
HAL Id: hal-04051496
https://hal.science/hal-04051496

Submitted on 30 Mar 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

On the Longest Flip Sequence to Untangle Segments
in the Plane

Guilherme da Fonseca, Yan Gerard, Bastien Rivier

To cite this version:
Guilherme da Fonseca, Yan Gerard, Bastien Rivier. On the Longest Flip Sequence to Untangle
Segments in the Plane. WALCOM 17th International Conference and Workshops on Algorithms
and Computation, Mar 2023, Hsinchu, Taiwan. pp.102-112, �10.1007/978-3-031-27051-2_10�. �hal-
04051496�

https://hal.science/hal-04051496
https://hal.archives-ouvertes.fr


On the Longest Flip Sequence to Untangle
Segments in the Plane⋆

Guilherme D. da Fonseca1[0000−0002−9807−028X], Yan
Gerard2[0000−0002−2664−0650], and Bastien Rivier2[0000−0001−5985−2169]

1 Aix-Marseille Université and LIS, France.
guilherme.fonseca@lis-lab.fr

2 Université Clermont Auvergne and LIMOS, France.
{yan.gerard, bastien.rivier}@uca.fr

Abstract. A set of segments in the plane may form a Euclidean TSP
tour or a matching, among others. Optimal TSP tours as well as minimum
weight perfect matchings have no crossing segments, but several heuristics
and approximation algorithms may produce solutions with crossings.
To improve such solutions, we can successively apply a flip operation
that replaces a pair of crossing segments by non-crossing ones. This
paper considers the maximum number D(n) of flips performed on n
segments. First, we present reductions relating D(n) for different sets of
segments (TSP tours, monochromatic matchings, red-blue matchings, and
multigraphs). Second, we show that if all except t points are in convex
position, then D(n) = O(tn2), providing a smooth transition between the
convex O(n2) bound and the general O(n3) bound. Last, we show that if
instead of counting the total number of flips, we only count the number
of distinct flips, then the cubic upper bound improves to O(n8/3).

Keywords: Planar geometry · Matching · Reconfiguration · Euclidean
TSP

1 Introduction

In the Euclidean Travelling Salesman Problem (TSP), we are given a set P
of n points in the plane and the goal is to produce a closed tour connecting
all points of minimum total Euclidean length. The TSP problem, both in the
Euclidean and in the more general graph versions, is one of the most studied
NP-hard optimization problems, with several approximation algorithms, as well
as powerful heuristics (see for example [2,13,17]). Multiple PTAS are known for
the Euclidean version [3,26,30], in contrast to the general graph version that
unlikely admits a PTAS [11]. It is well known that the optimal solution for the
Euclidean TSP is a simple polygon, i.e., has no crossing segments, and in some
situation a crossing-free solution is necessary [10]. However, most approximation
algorithms (including Christofides and the PTAS), as well as a variety of simple
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heuristics (nearest neighbor, greedy, and insertion, among others) may produce
solutions with pairs of crossing segments. In practice, these algorithms may
be supplemented with a local search phase, in which crossings are removed by
iteratively modifying the solution.

(a) (b) (c)

Fig. 1. Examples of flips in a (a) TSP tour, (b) monochromatic matching, and (c)
red-blue matching.

Given a Euclidean TSP tour, a flip is an operation that removes a pair of
crossing segments and adds a new pair of segments preserving a tour (Fig. 1(a)).
If we want to find a tour without crossing segments starting from an arbitrary
tour, it suffices to find a crossing, perform a flip, and repeat until there are no
crossings. It is easy to see that the process will eventually finish, as the length of
the tour can only decrease when we perform a flip. Since a flip may create several
new crossings, it is not obvious how to bound the number of flips performed until
a crossing-free solution is obtained. Let DTSP(n) denote the maximum number of
flips successively performed on a TSP tour with n segments. An upper bound
of DTSP(n) = O(n3) is proved in [24], while the best lower bound known is
DTSP(n) = Ω(n2). In contrast, if the points P are in convex position, then tight
bounds of Θ(n2) are easy to prove.

In this paper, we show that we can consider a conceptually simpler problem of
flips in matchings (instead of Hamiltonian cycles), in order to bound the number
of flips to both problems. Next, we describe this monochromatic matching version.

Consider a set of n line segments in the plane defining a matching M on a
set P of 2n points. In this case, a flip replaces a pair of crossing segments by
a pair of non-crossing ones using the same four endpoints (Fig. 1(b)). Notice
that, in contrast to the TSP version, one of two possible pairs of non-crossing
segments is added. As previously, let DMM(n) denote the maximum number of
flips successively performed on a monochromatic matching with n segments. In
Section 2, we show that DMM(n) ≤ DTSP(3n) ≤ DMM(3n), hence it suffices to prove
asymptotic bounds for DMM(n) in order to bound DTSP(n).

A third and last version of the problem that we consider is the red-blue
matching version, in which the set P is partitioned into two sets of n points
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each called red and blue, with segments only connecting points of different
colors (Fig. 1(c)). Let DRB(n) denote the analogous maximum number of flips
successively performed on a red-blue matching with n segments. The red-blue
matching version has been thoroughly studied [6,12]. In Section 2, we also show
that DMM(n) ≤ DRB(2n) ≤ DMM(2n) and, as a consequence, asymptotic bounds
for the monochromatic matching version also extend to the red-blue matching
version. We use the notation D(n) for bounds that hold in all three versions.

For all the aforementioned versions, special cases arise when we impose some
constraint on the location of the points P . In the convex case, P is in convex
position. Then it is known that, for all three versions, D(n) = Θ(n2) [6,8]. This
tight bound contrasts with the gap for the general case bounds.

For all three versions in the convex case, D(n) ≤
(
n
2

)
as the number of

crossings decreases at each flip. The authors have recently shown that without
convexity DRB(n) ≥ 1.5

(
n
2

)
− n

4 [12], which is higher than the convex bound.
A major open problem conjectured in [8] is to determine if the non-convex
bounds are Θ(n2) as the convex bounds. Unfortunately, the best upper bound
known for the non-convex case remains D(n) = O(n3) [24] since 19813, despite
recent work on this specific problem [6,8,12]. The best lower bound known is
D(n) = Ω(n2) [8,12].

The argument for the convex case bound of D(n) ≤
(
n
2

)
breaks down even

if all but one point are in convex position, as the number of crossings may not
decrease. In Section 3, we present a smooth transition between the convex and
the non-convex cases. We show that, in all versions, if there are t points anywhere
and the remaining points are in convex position with a total of n segments, then
the maximum number of flips is O(tn2).

Finally, in Section 4, we use a balancing argument similar to the one of Erdös
et al. [15] to show that if, instead of counting the number of flips, we count the
number of distinct flips (two flips are the same if they change the same set of
four segments), then we get a bound of O(n8/3).

1.1 Related Reconfiguration Problems

Combinatorial reconfiguration studies the step-by-step transition from one so-
lution to another, for a given combinatorial problem. Many reconfiguration
problems are presented in [20].

It may be tempting to use an alternative definition for a flip in order to
remove crossings and reduce the length of a TSP tour. The 2OPT flip is not
restricted to crossing segments, as long as it decreases the Euclidean length of
the tour. However, the number of 2OPT flips performed may be exponential [14].

Another important parameter d(n) is the minimum number of flips needed
to remove crossings from any set of n segments. When the points are in convex
position, then it is known that d(n) = Θ(n) in all three versions [6,12,28,32]. If
the red points are on a line, then dRB(n) = O(n2) [6,12]. In the monochromatic

3 While the paper considers only the TSP version, the proof of the upper bound also
works for the matching versions, as shown in [8].
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matching version, if we can choose which pair of segments to add in a flip,
then dMM(n) = O(n2) [8]. For all remaining cases, the best bounds known are
d(n) = Ω(n) and d(n) = O(n3).

It is also possible to relax the flip definition to all operations that replace
two segments by two others with the same four endpoints, whether they cross or
not [4,5,7,9,16,31]. This definition has also been generalized to multigraphs with
the same degree sequence [18,19,22].

In the context of triangulations, a flip consists of removing one segment and
adding another one while preserving a triangulation. Reconfiguration problems
for triangulations are also widely studied [1,21,23,25,27,29].

1.2 Definitions

Consider a set of points P . We say that two segments s1, s2 ∈
(
P
2

)
cross if

they intersect in exactly one point which is not an endpoint of either s1 or s2.
Furthermore, a line ℓ and a segment s cross if they intersect in exactly one point
that is not an endpoint of s.

Let s1, s
′
1, s2, s

′
2 be four segments of

(
P
2

)
forming a cycle with s1, s2 crossing.

We define a flip f = s1, s2 ↠ s′1, s
′
2 as the function that maps any set (or

multiset) of segments M containing the two crossing segments s1 and s2 to
f(M) = M ∪{s′1, s′2}\{s1, s2} provided that f(M) satisfies the property required
by the version of the problem in question (being a monochromatic matching, a
red-blue matching, a TSP tour...). This leads to the most general version of the
problem, called the multigraph version. We note that a flip preserves the degree
of every point. However, a flip may not preserve the multiplicity of a segment,
which is why, in certain versions, we must consider multisets and multigraphs
and not just sets and graphs.

A flip sequence of length m is a sequence of flips f1, . . . , fm with a correspond-
ing sequence of (multi-)sets of segments M0, . . . ,Mm such that Mi = fi(Mi−1)
for i = 1, . . . ,m. Unless mentioned otherwise, we assume general position for the
points in P (no three collinear points).

Given a property Π over a multiset of n line segments, we define DΠ(n) as
the maximum length of a flip sequence such that every multiset of n segments in
the sequence satisfies property Π. We consider the following properties Π: TSP
for Hamiltonian cycle, RB for red-blue matching, MM for monochromatic matching,
and G for multigraph. Notice that if a property Π is stronger than a property
Π ′, then DΠ(n) ≤ DΠ′(n).

2 Reductions

In this section, we provide a series of inequalities relating the different versions
of D(n). We show that all different versions of D(n) have the same asymptotic
behavior.
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Theorem 1. For all positive integer n, we have the following relations

DMM(n) = DG(n), (1)
2DMM(n) ≤ DRB(2n) ≤ DMM(2n), (2)
2DMM(n) ≤ DTSP(3n) ≤ DMM(3n). (3)

Proof. Equality 1 can be rewritten DG(n) ≤ DMM(n) ≤ DG(n). Hence, we have
to prove six inequalities. The right-side inequalities are immediate, since the
left-side property is stronger than the right-side property (using G instead of MM
for inequality 3).

The proofs of the remaining inequalities follow the same structure: given a
flip sequence of the left-side version, we build a flip sequence of the right-side
version, having similar length and number of points.

We first prove the inequality DG(n) ≤ DMM(n). A point of degree δ larger than
1 can be replicated as δ points that are arbitrarily close to each other in order to
produce a matching of 2n points. This replication preserves the crossing pairs of
segments (possibly creating new crossings). Thus, for any flip sequence in the
multigraph version, there exists a flip sequence in the monochromatic matching
version of equal length, yielding DG(n) ≤ DMM(n).

(a) (b)

ri r′
i

rj r′
j

bibj

Fig. 2. (a) Two red-blue flips to simulate a monochromatic flip. (b) Two TSP flips to
simulate a monochromatic flip.

The left inequality of (2) is obtained by duplicating the monochromatic points
of the matching M into two arbitrarily close points, one red and the other blue.
Then each segment of M is also duplicated into two red-blue segments. We obtain
a bichromatic matching M ′ with 2n segments. A crossing in M corresponds to
four crossings in M ′. Flipping this crossing in M amounts to choose which of
the two possible pairs of segments replaces the crossing pair. It is simulated by
flipping the two crossings in M ′ such that the resulting pair of double segments
corresponds to the resulting pair of segments of the initial flip. These two crossings
always exist and it is always possible to flip them one after the other as they
involve disjoint pairs of segments. Fig. 2(a) shows this construction. A sequence of
m flips on M provides a sequence of 2m flips on M ′. Hence, 2DMM(n) ≤ DRB(2n).

To prove the left inequality of (3), we start from a red-blue matching M with
2n points and n segments and build a tour T with 3n points and 3n segments.
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We then show that the flip sequence of length m on M provides a flip sequence
of length 2m on T . We build T in the following way. Given a red-blue segment
rb ∈ M , the red point r is duplicated in two arbitrarily close points r and r′ which
are adjacent to b in T . We still need to connect the points r and r′ in order to
obtain a tour T . We define T as the tour r1, b1, r

′
1, . . . , ri, bi, r

′
i, . . . , rn, bn, r

′
n . . .

where ri is matched to bi in M (Fig. 2(b)).
We now show that a flip sequence of M with length m provides a flip sequence

of T with length 2m. For a flip ribi, rjbj ↠ ribj , rjbi on M , we perform two
successive flips ribi, r

′
jbj ↠ ribj , r

′
jbi and r′ibi, rjbj ↠ r′ibj , rjbi on T .

The tour then becomes r1, b1, r
′
1, . . . , ri, bj , r

′
i, . . . , rj , bi, r

′
j , . . . , rn, bn, r

′
n, . . .

on which we can apply the next flips in the same way. Hence, 2DMM(n) ≤ DTSP(3n),
concluding the proof. ⊓⊔

3 Near Convex Sets

In this section, we bridge the gap between the O(n2) bound on the length of flip
sequences for a set P of points in convex position and the O(n3) bound for P in
general position. We prove the following theorem in the monochromatic matching
version; the translations to the other versions follows from the reductions from
Section 2, noticing that all reductions preserve the number of points in non-convex
position up to constant factors.

Theorem 2. In the monochromatic matching version with n segments, if all
except t points of P are in convex position, then the length of a flip sequence is
O(tn2).

Proof. The proof strategy is to combine the potential ΦX used in the convex case
with the potential ΦL used in the general case. Given a matching M , the potential
ΦX(M) is defined as the number of crossing pairs of segments in M . Since there
are n segments in M , ΦX(M) ≤

(
n
2

)
= O(n2). Unfortunately, with points in

non-convex position, a flip f might increase ΦX , i.e. ΦX(f(M)) ≥ ΦX(M) (as
shown in Fig. 1).

The potential ΦL is derived from the line potential introduced in [24] but
instead of using the set of all the O(n2) lines through two points of P , we use
a subset of O(tn) lines in order to take into account that only t points are in
non-convex position. More precisely, let the potential Φℓ(M) of a line ℓ be the
number of segments of M crossing ℓ. Note that Φℓ(M) ≤ n. The potential ΦL(M)
is then defined as follows: ΦL(M) =

∑
ℓ∈L Φℓ(M).

We now define the set of lines L as the union of L1 and L2, defined hereafter.
Let C be the subset containing the 2n−t points of P which are in convex position.
Let L1 be the set of the O(tn) lines through two points of P , at least one of
which is not in C. Let L2 be the set of the O(n) lines through two points of C
which are consecutive on the convex hull boundary of C.

Let the potential Φ(M) = ΦX(M) + ΦL(M). We have the following bounds:
0 ≤ Φ(M) ≤ O(tn2). To complete the proof of Theorem 2, we show that any flip
decreases Φ by at least 1 unit.
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We consider an arbitrary flip f = p1p3, p2p4 ↠ p1p4, p2p3. Let px be the point
of intersection of p1p3 and p2p4. It is shown in [12,24] that f never increases the
potential Φℓ of a line ℓ. More precisely, we have the following three cases:

– The potential Φℓ decreases by 1 unit if the line ℓ separates the final segments
p1p4 and p2p3 and exactly one of the four flipped points belongs to ℓ. We
call these lines f -critical (Fig. 3(a)).

– The potential Φℓ decreases by 2 units if the line ℓ strictly separates the final
segments p1p4 and p2p3. We call these lines f -dropping (Fig. 3(b)).

– The potential Φℓ remains stable in the remaining cases.

Notice that, if a point q lies in the triangle p1pxp4, then the two lines qp1 and
qp4 are f -critical (Fig. 3(a)).

(a)
p1

p2

p4 p3

q

` ∈ L1

px

(b)
p1

p2

p4 p3

q px

C

` ∈ L2` ∈ L2

Fig. 3. (a) An f -critical line ℓ for a flip f = p1p3, p2p4 ↠ p1p4, p2p3. This situation
corresponds to case (2a) with ℓ ∈ L1. (b) An f -dropping line ℓ. This situation corresponds
to case (2b) with ℓ ∈ L2.

To prove that Φ decreases, we have the following two cases.
Case 1. If ΦX decreases, as the other term ΦL does not increase, then their

sum Φ decreases as desired.
Case 2. If not, then ΦX increases by an integer k with 0 ≤ k ≤ n− 1, and we

know that there are k+1 new crossings after the flip f . Each new crossing involves
a distinct segment with one endpoint, say qi (0 ≤ i ≤ k), inside the non-simple
polygon p1, p4, p2, p3 (Fig. 3). Next, we show that each point q ∈ {q0, . . . , qk}
maps to a distinct line in L which is either f -dropping or f -critical, thus proving
that the potential ΦL decreases by at least k + 1 units.

We assume without loss of generality that q lies in the triangle p1pxp4. We
consider the two following cases.

Case 2a. If at least one among the points q, p1, p4 is not in C, then either
qp1 or qp4 is an f -critical line ℓ ∈ L1 (Fig. 3(a)).

Case 2b. If not, then q, p1, p4 are all in C, and the two lines through q in L2

are both either f -dropping (the line ℓ in Fig. 3(b)) or f -critical (the line qp4 in
Fig. 3(b)). Consequently, there are more lines ℓ ∈ L2 that are either f -dropping
or f -critical than there are such points q ∈ C in the triangle p1pxp4, and the
theorem follows. ⊓⊔
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4 Distinct Flips

In this section, we prove the following theorem in the monochromatic matching
version, yet, the proof can easily be adapted to the other versions. We remark
that two flips are considered distinct if the sets of four segments in the flips are
different.

Theorem 3. In all versions with n segments, the number of distinct flips in
any flip sequence is O(n8/3).

The proof of Theorem 3 is based on a balancing argument from [15] and
is decomposed into two lemmas that consider a flip f and two matchings M
and M ′ = f(M). Similarly to [24], let L be the set of lines defined by all pairs
of points in

(
P
2

)
. For a line ℓ ∈ L, let Φℓ(M) be the number of segments of M

crossed by ℓ and ΦL(M) =
∑

ℓ∈L Φℓ(M). Notice that Φ(M) − Φ(M ′) depends
only on the flip f and not on M or M ′. The following lemma follows immediately
from the fact that ΦL(M) takes integer values between 0 and O(n3)[24].

Lemma 1. For any integer k, the number of flips f in a flip sequence with
Φ(M)− Φ(M ′) ≥ k is O(n3/k).

Lemma 1 bounds the number of flips (distinct or not) that produce a large
potential drop in a flip sequence. Next, we bound the number of distinct flips
that produce a small potential drop. The bound considers all possible flips on a
fixed set of points and does not depend on a particular flip sequence.

Lemma 2. For any integer k, the number of distinct flips f with Φ(M) −
Φ(M ′) < k is O(n2k2).

Proof. Let F be the set of flips with Φ(M)− Φ(M ′) < k where M ′ = f(M). We
need to show that |F | = O(n2k2). Consider a flip f = p1p3, p2p4 ↠ p1p4, p2p3 in
F . Next, we show that there are at most 4k2 such flips with a fixed final segment
p1p4. Since there are O(n2) possible values for p1p4, the lemma follows. We show
only that there are at most 2k possible values for p3. The proof that there are at
most 2k possible values for p2 is analogous.

We sweep the points in P \ {p4} by angle from the ray p1p4. As shown
in Figure 4, let q1, . . . , qk be the first k points produced by this sweep in one
direction, q−1 . . . , q−k in the other direction and Q = {q−k . . . , q−1, q1, . . . , qk}.
To conclude the proof, we show that p3 must be in Q. Suppose p3 /∈ Q for the
sake of a contradiction and assume without loss of generality that p3 is on the
side of qi with positive i. Then, consider the lines L′ = {p1q1, . . . , p1qk}. Notice
that L′ ⊆ L, |L′| = k, and for each ℓ ∈ L′ we have Φℓ(M) > Φℓ(M

′), which
contradicts the hypothesis that Φ(M)− Φ(M ′) < k. ⊓⊔

Theorem 3 is a consequence of Lemmas 1 and 2 with k = n1/3.
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p1

p4
q1

q2

qk

q−1

q−2
q−k

qk−1

q−k+1

/∈ Q

...

...

Fig. 4. Illustration for the proof of Lemma 2.

5 Conclusion and Open Problems

In Section 2, we showed a relationship among several different bounds on the
maximum number of flips for a set of n line segments. This result shows how
upper bounds to the monochromatic matching version can be easily transferred
to different versions. But they can also be applied to transfer lower bounds among
different versions. For example, the lower bound of 3

2

(
n
2

)
− n

4 for the red-blue
matching case [12] implies a lower bound of 1

3

(
n
2

)
− n

2 for TSP. It is not clear
if the constants in the TSP lower bound may be improved, perhaps by a more
direct approach (or perhaps the lower bounds are not even asymptotically tight).
However, we showed that all these versions are related by constant factors.

We can also use the results from Section 2 to convert the bounds from Section 3
to the general multigraph version, and hence to spanning trees and other types
of graphs. In this case, the number t of points in non-convex position needs to be
replaced by the sum of the degrees of the points in non-convex position. If the
graphs are dense, or have non-constant degree, we do not know of any non-trivial
lower bounds or better upper bounds.

Another key property that we did not consider in this paper is the length
d(n) of the shortest flip sequence to untangle any set of n segments. In general,
we only know that d(n) = Ω(n) and d(n) ≤ D(n) = O(n3), for all versions.
Whether similar reductions are possible is an elusive question. Furthermore, if
the n points are in convex position, then dTSP (n) = Θ(n) for all versions. It is
unclear if a transition in the case of t points in non-convex position is possible.

The result of Theorem 3 is based on the O(n2k2) bound from Lemma 2. A
better analysis of the dual arrangement could potentially improve this bound,
perhaps to O(n2k).

The main open question, though, is whether the O(n3) bound to both D(n)
and d(n) can be improved for points in general position. The O(n8/3) bound
on the number of distinct flips presented in Section 4 is a hopeful step in this
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direction, at least for d(n). We were not able to find a set of line segments that
requires the same pair of segments to be flipped twice in order to be untangled.
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