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Coalescence in small generations for the diffusive
randomly biased walk on Galton-Watson trees

Alexis Kagan

Institut Denis Poisson, UMR CNRS 7013, Université d’Orléans, Orléans, France. e-mail:
Alexis.KaganQuniv-orleans.fr

Abstract: We investigate the range % of the diffusive biased walk X on a Galton-Watson tree
T in random environment, that is to say the sub-tree of T of all distinct vertices visited by this
walk up to the time T'. We study the volume of the range with constraints and more precisely
the number of k-tuples (k > 2) of distinct vertices in this sub-tree, in small generations and
satisfying an hereditary condition. A special attention is paid to the vertices visited during
distinct excursions of X above the root of the Galton-Watson tree as we observe they give the
major contribution to this range. As an application, we study the genealogy of k > 2 distinct
vertices of the tree Zp picked uniformly from those in small generations. It turns out that
two or more vertices among them share a common ancestor for the last time in the remote
past. We also point out an hereditary character in their genealogical tree due to the random
environment.

MSC2020 : 60K37, 60J80.
Keywords and phrases: branching random walks, coalescence, randomly biased random walks.

1. Introduction
1.1. Randomly biased random walk on trees

Let (N, A) be a random variable under a probability measure P taking values in N x R and
consider the following Galton-Waston marked tree (T, (Az;x € T)) rooted at e: the generation
0 contains one marked individual (e, A.) = (e,0). For any n € N*, assume the generation n — 1
has been built. If it is empty, then the generation n is also empty. Otherwise, any vertex x in the
generation n — 1 gives progeny to N, marked children (z', A,1),..., (2=, A,~.) independently
of other vertices in generation n — 1 according to the law of (N, A), thus forming the generation
n, denoted by T,,. We assume E[N] > 1 so that T is a super-critical Galton-Watson tree, that is
P (non-extinction of T) > 0 and we define P*(+) := P(:|non-extinction of T).

For any vertex x € T, we denote by |z| the generation of z, by z; its ancestor in generation
i€{0,...,|z|} and x* := 2|, stands for the parent of z. In particular, zo = e and z|,| = 2. For
any x,y € T, we write < y if 2 is an ancestor of y (y is said to be a descendent of z) and z < y
if z <y and x # y. We then write [z;,z] := {z;;j € {4,...,|z|}}. Finally, for any z,y € T, we
denote by x A y the most recent common ancestor of z and y, that is the ancestor v of  and y
such that max{|z|; z € [e,z] N e, y]} = |ul.

Let us introduce the branching potential V: let V(e) = A, = 0 and for any « € T \ {e}

||

Viz):= Y A.=> A,.
i=1

e<z<zx

Under P, & := (T,(V(x);x € T)) is a real valued branching random walk such that (V(z) —
V(2*))zer\{e} is distributed as A. We will then refer to & as the random environment.
For convenience, we add a parent e* to the root e and we introduce the T U {e*}-valued random
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walk X := (X) en reflected in e* such that under the quenched probabilities {PZ;2 € T U {e*}},
the transition probabilities are given by: for any = € T

efv(z) efv(zi)

= — and for all 1 <i < N, p®(z,2%) = .
e=V(@ 4 3N V(@) e V@) 4 3N Vi)

p?(z,2%)

Otherwise, p®(x,u) = 0 and p®(e*,e) = 1. Let P¢ := P¢ and we finally define the following
annealed probabilities
P(-) :=E[P?()] and P*(:):=E"[P()].

R. Lyons and R. Pemantle [LP92] initiated the study of the randomly biased random walk X.
When, for all x € T, V(z) = log A for a some constant A > 0, the walk X is known as the A-biased
random walk on T U {e*} and was first introduced by R. Lyons (see [Lyo90] and [Lyo92]). The
A-biased random walk is transient unless the bias is strong enough: if A > E[N] then, P*-almost
surely, X is recurrent (positive recurrent if A > E[N]). It is known since Y. Peres and O. Zeitouni
[PZ06] that when A = E[N], X is diffusive: there exists 62 € (0,00) such that (| X |,¢/|/Veo?n)i>o
converges in law to a standard reflected brownian motion. R. Lyons, R. Pemantle and Y. Peres (see
[LPP96Db] and [LPP96a]), later joined by E. Aidékon [A1d14] studied the transient case and showed
that X has a deterministic and positive speed vy := lim,,_,« | X, |/n. Moreover, the expression of
vy is explicit.

When the bias is random, the behavior of X depends on the fluctuations of the following log-
Laplace transform t(t) := log B[}, _; e~V(@)] which we assume to be well defined on [0, 1] : if
infye0,179(t) > 0, then P*-almost surely, X is transient and we refer to the work of E. Aidékon
[A1d08] for this case. Otherwise, it is recurrent. More specifically, G. Faraud [Far11] proved that the
random walk X is P*-almost surely positive recurrent either if inf,cg 19 (t) < 0 or ifinf,c(o 1) 9(t) =
0 and 9'(1) > 0. It is null recurrent if infyc(o 1) ¢ (t) = 0 and ¢’ (1) < 0. When 9’(1) = 0, the largest
generation reached by the walk X is of order (logn)? and the walk is in the slow regime (see [HS07a]
and [FHS11])

In the present paper, we focus on the null recurrent randomly biased walk X and assume

Assumption 1.

inf () =%(1)=0 and '(1) <0. (1)
t€0,1]

Let us introduce
k= 1inf{t > 1; ¥(t) = 0}, (2)

and assume k € (1,00). Under (1) and some integrability conditions, it has been proven that |X,,|
and max; <<, |X;| is of order n!=1/ min(%2)(see [HSO7h], [Farll], [AdR17] and [dR22]). In other
words, the random walk X is sub-diffusive for x € (1,2] and diffusive for x > 2. In this paper, we
put ourselves in the latter case.

We now define the range of the random walk X. Let T' € N*. The range % of the random walk X
is the set of distinct vertices of T visited by X up to the time T if £ = Z;‘-le 1(x,=u} denotes
the local time of a vertex v € T at time 7" then

Hr ={ueT; L >1}, (3)

its cardinal is denoted by Rp and we also called it range. It has been proved by E. Aidékon and
L. de Raphélis that R,, is of order n (see [AdR17]). Moreover, %, is a finite sub-tree of T and
properly renormalized, it converges in law to a random real tree when n goes to infinity.
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Introduce 77, the j-th return time to e*: 7° = 0 and for any j > 1, T = inf{i > T7"!; X; = e*}.
Thanks to (31), we know that T7""* is of order n. We will be focusing our attention on the range
Hpq1/2 and we shall finally present an extension of the range %y,

Let us now define an extension of the volume R,/ for any integer k > 2 and any subset ©
of T with cardinal |D| > k, let ®** := D x --- x D, introduce A* := {& = (zM,... =) ¢
T**; Wiy # ig, 2() # 202)} which is the set of k-tuples of distinct vertices of T. Also introduce
the set (assumed to be nonempty) A¥(D) := AF N D** of k-tuples of distinct vertices of ®. For
any n € N*, any subset %, of Z,.. 1,2 with cardinal D,, and for any function f : A¥ — R*, if
D,, > k, we define the range &7*(2,, f) by

(Do )= Y fl). (4)

TEAR (D))

Otherwise, «7*(2,,, f) is equal to 0. The aim of studying the range &*(%,, f) is to understand
the interactions between the vertices in the tree %.,,1/> and most of all to give a description of the
genealogy of the vertices in Z,.,1/>. Note that the range we investigate here differs from the range
studied in [AK23], where authors focus on the interactions between the trajectories of the random

walk X and on the trajectories of the underlying branching potential V.

1.2. Genealogy of uniformly chosen vertices in the range

For a nonempty subset ,, of #,.,1/2, introduce the random variable 2" = (2 ken))y

taking values in A* with law defined by: for any = (z(V,...,z®) € A* if P*(D,, > k) > 0,
then

1 * |:]1{:136Ak(@n

P =) = g s ) M) ®)

and P*(2™ = z) = 0 otherwise. Note that |A*(2,)| = D,(D, — 1) x --- x (D,, — k + 1) so the

vertices 2" (b™) . 2" (k1) are nothing but k vertices picked uniformly and without replacement
in the set 2,,. For any bounded function f : A¥ — R*, we actually have
1 (D, f)
E*[f(Z™)] = E* | 6
@) = im0 Lz 1) Hoezm | (6)

thus making a link between the generalized range .27*(%,, ) and the law of 2™. Recall that our
main interest is the genealogy of the k vertices 2" (1™ ... 2 (%) 5o let us define the genealogical
tree of these k vertices. First, introduce the largest generation M,, := max,cq, |z| of the set 2.
Recall that in the diffusive regime (see (1) and (2) with k£ > 2), maxgesz ||, the largest
1/2

nl/2
generation of the tree #,,,1/2, is of order n*/< when n — oo.

If D,, > k, we then define for any m € {0,...,M,} the equivalence relation ~,, on {1,...,k}
by: 41 ~m i if and only if 2 (1) and 2 (227 share a common ancestor in generation m.
We denote by %" the partition of {1,...,k} whose blocks are given by equivalent classes of the
relation ~,,. The process (75:")o<m<nr, is called the genealogical tree of 2 (k) et
@(n) — | 27| be the generation of 2 (™). By definition,

e = {{1,...,k}} and 75" = {{1},...,{k}} for any m € {lrgiag(kg(i’”), oo, My

Replacing Z#,,.,1/2 by a regular Galton-Watson tree T and 2, by {z € T; |z| = T} (the T-th
generation of T), the genealogy of k vertices .%”T(l), ceey %T(k) uniformly chosen in {x € T; |z| =T}
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has been deeply studied for fixed T" as well as for T' — co. First, when k& = 2, K.B. Athreya [Ath12b)]
proved that when ¥ is super-critical (the mean of the reproduction law in larger than 1) %T(l) and
%722) share a common ancestor for the last time in the remote past: if #7 = L%”T(l) A %T(2)| denotes

the generation of the most recent common ancestor of %T(l) and %T(z) then (#7) converges in
law to a non-negative random variable depending on the reproduction law N when T' goes to co.
However, when ¥ is critical (the mean of the reproduction law is equal to 1), 5&’721) and ,%”T(Z) share
a common ancestor for the last time in the recent past: (#7/T) converges in law to a [0, 1]-valued
random variable which doesn’t depend on the reproduction law N when T goes to oo, see [Ath12a).
K.B. Athreya also dealt with the sub-critical case (the mean of the reproduction law is smaller than
1) in the latter paper and it is quite similar to the critical case. More recently S. Harris, S. Johnston

and M. Roberts gave a full description of the genealogy of the vertices %T(1)7 R %jgk) for a given
integer k > 2 for both fixed T and T' — oo, when the underlying process is a continuous-time
Galton-Watson process (see [HJR17] and [Joh19]). See also [AD21] for a study of the genealogy of
randomly chosen individuals when the underlying process is a continuous-state branching process.

Let us return to the case of the random walk in random environment. The generations at which
the vertices 2" (™) .. 27+ are chosen have a major influence on their genealogical structure.
The next four subsections are dedicated to the three regimes we observe: the tiny generations,
the small generations, on which we spend most of our time and the critical generations. For the
second regime, we are able to give a quite full description of the genealogy of & (1™ .. 2 (kn),
displaying five examples we believe to be relevant, see subsection 1.4, and a general result is proven
in 1.5. Finally, we show that we can easily extend our results on Z.. 1,2 to the range up to the
time n.

1.3. The tiny generations

Recall that ¢(t) = logE[}_,_, e~ tV(®@)] and introduce 7 := sup{a € R; inf;>o(¥(—t) — at) > 0}.
By tiny generations, we mean those of order ¢,, where ¢,, — oo when n — oo and ¢,, < G'logn with
G € (0,(27)71). The fact is that for these generations, the random environment has a uniform
impact. Indeed, P. Andreoletti and P. Debs proved in [AD14] that with high probability, %, =
{z € T; |z| < Glogn} for all G € (0, (2%)~1). Moreover, the value (27)~! is optimal: if G,, denotes
the largest generation entirely visited by the random walk X up to the time n, then P*-almost
surely

Gy, 1
— —.
logn n—oo 274
For this case, we are therefore capable of giving a description of the genealogy of k > 2 vertices

uniformly chosen by adapting the works of S. Harris, S. Johnston and M. Roberts to discrete
super-critical Galton-Watson trees.

1.4. The small generations: examples

In this subsection, we focus on the small generations of the tree Z,,1/> where we recall that T7 is
the j-th return time to e*: T° = 0 and for any j > 1, 77 = inf{i > T7"!; X; = e*}. Let (£,) be a
sequence of positive integers such that £,, > Ylogn (see Lemma 3.4 for the definition of §o) but
smaller than the typical generations of the diffusive random walk X:
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Assumption 2 (The small generations). Let (A;);en be the sequence of functions defined recursively
by: for all t > 0, Ag(t) =t and for any i € N*, A;_1(t) = e, There exists ly € N such that

I Ln
m —-=
n—oo nl/2

Alo (En) =0. (7)

Assumption 2 ensures that £, /n'/2, renormalized by a sequence that grows very slowly, goes to 0

when n goes to co. Note that when k = 2, it is enough to assume that £, = o(n'/?).
Let (¢,,) be a sequence of positive integers such that 60_1 logn < /¢, < £, and introduce the set

Dy, i={x € Bpis2; b < x| < £,},

with high L,, — 1 where L, := £, — ¢, + 1. Recall that D,, is the cardinal of Z,. Note that
lim;, 00 P*(D,, > k) = 1 so we will refer to the set {D,, > k} only if necessary.

For any m € N, recall that T,, = {z € T; |z| = m} be the m-th generation of the tree T and let
AJ, := AJ(T,,). In addition, we also require the following technical assumption.

Assumption 3. There exists 1 > 0 such that ¥(t) < oo for allt € [1 — 01, [k + 01]] and for all
1<j<[k+4061], for all B = (Bi,...,B;) € (N*)*I such that >1_, B; < [k +61]

ci(B) = E[ Z e_w’v(m))-f} < 00, (8)

zEA]

where (8,V (x)); == {:1 BiV (z™).
The next assumption is an ellipticity condition.

Assumption 4. There exists h > 0 such that

P(inf (V(z)—V(z*)) > —-h) = 1. 9

(inf (V(x) - V(") > ~b) )

Remark 1. Although we assumed k > 2, the case k = 1, that is to the say the volume D, =

Yot <izi<e, Yeea .y of the reqular range 9, is interesting. The convergence of (D, /(n*/2Ly)n,
n> SAn ™

does not requires all the previous assumptions and holds for k > 2. However, since it is an easy

consequence of Theorem 1.6 with k =2 and f = 1, we state the following result:

Theorem 1.1. Let k > 4. Under the assumptions 1, 2, 3 and 4, in P*-probability

1
W72, O sk G oo
where ¢ is defined in (26), Wy is the limit of the Z,, := o((T; V(z), |x| < n)) additive martingale
Wo =23 101=n e=V@) and according to [Big77], P* (W > 0) = 0. Moreover, lim; oo t"P(Wa, > )
exists (see [Liu00]).
In particular, if R,(£) = Elzlzf Li.ew .} denotes the volume of the £-th generation of the range
T™n

P12 and logn = o(L,), then both (Rn(£,)/n'?) and (Zf;sgl1ognR”(£)/(n1/2£”)) converge

in P*-probability to cooWeo.

In view of Theorem 1.1, we deduce that whenever £, is large enough but not to close to the largest
generation of the tree %, 12, the range R,(£,) is of order n'/2. Moreover, L, — 1 denotes the
height of the set 2, in the tree Z,.,1/2 and the volume of Z,, behaves like L,, x R,,(£,).
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The following theorems are composed of two parts: the first part will be a convergence of the range
AP (f) for a given function f and the second part will be an application of this convergence to the
genealogy of the vertices 2 (L") ... 2 (k1)

In the second example, we present a range such that for a k-tuple & € AF, some of the vertices
are free while others are obliged to interact with each other. Let A = (Aq,..., ) € (N*)** and
introduce

k
f)\(at(l), . ,x(k)) = H ]l{lx(ifl)/\m(i)|<>\i}.

=2
Note that there is no constraint between z(1) and z(2) if iy & {i; — 1,4 + 1}.

Theorem 1.2. Let k > 2 and assume k > 2k. Under the assumptions 1, 2, 3 and 4, in P*-probability

1 k k sk
m«lz{ (D, I2) e (Coo) "5 (fA),
n
where % (fx) = lim;_, 00 ZmeAf e~V (™) Hf:z eiv(w(i))ﬂ{‘x((i—l))/\x(i)‘<Ai} and this limit holds in
L?(P™).
In the next example, we are interested in the number of vertices of &, sharing a common an-
cestor for the last time at the bottom of the tree Z%.,1/>. Let k > 2 be an integer. For any

x = (xM, ... 2®)) c AF let .7*(x) be the first generation at which none of (), ... z(*) share a
common ancestor:

SR (@) == min{m > 1; Viy # iy, |20 A 20| <m}, (10)

where we recall that |2(*) A 2(%2)] is the most recent common ancestor of z(*) and x(2). For any
m € N*, introduce €% := {x € A¥; 7*(x) < m} (see Figure 1).

Let us also introduce the coalescent times (or split times) of the vertices 2 (b7 ... 2 (kn)
uniformly chosen in the set Z,. For a given partition 7 of {1,...,k}, we denote by |m| the total
number of blocks of 7. Define the coalescent times by: Yok’" :=0and for all j e N* k> 2

kn o _ s k,n, , k,
ZF = min {m > A% ) > [a A =1} (11)

Note that there exists #*" € N such that for any j > #*n, 5”]-’“’" = .ZF(2 ™) and by defi-
nition, 2 < [{#*; j € N}| < k. One can notice that seen backwards in time, each random time

Zk’" — 1 with 0 < j < _#%" corresponds to a generation at which two or more vertices among
2 @n) (k) ghare a common ancestor for the first time. /jk’" is usually referred to as the

j-th split time while /;’Z,_].H is the j-th coalescent time.

It appears that the number of vertices visited by the random walk X belonging to €% is
large and as a consequence, the sequence of random times (#*(2° ™) = inf{m > 1; 7kn" =
{{1},...,{k}}})n converges in law.
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, generation
Z G 22

m

S 1= ( () 1
w4n

Sy =1

4.n
S0 =1
e 0

Figure 1: An example of four vertices belonging to €% together with their three coalescent times.

Theorem 1.3. Let k > 2. Assume that k > 2k and for any m € N*, @ € A*, f,.(z) = L ().

Recall that &% (D, fm) is the number of k-tuples x of distinct vertices of D, such that .7*(x) < m.
Under the assumptions 1, 2, 3 and 4

1. in P*-probability

1 k k sk
mﬂ (Dns fm) e (coo) A5 (fim),
where % (f,,) is defined in (23). Note that lim,, oo ZE (fm) = (Wa)¥ in L2(P*).
2. Moreover, the sequence of random times (*(2 ™)) converges in law, under P*: for any
m € N*

. o [T ()
k(g (n) Zoo\Jm)
P (SN2 M) <m) — B [(Woo)k ] (12)
The convergence in (12) is somewhat reminiscent of the result of K.B Athreya ([Ath12b], Theorem
2) for a super-critical Galton-Watson tree stated earlier: each coalescence occurs in a generation
close to the root.

In the following result, we compute the law of 7%™. Before that, we add, for convenience, a collection
{e(i); i € N*} of distinct leafs in the generation 0. Let ¢ > 2 be an integer and 7 be a partition
of {1,...,q}. For any m € N*, define the set Y, » by: & = (z(M),...,2@) € T,  if and only if
x € A7 and

VB € w,Viy,io € B: (x(il))m = (x(iz))m’
and if || > 2

VB # B € w,Vi; € B,iy € B : (")), # (2(2)),,,
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where we recall that, when |z(*)| > m, ((9),, denotes the ancestor of z(Y) in generation m.
Otherwise, if || < m, we set (2()),, := e s0 T\, » is well defined.

, generation

z(2)

(@), = e &P e el

Figure 2: In the present illustration, the 4-tuple of vertices (', 2(?) " 2(*)) belongs to Y, x
with 7 = {{1,3},{2,4}}, since -') = = 22 = (@) = (@), and -1 £ (2,
However, it doesn’t belong to Y,/ .

Now, let 1 < d < ¢ be two integers. A collection (Z;)o<i<q of partitions of {1,...,q} is said
to be increasing if it satisfies 29 = {{1,...,q}}, Za = {{1},...,{¢}} and for all i € {1,...,d},
|Zi—1| < |Z;|, where we recall that |=;| is the total number of blocks of the partition Z,. For
p € {1,...,d}, the j-th block Bf71 of the partition =,_; (blocks are ordered by their least element)

is the union of bp,l(Bffl) > 1 (we will write b, 1(B;) instead) block(s) By ,...,B]

bp—1(B;)’
1<l <...<ly,_ (B, <I|Zp|, of the partition =, and for any i € {1,...,l,,_,(B,)}, define
prit =By, (13)
be the cardinal of the block By .
Let (Z;)o<i<a be an increasing collection of partitions of {1,...,q} and let t = (t1,...,t;) € N*4

such that t; < --- < tg4. Introduce the set Fi,z ="y, _1=, , NTy We then define the function

ft”l,E by: for all x € A?

iy= "

d
fi=(@) = [[r, (@), (14)

The function defined in (14) plays a key role in our study: ff{E(m) characterizes the genealogy
of & := (zM,...,2(9). Indeed, for any i € {1,...,d}, the partition Z; corresponds to the i-th
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generation of the genealogical tree of (1), ..., 2(9) while t; — 1 denotes the i-th generation at which
at least two branches of this genealogical tree split (¢; —1 therefore corresponds to a coalescent/split
time, see Figure 3 for instance). We are now ready to state our result:

Theorem 1.4. Let k > 2 and assume that k > 2k. Under the assumptions 1, 2, 8 and 4, for any
¢ € N* such that ¢ < k, any s = (s1,...,50) € N such that s; < --- < s; and any increasing
collection I1 = (7;)o<i<e of partitions of {1,... k}

1. in P*-probability

1

W%k(-@nv fﬁ,l’[) n:; (Coo)kﬁ{olg(fgn)- (15)

2. Moreover, for any non-negative integers mo < mq < --- < my

n n * 1

Py = =) D B X )] (9
o7 s=(s1,-.,50)

m;—1<8;<m;

where /% ( ﬁ,n) is the limit in L>(P*) of the martingale (ﬂflk(ff’n))l, satisfying

Z Z doi( m) = ( OO)ku

II increasing s=

and
0 il
E*[Q{o’g(f few(k)H H Cor 1 (B,) Bz o) H et (B, (17)
=1 j=1 Bem;
[B]>2
with 87y = sip1 — s — 1, sp, =1, B = (B7,,..., f,b,,(Bj)) (see (13)). We also use the

convention [ [, = 1 and see the assumption 3 for the definition of ¢;(3).

Remark 2 (An hereditary character). There is an hereditary character hidden in the previous
formula (17) due to the random environment. The fact is, unlike the case of regqular super-critical
Galton-Watson trees depending on (b;(B); B € m;, 0 < i < ¢ —1) (see [Joh19], Theorem 3.5),
the limit law of the present genealogical tree depends on the collection ( ;, 1<i<l, 1<5<
|7i—1]) and on (|B]; B € m;, 1 < i < (), making a huge difference. Indeed, by definition, the
latter take more account of the genealogical structure than (b;(B); B € m;, 0 < ¢ < {—1). For
instance, let k = 4, £ = 3 and define the increasing collection of partitions II = (m;)1<i<e by
ms = {{1}, {2}, {3}, {4}}, m> = {{1,3}, {2}, {4}}, m = {{1,3},{2,4}} and mo = {1,2,3,4}. We
have B3 = (1,1), B3 =1, B3 =1; B2 = 2, B3 = (1,1); B} = (2,2) and thanks to (17), for any
t = (t1,t2,t3) € N*3 such that t; <ty < t3

2
E* [ (fin)] [Z e—QV(z)]E{ Z e—vm—v(y)} E{ Z o2V (@) =2V (y)
‘Il 1 J;;ﬁy .’t;ﬁy
lz|=]y|=1 lz|=|y|=1

o et5 (2 +265(2)+(4)

Also introduce the increasing collection of partitions II' = (7})1<;<¢ such that wh = w3, wh = o,
) = {{1,3,4},{2}} and w) = my. We have 3} = (1,1), B3 =1, B3 =1; B = (2,1), B3 = 1;
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B1 = (3,1) and thanks to (17), for any t = (t1,ts,t3) € N*3 such that t; < ty < t3

E'i(fin)] =E| Y e V@OVWIE] Y @ VOE[ 3 etV
|z|=ly|=1 |z |=ly|=1 |z|=ly|=1

o SV

A generation
g (3,n) 27 (2,n) g (3.n) 7 (2,n)
1.1 o
3 —
1,1
2, (1,1)] o
t1 —1
e e 0

Figure 3: An example of a genealogical tree of the four vertices 2 (1), 2 (2n) @) g7 (4n)
associated to I (left) and associated to IT' (right). [I,2] means that by 11({1,3}) = | and 82" = 2,
[2,(1,1)] means that by r({2,4}) = 2 and 8™ = (1,1). In the same way, |2, (2,1)] means that
b1 ({1,3}) = 2 and ﬂf’nl =(2,1), [, 1] means that b v ({2}) = | and BS’H, =1

The difference between these two examples is that in the second one, we ask (2" 4™, 1 (the
ancestor of 2" 4™ of in generation t; —1) to belong to both genealogical line [(Z ™)y, 1, 27 (1]
and [(Z ™), 1, ZG™]. This constraint can be satisfied only if the vertex (2 ™), 1 is often
visited by the random walk X, inducing more dependence in the trajectories of X thus giving the
factor t51(3) instead of 2t51(2) = t51p(2) + t54(2).

However, in the case of reqular super-critical Galton-Watson trees, the events N3_o{m;} and N3_y{7;}
have the same probability under the limit law of the genealogical tree. Indeed, one can mnotice

(see Figure 3) that for all i € {1,2,3} and all j € {1,...,|m|} (7| = |7} by definition),

bin(B;) = by (By(j)) for some permutation p on [1,|m;|], but this not the case when replac-

ing b; 11 (B.) by B and b; 1 (B.) by B

Since all coalesences of the genealogical lines of 2 (1™ .. 2 (k) occur in the remote past
with large probability, one could focus on this particular vertices of the tree %, ., 1,2. To do that,
we pick a k-tuple & () = ((Ln) gy (k) yniformly in the set 2% N €F for s € N*. In other
words, the law of 2 (") is given in (5) by replacing A*(2,) with A*(2,,) N €. We keep the same
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notations for % (™ as for 2" ("),
The last example gives the law of the coalescent times (yk’n)léjsjk,n of () gy (kn).

Theorem 1.5. Let k > 2 and assume that k > 2k. Let 1 < { < k, s € N* be two integers, and

s=(51,...,80) € N*! such that 51 < ... < sy < 5. Assume that for all x € A¥,
¢ ¢
Fs ($) = Z s,E(w)7
E increasing
where Z increasing means here that £ = (E;)o<i<¢ s an increasing collection of partitions of

{1,...,k}. Under the assumptions 1, 2, 3 and 4,
1. in P*-probability

2. Moreover
* k.n k,n k.n * JZi<>o
PY(A" =51,...," =50, I zﬁ)—>E[7

where /% (FLz) is the limit in L*(P*) of the martingale («7"(FY=))1 and satisfying

Y AEFD) = AL (Lgy).

51<<5¢<s

1.5. The small generations: a general result

In this section, we present results for the range 7% (%, f) with f satisfying a very natural heredity
condition we will discuss later and including previous examples. First, recall that 2, = {z €
R prs2; by < |z < £,} with (£,,) a sequence of positive integers such that 5 tlogn < £, <nl/?
(see Lemma 3.4 for the definition of dp) and (¢,) is a sequence of positive integers such that

50_1 logn < £, < £,. Then recall the definition of .27*(2,, f) defined in (4): if D,, > k

(D, f) = > fla),

TEA*(D,)

with AF(2,) = {x = (2W,...,2W) € §XF; Wiy # iy, 2() £ 202)} and equal to 0 otherwise.
Although we obtain quite general results, we however require the following assumption on f: recall
that for all k > 2, & = (2),...,2®)) € AF €F = {x € AF; F*(x) < m} where SF(x) — 1
denotes the last generation at which two or more vertices among (!, ... 2*) share a common
ancestor (see (10)). Assume

Assumption 5. there exists g € N* such that for all integer p > g and all x = (:C(l), e ,:c(k)) € AF,
if ming<;<g |x(i)| >pandx € ‘fpk then

F(@D, . 2®) = f(@ D)y, D)), (20)
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where we recall that (x(i))p is the ancestor of (¥ in the generation p. In other words, we ask the
constraint f to be hereditary from a given generation g.

Introduce the local time " := Z?:l 1{x,=c=} of the parent e of the root e at time n. Recall
that T7 is the j-th return time to e*: T7° = 0 and for any j > 1, 7V = inf{i > TV"1; X; = e*}.
Let s € N* and introduce %, 7 := {x € Zr+; £y < || < £,}. We denote by &% the set defined
by: for a given & = (M), ... ,m(k)) e A¥ & e €5 if and only if the vertices of (1), ... 2(*) are
visited during k distinct excursions before the instant 7°°:

k
ebei= | MMe=@W,..aW)eak; 28} — 217 > 13, (21)

xT
JE[1,8]x i=1

where we denote by [1, s]x the set of k-tuples j of {1,...,s} such that for all 43 # iy € {1,...,s},
Ji, # Ji,- Our first proposition is a convergence of the range &/*(Z,, 1=, flg.s) for any ent/? <
s<nl%/eq, 61 € (0,1).

Proposition 1. Let k > 2 and assume k > 2k. Under the assumptions 1, 2, 8 and 4, if [ satisfies
the hereditary assumption 5 then for all €,e1 € (0,1), ent/2<s< n1/2/51

" 1 k _ k sk
P (TL”)’“” (Do, Flgres) — (Coo) Moo(f)‘ > e) — 0,
where (S; — Si—1)ien+ 1s a sequence of i.i.d real valued random variables such that Sop = 0 and
Eh(s1)] =E| > h(V(@)e @], (22)

|z]=1

and, in L?(P*)
AE(f) = Jim (1), (23)
with ¥ (f, B) := EmeAf f(@)e=BVE@Ie o (f) = A (f,1) and 1 := (1,...,1) € N*F,

In the next proposition, we claim k-tuples in A*\ &%* with n'/2/e; and £; € (0,1), that is k-tuples
of vertices such that at least two among them are visited during the same excursion above e* and
before T, have a minor contribution to the range &/*(%,,1).

Proposition 2. Let € € (0,1), k > 2 and assume k > 2k. Under the assumptions 1, 2, 8 and /

P*( sup %k(.@n’Ts,]].Ak\@k,s) >5(n1/2Ln)k) — 0 (24)

s§n1/2/51 n— oo

We are now ready to state our main result:

Theorem 1.6. Let k > 2 and assume k > 2k. Under the assumptions 1, 2, 8 and 4, if f satisfies
the hereditary assumption 5 then, in P*-probability

k
LATn D) (o yhah (f), (25)

(nl/QLn)k n—oo
and if g #Z 0 also satisfies assumption 5 then in P*-probability

(D, ) AE(f)
T (D) P T ()
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where L, = £, —l, + 1, o = E[(};5 e and L (f) is defined in (23). Note that a

constraint satisfying assumption 5 doesn’t have any influence on the normalization of the range.

Moreover, /*(9,, f) behaves like (L, max,cz L2 |z)* and the limiting value oo (f) contains
TN

all the information about the interactions between the vertices of the tree.

Since (2) < 0, coo and co are well defined in (0,00). Indeed, the sequence ((Z;:o e™%) ey is
bounded and non-increasing and by Jensen inequality, 1 > E[(Z;ZO e )71 > E[(Zé‘:o e %)™t =
(23‘:0 V@)1 > 1 — (@) >,

We end this subsection by stating an extension of Theorem 1.6 to the range %,. Before that,
introduce 9y, := {x € Zyp; L < |z| < £,} with cardinal D,,.

Theorem 1.7. Let k > 2. There exists a non-increasing sequence of positive integers (q;);, satisfying
q; € (0,1/2) and q; — 0 when j — oo such that if k > 2&k for some integer £ > 2 and £, =
o(n'/279¢)  then, in law, under P*

A D, Ak
M —a (W;Q (csocs A1), (27)

and if g #Z 0 also satisfies assumption 5 then in P*-probability

STt ()
A Drg) T s b (g)

(28)

where ¢y = E[>
variable. ~
In particular, all the previous results on 2, hold for 2, with £, = o(nl/z_qé).

wotyi|z|=ly|=1 e V@)=V /(1 — e¥@) and A is a standard Gaussian random

1.6. Further discussion: the critical generations

The critical generations, that is to say of order n'/2, correspond to the typical generations but also

to the largest reached by the diffusive random walk X up to the time n. E. Aidékon and L. de
Raphélis [AdR17] showed that n'/? is also the right normalisation for the tree Z%,: in law, under
]P)*

1/2
o %, — T
1/27°m |B>
n n—oo

where for any ¢ > 0, cZr is tree Zr with edge lengths equal to ¢ and .7]p is the real tree coded by
the standard reflected Brownian motion |B| = (|B¢|)¢cjo,1) on [0, 1] (see [Gal06]). Fjp is what we
can call a Brownian forest thus suggesting that two vertices 2™ and 2 (3™ chosen uniformly
in the range %, at a generation of order n'/? can share a common ancestor in both remote past
and recent past. That is actually what is happening when considering two vertices 2 1) and
2 ") picked uniformly at generation n'/? in the tree #;,, where t,, is the n'/2-th return time of
X to e* (which is quite similar to %, ): let .#, be the most recent common ancestor of 2~ (1) and
2 (1) First observe that

lim lim inf P* (.4, < 1/¢) >0 and ;1_r>n lim sup P*(en'/? < 4, < n'/?) > 0. (29)

e—0 n—oo 0 nooo

Moreover, coalescence can’t occur anywhere else:

- «1
lim lim sup E [ﬁ Z Lo yen.,, 1/e<|zny|<ent/zy| = 0.

e=0 nooo oy

|z|=|y|=n'/?
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Although T is a super-critical Galton-Watson tree, the genealogy of %, (or %,) is a mix of the
super-critical case and the critical case for a regular Galton-Watson trees (see subsection 1.2).
The fact is using standard techniques for randomly biased random walks and branching random
walks, we are able to deal with the quenched mean of (Dy, )P* for p; < k] and (Z2(%,, f))P?
with pa < |k/2] but not with the actual random variables.

The computation for any m > 0 and any 0 < a < b < 1 of P*(.#, < m) and P*(an'/? < 4, <
bnl/ 2) is part of an ongoing work with P. Andreoletti and L. de Raphélis.

The present paper aims in some way to describe the interaction between the vertices of the tree
Hyq1/2 0 the set of generations «squashed» when rescaling the tree by nl'/2.

Remark 3. The curiosity here is the fact that critical generations and small generations equally
contributed to the range. Indeed, whether £, is negligible with respect to n'/? (with £, > 50_1 logn)
or not, Zlu\zﬁn Liuea,,y 1s of order n'/2. This fact makes a deep difference with the slow regime

in which only the critical generations (that is typical generations, of order (logn)?) contribute
significantly to the range (see [AC18], Theorem 1.2 and Proposition 1.4).

2. Proofs of the theorems

In this section, we prove theorems presented as examples and end it with the proof of Theorem
1.6.

2.1. Proofs of Theorems 1.2 to 1.5

In this subsection, we give a proof of each example stated above except for the Theorem 1.1 which is
the simplest application of Theorem 1.6, taking f = 1. For each example, the procedure is as follows:
we first prove the function f we consider satisfies the hereditary assumption 5 and we then give

useful precisions on &% (f) for the description of the genealogy of the vertices 2 (b™) ... 2 (kn),
Proof of Theorem 1.2. Recall that for = (z(M, ..., 2®)) € AF and XA = (\1,...,\) € (N*)*F

K
fale®, 2k = H SN OIPI WS
i—2

Let us prove that the hereditary assumption 5 is satisfied by fx. Recall that for & = (™), ... 2(*)) €
AF, #*(x) —1 denotes the last generation at which two or more vertices among z(1) . .. , %) share
a common ancestor. If p > maxa<;<; A; and € AF such that p < minj<;<j, [z(¥|, then #*(z) < p
implies that for any z € [(z(),, (V] x -+ x [(2F),, 2], we have .#*(z) = #*(x) since, by
definition of fx, the highest obliged coalescence between at least two vertices among (m(l), . ,x(’“))
must append at generation maxs<;<j A;. Thus, Z*((zM),,..., (x®),) < m. Moreover, by defi-
nition, yk((x(l))p, ol (Jc(k))p) < maxa<;<k A; implies *(z) < maxa<; <k A;. Consequently, as-
sumption 5 holds for g = maxa<;<i A;. We conclude using Theorem 1.6. O

We now prove Theorem 1.3:

Proof of Theorem 1.3. Recall that for # = (z(),...,2®)) € AF #k(x) — 1 denotes the last
generation at which two or more vertices among x(1)7 e ,ac(k) share a common ancestor and for

m € N*, recall that
fm(®) = L or@)y<my-
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First, note that the hereditary assumption 5 is satisfied by f,,. Indeed, if p > m and & € A*
such that p < minj<;< |z¥|, then .#*(x) < p implies that for any z € [(z1),, 2] x -+ x
[(x%,),, z®)], we have *(z) = #*(x). Thus, Z*((zV),,...,(x*),) < m. Moreover, by def-
inition, .#*((zM),,..., (2*),) < m implies .#*(x) < m. Consequently, assumption 5 holds for
g=m.

We then deduce the converge of the trace in (15) by using Theorem 1.6.

We now move to the limit law of (#%(2° (™)) in (12). Note, by definition, that

P (5”’“(33” ) < m) = P*(D, > k)E (D, 1) Lip, >k}

so P*(*(2™) < m) goes to E*[X (fm)/(Wa)¥] when n goes to oo thanks to Theorem 1.6 with
f = fm and g = 1 together with the fact that lim, . P*(D, > k) = 1. It is left to show that
lim,,, s 00 ZE (fm) = (Wa)E. For that, we use Lemma 3.9 with f =1 and p = (I,...,1) € (N*)*F

sup B [| 4" (fm) — 4 (1)]"] — 0.

I>m m—o0

Moreover, lim;_,o, F(1) = (Wa)* and limy_ o0 & (fin) = L (fm) so (ZE (fm))m converges to
(Wao)* in L2(P*), which allows to end the proof. O

We now turn to the proof of Theorem 1.4.

—_

Proof of Theorem 1.4. Recall that for any 1 < d < ¢ € N*, for an increasing collection = =
(Z:)o<i<a of partitions of {1,...,q}, forall z = (z(V), ... 2(@) € AT and all t = (t1,...,t;) € N*¢
such that t; <ty < --- < tg,

d
fi=(@) =[] 1r; (@),
=1

and for any r € {1,...,d} and any m € N*, x belongs to Yy, =,

19—

where Ty = = T4, 1=,_, N Ty
if and only if

VB € ET,Vil,ig € B: (J,‘(“))m = (x(i2))7rza
and for r #£ 0
VB £ B €&, Vi € B,iy € B: (z),, £ (21),,,

where we recall that (2(?)),, denotes the ancestor of () in generation m if exists, (z(?),, = e
otherwise. Recall that €% = {y € A% .#(y) < g} where .”%(y) — 1 is the last generation at
which two or more vertices among y(», ... ,y_(q) share a common ancestor. Let p > t4 such that
minj <<z > pand x € €F. If & € N_ T} 5, then (z)); = (z)), for all z € [(z™M),,zM] x
- X [[(x(‘”)p,x(q)]], 1 <i<gqandt € {0,...,p} thus giving ((x(l))p,...,(x(q))p) € ﬁ?le{,E.
Moreover, by definition, ((z(1)),,..., (z(?),)) € ﬁ?zlfiﬁ implies & € ﬂ?lei)E, then (2(V), =
(). Consequently, f{fE satisfies assumption 5 with g = ¢4 and this prove that the convergence
in (15) holds.
We move to the limit law of (7%") in (16). Recall the definition of Zk’” in (11). First, note that

?Tmy mi—1

J4
]P*(Wk’n = T, Wk’n:ﬂ'[) :]P*(ﬂ {ﬂ'k’n :771'717”22? = T, My;_1 <f5ﬂik’n gm,})
i=1
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Indeed, for all 1 < i < ¢, |m;—1| < |m;| so the interval (m;_1,my] necessarily contains at least
one coalescent time. But since my = {{1,...,k}} and m, = {{1},...,{k}}, U'_,(mi_1,m;] can’t
contain more than ¢ coalescent times so ﬂk’n is the only one belongmg to (m;—1, m;]. We now
write

(ﬂ {Wml L =T, M < «%k’n < mz})

mi my

kn _ kn _
= E E (ﬂ{wm =i, T =T, _Sl})
s1=mo+1 Sg=my_1+1
ma my
kn __
= E E (ﬂ{ﬂ'sl_l—ﬁz 1, g —71’@}),
s1=mo-+1 sp=my—_1+1
Moreover, 7rlC L =T, T k = 7r; means nothing but 2 (") ¢ 1"z o and it follows that

(ﬂ {rh, = mimln =, 7P =i} ) =B [fln(2 )]

Jyk(-@nv f.f,l'[)

=E* [W]I{Dnzk}},

where we have used the definition of 2 (") (see (6)) in the last equation. Since ffﬂ satisfies the
hereditary assumption 5, we finally get (15) from (25) with f = ffﬂ and by (26) with g =1

lim [E”*( :71'07...,71'7]3;7:71'0: E*{L“ﬂ”k}
noee 4 s1=mo+1 sg=mg—1+1 (Woo)

We now compute the conditional expectation of 7% (f£ 1) conditionally given the sigma-algebra
Fs,—1=0(T; (V(x);|z| < sp)). Start with p = £. Let s; € {m;—1+1,...,m;} foralli e {1,...,(}.
Using the definition of &7 (f£ ;) and the fact that £ € AF NI for I > s, implies % (x) < sy,
we obtain, on the set of non-extinction

* k 14 . * Y —(1,V 1 v
E ['Q‘(oo(fs,l'[”ysz] = lligloE |: Z fs’n( ( (@) } Z fs, (‘E)>k
zeAk mEAke
since s — 1 corresponds to the last generation at which two or more vertices among =1, ..., z()

share a common ancestor and we recall that (1, V(x)), = Z L V(™). In particular, these vert1ces
don’t share any common ancestor in generation s, and last mequahty comes from independence
of the increments of the branching random walk (T, (V(z),x € T)) together with the fact that
(1) = 0. Before going any further, let us define a transformation of the collection of partitions
II. We build from II, which is a collection of partitions of the set {1,...,k}, a new collection
! = (7;)o<i<s—1 of partitions of the set {1,...,|m,_1|} as follows:

o w1 = {1}, {lmealth

e forany 1 < i < ¢—2 and any 1 < j < |m], the j-th block B;» of the partition r; is
the union of b[_l(B;») > 1 block(s) of the partition m,_;. We then denote by Bj the
subset of {1,...,|m—1]} composed of all indices of these by_1(Bj}) block(s) and let 7; =
{Bi,..., B‘lﬁl} By definition, 7y remains a one-block partition: 79 = {{1,...,|m—1|}}.
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Note that for any 0 < i < £—1, || = |m;| and for any 0 < < =2, 1 < j < [m], bi(B;) = bi(B;),
where B; € 7; is the union of b;(B;) > 1 block(s) of ;1.

Example 4. If II is defined by ms = {{1},{2},{3},{4}, {5} },ms = {{1,3},{2}, {4}, {5}}, = =
{{1,3},{2,5},{4}}, m1 = {{1,3,4},{2,5}} and w9 = {{1,2,3,4,5}} then we have:
s = {{1}, {2}, {3}, {4}}, 72 = {{1},{2,4}, {3} }.™1 = {{1,3}, {2,4}}, and ™o = {{1,2,3,4}}.

If TI* := I, then for any i € {0,...,¢ — 1}, let TI* be the collection of partitions of {1,...,|m;|}
resulting from the previous procedure applied to IT**!. Note that II? is an increasing collection of
partitions of {1,...,|m;|}. This construction is a way of preserving the genealogical information
through the generations.

Let s°~! = (s1,...,50_1) and recall the definitions regarding partitions in (13). One can now
notice that, since that the number of vertices of the k-tuple = € A* , sharing the same parent u)

is by—1(B;) (where we recall that b,_q(B;) stands for bg_l(Bf 1), we have

ey be—1(B;)
Y. fon(@e V@ = 3 T e (w) [ > II Lo =
zeAL, ueal" I=t geal-1B) =t
% e,V(x(j»i)),
where ) = (201 20be-1(Bi))) and (209)* is the parent of 2U%). Moreover, by definition,
be—1(Bj) = |B§71| (it comes from the fact that =, = {{1},...,{k}}) so
[7me—1] be—1(Bj) G - [7vo—1]
I 5 I feomrmone @ =@ Vo T 3
=1 peal-1B) i1 N
be—1(B;) G
— (20
X H Tipeay=uirye Va =07
i=1
where 81 = (|BY7Y,.. |Bfﬂ_£1 ) and Voo (20D) = V(20)) — V(u)). By independence of
the increments of the branchlng random walk (T, (V(z),z € T)), since ¢(1) =0
o1
[ Z fﬁ’ —(1,V(x))x |Js } %|Z"211|< s@ 11‘15 1,ﬂ2_1) H cb271(Bj)(1) H ew(\%l)
mEAf“ j=1 Bemy
B >2
o1

_%lzwlll(f,f;flxnl—l»ﬁe*l) H Cbzfl(Bj)(ﬁfil),
=1

where ﬂf‘l = ( f;l,..., fge{l(By_)) = (1,...,1), see (13). We also recall that <™ (g,8) =
ZEGA?L g(x)e= BV @)m and see assumption 3 for the definition of ¢;(3). Now recall that 1172
is the collection of partitions of {1,...,|m, 2|} obtain from IT*~! with the same procedure as

above (see Example 4). Let 72 = (s1,...,8/_2). Again, exactly by_2(B;) vertices in generation
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s¢_1 are sharing the same parent z(9) so

|7e_2] be—2(Bj)

%lzr_e 1|(f£e 11 16— 1;ﬁz 1) = Z fZQQ,HZ*2 (z) Z H ]1{(u(1 ) )x =20}

GAL” 2l =1 u(J>eAbe Z(BJ) i=1
£—1

B2V (uldD Z e
—B4 1 2y
xe JJ (e ) {m(ﬂ',i)>u(j,t)}e ﬁj i Tul )( )7

m(J)eAbz Q(BJ)

Where u(]) = (u(j’l)’ .. 7u(jfbé—2(Bj))), m(]) = (x(ﬂ’l)’ .. 7x(j1bé—2(Bj))) and Vu(j,i) (x(]#z)) iS the in_
crement V(z09) — V(uU9)). Then, by independence of the increments of the branching random
walk (T, (V(x),z € T)),

\1\'5,2\ b£—2(Bj)
[re—1] -1 _ {—2

|}‘Z{5Z 1 ( stz 11—12 e )| | = § 55*2,1‘[2*2(z) H g H

zea] %, I= umeay 2@ =t
B2 () )

v
Xﬂ{(u(i«i))*:z<;‘)}€ Pai V) goiw (B30
B,
with sj = sy — s¢—1 — 1. Moreover, since )= b 2( ) ]Z |B£ 2| (see (13)), we have

[7e—2| be—2(Bj)

H Z H TiuGiy=ztrye” BET2V (ulD)

=1 (J)EAb( 2<B7> i=1

|7\'272‘ be— 2(B])

= e TV EDimy II > I Lqwoiy—oye BV (),

j=1 u(J)EAbI Q(BJ) i=1
with 32 = (|BY,.. |BW ||) and again, by 1ndependence of the increments of the branching
random walk (T, (V(z),z € T)), using again that Zbe 2(B;) \BlZ 2|

[7vo—2]

[%lz‘;ﬁ 1‘(fsé 1 I1¢— 136671)‘93171_] '%S‘Zrllfl (fs[ 2 116~ 2”&[7 H Cos 2(B]) [ 2)

x T esivamD,

Bemp_1
|B|>2
-2 _ (-2 -2 :
where 8,77 = (8;,7,..., j’b[_Q(Bj)). Thus, we obtain
0 |mial

[ Z fe —(1,V(2))k ‘wal_l} _ S‘Z"iljl (fé[ e 27[3572) H H Ch,_1(B,) ;‘—1)
i=0—1 j=1

k
weAbz
X | I esfd’(‘%l

Bem;
|B|>2
By induction on 2 < p < ¢, we finally get, on the set of non-extinction
£ |mi—1]
B A8 ) P2y r] = 75 02 ) T TT s 87 TT 500090
i=p j=1 Bem;

|B[>2
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Taking p = 2 in the above formula, we have, on the set of non-extinction

e |mi—a]
B [ (fo)| Fora] = AT (o B9 [T T w8571 T et 00,
=2 j=1 Bem;
|B|>2
where for any i € {2,...,¢}, sf = s; —s;_1 — 1 and sj,; = 1. Since Zbo (B1) \Bj1| = k (it comes

from the fact that wo = {{1,...,k}}), we have

[%lzrl;.( 1 H17ﬂ >|98171} = Z e_kv( CbO(Bl) H 682¢(|%|)

|z|=s1—1 Bem
[B]=2
7o
= Z e~ kV(2) cho(Bj)(/B]O') H es3(IBI),
|z]=s1—1 j=1 Bem
|%B[>2
the last equality coming from the fact 3] = 8' = (|Bi|,...,|B[,,||). Finally,
£ |mioa] ‘
E* [%OIZ( ﬁ,n)] _ e,lZJ(k) H H cbi—l(Bj)(/B;'il) H esle(\%D’
i=1 j=1 Bem;
[B]>2
thus completing to proof. O

We end this subsection with the proof of Theorem 1.5.

Proof of Theorem 1.5. First recall that for 1 </ < k, s € N* and s = (s1,...,s,) € N* such that
s51< -+ < 8¢ <s, for all x € AF such that ming <j<g |x(j)| > s,

Fi@)= Y  fiz(@).

Z increasing

By E increasing, we mean here that = = (Z;)o<i<¢ is an increasing collection of partitions of
{1,...,k}. Since f{E satisfies the hereditary assumption 5, the same goes for F by taking g = s.

Using the linearity of g — /% (g), we get (18) thanks to Theorem 1.6.
First note that

{fk,n:& yk(@(n))gﬁ}: U U ﬂ{ﬂ-mlflfﬂ-l 1,7Tkn:ﬂ'i},
m;my<---<myg<s II increasing i=1

where IT increasing means here that II = (7;)o<i<¢ is an increasing collection of partitions of
{1,...,k}. It follows that

A*(Dn, Fy)

P* (ylk’” = S1,... ,yzk’n = Sy, /k’n = f) =E* [mﬂ{Dnzk}}v

and we conclude using Theorem 1.6. O
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2.2. Proof of Theorem 1.6 and Theorem 1.7

Proof of Theorem 1.6. First, &/*(2 a2y ) = (D, f1

" e,67,11/2) + (9D, f1
then for any € € (0,1)

Ak\@k-,,n,l/? ) and

1
]P)*( W«Q{k(@m f) - (Coo)kﬂo@(f)‘ > 5)
1
<P (| gy (O £) = (el AN > 5) 4 B (M L gnrz) > 5 (017 E)Y).

Noticing that Z, = 9 ,.1/2, the first probability in this sum goes to 0 when n — oo thanks to

Proposition 1 with s = n'/? and the second one also goes to 0 thanks to Proposition 2 thus giving

(25). For the convergence in P*-probability (26), note that

(1 (D, f) AE(f)
P (D, f) P2 T %@(g)‘ ><)
SP*(%’“(%J) ok

(D, f) AL
these two probabilities go to 0 when n — oo and the proof is completed. O

g;‘ >5,Dn2k> FPH(Dy < k),

We now prove Theorem 1.7. Recall that D, = {x € %Zn; 0, < |z| < £,}. The main idea of the
proof is to show that, when k£ > 2&k, £ > 2, and £, = o(nl/z’qg ) for some non-increasing sequence
q such that q; — 0 when j — oo, the volume D,, of the range %, behaves like the volume of the
range up to the last complete excursion of (X),;<, above the parent e* of the root e.

For that, one can notice that for this choice of x, Proposition 1 holds uniformly in s: there exists a
non-increasing sequence of positive integers (q;);, satisfying q; € (0,1/2) and ¢; — 0 when j — oo
such that if x > 2¢k for some integer £ > 2 and £,, = o(n'/27%) then, for any ; € (0, 1)

n1/2/€1
(U fepg @ e - k) ) o o

The proof of (30) is the same as the proof of Proposition 1 but for any €,e1 € (0, 1), by Markov
inequality

n'/? /e,
]P’( U {’ Z sz,”(j,f]lwn)—Eg[ Z ,g{k,n(j’fﬂﬁn)]’>5(8Ln)k/16})
s=eint/2  jE[l,s]k JE[L.s]x
nl/2 /e, 1626k o . . -
> WE[( S TG ) ~EE Y oG My )]) ]
s=eint/? " Jell,s]e JE[L.s]k
n1/2/£1 E E]E (2 )E{&
s=e1nt/2

where we have used Lemma 3.7 with a = £ for second inequality. Note that g > 2 since £ > 2 so,
as in the proof of Proposition 1, we obtain (30) by taking q; := (24;) '
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Proof of Theorem 1.7. First, let us state the following fact, proved by Y. Hu ([Hul7], Corollary
1.2): in law, under P*

1 1/2
n1/2 Z]l{xk €} n—)oo p ( ) |</V|

We can actually adapt this result to the local time .£" of the parent e* of the root e: in law, under
]P)*
ol /2

1 mn
At (B31)

where ¢ is defined in (26). Moreover, recall that .4 denotes, under P4, a standard Gaussian
variable. Then, we show that &/*(Z,, pen, f) and &/*(Z,, f) are close in the following:

n—oo

P (e Gz ) = (@) > ) 0. (32)

Indeed, by (31), lim., o limsup,_,. P*(e1n'/? < £ < n'/2/e;) = 1 so thanks to Proposition
2, together with Lemma 3.6 taking % = A* \ ¥ and Lemma 3.10, (%k(@n’Txn,f]lAk\cggn) +
dk(.@n7f]lAk\<gfn)>/($nLn)k — 0 when n — oo, in P*-probability where we recall that a, =
(280) ! log n. Therefore, it is enough to show that

F ( ("L,

For that, assume .£" = s € {e1n'/?,...,n'/?/e;}. By definition, £" = sup{j > 1; T9 < n} so on
the set {D,, ps > k}, where D,, rs is the cardinal of 2, 7=, both 2,, r- and %, are nonempty and
note that

! kw Dz flogn )—M(@n,fnﬁn)pe) — 0.

n—r oo

A (D gy ) = M (Dure flax )= D Y Yalmp, @) <ant L{re<Tuzn}
PE{Ln, Bn} Xk ZEAK
S Z Z 1{‘1":177 yk(m)gan}]l{Ts<Tm<Ts+l}7

PE{ln,..., L0} Xk ZEAK

where |x| = |p| means that for all 1 <4 < k, () = p;. Using the strong Markov property at time
T* first and Markov inequality then, we have

Pg(

- ) r (D fligr ) = A (Duire, fligr ) > &, Duie > b, L7 = s)

(s
3

) Z Z Yjzl=p, (@) <an} LTo <1} > 5)
E{ln,...,Ln} Xk TEAF

= ﬁ]@&[( Z Z Lfjz|=p, y’“(m)ﬁan}]l{Tm<T1}>2:|.

PE{ln,....Ln} Xk zEAR
Moreover Eg[(ZweAk ]1{‘:,3‘:1,7 V’C(w)gan}]l{Tm<T1})2] is oqual to

& 1 & 1
D Laimyl=p. #* @Vt @)<any B TV Ty <TY 4+ D Ljai—p, s @)<anyP’ (T < TV,
z,yeAk TEAE
z#y
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where ¢tV s = max(t, s) and thanks to Lemma 3.2

2
Eg[( > Lijai=p, yk(m)ﬁan}]l{Tm<T1}) } < &(a,Ly)*,
xEAF

for some constant ¢’ > 0 that doesn’t depend on p thus giving

* 1 mn
P (7(31: T > > Yol=p, #*(0) <ant Lre<Tuzn) > 6,7 :5) S e
" pE{ln,..., L0} Xk mEAK

for some constant € > 0. Finally, for all £, € (0,1)

v ({%‘M(@Wﬂf"’fﬂﬁn) (D, flogy )| > }) SPHDren <)

(&L,
n1/2/51 1
+ Zl P*(m Z Z Lior@)<any L{rs<ty<n} > € Dnps 2 k, L™ = s)
s=enl/2 PE{ln,...,.Ln Xk xEAK
lz|=p
*( con 1/2 *( cpn 1/2 é(an)% *( con 1/2 *( con 1/2
+P(L" <en )+ PH(L" >n /sl)gﬂﬁp (ZL" <en/?)+P(L" >n''?/ey).
mn

Note that lim,—,ec P*(D,, y2n < k) = 0 and using (31) with the definition of a,, = (269) ' logn,
we have lim,, o limsup,,_,._(€(a,)?*/(c2e1n'/?) + P*(L" < e1n'/?) + P*(L" > n'/?/e1)) = 0,
which yields (32).

Now, since &*(Z,, pzn, flamerzn)/(ZL"Ly)* — 0 when n — oo, in P*-probability and thanks
to (32), we can focus our attention on &* (%, ren, flgrzn)/(L"Ly)k.

Note the &% (%, e, flgr.2n) concentrates around (coo)*@% (f). Indeed, for any ¢,&1 € (0,1)

P ﬁ” (D Flenen) = (ex) 5 (1) > )
n'/2 /e,

S]P’*( L-J/ {‘ﬁdk(l@nﬂx,fﬂekﬁ) — (Coo)kﬁ{;g(f)‘ >€}) +P*($n <€1TL1/2)
s=e1nl/2 n

+ P (L™ >t ey).

Thanks to equation (30), the first probability above goes to 0 when n goes to co and by (31),
limg, 0 lim, o0 (P*(L" < e1n1/2) + P*(L" > n'/? /e1)) = 0 thus giving

. * 1 k k 7k —
nh—)ngo]P) ( md (@n’T:f” y f]].ek,:f") - (Coo) doo(f)‘ > E) =0. (33)
We obtain from (33), together with (32) that
. . 1 k B k sk _

which gives (26). We also deduce (25) using (31). For the convergence in P*-probability (26), note
A Dy, [l ) A (f)
<> )

that
P*( | -
<W’“(@n,fﬂ<@n) o=k ek (g)

(D, f1
SP*( k( flgr )
A (D, [l )

FE(f) .
- %’g(g)‘ >e,D, > k:) +P*(D, < k),



Kagan/Coalescence in small generations for the diffusive randomly biased walk on Galton-Watson trees 23

which goes to 0 when n goes to co and the proof is completed. O

3. Proofs of Propositions 1 and 2

This section is devoted to the proofs of our two propositions. We show that relevant k-tuples of
visited vertices are those in the set &%,

Let us recall the well-known many-to-one lemma:

Lemma 3.1 (many-to-one). For any p € N* and any bounded function h

ElR(S1, . $p)] =B 3 e VOh(V(a),.... V(z,)],

|lz|=p
where (S;);en is the real valued random walk defined in (22).

We now state and prove a lemma that will be useful all along this section. For any vertex « € T,
introduce T}, := inf{i > 1 X; = x}, the hitting time of = and for any = = (z(V), ..., 2(®) € A9,
T, := maxi<;<q Ty . Recall that for any j € N*, 77 denotes the j-th return time to the parent e*
of the root e. For 1 < £ < ¢ two integers, m = (my,...,my) € N*¢ such that m; < --- < my and
IT = (m)p<i<¢ an increasing collection of partitions of {1,...,q} that is to say |m;_1| < |m;| with
mo=1{{1,...,¢q}} and 7y = {{1}, ..., {q}}, recall the definition of f:;z,l_[ in (14).

Lemma 3.2. Let k > 2 and a > 1 be two integers and assume k > 2ak. Let q € {k,...,2ak} and
P = (p1,...,pq) € N*9. Under the assumptions 1 and 3, there exists a constant € > 0 doesn’t
depending neither on p, nor on m such that

[mgqun 2)P¢ (T, <T1)] ¢
|z|=p

where |x| = p means that |tD| = p; for any i € {1,...,q}. In particular, for any integer m € N*,
there exists a constant Cs o > 0 doesn’t depending on p such that

B[ Y Ly (@)P Ty < )] < Coam? ™", (34)
TEAY
|=|=p

Proof in the case ﬁj 1Fm g C {x € A% €(x) < minj<;<,p;}. First recall that II* is the parti-
tion of {1, ..., |m;|} obtained via the procedure defined above Example 4 and for any i € {1,...,¢},
any j € {1, ..., |mi—1]}, the j-th block B} of the partition 7r; 1 is the union of b;_1(B;) > 1 block(s)
of the partition ;. Note (see the proof of Theorem 1.4) that

|7re—1] be—1(B;)
Y & 1 -1
D Smn@P (T <T) = > fotina@ [T X2 I Meoor-o
i zea)! RN
& 1
X D Welp, o2 P¥ (Te < T7),
xreAd
where mf~1 = (ma,...,mg_1), u is the concatenation of u® . wl™-1D) and & > u means that

2P > uP) Thanks to the strong Markov property at time T, there exists a constant C,>1
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such that
[7we—1] be—1(Bj)
& &
S tan@P (T, <THY<Cp > m“H“()P (T, < T H Z 1T
i eari
X LyuGoy=z} Z 1605060180 (Thoa < T,
z() e Abe—1(Bj)
(@) |[=p)
where p is now seen as the concatenation of p(V), ... p(™-1D Moreover, it is known that for all
z<zxin T,
& 1 Ze<w<z eV(w) . & 1 1
P (T, <T") = =——= ifz#e, P°(IT,<T")==——— else, (35)

Zegng eV(w) Zegwﬁx ev(w)

so PE(T, < TY) < e V@ Y e<w<s eV (). By independence of the increments of the branching
random walk (T, (V(z),z € T)), using that b, (B;) = |B§71\ and (1) =0

[7we_1]
E[ Z ffn H Pg T < Tl)} = €€71E[ Z f;;ffl—l,l'[z—l(z)Pg(Tz < Tl) H (Hz(j))lBﬁ_l‘}
xcAd eA"’"Z 1 it

|z|=p my=t

X Cq H C|B\(1)7

Bemy_1

with H, =3 <. VW =V(2) and ¢,_; = C, [IBen, , ¢B)(1) € (0,00) thanks to assumption 3
since for any B € mp_1, |B| < ¢ < 4k < k. Again, thanks to the strong Markov property at time

Ty
[7e—1] 1
-1 & 1 B!~
Z mz717nzf1(Z)P (T, <T7) H (Hz<j))| i
g1l j=1
ZEA,’,"ZZii j
|7re—2] be—2(B;)
& 1
<Cp Z mz 2 16— 2(W)P? (T < T7) H Z H LGy —wy
weA:f:fll =t pweant 2P 1=t
X Z ]1{2(.7‘,7»21)(.7"71)}(qu‘n:)) 5 pe oo (Toaan < ™),
z(j)gA‘s’lf{;”
for some constant Cy_; > 1, where v() = (w0, ... 4U:b-2(Bi))) and recall the definition of 512

n (13). Thanks to (35)

e—2_4

SV (xGD -
(Hao.0)%0 Pwm( Loy < TY) = Hyge Vo G (H )P

V(26D
and H,;.o = Hyu.oe VoG (2 )+H,U(j,i)’z(j,i) where, for any u < z, Hy ;==Y

Since H,, > 1 for all u € T, we have

wcw<s eV (w)=V(z),

H

z

V(D V(26D
Gy < Hyyiiy (€7 Vu® @) 4 1) (e b (2 )+Hv<j,i>,z<j,i>)>
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—2
thus giving that (H,.. )" Pi(j)(TZ(j,i) < T"') is smaller than
- ji j i £—2_ j i
(me)ﬂf,iQe—Vw(j)(v(” ) (e—un)(v(” ’)_,_1)61,1' L=V, 60 YD)
Vo (20D Bt=21
x (€Yo G L H Gy i )

By independence of the increments of the branching random walk (T, (V(x),z € T)), using that
Zbﬂ 12 J)ﬁ@ 2 |B€ 2|

Tyr—1
B 3 stiern < T )
zeA‘T:;:i‘ e
[7e—2]
sem| 3 Sl (T <1 TT (0) >,
weA:f:fLI L
where, thanks to the many-to-one Lemma 3.1
& o= l"ﬁzE[ Z be ﬁ _V(v( >) —V(v®) + 1 } H E Smy + HS*>|B‘_1]
j=1 uEAbz 2(Bj) Ben m} ,

mp = mg —my_1 — 1, HY = > et e%»~%m (the random walk (S,) is defined in (22)). Note
that €;_5 € (0,00). Indeed, the first mean in the definition of €,_5 belongs to (0,00) thanks to
assumption 3 since for any 1 < j < |m_s|, by—2(B;) < ¢ < 2ak < k and Zg’;’f(Bj)ﬁf;? =
|B§72| < g. The second one also belongs to (0,00) since for all B € my_1, |[B|—-1<¢—2<x—2
and as it is proved in [AD20] that sup,,cn- E[(Hp)" 1 7¢] < oo for any € > 0. We also deduce from
this, together with the fact that ¢'(1) < 0 and m} > 0 that €,_5 is bounded by a positive constant
doesn’t depending on m. By induction, there exists a constant €5 € (0, 00) (still not depending on
m) such that

71|
B[ Y frn@P (T <TH| <@E[ 3 > PA(Tu< T [[(Hu0) P 0sn .
LN |zl=mi—1yenlm! i=1

|z|=p !

Thanks to the strong Markov property, P (Ty < T') < Cppey P (T, < TY) = pe(T,. <1 =
C‘,Tl‘IP’"@(TZ <Th) Hl’;lll e_V(”(l))/Hu(i) for some constant C|r,| > 1 and then, using (35) together
with the many-to-one Lemma 3.1

B[ Y fn@P(Te <TH| <GB[ 3 e VO(H) ™7 = eB[(H7, )17,

rE A4 |z|=m1—1

||=p
Again, 71| =1 < g—1<2ak—1 < x—1so E[(Hp _1)™ "] < sup,,en- E[(Hp_1)™171] € (0,00)
which ends the proof. O

3.1. The range on &F-

This section is dedicated to the proof of Proposition 1 in which the range is restricted to the
k-tuples of vertices belonging to the set ¢, that is such that the vertices are visited during k
distinct excursions, see (21) for the definition of &%
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3.1.1. The relevant vertices: the set ‘Kfn

First recall that €% = {x € A*; .#*(x) < m} where, for any z = (z(V),... 2®)) € AF and
% (x)—1 is the last generation at which two or more vertices among ("), ... 2(®) share a common
ancestor (see (10)). In this subsection, we focus on the range on & NE¥ with a, = (250) " logn,
which is the set of relevant k-tuples of vertices in the case of small generations. Before going any
further, let us state and prove the following lemma. Recall that H, = .., ")V,

Lemma 3.3. Let k > 2 and a > 1 be two integers and assume k > 2ak. Under the assumptions 1,
3 and 4

(1) for any integer g € {k,...,2ak} and any B = (b1,...,B4) € (N*)*? such that Zg:l B < 2ak,
there exists a constant €331 > 0 such that

sip B[S e—<ﬁ,v<:c>>q} < Casn;
pE(N*)*4a rCAd
lz|=p

(i1) for any integer g € {k,...,2ak} there exists a constant €332 > 0 such that for n large enough
and any h >0

—(1,V(z Cs3,
E[ Z Lmaxi cicq H, i >h}E D < %Jﬂ’(l)
zeAl

an

Proof in the case ﬂleFZn)H C {x € A% F(x) < miny<;<4p;}- Not that, since H, > 1, we have
E[ZmeAZ,n 6_<1’V(m)>q] = E[ZmeAgn L imaxi<icy Hz(i>>h}e_<1’v(“”)>Q] for all h < 1. The proof of
(i) is similar to the proof of Theorem 1.4 and Lemma 3.2 so we focus on (7). In order to avoid
unnecessary technical difficulties, we prove it for any a > 2. Recall the definition of f£; in (14) for
te{l,...,q—1}, s =(s1,...,50) € N** such that s; < --- < s; and I = (m;)g<;<¢ an increasing
collection of partitions of {1,...,¢}. Note that

q q—1
Z Zﬂ{maxlsi@ Hm<i>>h}ei<17v(z)>q = ZZ: Z Z Z ffﬂ(a:)e*u’v(m»q

weAZn j=1 =1 s;51<...<s¢<a, II increasing xcAl

an

X ]l{maxlgigq Hz(i> >h}s

L —(1,V(=x rQ
and ZweAg’n Form(®) L fmax, <., H, ;) >h}€ (LV(=)a is equal to
el be—1(B;)
-1
E et e-1(%) H E H LiuGy=z00y E LGy
zea ! = uweal %) =l s ea %
—V(zD)
X e 1{m3‘x1§j’§\we,1\ maxlSi’Sbg,l(Bj/) Hw(j/‘i/)>h}-

Recall that for any v < 2, Hyz = D, .y eV()=V(@) thanks to assumption 4 together with the
fact that H ¢, > 1 a

V(@D
Hyrn < Hyny(1+€")eVutin )+ H, i1 p6rin,



Kagan/Coalescence in small generations for the diffusive randomly biased walk on Galton-Watson trees 27

_ ")
so H, .y > h implies that H_/, (1 +€")e Vaatan @0 h/2 or H, it puran > h/2. We also
decompose according to the values of H ;/):

1 -V R (I(j/’i'l
{maxlgj/g‘ﬂ.éil‘ maxlgingéil(Bj/) Hz(j’) (14+eh)e wl™

i )’>h/2}
) >h} + ]]'

< ]l{ Y
> maxy <<z, 4| H_¢; —V oy (2031 .
J 0—1 20 { MaX) <3/ <y | maxlSi'Sbg_l(Bj/) 2(1+eh)e w(’i") >1}

We therefore deduce that ]l{maxl<j,<‘"[ maxscicy, (s H i >h) is smaller than
<j' <l <if<bp_1(By) Ho,

|me—1] be—1(Bjr)

Wmmax, <o i,y H gy >h} T jzil Z (]I{Huu',m,m(w,m>h/2} + ]1{2(1+eh)67vu(j,,i/>(m<j/'“>>>1})'

/=1

By independence of the increments of the branching random walk (T, (V (z),z € T)), since ¥(1) = 0

E|: Z f.f,l'[(m)]l{maxlgigqHw(i)>h}ef<1’v(m)>q:|

zeAl,
- [mo_1]
SE[ Z fz_—ll’rlzfl(Z)]l{maxlgj/gl,w71|Hz(j/)>h}e_<13 ’V(z»'"""l'} H Chy_y(B;)(1)
zEAL:Z:l” j=l1
|7we—1]
+q(31,n +32,n) H Cbzq(Bj)(l)E[Jys‘;fIll( .f;ll’nl—laﬁeil)}v
j=1

where we recall that (g, 8) = 3 s e~ BV (@)

s =E[ > eV nm] and gon=E[ > eV 0 0 vesyl

|z|=an—s¢ |z|=a,—s¢
Thanks to the many-to-one Lemma 3.1
31, = P(H? > h/2) < €333/h 1,

An—S¢

for some constant €333 > 0, the last inequality coming from ([AD20], Lemma 2.2). We now turn
t0 3n,2- If sp < ay,/2 then, for any p € (0,x — 1)

d2.m < 2°(1+ €D)Petnt(t0)/2,
Otherwise sy — 1 > a,,/2 and thanks to the Cauchy—Schwarz inequality
E{%l:f;l‘( fﬁll’nzfl,ﬁefl)} SE{JZQ‘ZYII'( 52117H£717B£71)]Wn]+
+ (1= P(7) B[ (1 e )]

where ¥, 1= {min,, jo<|2<a, V(2) > 3/2logn} (recall that a, = (28) ' logn). On the one hand,
by definition, there exists i € {1,...,|m_1|} such that |Bfa_1| > 2. It follows that

B0 (Fih e 875, | < 0B 0 (2 e 871,
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where ,@lﬁ_l = \B’?_l\ for all j # i, and B‘?_l = |Be_1|

1 > 1. One the other hand, 1 — P(”/7n) <

n~P5 with ps > 0 thanks to Lemma 3.4. Moreover, both Zl‘” 1 6[ Land Elm 1l B°~! are smaller
than 2k since ¢ < 2k. Hence, thanks to (i)

~ _ ~ — B _ 271/2
E[%lé—lill(fsee—llﬂf—laﬂé_l)} +E{(V‘Z@Zf1l‘(fﬁf—l17ne—1u@e 1)) } < ¢3.3,4a

for some constant €334 > 0. We obtain

zeAL,

[ S Fn@) ey 1 5 hyE <1,v<.z->>q}

1 [me—1]
—1 —(B V(= I‘n'z 1! H
< E|: § s£717H£71(z)ﬂ{maxlgj/S|W€71| Hz(j/)>h} Coyp_ o ( J)
zealrt!

[we—1]

+an H Cbefl(Bj)(l)E{%lgfl‘(fsé 1 rre- B 1)} +n7r,
j=1

thanks to the assumption 3 and for pg > 0. Note (see the proof of Theorem 1.4) that

[e—2]
™ —1 (—1 ™ —2 {— 2 {— 2 (I81)
[JZ{JZ [11|(fse71,nz7176 )} JZ{S‘Z Zl_Ql (fslz 2 10— 2,3 H Cby_o(By) /8 H el I
BeEmp_1
[%B]>2
: (—2 {—2 —2
with 3,77 = (

g, 0 Mg (Bj

: )) and s; = sy — sy—1 — 1. Since for any B € my_; such that
IB| > 2, ¥(|B]) < 0, we have

an

Z [%‘;[1”( sz 1H£ 17ﬂe 1):| <E|}%‘Zw1_2|( sz 21—[2 2”66_2)} H cbg_g(B)(ﬂe_l)
Se=8¢—1+1

Bemy_o
(1 N ewu%\)) -
Bemr_1
|B1>2

. -1
Doing the same for E[ZZGA:{?\ fsffl,nffl(z)]l{maxl<,'<w (VH_j,>hY€
tain, thanks to assumption 3

> B[ 3 fae

8;81<...<s¢<an xeAd

an

< Z E{ Z 02

82—271-[2—2
s1<...<s¢p—1<an

_<ﬁ£—1,V(Z)>\.W_1\] we ob-

1,V(x
Il{max1<b<qHL(l)>h}e v,

—(B V() |y
(Z)]l{maxlgj/§|”€72| Hz(j/)>h}e
[me_al
EA@@ 1— 1
€335 _
= n P

hr—1 ?

+

for some constant €335 > 0 and p7 > 0. We conclude by induction together with assumption
3.

O
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We remind the definition of the range @*(%,, 7+, g)

AN D s, 9) = Z 9(x) L7, <153,
TEAF
Ln<le|<Ln
where T, = max;<;<i Ty and £, < |z| < £, means that ¢, < [z < &, for all i € {1,...,k}.
Vertices with high potential have a major contribution to the range. One can note that under the
assumption 1, the potential V' (u) of the vertex u € T behaves like |u| when |u] is large (see [Big76]
and [HS09] for instance). It allows to say that

Fact 1. For all € € (0,1), there exists a. > 0 such that

*( 1 > — >1-
P(;Q%V(z)f a) >1—e. (36)

Moreover,

Lemma 3.4. Under the assumption 1, there exists 6o > 0 and p; > 1/2 such that for any positive
integer C

P( min V(z) > 3@) >1—e P16,
l2|=65"¢
Using Lemma 3.4, we are able to prove that any vertex z € T in a generation between 9§, ogn

and n'/? is visited during a single excursion above the parent e* of the root e. For that, let us
define the edge local time NI := Z};l L(x,  =u=,x;=u} of the vertex u € T and introduce

S
L p— . .
L= Mg wpsay

j=1
the number of excursions during which the vertex z is visited by the random walk X.

Lemma 3.5. Under the assumption 1, for all e; € (0,1), there exists pa := p2(e1) > 0 such that for
n large enough

711/2/61 nl/2

(U U ez <

s=eg1nl/2 \z\:&&l logn

The proof of Lemma 3.5 is similar to the one of Lemma 3.5 in [AD20].
Introduce the set &%* of k-tuples of vertices visited during a single excursion:

Ghs = {x = (aW,...,2W) e AR, V1 <i<k, ES, =1} (37)

In other words, Lemma 3.5 says that we can restrict the study of the range &7*(Z,, 1=, f1 eksngk )

to the set &%*. This restriction allows to get quasi-independence in the trajectory of the random
walk X and the resulting quasi-independent version of the range &/*(%, 7+, f1 ek gk ) is easier

to deal with. A similar idea is developed in [AD20] and [AK23]. Let j € [1, 5]k, P € {n,-.., L, } ¥
and define

k
Ay"G9) = D 9@ [[ 1 yen yoiisy, and @*"(Gg)= Y "),

TEAF i=1 20 a0 pE{ln,...,Ln} Xk

|z|=p

(38)
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where for any & = (z(M, ..., z(®), |x| = p means nothing but |2()| = p; for all i € {1,...,k}. In
the next lemma, we show that &*(Z,, 7+, fler.sngr) and 2 jellslx %" (§, flgr) have the same
behavior

Lemma 3.6. Let k > 2 be an integer and assume k > 2k. Under the assumptions 1 and 3, for all
bounded function g, any ,e1 € (0,1), there exists py := ps(g,e1) > 0 such that for n large enough
and any subset R of T*F

n1/2/61
]P*( U {‘Mk(@n,TS,g]l@k,smm) — Z %k,n(ng]]-D‘i)‘ > E(SLn)k}) S n=Pt
s=einl/? J€ll,s]k

Proof. We first decompose as follows
JZ{k(.@»,L7Ts s gﬂ@’“vsﬂm) = ﬂk(_@,an s g]lgk,smgk,sﬂm) + Mk(gnﬂ“s s g]l@k,smmﬂAk\Gk,s).

We first deal with &/*(Z,, 1<, gl ersnghrn)- Note that & € €5 N &** means nothing but there
exists j € [[1, s]x such that for any ¢ € {1,...,k}, NT“ — N;F(J; "> 1 and for all j # j;, N
N%;l = 0, thus giving that %;(.@n’j“-@,gﬂ@k,smgk,smm) is equal to

Z Z Zg]l% H {NTIL_NTIi T 590 v525, NT? _NTP' 0}’

() T () ') 20
PE{ln,..,Ln }XF JE[L,s]x xEAF ’ ’
|z|=p

1
2( i

Thanks to the strong Markov property, the random variables NI ‘"N T """ are i.i.d under P¢ and
distributed as NI " Tt follows that

k
&
5] 32 1@ I s oo, ol
xEAF i=1
|z|=p
= ) gln(z H Ty < THY(1 =P (T, < TY))* L.
xTEAk
|z|=p

Using (35), P4 (T, < T1) < e V@) and on ¥, = {minéoa log n<|z|<nisz V(2) = 3logn}

(1 _ Pg(Tx(i) < Tl))s—l > (1 _ e—V(m(i)))s > (1 _ n—B)s > (1 _ n—3)nl/2/517

SO

Eg[ Z Zgﬂi){ H {NTJ»L NTJ.,"'71>1}:|
J€ll,s]x zeAF L0 Vo 2
|z|=p

_ ]Eéo{ Z Z gllm H]I{NT“—NTJ’ >1; Vpstijs, NTP. - NTP= 170}]

JE[L,s]k weAk 2D "a(®) RORNE'
|z|=p
< S(S — 1) X oo X (S —k+ ]_) Z g(w)67<1xv(m)>k (1 _ (1 _ n73)kn1/2/51).
TEAF
|z|=p
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The next step is to show that the mean of the previous sum goes to 0 when n goes to co, uniformly
in p. For that, one can notice that

E[ > gl@)eHVEs (1 — (1 n*?’)%)} < M?S;S/QHQHOOE{ 3 e*(lwv(m)n]’
1

TEAF zeAF
||=p |z|=p

thus giving, thanks to Lemma 3.3 (i) with 8 =1

L1/2 2k —5/2
[ Z gloy(z)e~ BV @ (1 - (1 - n=3)"5 )} < LHQHOO sup E{ Z 67<3,V(w)>k}
woeAk “ PEM T Trent
|z|=p |z|=p
S QS.GTL—5/2’ (39)

for some constant €3 > 0 doesn’t depending on p. We then use (39) to conclude. Note that

nt/2 /e,
P U {7 G gtem) = Y oG g1m)| > e(sLa) })
s=einl/?2 jeli,s]x
n1/2/61
<P U {7 @Gurgtenom) = Y 76 g1n)| > (L)} 00)
s=e1nl/2 Jell,s]x
+1-P*(%).

By Lemma 3.4, for n large enough 1 — P*(%,) < n~*1 for some p} > 0 and thanks to Markov
inequality

nt/?/e,
P*( U {‘ﬂk(gn,TSagﬂemmm) - > «!ka’"(jag]lm)‘ > S(SLn)k}an)
s=e1nl/2 J€ll,s]x
1/2/61
( U {F*(Dn,1e, glercnmnar\eh) > e(sLn) /2})
s=g1nl/2
nl/? /e,
hnl/2
+ Z Z Z |: Z gﬂm (1,V(2))k (1 _ (1 _ n,3) a1 )}7
s= 61711/2 pE{evu Ln}xk]elll S]]k TEAF

|z|=p

which, thanks to Lemma 3.5 and (39), is smaller than n="2 + ZS—;@ for n large enough and the
proof is completed. O

The next lemma relates > SelLsle gk (5, f 1cgk ) with its quenched mean and illustrates why this
quasi-independent version of the range is easier to deal with.

Lemma 3.7. Let k > 2 and a > 1 be two integers and assume k > 2ak. Under the assumptions
1, 2 and 3, there exits a constant €37 > 0 and a non-decreasing sequence of positive numbers
(4;)j>2 satisfying g2 = 1 and q; — oo when j — oo such that for n large enough and any
ent/? <s<nl/? /g

Z JZ{k’n(j, f]l%”{fn) . Eé’[ Z 'Q{k7n(j7f]l<g§n)])2a:| < ¢3,7(Ln)2“k(£n)ﬁ"82uk_a“-

Jjell,s]x JE[1,s]x
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Proof. Recall the definition of &% (j, f L ) in (38). Thanks to the strong Markov property, the

random variables NI - NT " are i.i.d under P¥ and distributed as NT " for any z € T. It follows
that

B[ Y @M (G, flg )]

jellLs]]k
=s(s—1)---(s—k+1) Z > fler H £(NT, > 1).
PE{ln,....,Ln} Xk EAF =1
|z|=p

and for a = 1, the term s*

property leads to

2
E[( S oG ) —E[ Y oG, e )]) ]
jelllxs]]k ]EII]. S]]k
§€3.7,1(Ln)2k((2 )2 2k— 2+2 52k 1) < 2@371( ) kgns 1’

in the above mean is equal to 0 and using again the strong Markov

where the constant €371 > 0 comes from Lemma 3.2 and the last inequality comes the fact that
£, < s for n large enough.
When a > 2, using similar arguments we have

E[( Y oG ) -EF[ Y dk’"(j,fﬂ(g;nﬂ)%}

geftel jeliel
< Caq9 < (L)% (g,)2l0/2) g2ak=21a/2]

We finally obtain the result by taking qq := ala=; + 2|a/2]1s>2. O

3.1.2. Convergence of the quenched mean of the range on %fn

We prove that the quenched mean of the quasi-independent version Fells]e " (3, f%fn) of the

range on the set ‘ﬁfn converges in P*-probability by using the hereditary assumption 5.

Lemma 3.8. Let k > 2 be an integer and assume x > 2k. Under the assumptions 1, 8 and 4, if f
satisfies the hereditary assumption 5 then

1 k e,V(w(i))
(L,)* Z 1 an( x) Tmf(COO)kdakn(f)H =0
n cAk i=1 A
b, ;\wISE

lim E* {

n—oo

Proof. The first step is to decompose ZweAk;en<|m\<£n flgk () Hle e_V(w(i))/qu):

*V(QJ( i) z(V)
e, H = 2 2 Y g H
Z f ‘ln H:E(l) f %an H (7,)
xc Ak PE{ln,....Cn} ¥k z€AL xc Ak
n<|z|<Ln |@|=p; () >z
—V(:z( ))
D OND B (O H
PE{Ln,...,.En} Xk zEAE xzEAK Hy

|x|=p; x( ) >0 )
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where the last equality comes from the hereditary assumption 5. As we did above, we decompose

H,uy: Hyo)y = Hzme_vz(i) (=) + Hz(i)7_,ll.(i). By independence of the increments of the branching
random walk (T, (V(z),z € T))

k i .
B[ 3 sty @ [l |7 = X s H D (Ha),  (40)

zC Ak i=1 zenk =
|z|=p

|_|

where Z,, = o(T, (V(2); 2] < a)) and g p,(r) = B[Sy, o, €V &) /(re™V @ 1 H,)].
Let us prove that

lim  sup E[( Z fler un H o Z flx H 7V($(”’)¢n7pi(HI(i)))2]

n=00y, <p<L,

ze Ak i=1 a:eAk i=1
|z|=p
=0. (41)
Thanks to (40)
k () 2
B[(3 e @[ = 3 @ [ )]
wEAk =t e gear =l
|z|=p
e Vet Vie® 2
~E[(E e @[ 5—) ] -E[( ¥ fe H D ().
@EAF =1 a® weAk
|z|=p

For x,y € AF, denote by xy = (z(V),..., 2" M . y*) the concatenation of & and y. Note
that

2 k —Vi(z® —Vi(y®
(2 e, € H NV Y e @t )]
= @x .
: €k H.o , N Cr, vk \Y 117 . H,
zEA x,y; TYEA =1
lz|=p lz|=|y|=p

ko eV@®) =V(y®)

+ Z fler (x)flgr (y) H T

i H [ ’
x,yEAF; yg A2k i=1 z(®) y@®
|z|=|y|=p
where for any x,y € A zy ¢ A?* means that there exists a € {1,...,k} and iy,...,i4 €

{1,...,k} distinct such that (%) = ¢() for all j € {1,...,a}. It follows

e VE?) o=V
lim  sup E[ S fler (@)fLex ( H TR }:0,
(i)

—
n=o0 Y, <p<L, z,yEAF; xyd A2k v
lz|=|y|=p

Indeed, by independence of the increments of the branching random walk (T, (V(x),x € T)), since
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H,>1

e~V @) =V (D)

E[ S e @)fleg ( H n I

k. 2k () y(®)
zT,YEAR; mygA
Iw\*ly\*p

< HfHQ Z Z H e 15— an)¥( Q)E{ Z _<17V(m)>2k—ai|.

a=1liyF#iz...Fiqg=1j=1 2zEA2k—o

an

By Lemma 3.3, 37 nE[>_ cp2n-a e~ (WV@)2k-o] < oo and for any p; € {ln,..., L.}, i €

{1,...,k}, ePume¥@ < on=a)v(®) 5 (0 when n — oo since £, > 6;'logn and a, =
(260) ! logn, which gives (41). We now prove that

T}LIECEH DI H VED N A= H _V(z(i))%ﬁn,pi(HM)H =0. (42)
zeAkn i=1 zeAk =

Let h,, = logn (the choice of h,, is almost arbitrary, h,, — oo with h,, = o(ng) for all & > 0 should
be enough). Note that |coo — @np, (H )| < 2 s0

H DT H Ve - > [ Hefv(z(%))%,pl(Hzm)H

zeAk zeAk i=1

k
V(™
<IIeB] S T Vlene = @np(Hoo)liisr  <ns

ZEA’;"n i=1
+ 2||f||ooE|: Z ]l{maxlgigk Hz(i>>hn}e_<17V(Z)>k:| .

We show that limy,—eo SUD{,, <pi<e,, 1<r<hn} |Pnp: (T) — coc| = 0. For that, on the first hand,
O pi (1) < E[I/anian] where we recall that HS = Z;nzl ei=%m (see (22) for the definition of
the random walk S). On the other, for any ¢, < p; < £, and 1 < 7 < hy, @pp,(r) is larger, for
any r; > 0, than
e V(@) 1
B 3 e V@) 1 H, (Y @2n oxny | 2 E[h n—m + HY | = PSpia, < ralogn).

|z|=pi—an Lh—an

where we have used the many-to-one Lemma 3.1.

Note that P(S), 4, < 3logn) < P(min(zs,)-110gn<j<e, S5 < r1logn) — 0 when n — oo for some
r1 > 0 since a, = (20) ' logn and ¢’/(1) < 0. Moreover, by definition, both (E[1/H; _, ]) and
(E[1/(hpn~" + Hgfa)]) goes to ¢, when n goes to co and we obtain the convergence. Then

H Z f(= H VW) Z (= H )Sﬁn,pi(Hzm)H

zeAk = zeAL =
<IfIE[ D e ®VEN] max S L (r) — el
Lenk 1<i<k o, <pi<Lpn, 1<r<h,

+ 2||f||°°E[ Z ]l{maxlgigk Hz('i) >hn}6_<17v(z)>k} .
zeAgn
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Using Lemma 3.3, first (4), then (ii) with h = h,, sup,eny B[ cax e~ (LV@)k] < 0o and

lim,, s o0 E[ZzeAk, ]l{maxlgiSk H (i)>hn}67<1’v(z)>k] = 0 thus giving (42)
Finally, putting together (41) and (42), we obtain the result. O

3.1.3. Convergence of the quasi-martingale <7;*(f)

Recall that

k
(.8 = 3 f@e BV@r = 3 @) [[e VD) and ot (f) = (1),
=1

zEAf mGAf

The aim of this subsection is to prove that &% := lim;_,o, #"(f) exists when f satisfies our
hereditary assumption 5. For that, let us define for any p € (N*)**

AY(f) = Z Fa)e (LY@

TEAF

|z|=p
where we recall that for any = (z(M,...,2®) € A*  |x| = p if and only if || = p; for all
i €{1,...,k}. One can notice that when p = (I,...,1) € (N*)** we have ¥ (f) = d;(f)
Lemma 3.9. Let k > 2 be an integer and assume k > 2k. Under the assumptions 1, 3 and 4, for
any bounded function f : A¥ — R, there ewists two constants €39 > 0 and b € (0,1) such that
for any p € (N*)** and any integer m > 1 such that m < maxp = maxj<;< p;

2 —om
Ay (flagr ) — dy (f)]7] < €306
Proof. In order to avoid unnecessary technical difficulties, we prove it for any x > 4. First
note that @y (f) — oy (flgr) = D weAk; |zl=p F( @)L g (@) smye” Y @5 which is smaller than
o0 koo L g gyamre” 0V @Dk Using a similar argument as we developed in the proof
zeAk; |z|=p ~{LF(2)>m}

of Lemma 3.8, it is enough to show the following estimation:

E*{ Z ﬂ{yq(m)>m}€_<1’v(m)>q} < C391e ", (43)

rEAT
|z|=p

E*[

for any ¢ € {k,...,2k} and some constant €391 > 0. Assume that minp < maxp (the proof is
similar when min p = max p). Note that if m < minp, then

E|: Z ]l{yq(w)>M}ei<l’V(m)>qi| :E|: Z ]l{7n<<7‘7(:13)§minp}ei<17v(m)>q:|

xreA4 xEANY
|z|=p |z|=p
+ E[ > ]1{yq<m>>minp}€_<1’v(m)>“}-
xrEAY
|z|=p

One can notice that, if || = p and .#9(z) < minp, then .7 (x) = #(u) for any u € A? such
that max |u| = min |u| = min p. Hence, as usual

E|: Z ]l{m<yq(m)gnlinp}6_<17v(w)>q:| = E|: Z ]l{yq(u)>m} Z e—<1,V(w)>q:|

rEAd ueAfmnp TEAY; x>u
lz|=p
:E{ 3 1{yq(u)>m}67<1,wu>>q}’
ucA?

min p
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thus giving

E{ Z ﬂ{yq(m)>m}e—<1,V(m)>q:| :E{ Z 1{yq(u)>m}e—(1,\/(u)>qi|
AT ucAl

|z|=p

min p

* E[ Z ]l{yq(m)>nlinp}€7<1’v(m)>q:|.

xEA1
|z|=p

We deduce from this equality that it is enough to prove (43) for any m < minp with ¢ > 3. Again,
we focus on the case min p < maxp.

Assume m < minp. Let & € A? such that || = p and €%(x) > m. There exists an integer
fe {m+1,..., maxp} such that, seen backwards in time, at least two vertices among AL
share a common ancestor for the first times in the generation f — 1 and there exits at least one
vertex among these vertices in a generation smaller or equal to f — 1. Then, one can notice that

max p
1,V(x —(1,V(x

S Lpsa@ompeBV@ = 3 3 S By, oy (@)e BV @,

xEAT f=m+1 = partition of x€A9

||=p {1}, |7 <q l2|=p

where = {{1},...,{¢}} (recall the definition of YT,,_; » VY, , in (14)).

By definition, there exists v € {1,...,¢ — 2} and (i1,...,%,%941,-..,%g) € [1,¢]q such that
maxi<i<ypi, < f—1and ming;1<i<qpi, > §f— 1. By definition of the set Y. ., for all [ € {1,...,9},
if 4; belongs to the block B of the partition 7, then B = {i;}. Let @ := 7 \ {{i1},...,{iy}} and
for all j € {1,...,|w| — n}, denote by B; the j-th block (ordered by their least element) of the
partition 7 of the set {iyi1,...,%} ={1,...,¢} \ {é1,...,4y}. We have

|-y |B;|
E[ Z Ty wnrssy, (z)e —Lvie) } Z em LVl Z H Z H
xeAT uEAY zEA‘"‘ v j=1 v(J>€A Bj| i=1

||=p lu|=p.

V(0D
X Lg(uaayemsiye V07,

where |u| = p. means that u() = p; for all [€ {1,...,p}, v = (W&, ... WwGIBiD) Thus

E[ Z ﬂrf_l’wm.m(w)e—(l,v(:c»q|yf71} = Z e~ (LV (w)y Z e BV () m|—y H cg(1)

rcAd UuEAY zeAl"\'\*U Bewm
|z|=p lu|=p. T
—(B,V
_ H cp(1) Z e~ BV (W)
Ben ucAlwl
|lul=p

where p = (p1,...,py.f = 1,....f = 1) € (N*)*I"l and B = (1,...,1,By,..., Bjx_y) € (N*)¥I7l.
One can notice that there exists ro > 0 such that

E{ Z €_<ﬁ’v(u)>‘"‘]l{min‘w‘:f,l V(w)<ro(f71)}} S 0:3.9,26_(‘(—1)) (44)

uc Al
|lul=p



Kagan/Coalescence in small generations for the diffusive randomly biased walk on Galton-Watson trees 37

for some constant €392 > 0. Indeed, By the Cauchy-Schwarz inequality,

271/2

ucAl=l weAlrl
|lul=p |u|=p
. 12
xP( min V(w) <ro(f —1))

and thanks to Lemma 3.3 (i), E[(X,cainl: jui—p e BV @m1)2] < €55, where we recall that
€331 > 0 is a constant doesn’t depending on p (or p) since |w| < ¢ < 2k. Moreover, since
¢'(1) < 0, we can find 79 > 0 and a constant €39 3 > 0 such that P (minj,—;_1 V(w) < ro(f—1)) <
€3.9,3e201. This yields (44).

Now, note that, since |m| < ¢, there is at least one block of the partition w with cardinal
larger or equal to 2 so (B,V(z»w > (1,V(2))|x| + minj,|—j—1 V(w) thus giving that the mean
E[} cnd: zj=p Iy, , o1, (@)e”(BV@)d] is smaller than

H CB(].)(E[( Z 67<ﬁ’v(u)>"'|Il-{min‘w‘:f,lV(w)<T0(f—1)}]

Bew ucAl=l
|lu|=p
— ming,, \4 —(1,V(u))|x
—|—E|: |w|=f—1 (w) Z ( ) | ‘1{min‘w‘:f71 V(w)ZTo(ffl)}}))
ucAl«l
|u|=p

which, thanks to Lemma 3.3 (i) and (44), is smaller than 9:3_974@*(1/\%)(7‘*1) for some constant
€394 > 0. Finally

max p

E[ Z 1{L¢q(m)>m}e_<1’v(m)>q} < 0:349,5 Z e—(l/\ro)(f—l) < (,:3-9716—(1/\7"0)7n7
xEAY [ —
|z|=p
for some constant €395 > 0 and (43) is proved. 0

The convergence of the sequence of random variables (#*(f)); directly follows from Lemma 3.9.
Indeed, let f be a bounded function satisfying the hereditary assumption 5. Forany [ > 1" >m > g

f]].%k Z Fler (LV(@)r — Z Flgn (u) Z e~ LV @)k
TEAF ueAk TEAF
z>u

so Bl (flgr )| Fv] = 4} (flgy) where Fp = o(T, (V(2);]z] < m)) and (" (fLgx))ism is a

martingale bounded in L?(P). In particular, for any integer m > g, (# (f]lcgvlsl))l>m converges

in L2(P*) and P*-almost surely. Hence, thanks to Lemma 3.9, (</(f)); is a Cauchy sequence in
L?(P*) and therefore, /F (f) exists.

3.1.4. k-tuples in the set AF\ €F

Before proving Proposition 1, let us show that the contribution of the k-tuples in the set &% N
AR\ ‘gfn is not significant. To do that, the following lemma provides an estimation for the quasi-
independent version (38) of the range on the set € :
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Lemma 3.10. Let e; € (0,1), k > 2 and assume k > 2k. Under the assumptions 1, 3 and 4, there
exist two constants Cs 19 > 0 and pg > 0 such that

* 1 n(s -
E [m Z " (Jv]lAk\‘chn)} < Cs.10n 7%, (45)
" jeltsnlk

with s, = n'/?/e;.

Proof. Recall that, thanks to the strong Markov property together with (35)

Eg[ﬂk’n j,ﬂ k\ gk :|: 1IN s
Grtsna)] = X tane, @] S
TEA
@n§|w|§2n
and since H ) >1

E*{ Z ﬂk,"(jallAk\gngcn)] < (5)" Z E*[ Z ]l{yk(m»an}e—(LV(w))k}

Jellsn]k pe{ln,..,Ln} ¥k TEAkK
|z|=p

< (spLy)k €597 0 = (snLn)7~c¢3_97ﬂb—b(250)*17

which ends the proof. O
We are now ready to prove Proposition 1.

Proof of Proposition 1. We have to prove that for any e1n'/? < s < n'/2/e;, e, € (0,1)

P (
We deduce from Lemma 3.7 with a = 1 that the range Zje[[l STk
around its quenched mean. Indeed, for any e € (0,1), by Markov inequality

P(| 3 oG fla ) ~EF[ 3 oG, fligy )]| > e(5La)*/16)

1
(sLy)*

S (Tnires Penecss,) = (cxo) " TE(F)] > /2) — 0. (46)

n—0o0

gk (5, f1 @k ) concentrates

Je[l,s]x Jell,s]x
< 16° E P (5, 1 E® g% (5, f1 ’
_W Z 4, f %fn)* [Z i %fn)]
JE[L,s]k JE[L,s]k
L L
< 16%¢; 1 < == — 0,
’)’Ll/2 n—oo

where the last inequality comes from the fact that £,, = o(n'/2). Then, we know, thanks to Lemma
3.6 withg = fand R = ‘Kfn, that &% (2, 7+, f1 ersnek ) behaves like its quasi-independent version

D ojell sl " (g, f]].cgécn)l for n large enough

IP*(

AN Dores [lerongr )= Y %k7”(j7f1l<ggn)‘>€(8Ln)’“/16)Sn‘p‘*,

je[[lvs]]k

hence

lim P* (

n—oo

S (D, Mesorgy ) ~EF[ 30 (G, [y )]| > e(sLa)¥/8) =
jelIl,S]]k



Kagan/Coalescence in small generations for the diffusive randomly biased walk on Galton-Watson trees 39

One can notice that

ko _v(a®)
& kn(z: _ €
E { . > o (J,fﬂ%;vn)] =s(s—1)-(s—k+1) Y fﬂ<g§7l($)HH7m~
Je[1,s]k zeAF i=1 ©
Ln<|®|<Ln
Finally, Lemma 3.8 yields
* 1 k k sk
(| g e flena,) = ()l ()] > <) =0,
and the result of the subsection 3.1.3 leads to the convergence in (46).
Now using Lemma 3.10, we show that
" 1
P ((SLn)kM(.@n,Ts,fngk,swk\cgfn) > 5/2) — 0. (47)

Indeed, by Lemma 3.6 with g = f and R = A*\ €F

P* (‘%k(%«ms, flersnamegr ) — Z a*m (3, fllm\%gn)’ > 6(5Ln)k/4) <n~Py
jEIIl?S]]k

with py = pa(e/4,e1) instead of ps(e,e;). Finally, note that for any s < n'/2/e;, the sum
Zje[[l,s]]k ,;afk’"(j,f]lAk\%akn) is smaller than Zje[[l,nl/2/€1]]k %k’n(j,f]].Ak\%écn) so Lemma 3.10,
together with Markov inequality leads to (47). We end the proof putting together (46) and (47). O

3.2. The range on Ak \ &k~
Recall

'Q{k(@n,TSvg): Z 9(@) L, <1:1,
TEAF
tn<|z|<Ln

where Ty, = maxi<;<x Ty, T> = min{j > 0; X; = 2z}, T° = 0 and T° = min{j > T°7!; X, =
e} for s € N*. Also recall that (¢,) and (£,) are two sequences of positive integers such that
6allogn </l, < g, <n'/?2

The last step of our study is to show that the contribution of the k-tuples of vertices in small
generations (see (7)) and such that at least two of these vertices are visited during the same
excursion is not significant. This section is thus devoted to the proof of Proposition 2, claiming

that

IF’*( sup dk‘(.@n,j‘s’]].Ak\@k,s) >5(n1/2Ln)k) — 0

s<nl/2/eq n—oo

Lemma 3.11. Let ey € (0,1), k > 2, let s, = n'/?/e; and assume k > 2k. Assume that the
assumptions 1, 3, 4 hold and that £, = o(n'/?).

(1) If

S

k
et () (Mo = a...a) € % 27— 2

T (%)
j=1i=1
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denotes the set of k-tuples of vertices visited during the same excursion before the instant T,
then

. * k —
nh—>H;oE [W SS;JELM (@n’TS’]le*Sﬁ@)f’S)] =0.

(i) Let €5% .= AR\ (€k5 U &%), If k > 3 and the assumption 2 hold, then, for all B > 0

. 1 k
i B [m sup (%,TS’%r«smegﬁsﬂ{z(-)zﬁ})} =0,

with V.(x) > —B if and only if V() > =B for all i € {1,...,k}.

Proof. In order to avoid unnecessary technical dlﬁ"lculties, we prove it for any x > 4. Let us start
with the proof of (i). By definition, € &%* N QE * if and only if there exists j € {1,...,s} such
that for all 1 <i < k, NT(]Z) N%; > 1 and for all p # j, N
the strong Markov property

p—1 . .
o — NI =0. Thus, using again

k _
]E[ sup &/ (9"77”5’]16&%@’;*5)} _E[ Sup Z Z 1mf:1mp¢j{NlT —NTI S LNTE -NTE =0}

sS8n St =1 zeAk = =
Zn<|a:|<£n

[ Z H]I{NTJ -NTIT 1>1}}

J:1 xzeAk =1
Ln<|z|[<Ly

Sse Y E[ZP‘Q(Tm<T1)}
pe{fn7.~~72n}><k xEAF
|z|=p

S ¢2,15n(Ln)k(£n>k717

where we have used Lemma 3.2 (34) with m = £,, for the last inequality, recalling that the constant
%, 1 > 0 doesn’t depend on p. By definition of s,

1 & Coqy Ly \FL
E[i(nl/QLn)k Ss;lgd (D5 L, sﬁek,s)} < o (nl/Q) ;

which goes to 0 when n goes to oo since £,, = o(n'/?) and this yields (7).

We now focus on (ii). Since k > 3, €5* is nothing but the set of k-tuples of distinct vertices of T
neither visited during & distinct excursions, nor during the same excursion. Therefore, there exists
¢€{2,...,k—1} and e disjoint subsets Iy,...,I. of {1,...,k} such that {1,...,k} =L U---UI,
and for any j € {1,...,¢}, i,4' € I; if and only if @ and z(*) are visited during the same excursion
before the instant T°:

Fie{l,...s}: (L5 - LT YA (LE - 2T > 1

x x
Let m € N* and introduce the following subset of AF
The = o= (W, a®)y e AF; v £ i e {1,...,e},Vie Vi €L : |29 Az < m},

where we recall that u A v is the most recent common ancestor (MRCA) of u and v. T¥, is the set
of k-tuples of vertices such that the MRCA of two vertices visited during two distinct excursions
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before the instant T has to be in a generation smaller than m. Note that the MRCA of two vertices
visited during the same excursion can be in a generation larger or equal to m.

Recall that (A;)en is the sequence of functions such that for all ¢ > 0, Ag(t) = ¢ and for any
le{l,...,lo}, Ai—1(t) = eM® (see the assumption 2). Introduce g, := 4kd; *A;(£,). Note that
go,n > £, 80

E S;lp ij{k(.@n/Ts’ﬂgkysnﬁl;‘sﬂ{z(_)sz})} = ]E[ sgp rgz{k(@n,Ts,]lek_ﬁm@;;,sIL{Z(.)Z,B}W@”;O § )}
s<sp, s<sn B

Recall that for any = (z(V,...,2®)) € AF, it belongs to &% if and only if (") is visited during
a single excursion before the instant 7% for all ¢ € {1,...,k}. Using what we previously said, we
have, for any s < s,

b’”m@’gs Z Z Z HY

e=2 je[l,s]e I1,...,1c sets p=1
Uim le={1,....k}

DI 2 HYp»

4 Jell,sn]e I,...,I. sets
uf_II[ {1,.. }

>
|
—

||
N

where, for any p € {1,...,¢e}, Y, := ]lmezp{i“(]f frT(i?_lZl}' It follows that

E[ sup &*(Znre, L, sneke Ly > BINGE )]

s<8§p,
lo k—1 .
< Z Z Z Z Z [ Z Ly (@)>- B}]l“r’;lﬁnl ”\'r’g‘l“:( ) H Yp}
pe{l,....,L,} Xk 1=1 ¢=2 je[l,5,]c [I1,....1c sets TEAK p=1

Ui_ Li={1,....k} |x|=p

4

k—1
DD VDS > [Zﬂ{vw» Byl (w)HY}»] (48)

pE{l,..., L, } ¥k e=2 j€e[l,5,]. I,...,I, sets xTEAR p=1
Ui L={1,..., k} |z|=p

First, let us prove that for any p € {£,,..., £, }**,

3
[ > Ly@s- BYlyben \yhen (@) 11 Yp] < C311,1(80)" (49)
zeEAF " " p=1
lz|=p

The proof of (49) is quite technical so in order to keep it as clear as possible, as one can notice
in the proof of Lemmas 3.3 (i) and 3.2 (34) with m = £,,, we can and shall restrict to the case
p=(m,...,m) € {ly,...,L,} <"

Thanks to the strong Markov property, the random variables Y7, ...,Y; are i.i.d under P¢ and

4

|: Z IL{V > B}lrk Sn \—rl;ls:; ( ) H Yp:|
TEAF p=1
|z|=p

= Z ]]_{Z(m)z_B}]].Tszﬁn —rk sn H IP) InaXT 2 < Tl).
zEAk,
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[4

As usual, ZwEA’“ ]l{V(a:)> B}]].Tk on \Tk on (m) szl Pg(maxiejp Tx(i) < Tl) is equal to

k—1
4 & 1
E E E E ]l{z(w)z_B}ft7H]lT’;,ﬁn I;,;n H P maXT 20 < T ),
I—1,n lin
=1 II increasing t;t1<...<t,<m zEAE,

(50)

where the genealogical tree function ft 11 is defined in (14). Recall that t; — 1,...,t, — 1 correspond
to the consecutive coalescent/split times. We then define

hi=max{j € {1,....0}; Ip#p €{2,....¢}, IBEn_1: BNI,# 3 and BN1I, # 7},

and the x-version 7¢(x) of 7¢:

@) i=max{je {1,....0}; Ip#p €{2,...,¢}, Jiel, i ely: [zD nzl)| =t —1}.

In other words, if the genealogical tree of & € AF is given by ffﬂ, then 7¢ = 7(x) and t,. — 1
is the last generation at which two or more vertices visited during two distinct excursions share a
common ancestor.

, generation

gi—-1,n

trs —1

gi,n

Coalesences between vertices
visited during distinct excursions
are not permitted in this zone.

A coalescence between vertices
visited during distinct excursions e 0
has to happen in this zone.

® The last common ancestor between
vertices visited during distinct excursions.
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Figure 4: An example of a 12-tuple belonging to Téf:lﬁn \Té,zﬂ whose genealogical tree is given by
ff,H. means that the corresponding is visited during the 0-th excursion above e*. In the
present example, £ = 8 and 78 = 4.

By definition of 7¢, for all j > 7%, if B € 7, then B is necessarily a subset of I, for some p’ €
{1,...,¢}. In other words, each coalescence that occurs between ¢, and 1nv01ves exclusively
two or more vertices visited during the same excursion. As a consequence, for any i € {r¢, ... (}
and p € {1,...,¢}, we can defined the set I as follows: we first set I := I, so If,...,I{ form a
partition of {1,...,k}. As we said before, by definition of 7¢, coalescences can only happen between

two or more vertices which indexes belong to the same Iﬁ. Thus, for any p € {1,..., ¢}, there exists

an integer ¢! > 1 and e)~! distinct integers k4 kﬁ:},l in {1,...,|me—1|} such that for any
s€p

o R
Jj € {kp 1. 1} the block Blf ! of the partition |m,_;| is the union of b,_;(B;) block(s)
of the partltlon ™ of elements of Ff. We set F\~' == {k!7', .. k:e 1} so [{71 .. I form a
partition of {1,...,|m_1|}. Now, let i € {r¢+1,...,/} and assume that F} has been built. By
deﬁnition of 7¢, for any p € {1,...,¢}, there exists an integer ei_l > 1 and ei_l distinct integer

k' kZ Lo {1, |m 1|} such that for any j € {k" kZ ! 1} the block Bl ! of the

partition |7rl 1| is the union of b;_1(Bj) block(s) of the partition 71'Z of elements of I;. We set

I’ L= {kp 1 ,...,k’:;;),l} so I1™', ... I'"" form a partition of {1,..., |m_1|}.

Hence, noticing that

pl"' pl"'

14 0
ft H]lr’gl*nl \T’“ Jn( ) < ft,l'[(m)]l{gz,7LSt,z<m)—1<ng1,”} = ft,H(m)]l{gl,nStT(_1<gl71,n}’

it is enough to show (49) for g;, < t;¢e —1 < g;_1,,. We then have

E[ Z ]l{Z(w)Z—B}fte,H]l"r’;fn —rk sn H]P)g maxT 20 < Tl)}/t e}

zeAk
. ¢ |7 el ,
<&a1,2 Z Livwy>-pyfloe e (w) H P* ( max T,,) < ) H (H,») B 1,
¢l ’ p=1 €l j=1

e
uch,
-t

for some constant €311,2 > 0 where t™ and TI™" are defined in Example 4.

Note that .. — 1 is the first generation (backwards in time) at which a coalescence between two or
more vertices visited during distinct excursions occurs so there exists a subset Jy of {1,...,|m; , [}
and a collection {«;; @ € Jp} of |Jy| integers satisfying o; > 1 for all ¢ € J, and Zie.h o; < k such
that

E{ Z ]l{V(m)> B}ftH]lTkﬁn \Tkm H]P’g maXT<) <T )|Jt e*}

91—1,n 9l,n

mEAfn p=1
|7 04l )
l_ Tv—1 . (i)
<3113 Z fTﬁ llnrp ()P (T, < TY) H (H )18 H e iV )]I{Z(z)sz}-
zeA\""TZ_l‘ j=1 i€Jy
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Note that
—a;V (2) —a;V (i)
H eV EDN T s By < H emiV( )]l{minieJZ V(E0)2 =B, minjaiz,_, -1 V(2)<bo(tr,~1)}
=7 =7

— min‘z|:tT271 V(z)

+e Liming.j—e , 1 V(2)280(tr,— 1D}

4

SO E[ZmeAk ]l{V(m)> B}ft H]l—rk o \Tk n (:L') szl Pg(maxie[p Tm(i) < Tl)] is smaller than

|7 o4l
T B 1|

¥
ElCGuns Y S0 P T <) ] ()P

I e j=1

I
Tt
z€A, o1

kB —360(ts, —1
x (e ]]'{min\z\zt_rz—l V(2)<do(tr,—1)} te oltre ))} :

Using the same argument as the one we used in the proof of Lemma 3.2 together with the

Cauchy—Schwarz inequality, we obtain that the previous mean is smaller than
€3.11,3 sup E[(HS )* 1 (ekB]P’( min  V(z) < do(tr, — 1))1/2 + 67350(”@*1))

deN* lz[=t ey
< 9:3_1173 sup E[(H5_1)4k71](6k3 + 1)67kAl(£"),
deN*
where we have used Lemma 3.4 with ¢ = dot,, and the fact that ¢;, — 1 > g; .
Back to (50) together with what we have just obtained and the fact that for all j € {1,..., 7.},
6 < gi—1ns ER penr, jzjp Liv(@)>- B}]er o orh 5n( )]le,s”mez;,sn ()] is smaller than

k—1
€311 sup B[(HL )P + 1)e ™M ED T 7 (groan)™ (L)

den~ ¢=1 II increasing

Note that 7, < ¢ < k. Moreover, by definition, £— 7, is smaller than the total number of coalescences
occurring between two or more vertices which indexes belong to the same set If; and this number
is smaller than Z;=1(|Iﬁ| — 1) = k — ¢ thus giving

4
_ E _
bon \yhen s (T0) H Y};} < €11 (A1 (Ln)e AL(S")) (Ln)F,
TEAF " p=1
|z|=p
which, by definition of A;(£,), is equal to 63,1111(1)”)’“*2 and it yields (49).
In the same way, we can prove that

[ Z Liv(e)y>—ByLyken

4

E[ Y Sz Iegen @ [] Y] < €0 (14+ A (2)¥) (27, (51)
zEAF p=1
lz|=p

for some constant €; 1, ; > 0. Putting together (48), (49) and (51), we obtain, for some constant
C3141,4>0

1 k
E[(n1/2L )k :gf A (D1, ]161”06" *]I{V()> B}ﬂﬁo"ﬂ

<¢3114Z( 1/2) (2 + A1 (€0)").

Using the fact that Ay, 11(£,)* = (log Ay, (£,))F, we obtain (i) thanks to the assumption 2. O
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We are now ready to prove Proposition 2:

Proof of Proposition 2. Let ¢ > 0. First, note that thanks to Lemma 3.5 and Fact 1 (36) there
exists a.r > 0 such that we can restrict our study to the k-tuples of vertices in the set &**N{V(-) >

_ae,}

lim limsupIE”*< sup o7* (D=, Takyers(1— ]lgk,m{z(_)z,ag,})) > E(nl/gLn)k) =0,

e’—=0 nooo s<sy,

where we recall that s, = n'/2/e;. Then, note that &/*(2, -, Tam ek Lgkonfy()>—a,}) is smaller
than

(Do Lgrianera) + L Dne, Lgringss Ly ()>—a.})-

Hence, by Markov inequality, the result follows using Lemma 3.11 with B = a,r. O
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