates a 
signature with its private key. The hash is returned with the 
signature; the response contains the following data: 

 
ℎܽݏℎ || ݒ݅ݎܲܣܵܦܥܧ ݇ (ℎܽݏℎ || ݀݊ݎ) 

 
-2) The crypto terminal verifies the signature and, if 

successful, displays the hash (i.e., the fingerprint of the smart 
card’s contents). 

 



V. TERMINAL SECURITY ELEMENTS 
The firmware of the main processor controls the data 

exchange with the secure element. PIN entry from the touch 
screen prevents key logger attacks on the laptop or 
smartphone. All security-sensitive operations, such as signing, 
setting or exporting keys, are confirmed by the user to prevent 
unwanted actions by malware. 

In the bare-metal approach, embedded firmware is erased 
and fully downloaded. Firmware flashing should prevent 
supply chain attacks, as it provides implicit proof of software 
integrity. 

The programming sequence for the crypto terminal is as 
follows: 

- 1) The main processor code is downloaded via an ICSP 
(In-Circuit Serial Programming) port. This firmware stores the 
certification authority’s public key (used to authenticate the 
smart card) and a loader for the BLE module. 

- 2) The BLE module is flashed using the USB interface 
and the built-in dedicated loader. 

It should be noted that the touch screen device (ILI 9486) 
also includes a microcontroller unit (MCU), whose internal 
firmware cannot be updated. Nevertheless, the main processor 
only transmits data to this device and controls communication, 
thus reducing the attack surface. 

The main processor firmware incorporates a remote 
attestation algorithm (detailed in Section 6) and is also 
capable of dumping and hashing the BLE module code. 

The programming token (USBASP) stores a 2KB 
bootloader. Its integrity is proven by a remote attestation 
procedure detailed in Section 6. 

VI. REMOTE ATTESTATION 
Integrity checking at runtime is a major security issue. 

Bare-metal functionality allows firmware to be downloaded at 
any time, so there is always a need to ensure the integrity of 
the software. To achieve this goal, we have designed a 
dedicated remote attestation algorithm called bijective MAC 
(bMAC).  

Remote attestation is a process by which a trusted entity 
(the verifier) remotely measures the internal state of an 
untrusted and possibly compromised device (the verifier).  

The bMAC verification is a self-verifying hash code (i.e., 
an instruction sequence that computes a fingerprint on itself 
and the memory contents), such that the MAC checksum is 
erroneous or the computation is slower if the instruction 
sequence or the memory contents are changed. 

bMAC computes a fingerprint (h) on a set (A) of memories 
(FLASH, SRAM, EEPROM), whose size is m bytes, 
according to a pseudo-random order, fixed by a permutation P, 
such that: 

 
(ܲ)ܥܣܯܾ = ℎ( (0)ܲ)ܣ || … (݅)ܲ)ܣ … ݉)ܲ)ܣ || − 1) ) 

 
The ICE algorithm presented in [14] computes a memory 

checksum according to a particular permutation. The 
permutation is an Invertible Mapping introduced in [25]. 

 

(ݔ)ܲ = ݔ 2ݔ + ∨ 2݊ ݀݋݉ ܥ  

 
The least significant bit and the third bit of the constant C 

are both set to 1. In [14], n=16 (16-bit word) and C=5. The 
ICE algorithm has been implemented in a 16-bit von 
Neumann architecture with a hardware multiplier, leading to 
an optimized code size and execution time. 

The paper [26] gives an exact characterization of the 
permutation polynomials modulo n=2w, with w ≥2 

 
(ݔ)ܲ =  ܽ0 ݔ1ܽ + + ⋯ + ܽ݀ ݀ݔ ݓ2 ݀݋݉    

P(x) is a permutation polynomial if and only if a1 is odd, the 
sum (a2+a4+a6+…) is even, and the sum (a3+a5+a7+…) is even. 

The paper [27] demonstrates that: 
 

(ݔ)ܲ = 1 + ݔ 2ݔ + + ⋯ ݀ݔ + ݁݌)݀݋݉  )  

is a polynomial permutation in field F(q), with q=pe and p 
prime, if and only if: 

 
݀ = ݌)ݍ൫݀݋݉ 1 − 1)൯ 

       We use the SHA256 or KECCAK-256 procedures for the 
MAC. The permutation P is based on exponential functions in 
the group Z/pZ*, with p a Saint Germain prime (p=2q+1, with 
q prime, p>m), and p=7mod8, which allows us to 
deterministically compute the generators (gk) 

 
݃݇ = ݌ − (2݇ ,(݌ ݀݋݉  ݇ ∈  [1, ݍ − 1] 

     The P permutation is written as:  
 

(ݕ)ܲ = 1)ܨ  + (ݕ − 1, ݕ ∈  [0, ݌ − 2] 

 
With: 

(ݔ)ܨ =  ݃2
1݃1ݏ

ݔ
,݌ ݀݋݉  ,ݔ 1ݏ ∈  [1, ݌ − 1] 

     A pseudo-random generator, detailed in [28], produces the 
parameters g2, g1, and s1 from an integer value (31 bits) called 
SEED. Then, the bMAC function produces a MAC value. 

The term z=s1.g1
x is computed by a simple recursive 

procedure (i.e., s1g1
x+1 = g1 s1.g1

x mod p). It is serialized as a 
bit stream (bi) of n bits. The term g2

z is computed according to 
a square and multiply algorithm: 

 

݃2
ݖ =  ෑ ݃2

2݅
݊−1

݅=0

 ܾ݅ ,݌ ݀݋݉   ܾ݅ ∈ {0,1}  

 
 
 
 



 
Fig.9 Distribution of BMAC computing time, for ATMEGA2560, 256KB, 

16MHz clock 

We observe that the bMAC computation time (cT) follows, 
roughly speaking, a normal distribution (see Figure 9) as a 
function of the SEED value. We believe this distribution is 
induced by the multiplication and modulus computations, 
depending on specific integer values. 

 

 
Fig.10 BMAC authentication code 

The authentication code is a 16-bit integer value 
constructed with the two least significant bytes (see Figure 10) 
obtained from: 

 ܶܿ ݎ݋ݔ݁ (ܦܧܧܵ)ܥܣܯܾ

 
An internal timer measures the computation time. The idea 

of the stop&start attack is to stop this timer to perform hidden 
operations and then restart it. The timer uses a sub-clock 
(N=64) of the processor (Fclock/N), which protects against such 
an attack because the stop operation creates a random error in 
the range 0 to Tclock (N-1).  

We performed a stop&start attack by inserting instructions 
into the BMAC code that stop the internal clock and then 
restart it. This programming sequence has a prefix STS (short 
for Store Direct to data Space), which costs 2 cycles, and a 
suffix LDI+STS (LDI short for Load Immediate), which 
requires 3 cycles (1+2). For a memory size m, we should 
expect an increase in the measured time (i.e., number of 
cycles) of T=5.m. Experimental results with about 1000 
samples show a normal distribution; on average, the increase 
in computing time is about T= m x 2.07 cycles (i.e., T/m = 
2.07 cycles). The timer is stopped after the first STS 
instruction, which creates a (false) delay of 61, 62 or 63 cycles 
with a probability of about 1/64. Therefore, an estimate of 
T/m is: 

 
ܶ
݉

 # 5 ∗
61
64

−
61
64

−
62
64

−
63
64

=  1,86 cycles 

 

 
Fig.11 BMAC computing time average and standard deviation for three 

devices (ATMEGA8, ATMEGA368, ATMEGA2560) with different memory 
size. 

We use AVR processors with a 16 MHz clock. Figure 11 
shows the average computation time and standard deviation 
for three devices: ATMEGA8 (8KB), ATMEGA368 (32KB), 
and ATMEGA2560 (256 KB). The average is proportional to 
the memory size, about 1s/KB. The logarithm of the standard 
deviation seems to be proportional to the memory size; in 
other words, the BMAC entropy increases with the memory 
size. 

VII. DYNAMIC PUF 
The sale of hardware and software clones, which are not 

original devices, is a critical issue in complex supply chains. 
Since microcontrollers incorporate static RAM, we have 
developed authentication procedures based on the SRAM 
Physical Unclonable Function (SRAM-PUF). The SRAM-
PUF is a physical identifier that can be used to authenticate 
the main processor of the crypto terminal (ATMEGA2560) 
and the programming token processor (ATMEGA8). 

First, a memory probe firmware is downloaded into the 
processor, which also includes a UART interface. Second, the 
board, including this device, is powered via the ICSP port, 
with a controlled rise time. Third, the content of the SRAM is 
extracted via the serial interface. 

 

 
Fig.12 SRAM memory cell (left part), output voltage versus input voltage 

(right part). 

On power-up, some SRAM cells take a fixed value. This 
effect is induced by the physical and electrical asymmetry of 
the PMOS and NMOS transistors (see Figure 12, left-hand 
side). 

During power-up (see Figure 12, right-hand side), the 
output voltage of an SRAM cell remains close to VDD/2 until 
the gain is sufficient to switch to VL (logic low) or VH (logic 
high). For a highly mismatched cell, the output always takes a 
fixed value. The voltage (Vs) at which the transition occurs 
depends on the cell [17][18]. 

The paper [18] demonstrates the effect of voltage ramps on 
the PUF SRAM. Given a ramp V(t)= t VDD/T (i.e., 
slope=VDD/T), flipping bits are observed for slopes of high 
values. Flipping bits are created by capacitance mismatch, 



while most PUF-bits are due to voltage threshold differences 
(VTH). In other words, voltage ramps reproductively switch 
the value of some SRAM cells on power-up. A test RAM chip 
was designed with 180nm technology and simulated. Bit 
flipping was observed for T values below 15ms. 

Thanks to the firmware memory probe, we read 1KB of 
SRAM. We perform these operations N times to extract the 
PUF cells. The static authentication of the processor requires 
only one reading of the SRAM, which is compared to a 
reference; the observed error is about 0.1%. 

 

 
Fig13. SRAM PUF measurement results obtained with batches of 250 

consecutive tries. 

These values decrease slightly, about 5% for N between 
[250, 10000], and about 2% for N between [10000, 50000]. In 
our experiment, we record a set of 250 measurements in about 
10 minutes; these data are aggregated to define N results (i.e., 
N/250 records). These results suggest that errors (i.e., an 
erroneous measurement of the state of a cell) occur randomly 
and increase with the duration of the measurement, like a 
Poisson distribution, according to a probability density 
function: 

ρ(ݐ) =  λ e−λt  
 

t being the measurement duration. What leads to an error 
probability : 

p(ݐ) = 1 ݐ.ߣ−݁ −  # λ. t 

 
So the number of cells always seen at zero or one decreases 
like: 

(ݐ)݊ =  ݊0 (1 − .ߣ   (ݐ
 

Some PUF cells (about 5%) are sensitive to the voltage rise 
time and are called “flipping bits.” For a “high” slope 
(>200mV/s), they have a content bk, which is switched to (1-
bk) for a “low” slope (<10mV/s). We define [17] Sy 
waveforms constructed with two slopes (see Figure 14, right-
hand side), switching at voltage y, y=0 corresponding to zero 
and y=1 to VDD. Therefore, S1 is the first slope, and S0 is the 
second. S0 (high slope) creates a flipping bit; S1 (low slope) 
does not create a flipping bit. We perform 25 measurements 
for each power-up with Sy, which allows us to estimate the 
threshold value y for each flipping bit. Figure 14 (left-hand 
side) shows the results for some flipping bits; we observe a 
low y threshold value. 

 

 
Fig.14 Flipping-bits state according to y value for 25 measures (left part), Sy 

powering-up signal (right part) 

Dynamic processor authentication is based on flipping bits. 
We use the Slope & Square power-up waveforms [17] to set 
the state of the flipping bits. Rf is a square power-up 
waveform that creates flipping bits. We define the Slope & 
Square (Rs) waveform with a small slope of 625/512 mV/mS 
up to 512mS and then a fast rise time (see Figure 15, bottom), 
which does not create flipping bits. Since the processor does 
not operate at the threshold voltage of the flipping bits 
(<500mV), it cannot predict their value at runtime. 

 

 
Fig15. Dynamic PUF (dPUF) (see text for comments) 

Figure 15 illustrates the static and dynamic authentication 
for the main processor of the crypto terminal. 

The upper left corner shows the result of 250 power-ups. 
SRAM cells always read to one are colored in green, those 
always read to zero are colored in yellow, and noisy bits (not 
always one or zero) are colored in white. The flipping bits 
observed for the Rf waveform versus the Rs waveform are 
colored in red. This bitmap is a kind of fingerprint of the 
processor. 

The upper right corner shows the threshold voltage 
distribution for the flipping bits, which switch below the 
processor operating voltage at low voltage. 

The lower left corner displays the comparison of the SRAM 
content for a single Rs waveform, with the reference obtained 
after 250 Rs. Only two errors (colored in red) are observed. 

The lower right corner shows the comparison of the SRAM 
content for a single Rf waveform, with the reference obtained 
after 250 Rs. Many errors (colored in red) are observed. 

VIII. PROGRAMMING TOKEN AS ROOT OF TRUST 
The USBASP programming token is built on an 

ATMEGA8 microcontroller, with 1KB SRAM, 2KB FLASH 
for the bootloader, and 6KB for the firmware. By default, 



USBASP programmers do not have a bootloader. We use the 
bootloader for three reasons: 

- To verify the bootloader’s integrity using an integrity 
probe. This firmware runs the bMAC algorithm, which 
calculates the authentication code displayed by blinking LEDs. 

- To authenticate the microcontroller, thanks to a memory 
probe and dPUF measurements. First, two references are 
collected with the power-up waveforms Rs and Rf. Then, 
memory dumps are performed with the Rs and Rf waveforms. 

- To download the firmware required by the USBASP 
driver on the laptop side (e.g., Windows or Linux). 

On the laptop side, the bootloader runs under the USBASP 
protocol. Therefore, software such as AVRDUDE can be used 
to download firmware to the MCU; the programming token is 
able to flash itself. 

The bootloader is not activated by default, so the loaded 
firmware is executed. The bootloader is activated by a 
shortcut with the ground, with a time slot of five seconds, 
during which the internal flashing operation is activated. 

It should be noted that programming tokens can program 
each other, so a trusted USBASP card can flash untrusted 
devices. 

IX. CONCLUSION 
In this article, we described a crypto terminal based on 

open hardware and software technologies. It is equipped with 
a set of countermeasures to thwart cyber attacks against 
blockchain wallets. These innovative procedures, such as 
remote attestation or dynamic PUF, could also be deployed for 
other use cases, typically involving secure elements and an 
associated terminal. 
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