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Abstract. In this paper, we study the k£ edge-connected L-hop-constrained network design
problem. Given a weighted graph G = (V, E), a set D of pairs of nodes, two integers L > 2 and
k > 2, the problem consists in finding a minimum weight subgraph of G containing at least k
edge-disjoint paths of length at most L between every pair {s,t} of D. The problem has several
applications in telecommunications network design. It also has applications in reliable container
transportation network design. Even if the problem has been studied for several decades, it
appears, to the best of our knowledge, that the associated polytope is not well known, even
when L € {2,3}.

In this paper, we investigate the problem from a polyhedral point of view. In particular, we
consider the case where L € {2, 3} and investigate the polytopes induced by the integer program-
ming formulations introduced in [24]. We first present these latter formulation, and introduce
several new classes of valid inequalities. Then, we study the conditions for these inequalities to
define facets and present separation algorithms for these inequalities.

Keywords. Hop-constrained survivable network, edge-disjoint paths, hop-constrained path,
valid inequalities, Branch-and-Cut algorithm.

1 Introduction

Let G = (V, E) be an undirected graph with node set V' and edge set E and D C V x V a set of
pairs of nodes, called demands with |D| = d. If a pair {s,¢} is a demand in D, we call s and ¢
demand nodes or terminal nodes. Let L > 2 be a fixed integer. If s and ¢ are two nodes of V| an
L-st-path in GG is a path between s and t of length at most L, where the length is the number
of edges (also called hops).

Given a weight function ¢ : E — R, which associates the weight c¢(e) to each edge e € F and
an integer k > 2, the k-edge-connected L-hop-constrained network design problem (KkHNDP for
short) consists in finding a minimum cost subgraph of G having at least k edge-disjoint L-st-
paths between each demand {s,t} € D.

The KHNDP has applications in the design of survivable telecommunication networks where
bounded-length paths are required. Survivable networks must satisfy some connectivity require-
ments; that is, the networks should still be functional after the failure of certain links. As
pointed out in [53] (see also [50]), the topology that seems to be very efficient (and needed in
practice) is the uniform topology, that is to say that corresponding to networks that survive
after the failure of kK — 1 or fewer edges, for some k > 2. However, this requirement is often in-
sufficient regarding the reliability of a telecommunication network. In fact, the alternative paths
could be too long to guarantee an effective routing. In data networks, such as the Internet,
the elongation of the route of the information could cause a major loss in the transfer speed.



For other networks, the signal itself could be degraded by a longer routing. In such cases, the
L-path requirement guarantees exactly the needed quality of the alternative routes. Moreover,
in a telecommunication network, usually several commodities have to be routed in the network
between pairs of terminals. In order to ensure an effective routing, there must exist a sufficient
number of hop-constrained paths between each pair of terminals.

One can also find application of the tHNDP when designing reliable a container shipping service
in martitime transportation. Indeed, one of the key issue for container liner shipping companies
is to limit as much as possible the number of transshipments for each container, and this, for
reducing the chance of losing the container (see Balakrishnan and Vad Karsten [6]). Moreover,
ensuring edge- or node-disjoint maritime routes guaranties that the liner shipping network is
less vulnerable to disruption (See Lhomme [52]).

The EHNDP has been extensively investigated when there is only one demand in the network
(|ID] = 1). In particular, the associated polytope has received special attention. In [48], Huygens
et al. study the kHNDP for £ = 2 and L = 2,3. They give an integer programming formulation
for the problem and show that the linear programming relaxation of this formulation completely
describes the associated polytope. From this, they obtain a minimal linear description of that
polytope. They also show that this formulation is no longer valid when L > 4. In [22], Dahl
et al. study the kHNDP when L = 2 and k > 2. They give a complete description of the
associated polytope in this case and show that it can be solved in polynomial time using linear
programming. Bendali et al. [9] generalize the results of [48] and [22] and give a complete
description of the polytope of the kHNDP, with |D| =1, for any k > 2 and L € {2,3}

In [18], Dahl considers the kKHNDP for £k = 1 and L = 3. He gives a complete description of
the dominant of the associated polytope. Dahl and Gouveia [19] consider the directed hop-
constrained path problem. They describe valid inequalities and characterize the associated
polytope when L < 3. Huygens and Mahjoub [46] study the kHNDP when k = 2 and L > 4.
They also study the variant of the problem where k node-disjoint paths of length at most L are
required between two terminals. They give an integer programming formulation for these two
problems when L = 4.

Diarrassouba et al. [24] consider the problem when L € {2,3} and k£ > 2. They introduce four
extended integer programming formulations and compare these formulations to the so-called
natural formulation. They show that for L € {2,3}, the LP-bound provided by these extended
formulations has the same value as that provided by the natural formulation. They also solve,
for L = 2,3 and k = 3,4,5, some instances of the problem using CPLEX and compare the
formulations in terms of efficiency.

Botton et al. [10] propose an extended formulation for the kHNDP for every L > 2. They
also develop an exact algorithm based on a Benders decomposition method, and report com-
putational results for L € {3,4,5}, k € {1,2,3}, and with graphs having up to 21 nodes and
ID| € {5,10}.

More recently, Arslan et al. [57] investigate a variant of the kHNDP in which the designed
network is such that there exists an L-st-path after the removal of at most k& — 1 edges from the
network, for any £ > 2. They present an integer programming formulation relying on the design
variables and present some computational results for this problem.



In [12], Coullard et al. investigate the structure of the polyhedron associated with the st-walks
of length L of a graph, where a walk is a path that may go through the same node more than
once. They present an extended formulation of the problem, and, using projection, they give
a linear description of the associated polyhedron. They also discuss classes of facets of that
polyhedron.

The kHNDP has also been studied when |D| > 2. In [21], Dahl and Johannessen consider the
case where kK = 1 and L = 2. They introduce valid inequalities and develop a Branch-and-Cut
algorithm. The problem of finding a minimum cost spanning tree with hop-constraints is also
considered in [37, 38, 40]. Here, the hop-constraints limit to a positive integer H the number
of links between the root and any terminal in the network. Dahl [17] studies the problem when
H =2 from a polyhedral point of view, and gives a complete description of the associated poly-
tope when the graph is a wheel. Finally, Huygens et al. [49] consider the problem of finding a
minimum cost subgraph with at least two edge-disjoint L-hop-constrained paths between each
given pair of terminal nodes. They give an integer programming formulation of that problem for
L = 2,3 and present several classes of valid inequalities. They also devise separation routines.
Using these, they propose a Branch-and-Cut algorithm and discuss some computational results.

Besides hop-constraints, another reliability condition, which is used in order to limit the length
of the routing, requires that each link of the network belongs to a ring (cycle) of bounded length.
In [33], Fortz et al. consider the 2-node connected subgraph problem with bounded rings. This
problem consists in finding a minimum cost 2-node connected subgraph (V, F') such that each
edge of F' belongs to a cycle of length at most L. They describe several classes of facet-defining
inequalities for the associated polytope and devise a Branch-and-Cut algorithm for the problem.
In [32], Fortz et al. study the edge version of that problem. They give an integer programming
formulation for the problem in the space of the natural design variables and describe different
classes of valid inequalities. They study the separation problem for these inequalities and discuss
Branch-and-Cut algorithms.

The related k-edge-connected subgraph problem and its associated polytope have also been the
subject of extensive research in the past years. Grotschel and Monma [41] and Grétschel et
al. [42, 43] study the k-edge-connected subgraph problem within the framework of a general
survivable model. They discuss polyhedral aspects and devise cutting plane algorithms. Didi
Biha and Mahjoub [26] study that problem and give a complete description of the associated
polytope when the graph is series-parallel. In [27], Didi Biha and Mahjoub study the Steiner
version of that problem and characterize the polytope when k is even. Chopra in [11] studies
the dominant of that problem and introduces a class of valid inequalities for its polyhedron.
Barahona and Mahjoub [5] characterize the polytope for the class of Halin graphs. In [31],
Fonlupt and Mahjoub study the fractional extreme points of the linear programming relaxation
of the 2-edge-connected subgraph polytope. They introduce an ordering on these extreme points
and characterize the minimal extreme points with respect to that ordering. As a consequence,
they obtain a characterization of the graphs for which the linear programming relaxation of that
problem is integral. Didi Biha and Mahjoub [25] extend the results of Fonlupt and Mahjoub
[31] to the case k > 3 and introduce some graph reduction operations. Kerivin et al. [51] study
that problem in the more general case where each node of the graph has a specific connectivity
requirement. They present different classes of facets of the associated polytope when the con-
nectivity requirement of each node is at most 2 and devise a Branch-and-Cut algorithm for the
problem in this case. In [8], Bendali et al. study the k-edge-connected subgraph problem for



the case kK > 3. They introduce several classes of valid inequalities and discuss the separation
algorithm for these inequalities. They devise a Branch-and-Cut algorithm using the reduction
operations of [25] and give some computational results for k = 3,4,5. A complete survey on the
k-edge-connected subgraph problem can be found in [50].

In this work, we are mainly interested in the polyhedral description of the KHNDP polytope
when L € {2,3}. We first present the integer programming formulations for the kKHNDP in-
troduced by Diarrassouba et al. [24] when L = 2,3 and &k > 2. We then introduce several
classes of valid inequalities for the polytope associated with the so-called natural formulation as
well as valid inequalities associated with some extended formulations. We also investigate the
conditions under which these inequalities define facets. Then, we discuss the separation problem
associated with these inequalities.

Notice that in this work, we consider two types of demand sets: rooted demands and disjoint
demands. A set of rooted demands is composed of demands which have the same node as source
node, while a set of disjoint demands is composed of demands in which each source node is
associated with only one destination node and vice-versa.

The paper is organized as follows. In Section 2, we present the integer programming formulations
introduced by [24], and in Section 3 we discuss the basic properties of the polytope associated
with these formulations. Then, in Sections 4, 5, 6 and 7, we introduce new valid inequalities
for the problem. In Section 8, we discuss some conditions under which they define facets and
Section 77 is dedicated to the separation algorithms for each class of inequality.

The rest of this section is devoted to more definitions and notation. An edge e € E with
endnodes u and v is denoted by wv. Given two node subsets W and W', we denote by [W, W’]
the set of edges having one endnode in W and the other in W’. If W = {u}, we then write
[u, W'] for [{u}, W']. We also denote by W the node set V '\ W. The set of edges having only
one node in W is called a cut and denoted by §(W). We will write d(u) for 6({u}). Given two
nodes s,t € V, a cut §(W) such that s € W and t € W is called an st-cut.

We will also denote by H = (U, A) a directed graph where U is the set of nodes and A is the
set of arcs. An arc a with origin v and destination v will be denoted by (u,v). Given two node
subsets W and W’ of U, we will denote by [W,W’] the set of arcs whose origin is in W and
whose destination is in W’. As before, we will write [u, W] for [{u}, W’] and W will denote the
node set U \ W. The set of arcs having their origin in W and their destination in W is called a
cut or dicut in H and is denoted by 67 (W). We will also write 6 (u) for §*({u}) with u € U.
If s and ¢ are two nodes of H such that s € W and t € W, then §* (W) will be called an st-cut
or st-dicut in H. If W and W' are two node subsets of H, then [W, W’|T will denote the set of
arcs of H whose origins are in W and destinations are in W’. As for undirected graphs, we will
write [u, W' for [{u}, W] .

Given an undirected graph G = (V, E) (resp. a directed graph H = (U, A)) and an edge subset
F C E (resp. an arc subset B C A), we let 2" € RF (resp. y® € R4) be the incidence vector of
F (resp. B), that is the 0 — 1 vector such that z¥(e) = 1 if e € F (resp. y®(a) =1 if a € B)
and 0 otherwise. Given F a subset of F (resp. A) and a vector 2 € R¥ (resp. y € R4), z(F)

(resp. y(F')) will represent the term ) . z(e) (vesp. > cpy(e)).



2 Integer programming formulations

In this section, we present five integer programming formulations, presented by Diarrassouba et
al. [24], for the tHNDP when L = 2, 3. The first formulation is the so-called natural formulation
whose variables set corresponds to the set of edges of the input graph while the other formulations
are extended formulations based on auxilliary graphs.

2.1 The natural formulation

Let G = (V, E) be an undirected graph, D C V x V be a demand set, and two integers k > 2 and
L € {2,3}. If an edge subset F' C E induces a solution of the kHNDP, that is a subgraph (V, F')
contains k-edge-disjoint L-st-paths for every {s,t} € D, then its incidence vector x satisfies the
following inequalities

z(6(W)) > k for all st-cuts 6(W), W C V,{s,t} € D, (2.1)
z(e) >0 for all e € E, (2.2)
z(e) <1 for all e € E. (2.3)

Inequalities (2.1) are the so-called st-cut inequalities while (2.2) and (2.3) are the trivial inequal-
ities.

Now, for a demand {s,t} € D, we consider the partition 7 = (Vp,V1,...,Vr4+1) of V such that
se Vo, t € Vi and V; #£ 0, for all i € {1,...,L}. Let T be the set of edges e = uv, where
uwe Vi, veV; and |i — j| > 1. The edge set T is called an L-st-path-cut. Figure 1 below gives
an example of L-st-path-cut with L =3 and, Vp = {s} and V11 = {t}.

<>
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Figure 1: Support graph of a L-st-path-cut with L = 3, V) = {s}, V41 = {t} and T formed by
the solid edges.

The following inequality
x(T) >k (2.4)

is the so-called L-st-path-cut inequality induced by m. Dahl [18] showed that the L-st-path-cut
(2.4) inequalities are valid for the kHNDP polytope when & = 1 and |D| = 1. It is not hard to
see that L-st-path-cut inequalities (2.4) are valid for the kHNDP polytope for any k > 1, L > 2
and |D| > 2.



It can be shown (see [24] and [49]) that L-st-path-cut inequalities together with the st-cut
inequalities (2.1), (2.2) and (2.3) provide an integer programming formulation for the kHNDP
when L = 2, 3.

Theorem 2.1 [49] Let G = (V,E) be a graph, k > 2 and L € {2,3}. Then, the kHNDP is
equivalent to the following integer program

min{cxz; subject to (2.1) — (2.4), = € ZF}. (2.5)

Formulation (2.5) is called the natural formulation and is denoted by KHNDPyg. In [49],
Huygens et al. studied the polytope associated with this formulation and introduce some facet-
defining inequalities for the problem. They also develop a Branch-and-Cut algorithm for the
kHNDP when k£ =2 and L = 2, 3.

In [9], Bendali et al. showed that L-st-path-cut inequalities define facets of the kHNDP if
and only if an L-st-path-cut inequality induced by a partition (Vp,...,Vr4+1), with s € V and
t € Vi41, is facet-defining only if [Vo| = |Vi41] = 1. Therefore, in the remainder of the
paper, the only L-st-path-cuts that we will consider are those induced by partitions of the form

({8}7 Vl, veey VL, {t})

2.2 Demand decomposition based formulations

In this section, we present three integer programming formulations for the ktHNDP for L = 2,3
where we use a directed layered graph to model each hop-constrained subproblem. These for-
mulations are called separated formulations. The graph transformation supporting these formu-
lations is given below.

2.2.1 Graph transformation

Given G = (V,E) and {s,t} € D, let Gy = (Vit, Ag) be the layered digraph obtained from G
as follows:

o Vi =Ny UN!, U{s,t} with Ny =V \ {s,t} and N/, is a copy of Ny (cach node u € Ny
corresponds to a node u’ of N.,),

e A, is composed of four kinds of arcs:

— for all su € E, (s,u) € gsta
— for all vt € E, (v/,t) € gst7
— for all u € Ng, we introduce min{|[s, u]|, |[u, ]|, k} arcs of the form (u,u') € Zsta

— if L =3, for all uv € E\ {st} with u,v € Ny, {(u,'), (v,u)} € Ay (see Figure 2 for
an illustration with L = 3).

For an edge e = uv € E, we denote by gst(e) the set of arcs of ést corresponding to the edge e:

e when u = s (resp. v =t), Ag(e) contains (s,v) (resp. (v/,t)),

e when u# s and v # ¢, if L =3, Ag(e) = {(u,v'), (v,u/)} and, if L = 2, Ay(e) is empty.
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Figure 2: Construction of graphs Gy with D = {{s1,¢1}, {s1,t2}, {s3,t3}} for L =3 and k = 1.

Note that G may have nodes different from u € Ng U N, 1, with indegree or outdegree equal to
zero. These nodes can be removed from Gg; after its construction.

G contains four layers: {s}, Ny, N;, {t} and no circuit. Also, any st-dipath in Gy is of length
no more than 3:

e the length is equal to 1 if the st-dipath is composed of the single arc (s, ),

e the length is equal to 3 for both st-dipaths of the form (s,u,u’,t) corresponding to path
(s,u,t) of length 2 in G, and st-dipaths of the form (s,u,v’,t) corresponding to path
(s,u,v,t), with u # v, of length 3 in G.

Moreover, notice that in Gy there exist exactly min{|[s, u]|, |[u,t]|, ¥} arcs between two vertices
(u,u’), for every u € V \ {s,t}. If G is simple, that is does not contain parallel edges, then
min{|[s, u]|, |[u,t]|,k} < 1, for every u € V '\ {s,t}, and min{|[s,u],|[u,t]|,k} < k for general
graphs. If G is simple and complete, then min{|[s, u]|, |[u,t]|, k} = 1, for every u € V' \ {s,t}.

Note that each graph Gy contains |Vy| = 2|V| — 2 (= |[Nst UNg U {s,t}]) nodes and |Ay| <
16(s)[+[6()|—I[s, ]|+ k(|V[—2) arcs if L = 2 and [Ay| < 2|E|—|0(s)| —[6(t)|+|[s, t]| +k(|V | -2)
arcs if L = 3, for all {s,t} € D.

Diarrassouba et al. [24] (see also [9]) pointed out that a set of k arc-disjoint st-dipaths of G
corresponds to a set of k edge-disjoint 3-st-paths in G, and vice-versa. This is summarized by
the following Corollary.

Corollary 2.1 [24]

Let H be a subgraph of G and let flst, {s,t} € D, be the subgraph of G obtained by considering
all the arcs of G corresponding to an edge of H, plus the arcs of the form (u,u’), for all
u € V{s,t}. Then H induces a solution of the kHNDP if H,, contains k arc-disjoint st-dipaths,
for every {s,t} € D. Conversely, given a set of subgraphs Hy of Gy, {s,t} € D, if H is the
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subgraph of G obtained by considering all the edges of G associated with at least one arc in
a subgraph Hst, then H induces a solution of the kHNDP only if Hyg contains k arc- disjoint
st-dipaths, for every {s,t} € D.

Also, Bendali et al. [9] showed that st-cuts and 3-st-path-cuts of G correspond to a set st-discuts
of G4 which do not contain any arc of the form (u,u’), and vice-versa.

Lemma 2.1 [9] An edge set C' which induces an st-cut or a 3-st-path-cut of G corresponds to
an st-dicut of G which do not contain any arc of the form (u,u’), u € V\{s,t}, and vice-versa.
2.2.2 Separated Flow Formulation

Given a demand {s,t}, we let f5¢ € RAst be a flow vector on G of value k between s and t.
Then f*¢ satisfies the flow conservation constraints (2.6), given by

k ifu=s,
D A D A 0 ifueVy\{st} ¢,
a€s+t (u) a€d— (u) —k ifu=t,
for all u € Vi, {s,t} € D (2.6)

and

5t < x(e), forall a € gst(e),e € E,{s,t} € D.

<1, foralla = (u,u), ue V\ {s,t}, {s,t} € D.

f8>0, forall a € Ay, {s,t} € D.

z(e) <1, forall e € E. (

N - — —
© oo
= = = =

Inequalities (2.7) are also called linking inequalities. They indicate that if an edge e € E is not
in the solution, then the flow on every arc corresponding to e is 0. Inequalities (2.9)-(2.10) are
the trivial inequalities.

Thus, we have the following theorem.

Theorem 2.2 [24] The kHNDP for L = 2,3 is equivalent to the following integer program

min{cz; subject to (2.6) — (2.10), x € ZE, e ]R‘E“,
for all {s,t} € D}. (2.11)

. . . . s
Formulation (2.11) will be called the separated flow formulation and will be denoted by kHNDP.?

2.2.3 Separated Path Formulation

For each demand {s,t} € D, let ist be the set of st-dipaths in ést and, for each P € ‘}’St, let
p**(P) be a binary variable whose value is 1 if P is used in a solution and 0 if not.



If an edge subset F C E induces a solution of the (HNDP, then " and (u*t(P), P € Py, {s,t} €
D) satisfy the following inequalities.

> wH(P) =k, for all {s,t} € D, (2.12)
PePst
> wt(P) < ale), for all a € Ag(e), e € E,{s,t} € D, (2.13)
PPy acP
Z p(P) <1, for all a = (u,u'),u € V\ {s,t}, {s,t} € D, (2.14)
PeEPst,acP
xz(e) <1, for all edge e € E, (2.15)
1 (P) >0, for all P € Py, {s,t} € D. (2.16)

Inequalities (2.12) express the fact that the solution must contain at least k st-dipaths. Inequal-
ities (2.13) and (2.14) indicate that these st-dipaths are arc-disjoint.

The following theorem gives an integer programming formulation for the KHNDP using the
path-based model described above.

Theorem 2.3 [24] The kHNDP for L = 2,3 is equivalent to the following integer program

min{cr; subject to (2.12) — (2.16), z € Z¥, u*' € Zi“,
for all {s,t} € D}. (2.17)

Formulation (2.17) is called the separated path formulation and is denoted by kHNDP}ZZZ;h. Note

that for each demand {s,t} € D, the number of st-paths in the graph G is bounded by |V |E-1,
which is polynomial for L = 2,3. Thus, this formulation contains a polynomial number of
variables while the number of nontrivial inequalities is at most

d+ Y (6(s)| +[6(t)] = [[s,1]]) + dk(|V| - 2) if L =2,
{s,t}eD

d+2d|E| = Y (18(s)] +[8(8)] = [[s.])) + dk([V]| =2) if L =3,
{s,t}eD

which is polynomial.

2.2.4 Separated Cut Formulation

The previous two models include constraints guaranteeing that for each demand {s,t} € D,
there exists a flow of value k under the arc capacities given by z. By the Max flow-Min cut
theorem, such a flow exists if and only if the capacity of any st-dicut, in each graph ést, is at
least k. This observation leads at once to the following formulation which provides the same LP
bound as the previous separated flow and path formulations.

Let H C FE beNan edge subset which induces a solution of the kHNDP in G and let H st be the
arc subset of G, {s,t} € D, corresponding to H. Then, the incidence vector z7 of H and the

vectors yg“, {s,t} € D, satisfy the following inequalities.
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Yst (6T (W) > k, for all st-dicut 6 (W) of Gy, for all {s,t} € D, (2.18)
ysi(a) < z(e), for all a € A(e), e € E, {s,t} € D, (2.19)
yst(a) <1, for all a = (u,u’), for all uw € V' \ {s,t}, {s,t} € D, (2.20)
yse(a) >0, for all a € Ay, {s,t} € D, (2.21)

z(e) <1, forall e € E. (2.22)

Inequalities (2.18) will be called directed st-cut inequalities or st-dicut inequalities and inequali-
ties (2.19) linking inequalities. Inequalities (2.19) indicate that an arc a € A corresponding to
an edge e is not in Hg; if e is not taken in H. Inequalities (2.20)-(2.22) are the trivial inequalities.

Theorem 2.4 [24] The kHNDP for L = 2,3 is equivalent to the following integer program

min{cx; subject to (2.18) — (2.22), x € Zf, Yst € Z‘E“,
for all {s,t} € D}. (2.23)

This formulation is called the separated cut formulation and is denoted by k‘HNDPgZI;. It contains
a polynomial number of variables. Indeed, for L = 2, the number of variables is

Bl+ Y [Aal <B4+ Y (8] +180)] = [[s,8)]) + dk(|V| - 2),

{s,t}eD {s,t}eD

and for L = 3, it is

El+ Y Al < IBl+2dIBl = Y (18(s)] +16(t)] = |[s.8]]) + dk(|V] - 2)
{s,t}eD {s,t}eD

(recall that d = |D]).

However, the number of constraints is exponential since the number of directed st-cuts is expo-
nential in the size of Gy, for all {s,t} € D. As we will see in Section ?? linear programming
relaxation can be solved in polynomial time using a cutting plane algorithm.

In the next section, we present a further formulation for the kHNDP also based on directed
graphs. However, unlike the separated formulations, this formulation is supported by only one
directed graph.

2.3 Aggregated Formulation for the tHNDP

We denote by Sp and Tp respectively the sets of source and destination nodes of D. In the case
where two demands {s1,t1} and {s9,t2} are such that s; =ty = s, we keep a copy of s in both
Sp and Tp.

In this section, we will introduce a new formulation for the KkHNDP which is supported by a
single directed graph G = (TN/, ﬁ) obtained from G as follows:

e V =SpUN UN"UTp with N’ and N” two copies of V; we denote by v/ and u” the
nodes of N’ and N” corresponding to a node u € V.

10



e A contains 6 kinds of arcs:

1. for each demand {s,t} € D
— if st € E, we add in A the arc (s,t'),
— if su € E with u € V'\ {s,t}, we add an arc (s,u’),
— if vt € E with v € V'\ {s,t}, we add an arc (v",t),

2. for each node u € V, we add {m?XD{min{Hs,uH, |[u,t]],k}} arcs of the form (u/,u"),
s,tre

3. for each t € Tp, we add min{k, max{|[s,t]|, s € Sp with {s,t} € D}} arcs of the form
(t',t),
4. if L = 3, for each edge e = uv € E, we add two arcs (u/,v”) and (v/,u”).

Figures 3 and 4 show examples for L = 2 and L = 3 with k = 1, respectively.

"
S1 S1

S1 t1

S3 to

Graph G

t ty
Graph G

Figure 3: Construction of graph G with D = {{s1,¢,},{s1,t2}, {s3,¢3}}, L =2 and k = 1.
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s3 ta

Graph G

Graph G

Figure 4: Construction of graph G with D = {{s1,¢,},{s1,t2}, {s3,¢3}}, L =3 and k = 1.

Notice that the digraph G may have nodes u € N U N’ with indegree or outdegree equal to zero.
These nodes can be removed from G after its construction. Also, note that when G is simple
(that is with no parallel edges), |[v/,v”]T| = |[t/,¢]T| < 1, for every u € V and every t € T, and
|[w, "] = |[t',t]T] = 1 if G is complete.

Remark that G contains |V| = 2|V|+ |Sp| + |Tp| nodes and |A| < k|V| + Z |0(s)| + Z |0(¢)]
s€S teT
arcs if L = 2, and |A| < 2|E| 4+ k|V| + Z 10(s)| + Z |6(t)] arcs if L = 3.
» o ses teT _
If G = (V,A) is the digraph associated with G, then for an edge e € E, we denote by A(e) the
set of arcs of G corresponding to e.

Observe that G is acyclic. Also note that for a given demand {s,t} € D, every st-dipath in G
contains at most 3 arcs. An L-st-path P = (s,u,v,t) of G, where u and v may be the same,
corresponds to an st-dipath P = (s,u/,v"”,t) in G. Conversely, every st-dipath P = (s,u/,0”,t)
of é, where u' and v” may correspond to the same node of V', corresponds to an L-st-path
P = (s,u,v,t), where v and v may be the same. Moreover G does not contain any arc of the
form (s,s’) and (t”,t), for every s € Sp and ¢t € Tp. If a node t € Tp appears in exactly one
demand {s,t}, then [s”,¢] = (). In the remainder of this section we will suppose w.l.o.g. that
each node of Tp is involved, as destination, in only one demand. In fact, in general, if a node
t € Tp is involved, as destination, in more than one demand, say {si,t},..., {sp,t}, with p > 2,
then one may replace in Tp ¢ by p nodes t1,...,t, and in D each demand {s;,t} by {s;,t;},
1=1,..,p.

Diarrassouba et al. [24] showed that looking for a solution of the KHNDP in G reduces to finding
k arc-disjoint st-dipaths in G, for all {s,t} € D. Thus, if F' C F is an edge subset of G that
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induces a solution of the kHNDP, then z € R” and y € Ri{ satisfy the following inequalities

y(6T(W)) > k, for all st-dicut (W), {s,t} € D, (2.24)
y(a) < z(e), forallac Afe), e € E, (2.25)
y(a) >0, for all a € A, (2.26)
z(e) <1, for all e € E. (2.27)

They give the following theorem.
Theorem 2.5 [24] The kHNDP for L = 2,3 is equivalent to the following integer program
min{cz; subject to (2.24) — (2.27), z € Z¥ y € 7 } (2.28)

Formulation (2.28) will be called the aggregated formulation and is denoted by kHNDP 4. In-
equalities (2.24) will be called directed st-cut inequalities or st-dicut inequalities and (2.25) will
be called linking inequalities. The latter indicate that an arc a, corresponding to an edge e, is
not chosen in the solution of kSNDP if e is not chosen in the solution of KHNDP.
This formulation contains |E| + |A] < |E| + k|V|+ Z |0(s)| + Z |0(t)| variables if L = 2
se€Sp teTp
and |E| + |A| < 3|E| + k|V| + Z |0(s)| + Z |0(t)| variables if L = 3. The number of con-
se€Sp teTp
straints is exponential since the st-dicuts are exponential in number. But, as it will turn out,

the separation problem for inequalities (2.24) can be solved in polynomial time and hence, the
linear programming relaxation of (2.28) so is.

3 The kHNDP polytopes

In the present section, we give some basic results on the polytope associated with the different
formulations we have presented before. These polytopes are named as follows

e kHNDP n4: (G, D): polytope associated with the natural formulation,

EHNDP 4,4(G, D): polytope associated with the aggregated formulation,

kHNDPgZp (G, D): polytope associated with the separated cut formulation,

kHNDP??g (G, D): polytope associated with the separed flow formulation,

kHNDPin (G, D): polytope associated with the separated path formulation.

3.1 Polytope kFHNDP 4,(G, D)

We first consider the polytope KHNDP 4,(G, D). Let G = (V, A) be the directed graph associated
with G and D in the case of the Aggregated formulation. Let E* be the set of edges e € F
such that there exists a demand {s,t} € D such that G \ {e} does not contain k edge-disjoint
L-st-paths. Such an edge is said to be L-st-essential. Also consider an arc a € A such that
there exists a demand {s,t} € D such that the graph G \ {a} does not contain k arc-disjoint
st-dipaths. Such an arc a is said to be st-essential. We will denote by A* the set of st-essential
arcs of G. The following theorem characterizes the dimension of kHNDP 4,(G, D).
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Theorem 3.1 dim(kHNDP,(G, D)) = |E| + |A| — |E*| — | A¥.

Proof. Obviously, we have that dim(kHNDP 4,(G, D)) < |E| +|A| — |E*| — |A*|. Now we show
that dim(KHNDP 4,(G, D)) > |E| 4 |A| — |E*| — | A*|. Recall that a solution of KHNDP 4,(G, D)
is described by a pair (ﬁ, F) where F C Aand F C F is the associated edge set. Also note that
an edge set F' induces a solution of the kHNDP if and only if the associated arc set F induces
a subgraph of G containing k arc-disjoint st-dipaths for every {s,t} € D.

Consider the pairs (A \ {a}, E), for all a € A\ A*. As a ¢ A*, these pairs induce solutions of
EHNDP 44(G, D).

For every edge e € E\ E*, consider the pair (A\ A(e), E\ {e}). Recall that, for all e € E, A(e) is
the set of arcs of A corresponding to e. As e € E'\ E*, the subgraph induced by E\ {e} contains
k edge-disjoint L-st-paths for every {s,t} € D and the subgraph of G induced by A \ g(e) also
contains k arc-disjoint st-dipaths for every {s,t} € D. Hence this pair induces a solution of
EHNDP 44(G, D).

One can easily observe that these solutions, together with the solution given by the pair (g, E),
form a family of |E \ E*| +|A \ A*| + 1 solutions of the kHNDP Ag Whose incident vectors are
affinely independant. Therefore, dim(kHNDP 4,(G, D)) > |E| + |A| — |E*| — |A*|, which ends
the proof of the theorem. O

Consequently, kHNDP 4,(G, D) is full dimensional if and only if E* = () = A*. The next result
shows that if G is complete and |V| > k+ 2, then E* = () = A*, implying that kHNDP 4,(G, D)
is full dimensional. But before, we give the following lemma.

Lemma 3.1 If G is complete, then for every {s,t} € D, there exist at least |V |—1 edge-disjoint
3-st-paths in G, and |V| — 1 arc-disjoint st-dipaths in G.

Proof. Suppose that G is complete. Consider a demand {s,t} € D and the arc set H =
[s, N'JU[N'", N"JU[N" t]JU[t', t]. Clearly, since G is complete, |[s, N']| = |V|—1, |[[N",t]| = |[V|-2.
Moreover, by the construction of G, there are |V| — 2 arcs of the form (u/,u”) and the arc (', t).
The graph H thus contains st-dipaths (s,u/,u”;t), for all u € V' \ {s,t}, and (s,¢,t). These
paths clearly forms |V| — 1 arc-disjoint st-dipath of H. Finally, these paths correspond in G
to paths (s,u,t), for all w € V'\ {s,t}, and path (s,t), which clearly form |V|— 1 edge-disjoint
3-st-paths of G. O

A consequence of Lemma 3.1 is that for a complete graph G with |V| > k + 2, the grathé
contains at least k+1 arc-disjoint st-dipaths for every {s,¢} € D. This implies that E* = () = A*.
We thus have the following.

Corollary 3.1 If G is complete and |V| > k 4 2, then kHNDP 44(G, D) is full dimensional.

From here, and until the end of this section, we will assume that G is complete and |V'| > k + 2,
and hence kHNDP 4,(G, D) is full dimensional.

In what follows, we give necessary and sufficient conditions for the trivial inequalities to define
facets of kHNDP 44(G, D). Remark that the inequalities y(a) < 1, for all a € A, and z(e) > 0,
for all e € F, are redundant with respect to the inequalities

y(a) >0 forallac A,
z(e) <1 forallee€ F,

y(a) < z(e) for all arc a € A(e),

14



and hence, do not define facets.

Theorem 3.2 We have the following results.
i) BEvery inequality x(e) < 1 defines a facet of kKHNDP 44(G, D);

X3 n inequalit a) > efines a facet o A if and only if either > k+
) An inequality y(a) > 0 defines a facet of KHNDP 44(G, D) if and only if cither |V| > k + 3
or |[V| =k+2 and a does not belong to an st-dicut of G of cardinality k + 1.

Proof. i) Let a € A. Since G is complete and |V| > k+ 2, by Lemma 3.1, the subgraph induced
by A\ {a} contains k arc-disjoint st-dipaths for every {s,t} € D. Thus, the pair (4 \ {a}, E)
induces a solution of kHNDP 44(G, D). Moreover, its incidence vector satisfies z(e) = 1.

Now let f € E\ {e}. As before, the subgraph induced by E \ {f} contains k edge-disjoint
L-st-paths, for every {s,t} € D. Thus, the pair (A\ A(f),E \ {f}) induces a solution of
EHNDP 44(G, D), whose incidence vector satisfies z(e) = 1.

It is not hard to see that these two families of solutions, together with the solution induced by
the pair (4, E), form | E| + |A| solutions whose incidence vectors satisfy z(e) = 1 and are affinely
independant. This yields x( ) < 1 defines a facet of KHNDP 44(G, D).

ii) Consider an arc a € A and suppose that |V| > k+ 3. By Lemma 3.1, G contains at least
k + 2 arc-disjoint st-dipaths for every {s,t} € D, and G contains at least k + 2 edge-disjoint
L-st-paths. Thus for an edge e € E, the pair (A\ ({a} U A(e)), E \ {e}) induces a solution
of kHNDP 4,(G, D). Also, for an arc a’ € A\ {a}, the pair (4 \ {a,d'}, E) induces a solution
of kHNDP 44(G, D). These solutions together with the solution (A\ {a}, E) form a family of
|A| + | E| solutions whose incidence vectors satisfy y(a) = 0 and are affinely independant. Thus,
y(a) > 0 defines a facet.

Now suppose that |V| =k + 2. If a belongs to an st-dicut 6+(W) of k+ 1 arcs, then y(a) > 0 is
redundant with respect to the inequalities

y(5* (W) > k.

—y(d') > =1, for all € §T(W)\ {a},
and hence cannot define a facet. If a does not belong to an st-dicut of k + 1 arcs, then, the pairs
(A\ ({a}UA(e)), E\{e}), for all e € E, and (A\ {a,d'}, E), for all a’ € A\ {a} induce solutions
of kHNDP 44(G, D). These solutions together with the solution (A \ {a}, E) form a family of

|A| 4 | E| solutions whose incidence vectors satisfy y(a) = 0 and are affinely independant. Thus
y(a) > 0 defines a facet of kHNDP 44(G, D). O O

The next theorem gives necessary conditions for the directed st-cut inequalities to define facets

of KHNDP 4,(G, D).

Theorem 3.3 Let W C V be a node set such that there is a demand {s,t} € D with s € W
and t € V\ W. Then the st-dicut inequality y(6+(W)) > k defines a facet of KHNDP 4,(G, D)
only if the following conditions hold

i) WnSp = {s} and (V\ /VI7) NTp = {t} (Recall that Sp (resp. Tp) is the set of terminals
of G that are source (resp. destination) in at least one demand);

i) eV\W,s" €W and t" € W.
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Proof. We will only show i). The proof for ii) follows the same lines. Suppose on the contrary
that there exists another node s; # s in W N Sp. This implies that [s,s1] = (), and thus,
STW \ {s1}) = 6+(W)\ 67 (s1). Note that the edges of G associated with those of 6T (s1) are
those of d(s1). As G is complete, 6 (s1) # 0. Therefore, the st-dicut inequality induced by W
is redundant with respect to the inequalities

YW\ {s1}) > &,
y(a) >0 for all a € 5 (s1),

and hence, cannot define a facet. O

3.2 Polytope KHNDP.?(G, D)

Now we consider the Cut formulation. The results of this section will be given without proof.
In fact their proofs are similar to those of the previous section.

As before, we denote by E* the set of L-st-essential edges of G and A}, the set of st-essential arcs
of Gy, for every {s,t} € D. The following theorem gives the dimension of k:HNDPgZp (G, D).

Theorem 3.4 dim(kHNDPP(G, D)) = |E|+ Y [Agq|—[E* = > |4zl
{s,t}eD {s,t}eD

Proof. Similar to the proof of Theorem 3.1. O

Lemma 3.2 If G is complete, then for every demand {s,t} € D, there erist at least |V|— 1
arc-disjoint st-dipaths in Gg.

Proof. Similar to the proof of Lemma 3.1. U

As a consequence, we have the following corollary.
Corollary 3.2 If G is complete and |V| > k + 2, then k:HNDPgZp(G,D) is full dimensional.

Note that the inequalities ys(a) < 1 and z(e) > 0 are redundant with respect to ys:(a) > 0,
z(e) < 1 and yg(a) < z(e). The next theorem gives necessary and sufficient conditions for
inequalities (2.21) and (2.22) to define facets of k:HNDPgZp(G, D).

Theorem 3.5 If G is complete and |V| > k + 2, then the following hold.
i) Every inequality x(e) <1 defines a facet of kHNDPgZp(G,D).

i1) An inequality y(a) > 0 defines a facet of k:HNDPgZp(G, D) if and only if either |V| > k+3
or |[V| =k+2 and a does not belong to an st-cut of cardinality k + 1.

Proof. Similar to the proof of Theorem 3.2. U

Now we address the dimension of the polytope associated with the natural formulation. The
following theorem gives the dimension of tHNDP n (G, D). Its proof is omitted as it uses similar
arguments as Theorems 3.1. Also, the condition for kHNDP 44(G, D) to be full dimensional is
the same for kHNDP v (G, D).
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Theorem 3.6 dim(kHNDPnu(G,D)) = |E| — |E*|. Moreover, if G is complete and |V| >
k+ 2, then kHNDPpnu (G, D) is full dimensional.

Proof. Similar to the proof of Theorem 3.1. O

In the following sections, we present several classes of valid inequalities for the kHNDP poly-
topes. From Section 4 to Section 6, the presented inequalities are valid for the polytope associ-
ated with the natural formulation of the problem, kHNDP y (G, D). The inequalities presented
in Section 7, on the other hand, are valid for the aggregated and separated cut formulations

KHNDP 4,(G, D) and kHNDP (G, D).

Recall that all the classes of inequalities we will introduce for the kHNDP 4 (G, D) (i.e. for the
natural formulation) are also valid for the polytopes associated with the extended formulations
presented in the paper.

We start with the so-called Hop-Constrained partition inequalities for k£ > 2 and L = 2,3. To
the best of our knowledge, these inequalities have never been presented before in the literature.

4 Hop-Constrained Partition Inequalities for tHNDP y (G, D)

Our new inequalities are defined for any k > 2 and for L € {2,3}. Also we distinguish the case
where the demands are rooted or disjoint. We recall that Sp and Tp denote the set of origins
and the set of destinations of the demands, respectively. Also, remember that when the demands
are rooted, the set Sp is reduced to one node s, that is Sp = {s}, while for disjoint demands,
each source node is associated with only one destination node and vice-versa.

The main results of the present section are given in Theorems 4.1 and 4.2. Their proofs are
established later in subsections 4.3-4.6.

4.1 Hop-Constrained Partition inequalities for rooted demands

We first consider the case of rooted demands, that is Sp = {s}. Let m = {Vo, Vi,...,V,,}, p > 2,
be a partition of V such that s € Vo and V; NTp # 0, i = 1, ...,p. The inequalities

{@w , if =2, (4.1)
z(6(Vo,V1,...,Vp)) > {@“ HL—3 (4.2)
: | ’ .

are called Hop-Constrained Partition inequality. The following theorem states that these in-
equalities are valid for the kHNDP when the demands are rooted.

Theorem 4.1 Consider the kHNDP with rooted demands and let m = {Vp,V1,...,V,}, p > 2, be
a partition of V such that s € Vo and V; NTp # 0, i = 1,...,p. The Hop-Constrained partition
inequality (4.1) (resp. (4.2)), induced by w, is valid for the kHNDP for any k > 2 and when
L =2 (resp. L =3).

Figures 5 and 6 present examples of partition supporting Hop-Constrained partition inequalities
in cases L = 2 and L = 3, respectively.
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Figure 5: Support graph of a Hop-Constrained partition inequality for rooted demands, L = 2
and k=3,p=6,Vp={s}and V; = {t;},i=1,...,p.

Figure 6: Support graph of a Hop-Constrained partition inequality for rooted demands, L = 3
and k=4, p=15 Vy={s}and V; = {t;}, i =1,...,p.

Figures 5 and 6 present partitions with p = 6 and p = 15, respectively, and where |V;| = 1, for
every i € {0,...,p}. We can see that the solution depicted in Figure 5 is feasible for the tHNDP
for L = 2 and k = 3. Also, the number of edges in 0(7) is 12 = {%-‘ For Figure 6, the

solution is feasible for the kHNDP with L = 3 and k = 4, and the number of edges in d(7) is
33 — {(4+2/5)~15W
= | SR

The proof of Theorem 4.1 will be established in Sections 4.3 and 4.4. Next we address the case
where the demands are disjoint.

4.2 Partition inequalities for disjoint demands

Consider the kHNDP with disjoint demands and let 7 = {Vj, Vi,...,V,,}, p > 2, be a partition
of V such that Vj O Sp and V; NTp # ), i = 1,...,p. The inequalities

56(6(%, Vla ey V;?)) >

(k+ #5)p
2

w , if L =23, (4.4)
are called Hop-Constrained partition inequalities.
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Theorem 4.2 Consider the kHNDP with disjoint demands and let m = {Vp, V1,...,V,}, p > 2,
be a partition such that Vo O Sp and V; NTp # 0, i = 1,...,p. The Hop-Constrained partition
inequality (4.3) (resp. (4.4)), induced by =, is valid for the kHNDP for any k > 2 and when
L =2 (resp. L=3).

Figures 7 and 8 illustrate the support graphs of Hop-Constrained partition inequalities in cases
L =2 and L = 3, respectively, and disjoint demands.

Figure 7: Support graph of a Hop-Constrained partition inequality for disjoint demands, L = 2
and k =3. Herep=4, V; ={t;}, 1 =1,...,4, and Vj = {s1,..., 54}

Figure 8: Support graph of a Hop-Constrained partition inequality for disjoint demands, L = 3
and k=4, p=10, V; ={t;},i=1,...,p, and Vj = {s1,..., 5, }.

In Figure 7, the demand set is composed of pairs (s;,t;), 7 = 1,...,4, and the considered partition
isT={Vo,W,...,V,}, with p=4, and V; = {t;}, i = 1,...,4, and V = {s1, 52,53, 54}. It is easy
to see that the solution presented here is feasible for the kHNDP with L = 2 and k& = 3. Also,
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the number of edges involved in §(r) is 10 = [22].

With Figure 8, the demand set is composed of pairs (s;, ¢;), 7 = 1, ...,10. The partition is obtained
for p =10 and V; = {t;}, i = 1,...,10 and V) = {s1,...,s10}. Here also, the solution is feasible
for the kHNDP with £ = 4 and L = 3 and the number of edges in d(r) is 24 = {WW.

Remark that the solutions presented in Figures 5, 6, 7 and 8 satisfy with equality the Hop-
Constrained partition inequality associated with each situation. This remark suggests that, un-
der suitable conditions, the Hop-Constrained partition inequalities (4.1)-(4.4) may define facets
of the kHNDP polytope.

In the next sections, we establish the proofs of Theorems 4.1 and 4.2. Notice that for each
proof and for sake of simplicity, we assume that the demand set is composed of pairs (s;,t;),
i=1,..,p, Vi={t;}, and s; € V, for every i € {1,...,p}. Also, notice that for rooted demands,
s; = s, for every i € {1,...,p}. Indeed, such an assumption does not change the number of edges
in 6(Vp, V1, ..., V) nor the right-hand-side of each inequality.

4.3 Proof of Theorem 4.1 for rooted demands and L = 2

Consider a feasible solution for the kHNDP and let H be the subgraph of G induced by this
solution. Also, let Z; (resp. Z2) be the set of nodes ¢; which are at distance 1 (resp. 2) from s
in H (see Figure 9 for illustration).

Za

Zy

Figure 9: Support graph of a Hop-Constrained partition inequality for rooted demands, L = 2
and k = 3. Dashed edges are never used in a 2-st;-path.

Note that p = |Z1| + |Z2|. Now remark that, for every node t; € Zs, a 2-st;-path of H cannot
use an edge passing through another node of Z5. Similarly, for every node t; € Z;, a 2-st;-path
cannot use an edge passing through another node of Zs. Thus,
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which proves the theorem.

4.4 Proof of Theorem 4.1 for rooted demands and L = 3

Consider a feasible solution of the kHNDP with k£ > 2 and L = 3 and let H be the subgraph of
G induced by this solution. As before, we consider the graph G induced by 7 and let Z; (resp.
Z3) (resp. Z3) be the set of nodes at distance 1 (resp. 2) (resp. 3) from s. Also let Z] be the
set of nodes t; € Z; such that |[s, ;]| + |[ti, Z1 \ {t:}]] = < k — 1, and ZF the set of nodes of Z;
such that |[s,t;]| + |[ti, Z1 \ {ti}]| > k. In a similar way, let Z] be the set of nodes t; € Z3 such
that |[t;, Z1]] = r < k — 1 and Z} be the set of nodes t; € Z such that |[t;, Z1]| > k.

Figure 10 gives an illustration for L = 3 and k = 3.

Figure 10: Support graph of a Hop-Constrained partition inequality for rooted demands, L = 3,
k=3 and p=11.
Observe that

1. for every node t; € Z1 U Zy U Z3, a 3-st;-path never uses an edge passing through another
node of Zs.

2. for every node t; € Zy, a 3-st;-path never uses an edge passing through a node of Z3.
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Observation 2) above implies that for every ¢; € 77,

k

(6 (t)| = |lt, Za]l + D |ltis Z3]) + |[ts, 20\ {ta}]] + s, tall = & + [Tt Z3]]-
r=2

Also, recall that by the definition of Z1, we have that |[Z3, Z1]| = | Z3].
By adding the inequalities

‘5H(tz)‘ >k, for every t; € Zy U Zs,
[0m ()| > k+ |[ti,Z21]|, for every t; € Z1,

k
61 (s)] = D 1711,
r=1

we obtain

k k
2065 (m)| = kp + |23, Z1)| + )| 211 = kp + | Z3] + Y 1 Z]]-
r=1 r=1

By divinding this inequality by 2 and rounding up the right-hand-side, we get

k
kp+ 23]+ ) |Z])

168 ()| > 5 : (4.5)

, then inequality (4.5) implies that

kp +
|6(m)] > [%—‘ )

2p
Now, if | Z3]| +Z\Zl "

r=1

and the result of the theorem holds.

2p
Thus, assume now that |Z3| + Z |Z]]| < —— F . This implies that
r=1

(k—=1p

Z. Z.
Zr 54125 >

Also, remember that
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and that, by the definition of node sets Z7, r =1, ..., k, we have
[s,t:]| + |[ti, Z1 \ {t:}]| = r,for every t; € Z],if r <k —1,
\[s, ti]| + |[ts, Z1 \ {t:}]| > k, for every t; € ZF.

This also implies that

k
leH-Z]uZl\{u} :ZZ [s,u]| + |[u, Z1 \ {u}]]) >Zr]Z1 (4.7)

ueE

Moreover, the definition of nodes sets Z3, r =1, ..., k, implies that

k
22, 21| = ) vl Z3), (4.8)
r=1
Z\uZQ\{t}y>Z —7)|Z5]. (4.9)
uEZo

Therefore, the number of edges in 0(7) is such that
0 (m)| 2 [[Z3, Zo]| + [[Z2, Z1]| + |[s, 1] + [ E(Z2)[ + [E(21))]
D M Ze \ {u][ + Y llu, 2o\ {u}]

uEZo ueZ
2 )

> k| Zs| + |[Z2, Z1]| + |[s, Z1]| +

2k|Zs| +2|(Z2, Z1)| + 2/[s, Z1]| + D 1w, Zo \ {ud)l + Y Ju. 21\ {u}]
uEZ2 uezy

2

Y

The above inequality, together with (4.6), (4.7), (4.8) and (4.9), yield

i k k k k ]
2k(Zs| + 2 r|Z3| + ) (k=) Z5| + Y rlZi| + ) |7
r=1 r=1 r=1 r=1

2

|08 (7))

Y

i k k k k ]
2k|Zs| + kY _|Z5|+ ) rlZ3 + Y rlZi|+ Y ||
r=1 r=1 r=1 r=1

2

v

(4.10)

Now remark that

k k k
dorlzl+ Y121 = 2) ||
r=1 r=1 r=1

k k

> rlZ5 =2y 173,

r=2 r=2
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These remarks together with inequality (4.10) imply that

] . . ]
2k|Zs| + k| Z3]| + 2D 127+ (k+2)>_ |23

|6H (7T)| 2 r:12 r=2

k k
(k — 2)|Z3| + 2k| Z5| + 2 <\Zzll + \Zﬂ> +(k+2)) 12|

> r=1 r=2
- 2
k k k
Since p = |Z3| + | Z3| —i—Z | Z5| —i—Z |Z7|, we can replace |Z4| —i—Z |Z]| in the above expression
r=2 r=1 r=1
k
by p — |Z3] — Z |Z3|. We thus obtain
r=2
_ . . -
(k —2)| 23| + 2| Z3| + 2 (p— |Zs] —ZIZ&"I) +(k+2)) 175
’(SH(T(')’ > r=2 r=2
2
- i -
2+ k> | Z5]+ 2(k — 1)| Zs|
> r=2 5 . (4.11)

Now, as k > 2, we have that 2(k — 1) > k. Thus, inequality (4.11) implies that

k
2+ k> |Z5] + k| Zs]

|67 (m)| > r=2 5 . (4.12)

k
Finally, since by assumption Z |Z5| + | Z3| >
r=2

(k—1)p
k+1

2p + k1P (k+ +27)p
!%(W)\Z{% — % ’

, inequality (4.12) implies that

which ends the proof of the theorem.
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4.5 Proof of Theorem 4.2 for disjoint demands and L = 2

We start the proof by the following observation. Since L = 2, if an edge t;t; is used simultane-
ously by a 2-s;t;-path and a 2-s;t;-path, then necessarily, these paths are of the form (s;,t;,t;)
and (s;,t;,t;). In other words, if edge t;¢; is used simultaneously in 2-paths for both ¢; and ¢;,
then the edges s;t; and s;t; are taken in the solution. Also, remark that edges of [s;, t;] are never
used in a 2-path for another demand (s;,t;), for every i,j € {1,...,p}, with j # i.

For every i € {1,...,p}, we let C; = [s;,t;], By = [t;, 2\ {t;i}], Bi = [t;,Vo \ {si}] and 4; =

[si, Z1 \ {ti}]. Also, we let e; = |E;|, ¢; = |Cy|, bi = |B;| and a; = |A;]|, for every ¢ € {1,...,p}.
Figure 11 below gives an illustration of the above observations and notations.

ty t2 t3

Figure 11: Hlustrations of notations A;, B;, C;, E;, for L = 2 and p = 3. Thiner edges are edges
tit; which are not used simultaneouly in 2-paths for ¢; and ¢;.

Now, for every i € {1,...,p}, we let E; be the set of edges t;t; of E; which are used simultane-
ously in a 2-path for both t; and t;. For sake of readability, we assume that E; = E;, that is
for every destination node t;, every edge ¢;t; in the solution is used in 2-paths for both ¢; and
tj. As a consequence, e; = a; = b;, for every i € {1,...,p}. Notice that the above assumption
is not too restrictive. Indeed, the proof will follow the same lines for the general case, that
is when |E;| > |E;|, for some i € {1,...,p}. The only difference will be the addition of extra-
terms corresponding to the fact that |E;| > |F;| which does not change the main arguments of
our proof. Thus, in the remaining, we assume that E; = E; and e; = a; = b;, for all i € {1, ..., p}.

Remember that, from the cut inequality induced by each node set {¢;}, we have
|0(t:)| = ei + b; + ¢; > k, for every i € {1,...,p}. (4.13)

From this, it is easy to see that

kp+ > (bi+ ci)
1651 (7)| > FWH' |<;H(VO)|-‘ > i:12

(4.14)

Clearly, to prove the theorem, it suffices to show that

S ez 2]

i=1
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For this purpose, let
k
P, = {ie{1,...,p} such that ¢; < {5-‘}

and

k
P, ={ie{1,...,p} such that e; > [5-‘ }.
The definition of P; implies that e; = [g] — «y, for some «; > 1.

Also, as by our above assumption, e; = b;, for every ¢ € {1,...,p}, and especially for i € P,
inequality (4.13) for ¢ € P; implies that

ci > k—2e;=k—2( ’VS-‘ — ;) = {SJ — ’72-‘ + 2q, for every ¢ € P;. (4.15)
Thus,
p k
Z(bi + C,‘) = Z(el + C,‘) = Z(el + C,‘) + Z(ez + Ci),
=1 i€Py i€P>
> Z (e; +¢i) + Z €;. (4.16)
iePy i€EPs

As mentioned before, e; > [gw, for every i € Py, and e; = [gw — «y, for every ¢ € P;. Hence,
inequality (4.16) implies that

i(bi—i—ci) > { MPlH- Z ¢ — i) {gw |Py].

i=1 i€
This latter inequality, together with (4.15) and the fact that p = |P;| + | P2|, imply that
P
> (b + ) _[ sz { J { -‘4—&@) (4.17)
1=1 i€
Finally, since for every k > 2, L%J — [%] € {-1,0}, and since a; > 1, for every i € P,

k k
{§J — {5—‘ + a; > 0, for every i € Py.

Therefore, inequality (4.17) implies that

i(bi +¢) > [g-‘ P

i=1

which completes the proof of the theorem.
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4.6 Proof of Theorem 4.2 for disjoint demands and L = 3

Remember that we assume in the proof that, the demand set is composed of pairs (s;,t;), i =
1,...,p, the partition 7 is such that V; = {t;}, for every i € {1,...,p}, and that Vj = {s1,...,s,}.
Consider a solution H which is feasible for the ktHNDP with L = 3 and k£ > 2, and denote by H
the subgraph of G induced by this solution.

As before, we consider the graph G, induced by 7 and let Z; (resp. Z3) (resp. Z3) be the
set of nodes at distance 1 (resp. 2) (resp. 3) from s. Also let Z] be the set of nodes t; € Z;
such that |[t;, Vo]l + [[t:;, Z1 \ {t:}]] = » < k — 1, and Z} the set of nodes of Z; such that
[ts, Vol| + [[tis Z1 \ {t:}]| > k. In a similar way, let ZJ be the set of nodes t; € Z5 such that
[ti, Z1]| = r < k — 1 and Z& be the set of nodes t; € Zo such that |[t;, Z1]| > k. Finally, we
denote by ST (resp. S3) (resp. S3) the set of source nodes associated with the nodes of Z] (resp.
Z3) (resp. Z3).

Figure 12 gives an illustration of these node sets for k = 3.

Z3 — .

Zy — .

Z1

Figure 12: Support graph of a Hop-Constrained partition inequality for disjoint demands, L = 3
and k = 3. Here p =7, V; = {t;}, i = 1,...7, Vo = {s1,...,87}. Z1 = {t1}, Z} = {t4,t5},
Z7 = {tr}, Z§ = {ta,t3}, Z5 = {te}, Z3 = {ts}, S} = {s1}, S5 = {s2,s3}, ST = {54,585},
Sg = {36}7 Sig) = {37}7 S3 = {38}'

k
k
First remark that if Z |Z]| > P then, clearly,

- E+1
kp + |[Z1, Vi
o) > | 20
kp+ ¢y
> {T (4.18)

and the result of the theorem holds. Hence, for the remain of the proof, we assume that
k k

k
Z |Z]| < k:——iz—)l As a consequence, |Z3| + ; |Z5| > kL—;l

r=1

Now observe that

27



1. for every t; € Z7, r =1, ...,

these paths also use edges from [s;, Z1]. Thus, |[Z]", Z1]| > (k —7)|Z]]|.

2. for every t; € Zg, r =1, ...,

k, at least k — r 3-s;t;-paths use edges from [t;, Z5]. Each of

k, at least k — 1 3-s;t;-paths use edges from [t;, Z2 \ {t;}], and
each of these paths also use edges from [s;, Z1]. Thus, |[Zy, Z1]| > (k — )| Z5).

3. for every t; € Zs3, any 3-s;t;-path does not use edges passing through another node of Z3

and uses an edge of [s;, Z1]. Thus, |[Z3, Zo]| > k|Z3| and |[Zs, Z1]| > k|Z3].

These observations imply that

Zl)‘/(]

Ea

Also, by the definition of node sets Z3, we have

[Z2, Z1]| = ZT\ZEL

122, Vol + ) \uZl\{u}\>Zr\Zl

Sl 22\ {u)]]

uEZo

=

Z —1)|Z3].

Thus, the number of edges involved in dy () is

165 ()| > [[Z3, Za)| + |[Za, Z1]| + 1121, Vo| + | E(Za)| + | E(Z1)],
> 7 s Zo\ {ud]] + > w2y \ {u}]

Z
> k| Zs| + |[Z2, Z0]| + 1120, VRl + | ==

2k| Zs| + 2|[Z2, Z1)) + 2/[Z0, Vol + D 1w, Zo \ {ud) + ) Ju, 21\ {u}]
UE Lo

Z —r)(1Z1] + 123]).

uEZq

v

From the above inequality, together with (4.20), (4.21) and (4.22), we obtain

|0k (7))

Y

Y

k k
2K| Zs| + 2 r|Z5] + |[Z1, Vo)l + ) (k=) 25| + ) vl Z]]

r=1

2

k

r=1

r=1

2

k k k
2k|Zs| + kY _|Z3| + ) rlZg|+ Y rlZ]] + |21, Vol

r=1

r=1

r=1
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By combining inequalities (4.23) and (4.19), we get

i k k k k T
2k|Zs| + k> 1251+ vl Z5 + > rlZi1+ > (k—r)(1Z]] + | Zs5)
’(SH(T(')’ Z r=1 r=1 7’2:1 r=1
i N N .
2k|Zs| + k> 125+ kD (1271 +125))
r=1 r=1
>
- 2
. N -
kY 125+ k (Z(\Z{\ +125)) + \Z:»J) + k| Zs|
> r=1 r=1
- 2
i N .
kp +k <Z|ZEI + |Z3|>
> ”:12 (4.24)

k
Finally, since, by assumption |Z3| 4+ Z | Z5| > %_;_1, inequality (4.24) implies that

r=1
kp + 24
6(7)| > [%w ’

which ends the proof of the theorem.

5 Steiner-SP-partition inequalities for tHNDP (G, D)

In [11], Chopra study the KECSP and introduces a class of inequalities called SP-partition
inequalities (see also [26]). These inequalities are defined as follows. Let 7 = (Vi,...,V},), p > 2,
be a partition of G such that the graph G, induced by m, is series-parallel. Then, the inequality

2(6(V4, ..., V},)) > m p—1 (5.1)

is called a SP-partition inequality. Chopra [11] showed that SP-partition inequalities (5.1) are
valid for the kECSP polytope. In what follows, we introduce a similar class of inequalities and
show that they are valid for the ktHNDP polytopes.

Let m = (Vi,...,V,), p > 3, be a partition of V such that the graph G, = (Vi, E;) is series-
parallel. Suppose that V; = {vy,...,v,} where v; is the node of G corresponding to the set V;,
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1 = 1,...,p. The partition 7 is said to be a Steiner-SP-partition if and only if 7 is a Steiner-
partition and either

1. p=3or

2. p > 4 and there exists a node v;, € V; incident to exactly two nodes v;,—; and v;,4+1 such
that the partitions 7; and 7y obtained from 7 by contracting respectively the sets V;,,
Vie—1, Vi, and Vj 41 are themselves Steiner-SP-partitions.

The procedure to check if a partition is a Steiner-SP-partition is recursive. It stops when the
partition obtained after the different contractions is either a Steiner-partition and of size three
or it is not a Steiner-partition.

In the following theorem, we give necessary and sufficient condition for a Steiner-partition to be
a Steiner-SP-partition. Remind that the demand graph is denoted by Gp = (Rp, Ep), where
Rp is the set of terminal nodes of G. The edge set Ep is obtained by adding an edge between
two nodes of Rp if and only if {u,v} € D.

Theorem 5.1 Let 7 = (V4,..., V), p > 3, be a partition of V' such that G is series-parallel.
The partition m is a Steiner-SP-partition of G if and only if the subgraph of Gp induced by w is
connected.

Proof. First observe that, as 7 is a SP-partition of G, one can obtain from 7 a two-size
partition by applying repeatidly the following operation. Let 7/ = (V, ..., ijj) be a S P-partition
of G. Suppose that sz) , for some 1ig, is incident to exactly two elements sz) _, and Vlf) 41

Then, the operation consists in contracting the sets Vlf) _; and sz) and consider the partition

i+1 _ (ysd+1 Jj+1
ot = (V{0 .., Vi) where

VIt =V fori=1,....ip — 2,
1 _ g j
Viili = Viga UV,

20
J+l s
V; - ‘/ZHLI

for i = io, P — 1.

Note that the new partition 77! induces a SP-partition of G and that we have p — 2 iterations
to obtain a two-size partition from .

Now, we have that 7 is not a Steiner-SP-partition if and only if there exists an integer ¢ < p —2
such that the partition 77 = (V/7, ..., quq), obtained by application of the above operation, is not
a Steiner-partition, that is the node set Vzg of w4 obtained by the contraction procedure to the
partition 797! is such that 5GD(V£) = (. Thus, if V;,,...,V;., r > 2, are the node sets of 7 that
have been reduced to Vzg during the different steps of the contraction procedure, then we have

T
that 5GD(U Vi) = 0. Therefore, the subgraph of Gp induced by 7 is not connected, which ends

i=1
the proof. 0

As a consequence of Theorem 5.1, if the demand graph is connected (this is the case when,
for instance, all the demands are rooted in the same node), then every Steiner-partition of V/,
inducing a series-parallel subgraph of G, is a Steiner-SP-partition of V.

With a Steiner-SP-partition (Vi,...,V}), p > 3, we associate the following inequality

2(6(V4, ..., V,)) > m p—1. (5.2)

Inequalities of type (5.2) will be called Steiner-SP-partition inequalities. We have the following,.
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Theorem 5.2 Inequality (5.2) is valid for KHNDP 44(G, D), kHNDPgZp(G, D), kHNDP;?f)’(G, D)
and kHNDP}(G, D).

Proof. Let m = (V1,...,V,), p > 3 be a Steiner-SP-partition. The proof is by induction on p. If
p = 3, then, as 7 is a Steiner-partition, the inequality

w603, = | 5| =3[ | 1
2 2

is valid.

Now suppose that every inequality (5.2), induced by a Steiner-SP-partition of p elements, p > 3,
is valid for the ktHNDP polytopes, and consider a Steiner-SP-partition 7 = (V1, ..., Vp, Vpy1). As
G is series-parallel, there exists a node set V;, of m which is incident to exactly two elements
of 7, say Vi,—1 and Vj 11. We let Fy = [V}, Vi,—1] and Fy = [V}, Vi,+1]. Since 7 is a Steiner-
SP-partition and hence is a Steiner-partition, V;, induces a valid st-cut inequality, for some
{s,t} € D. Hence we have that

.%'(Fl) + x(Fg) Z k.

W.l.o.g., we will suppose that

k
x(Fy) > [5-‘ . (5.3)
Consider the partition 7' = (V1,..., Vio—2, Vig—1 U Viy, Vig41s ---s Vp+1). As 7 is a Steiner-SP-
partition containing more than three elements, 7’ is also a Steiner-SP-partition which contains
p elements. Thus, by the induction hypothesis, the Steiner-SP-partition inequality induced by
7', that is

k
iE((S(‘/l, ceey %0*2; ‘/iofl U ‘/ioa ‘/i0+15 ceey ‘/}FPI)) 2 ’75-‘ p— 1 (54)

is valid. By summing the inequalities (5.3) and (5.4), we get

k
S0V Vo Vi) 2 5| 1) = 1.
which ends the proof of the theorem. O

Inequality (5.2) expresses the fact that, in a solution of the kHNDP, the multicut induced by a
Steiner-SP-partition contains at least [%W p—1 edges, since this solution contains k£ edge-disjoint
paths between every pair of nodes {s,t} € D.

Chopra [11] also described a lifting procedure for inequalities (5.1) for the kECSP. This procedure
can be easily extended, for the kHNDP, to inequalities of type (5.2). It is described as follows.
Let G = (V, E) be a graph and k > 3 an odd integer. Let G’ = (V, E U E’) be a graph obtained
from G by adding an edge set E'. Let 7 = (V1,...,V,) be a Steiner-SP-partition of G. Then
the following inequality is valid for kHNDP 44(G, D), k‘HNDPgZp(G, D), k:HNDPIi%’(G, D) and
kKHNDP2(G, D)

(6g(Vh, ..., V) + > ale)z(e) > Hp —1, (5.5)

e€E'NS ey (Vi Vi)
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where a(e) is the length (in terms of edges) of a shortest path in G between the endnodes of e,
for all e € E' Négr(Vi,...,Vp). We will call inequalities of type (5.5) lifted Steiner-SP-partition
inequalities.

Steiner-SP-partition inequalities (5.2) are shown to be valid for the kKHNDP polytopes for any
L > 2. However, we can show that when L = 2, they are dominated by partition inequalities
(4.1) and (4.3).

Theorem 5.3 When L = 2, the Steiner-SP-partition inequalities (5.2) are dominated by the
partition inequalities (4.1) and (4.3).

Proof. To prove the theorem, it suffices to show, for a given Steiner-SP-partition, that the right-
hand-side of the Steiner-SP-partition inequality is lower than that of the partition inequality
induced by this partition. In this proof, we do this only for L = 2 and rooted demands, the
proof being the same for disjoint demands. Thus, consider the case of rooted demands and a
partition 7 of V' into p > 2 node sets. Recall that the partition inequality (4.1) is of the form

(s 1),

2(5(m)) > { 2 (5.6)

and Steiner-SP-partition inequality (5.2) is of form

2(5(7)) > m p—1. (5.7)

We assume, w.l.o.g., that k is odd. We have that

{w-‘ _(F-‘p—l)z (k+1p k+1

1=1
2 2 2 5 7 >0,

which shows that inequality (5.6) dominates (5.7). O

6 Futher valid inequalities for FHNDP v, (G, D)

In this section, we present two other classes of inequalities which are valid for the polytope
associated with the natural formulation of the kHNDP. These inequalities are generalizations of
those introduced by Huygens et al. [47] for the 2HNDP.

6.1 Double cut inequalities

In the following we introduce a class of inequalities that are valid for the KHNDP polytopes for
L > 2 and k > 2. They are given by the following theorem.

Theorem 6.1 Let {s,t} be a demand, ip € {0,...,L} and
IT={Vo,..., Vig—1, Vi(l),Vig,V;-OJrl, s Vi41} a family of node sets of V' such that

7= Vo, Vig—1, V-, V2 U Vig 11, Vi1, -+ Via1) induces a partition of V. Suppose that

107 ' i0

1. VIUV2 induces an sj tj, -cut of G with {sj,,t;,} € D and sj, € Vil ort; € V;} (note that
sj, and t;j, cannot be simultaneously in VZ}) and are not in Vzg Also note that Vzi may be
empty);
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2. Vi1 induces an sj,tj,-cut of G with {sj,,t;,} € D (note that ji and jo may be equal);
3. m induces an L-st-path-cut of G with s € Viy (resp. t € Vi) and t € Vi1 (resp. s € Viy1).

Let E = [Viy_1, VL] U [Vigsa, V2 U Vg 1] U U Vi, Vil | and F C E such that |F|
k,li{io,i0+1}7|k—l|>l

and k have different parities.

i0—2 L
Let also E = ( U Vi, Vig1]) U ( U [Vi,Vit1]) U F. Then, the inequality
=0 i=io+2

o(om)\ By > | E 5L

is valid for kKHNDP 4,(G, D), kHNDP."(G, D), kHNDP;*(G, D) and kHNDP} (G, D) (recall
that §(m) is the set of edges of the E having their endnodes in different elements of ).

(6.1)

Proof. Let T be the L-st-path-cut of G induced by the partition 7. As T is an L-st-path-cut,
and V;l UV and Vj, 41 induce st-cut with {s,t} € {{sj,,%;,},{sj,,tj,}}, the inequalities below
are valid for the kKHNDP polytopes

x(T) > k,

z(8(Vig UV2)) = k,

2(6(Vig+1)) = k,

—xz(e) > -1 for all e € F,

z(e) >0 foralle € B\ F.

By summing these inequalities, dividing by 2 and rounding up the right hand side, we obtain
inequality (6.1). O

Inequalities of type (6.1) are called double cut inequalities. They generalize those introduced by
Huygens and Mahjoub [46] for the kHNDP when & = 2. We discuss in the following special
cases for these inequalities. This concerns the case where L € {2,3} and ig = 0.

The set of edges having a positive coefficient in inequality (6.1) plus the edges of F is called a
double cut. Figure 13 gives an example for L = 3 and 79 = 0.

Let L = 2, {s,t} € D and II = {V}, Vi, V1, Vo, V3} be a family of node sets of V such that
= (Vbl, VO2 U V1, Vo, V3) induces a 2-st-path-cut, and V; induces a valid s;t;-cut in G, for some
{s1,t1} € D. If F C [V UVq, V3] is chosen such that |F| and k have different parities, then the
double cut inequality induced by II and F' in this case can be written as

z([Vg, ViU Va U VA)) + a([Vi, Vi U V) + a([Va, V3))

5 (6.2)

Now let L = 3, {s,t} € D and Il = {V},ViZ, V1, Vs, V3, Vy} be a family of node sets of V' such
that m = (Vol, VO2 U Vi, Vo, V3, Vy) induces a 3-st-path-cut, and V; induces a valid sjtq-cut in G.
If I C [VZUViUVy, Vol is chosen such that |F| and k have different parities, then the double
cut inequality induced by II and F' can be written as
2([Vy, Vi UVa U V3 U VA]) + 2([Vi, Vi U V3 U Vi) + 2([V1, V3 U Va))
3k — |F|
w5

+z([V§ UV, Vo] \ F) > [Mw :

+2([VEUVIU VL, Vo] \ F) > { (6.3)
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edges of the double cut not in F

----- edges not in the double cut

- possible edges of F

Figure 13: A double cut with L =3 and ig =0

As it will turn out, inequalities (6.2) and (6.3) are very effective in the Branch-and-Cut algorithms
we developed for the problem.

6.2 Triple path-cut inequalities

Here is a further class of valid inequalities. They also generalize inequalities given by Huygens
and Mahjoub [46]. We distinguish the cases where L = 2 and L = 3. We have the following
theorem.

Theorem 6.2 i) Let L = 2 and {Vpy, V1, Va, V3, V2, VL, V) be a family of node sets of V' such
that (Vo, Vi, Va, V3L UV, VE U V) induces a partition of V and there exist two demands {s1,t1}
and {sq,to} with s1,s9 € Vy, t1 € V32 and ty € V2. The sets V}} and V} may be empty and s
and sy may be the same. Let also V3 = Vit UVE, Vi =VLIUVE and F C [V, ViUV U[VE, V]
such that |F| and k have different parities. Then, the inequality

22([Vo, Va]) + =([Vo, V3 U Va]) + x([V2, Vi U VE])+

(6.4)

(V2 Vi UV U V3, V) \ F) > Pk%m

is valid for KHNDP 4,(G, D), kHNDP? (G, D), kHNDP;*(G, D) and kHNDP}*(G, D).

ii) Let L = 3 and (Vy, ..., V3, V1, V2, VA Vi) be a family of node sets of V such that (Vy, ..., Vs, VU
V2 VA U V2) induces a partition of V' and there ezist two demands {s1,t1} and {s2,t2} with
s1,89 € Vp, tq € Vf and ty € V52. The sets V} and V51 may be empty and s; and so may be the

same. Let also Vy = VI UVE, Vs = VA UVZ and F C [Va, VA U [V3, ViU V5] such that |F| and k
have different parities. Then, the inequality

22([Vo, Val) + 2x([Vo, Va]) + 22([V1, Vs]) + 2 ([Vo U V1, Va U V5]) + 2([Va4, V5))+

3k — |F|
2

w([Va, V) + 2 (([Va, VT U [V3, VAU V5]) \ F) > [ (6.5)

is valid for KHNDP 4,(G, D), kHNDP? (G, D), kHNDP;*(G, D) and kHNDP}(G, D).

Proof.
i) Let T1 be the 2-s1t1-path-cut induced by the partition (Vo, Vi U Vi, Vo U VL, V2) and Ty and
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Ty the 2-sota-path-cuts induced by the partitions (Vo, Vi U V3, Vo UV V2) and (Vo, Vi, Vo U V3 U
Vi, V2), respectively. The following inequalities are valid for the kKHNDP polytopes

xz(e) > —1, for all e € F,
z(e) >0, for all e € ([VE, VA UVU V], VE) \ F.

By summing these inequalities, dividing by 2 and rounding up the right hand side, we get
inequality (6.4).

ii) Let T} be the 3-sit;-path-cut induced by the partition (Vo, Vi U Vs, Vo, Va U VL V2), and
Ty and T3 be the 3-soto-path-cuts induced by the partitions (Vo, V3 U Vy, Vo, V3 U V51, V52) and
(Vo, V1, Va, V3 UV U V2L Vi2), respectively. The following inequalities are valid for the kHNDP
polytopes

x(Ty) > k,
x(Ty) > k,
x(T3) > k,
—xz(e) > —1, for all e € F,
z(e) >0, for all e € ([Va, V2] U [V3, V4 U VE)) \ F.

By adding these inequalities, dividing by 2 and rounding up the right hand side, we get inequal-
ity (6.5). O

Inequalities of type (6.4) and (6.5) will be called triple path-cut inequalities. The set of edges
having a positive coefficient in inequality (6.4) ((6.5)) plus the edges of F' will be called a triple
path-cut (see Figure 14 for an example with L = 2).

edges of the triple path cut not in F

- edges not in the double cut

possible edges of F

,'( 2
Ve ~ — \%

Figure 14: A triple path-cut with L = 2
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7 Valid inequalities for kHNDP 4,(G, D) and kHNDPZ? (G, D)

In this section, we introduce a class of inequalities that are valid for KHNDP 4,(G, D) and
k:HNDPgZp (G, D). These inequalities are inspired from those introduced by Dahl [16] for the
polytope of the Survivable Directed Network Design Problem (kDNDP). The kDNDP consists,
given a directed graph H , a set of demands D and an integer k£ > 2, in finding a minimum weight
subgraph of H which contains k arc-disjoint st-dipaths for every demand {s,t} € D. We will
first describe these inequalities for kHNDP 4,(G, D) and then extend them to k:HNDPgZp (G, D).

7.1 Aggregated cut inequalities for kHNDP 4,(G, D)
Let {Wl, v W, b}, P> 2, be a family of node sets of V such that each set W induces an st-dicut

of G, for some {s,t} € D, andF0C5+(W) fori=1,..,p. Let F = U5+ )\ FP] and, for
i=1
an arc a € A, let r(a) be the number of sets 5+( )\ F0 which contain the arc a. Note that if

a € A does not belong to any set 5+( )\ F0 then r(a) = 0. For an edge e € E and an arc
subset U C A, we let

(e,U) = Z r(a).

acA(e)nU
The inequalities below are valid for kHNDP 44
(5+(W)) >kfori=1,..,p,
—yla)>—1 forallac F’, i=1,...,p.
By summing these inequalities, we obtain

P

Y r(@ya) > kp—Y_ [F)|.

acF i=1

If Fy (resp. F,) denotes the set of arcs a € F such that r(a) is odd (resp. even), then the
previous inequality can be written as

Y rla)y@) + Y rayla) = kp— Y |F7]. (7.1)
ack, acFy i=1

Let ﬁf C Fy such that, for every edge e € E corresponding to an arc of ﬁl, (e, ﬁf) is even. Let
E5 be the set of edges corresponding to the arcs of F2. By summing inequality (7.1) together
with the inequalities

r(a)z(e) > r(a)y(a), for all a € F? and e corresponding to a,

we get

S e, FR)ze)+ > r )+ Y r(a)yla) > kp — Z D). (7.2)

e€Ey a€Fy \F2 aEFy
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By dividing by 2 and rounding up the right hand side of inequality (7.2), we obtain the following
inequality

kp — |70
(e, F2) r(a)+1 r(a) ! ; o
Z Tﬂf(@) + Z Ty(a) + Z Ty(a) Z|\—5 | (7.3)

ecE> acFy \ﬁf ac€Fy

Inequalities of type (7.3) will be called aggregated cut inequalities. We give the following result
which directly comes from the above description.

Theorem 7.1 The aggregated cut inequalities (7.3) are valid for kKHNDP 44(G, D) when L €
{2,3}.

Inequalities (7.3) come from families of st-dicuts of G which may have different forms of config-
urations for the node sets /VI71, Wp, p > 2, and the arc sets FO - 5+(VVZ-), i=1,...,p. In the
following, we discuss a special case of these inequalities.

Let {Wl,.. W} p > 2, be a family of node sets of V such that each set WZ, =1,...,p,
induces an st-dicut, for some {s,t} € D, and let F0 - 5§(W,), i = 1,...,p, be arc sets such
that 0 < r(a) < 2 for all @ € A. Let F (resp. Fl) be the set of arcs such that r(a) = 2
(resp. r(a) = 1). Let F2 be the set of arcs a € F| for which there is another arc o/ € F}
which corresponds to the same edge of F, and let Fs be the set of the corresponding edges. The
inequality of type (7.3) associated with this configuration can be written as

kp — Z |EO|
Z y(a) + Z x(e) + Z y(a) > Z%l . (7.4)

aclh =y € F\ P2

As it will turn out, inequalities (7.4) may define facets under certain conditions and will be
useful for solving the kFHNDP using a Branch-and-Cut algorithm (Section ?7).

7.2 Aggregated cut inequalities for kHNDPgZp(G D)

The aggregated cut mequahtles can be defined for the polytope kHN DPgZp (G, D) in a similar
way. Let Gy = (Vyy, Agt), {s,t} € D, be the directed graphs associated with G and {s,¢} € D in
Formulation (2.23). Let {{s1,t1},....{sq,tq}} be a subset of demands. Consider a family of node

sets {Wlsm,...,Wlflltl,...,Wlsqtq,...,wlfgtq}, with p; > 1, for all ¢ € {1,...,q} and p = Zpl >

2, where W;iti, j = 1,...,p;, induces an s;t;-dicut in éS¢t¢- Let Fslt“0 C 52 (WSt ) Let
s;t;
pi
Fsiti = U [(% N (W;iti) \F;iti’o], for every i € {1,...,q}, and for a given arca € Ay, i = 1,...,q,

j=1
we let 74,4, (a) be the number of sets 52 (W;"ti) \1*"]-""1'“’0 containing arc a. If a does not belong
siti

to any of these sets, then 754, (a) = 0. Given an edge e € FE and an arc subset (72 - Zsz'tw we let

(e, (72) = Z T, ().

aegsiti (e)ﬁﬁi

37



The inequalities below are valid for k:HNDPgZp (G, D),
ysiti(égsm(W;m)) >kforj=1,...p; i=1,...,q,
- ySiti(a) Z -1 for a € F}%ti7 j = 17 -y Piy 1= 17 - (.
By summing these inequalities, we get
q q  pi .
7Sitis
Yo D ran@usea) | Zhp =Y E
i=1 \ geFsiti i=1 j=1

Let Fsitil (resp. Ffi'2) be the set of arcs a € F5' having ryy (a) odd (resp. even). The
inequality above can then be written as

q

Yol DD ran(@usa(@+ D ran(@ysea) | > kp - ZZWW (7.5)

=1 \qeFsitil acFsiti:2 =1 j=1
Now we let ﬁ;it“l - ﬁsiti’l, i=1,...,q, be the arc sets such that, for every edge e € E associated
with an arc of ﬁ; itil Zq:r' (e, ﬁ; ito1y s even. If By denotes the set of edges corresponding to
the arcs of F,* frritol , 1= i,ZI, q, then by adding inequality (7.5) and the inequalities

Ts;t,(@)x(€) > rg,(a)ys;t, (a) for all a € FS il where e corresponds to a,

we get

Z Z rsiti(a)ysiti(a)—i_ Z Tsiti(a)ysiti(a) +

i=1 \ gefsit oI\ Fitie 1 acFsitis2
q q Dpi _
Z Z v (e, F5' MY (e) > kp — Z Z \F’stit"’o\. (7.6)
e€By i=1 i=1 j=1

Finally, by dividing inequality (7.6) by 2 and rounding up the right hand side of the resulting
inequality, we obtain

3 5 %ysm(aw > Mé(@ysiti(a) +

=1 \aeFsiti\Fyitirt acFsiti:?
q 9 Pi . ]
Srere eSS
— =1 j=1
> ! : 7.7
3 g2 . &
e€Es

We then have the following result.

Theorem 7.2 Inequality (7.7) is valid for kHNDPgZp(G,D).
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Inequalities (7.7) will be also called aggregated cut inequalities.
We are going to describe a special case for inequalities (7.7), which will be utile in the Branch-
and-Cut algorithm based on the Cut formulation (see Section ?7).

q

Let {Wfltl, ...,Wlflltl, ...,Wlsqtq, ...,Wlfgtq}, with p;, > 1, for i = 1,...,q, and p = Zpi > 2, be
i=1

a family of node sets such that stiti induces s;t;-dicut of Gy, @ = 1,...,q. Let F;iti’o C

52 (Wf”i) be arc sets and
siti

P
eiti= | JIof
Fsiti:2 be the set of arcs of F%ii having rs,(a) = 2 and F%%! the set of arcs of F*i' having
rs;e;(a) = 1. Let ﬁ;iti’l be the subset of arcs a € F%'! such that there exists another arc
d € Fsiti! which corresponds to the same edge of F, and let Es be the set of the corresponding
edges.

Then the inequality (7.7), induced by this configuration, can be written as

(W;iti) \ﬁ?iti’o]. Suppose that 0 < ry, (a) < 2foralla € Ayy,, i =1,...,q. Let

Sitq

kp — Z Z |Fit|
Yoomn@t Y @) |+ Y wle) 2 | . (18

acFsiti2 aeﬁsiti,l\ﬁ;iti’l ecks

q
i=1

7.3 Lifting procedure for aggregated cut inequalities

In what follows we define a lifting procedure for the aggregated cut inequalities for both Aggre-
gated and Cut formulations, (7.4) and (7.8). This will permit to extend these inequalities to a
more general class of valid inequalities.

Consider first the polytope kHNDP 44(G, D). The lifting procedure is given in the following
theorem.

Theorem 7.3 Let G = (V,E) be an undirected graph, D C V x V and G = (V, A) be the
directed graph associated with G in the Aggregated formulation. Let

Y ale)z(e) + ) Blayy(a) = v

eckE acA

be an inequality of type (7.4) induced by a family of node sets 11 = {Wl,...,Wp} and arc sets
f’io C 8%, p > 2, which is valid for KHNDP 44(G, D). Let G' = (V,E U E’) be a graph obtained
by adding to G an edge set E' and let G = (V,AUA") be the directed graph associated with G’
in the Aggregated formulation (A’ is the set of arcs corresponding to the edges of E'). Then, the
inequality

S alegete) + Y sl + 3 |52 | vl =, (7.9
ek acA ac Al

is valid for kHNDPa4(G', D), where q(a) is the number of dicuts 55(Wi) containing the arc a,
forallae A
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Proof. W.lo.g., we will suppose that E' = {eg}. The proof is similar in the case where more
than one edge are added to G. Also, for more clarity, we will consider that only one arc, say ag,
is associated with eg in G/, that is we will consider that A’ = {ao}.

We are going to show that for every solution (Z,y) € kHNDP 44(G, D),

> ale)T(e) + > Bla)y(a) + V;“ﬂ glao) 2 | ——5—

ecE acA

First, let A(z,y) = az + Py, that is

Al,y) =Y yla)+ Y zle)+ > yla),

i c€Fs € P\ P2

where ﬁg, ﬁl, ﬁf and F» are the arc and edge sets involved in ax + By > . The lifted inequality
can hence be written as

k?P—E |EO|
q(ao) ] _ i=1
A(x,y>+[ . Mao)z —— (7.10)

If y(ap) = 0, then obviously the restriction of (Z,7) to £ and A is in kHNDP 49(G, D). Thus,
P

- IE)

A(z,y) > % , and hence (7.10) is satisfied.

Now suppose that (ag) = 1. We have that

> oo CEWI\ED) = Y 56L(Wh) - 5(F?)
i=1 i=1
= 23 g+ Y wa+ Y 7
ackFy acF? a€Fy\F2
< 2) ga)+2) T+ >, Ula)
aEly eckr aeﬁ\ﬁf
= 20@y) - Y, Yo
aeﬁl\ff
Thus we get
AET) > 5 | TOHT) - Y EE) Y g,
'z‘=1 i=1 acFy\ F2
> ST~ Y wY)
Li=1 i=1




Hence,

p
Z@ oL (W, Z!F°

A(Z,y) > (7.11)

If Wy, i=1,. ,q(ap), are the node sets of II such that the dicut 5%/(/1/17@) contains ag, then we
have that

L)) = 6L W0) ~Has), i =1,....q(a0),

GEOW)) = 76, (W), i = qlao) + 1, ...p

As (7,7) induces a solution of kHNDP 4, on G’, we have that y(dg(ﬁl)) >k, i =1,..,p
Moreover, since gy(ag) = 1, we have that

< <

(5+(W)) >k—1,i=1,..,q(ap). (7.12)

Thus, from (7.11) and (7.12), we obtain

k(p — qlao)) + (k — 1)g(ag) — > |F}|
Az,5) > 5 =

kp— > |F| = q(ao)

> =1 7

= 2
kp — y |57

> ; _ {Q(ao)-‘

= 2 2

Therefore, since g(ag) = 1, we get

»
(a0) kp— Y |
a —
A@ ) + | 52 | 9las) > L
2 2
which ends the proof of the theorem. O O

Now we give a lifting procedure for aggregated cut inequalities (7.8) when the Cut formulation is
considered. This procedure is similar to that introduced for inequalities (7.4) for the Aggregated
formulation. It is given in the theorem below.
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Theorem 7.4 Let G = (V, E) be an undirected graph, D CV xV and ést be the directed graph
associated with G and a demand {s,t} € D in the cut formulation, for all {s,t} € D. Let

Z + Z Z 581t1 ysztz ) =7,

eckE i=1 GEAsiti
be an inequality of type (7.8) induced by a demand set {{s1,t1},...,{sq,tq}}, @ family of node
sets {Wlsltl,...,Wlflltl,...,Wl‘gqt‘l,...,wsgtq}, with p; > 1, for all i € {1,....q} and p= sz >

2, and arc sets ﬁsiti’o C 5Gs ) (stm), j=1..pi,i=1,..,q LtG = (V,EU E’) and

ést = (Vst,Ast U Ast) be the directed graph associated with G' in the Cut formulation, for all
{s,t} € D(AL, is the set of arcs corresponding to the edges of E').
Then the inequality

D> ale +Z > But(a)yse,(a +Z > [qs““ Wysiti(a)zv (7.13)

e€k i=1 GEAsZtZ =1 e A,
is wvalid for k:HNDPsep(G’ D), where qs;,(a) is the number of dicuts 5+ (W;iti), in Glsltl
Ztl
containing the arc a, for every a € As,tl i1=1,...,p
Proof. Similar to that of Theorem 7.3. U

8 Facets

Throughout this section, we consider a complete graph G = (V| E) and suppose that |V| > k+2.

The first result concerns necessary conditions for the aggregated cut inequalities (7.4) to define
facets for kHNDP 44(G, D). To this end, we first give the following lemma.

Lemma 8.1 Consider an inequality of type (7.4) induced by afamzly of node sets 11 = {Wl, vees Wp},
p > 2, and arc subsets F0 C 52(W), t1=1,...,p. Let Fg, Fl, F1 and Ey be the arc and edge sets
involved in this inequality. Then (7.4) can be written as

Yoy@E W) +2 > ale) = Dy + D (F [ —y(E))+ Y yla)=kp+1. (81)
i=1 e€ By acF? i=1 a€Fy\FY

Moreover, (7.4) is tight for a solution (xg,yo) € KHNDP 4(G,D) if and only if one of the
following conditions holds

i)
2> zo(e) = > wola) + D _(F I —wF)) + D wla)=1 (8:2)
=1

e€Ey aéﬁf aeﬁl\ﬁf

and yo(6T (W) = k, fori=1,...,p;
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p

2> wo(e) = Y wola) + Y _(IF = wF))+ > wla)=0 (8.3)

c€Es acF? i=1 Y

and there exists igp € {1,...,p} such that yo(6*(W;)) = k, for i € {1,...,p} \ {io} and

y0(5+(Wi0)) =k+1.

P
Proof. First we show that ax + Sy > « is equivalent to (8.1). As kp and Z |E?| have different

=1
parities, cx + By > -y is equivalent to
p ~
2N w2 Y y@+2 Y yla) = hp— I 1. (8.4)
ecky ac ks a€Fy\F2 i=1
From the st-dicuts induced by the sets Wi, we have that
P
STYETWONE) =2 yla)+ Y yla+ > yla),
i=1 aEF, aeﬁf aeﬁl\ﬁf
=2 Z y(a) + 2 Z x(e) — 2 Z x(e) + Z y(a) + Z y(a).
aEln eclkh eclks aéﬁf aeﬁl\ﬁf
together with (8.4), we get
P R P
DyETWINE) +2 ) a(e) = Y yla)+ Y yla)>kp—) [F)|+1. (8.5)
=1 e€E acF? a€Fy\F2 i=1

By combining (8.5) and y(5+(WZ) \PN’Z-O) = y(6+(WZ)) - y(ﬁ}o), i=1,..,p, we get (8.1).
Now consider a solution (x,yo) € KHNDP 44(G, D) satisfying (7.4) with equality. By the
previous result, we have that

Zy0(5+(wi)) + > ([ —yo(F) +2>  wole) = > wola)+ > wola) =kp+1.
=1 =1 e€ky a€F? a€Fy\F?
(8.6)

As (9, yo) induces a solution of the ktHNDP, we have that yo (6t (W;)) > k, i = 1,...,p. Therefore,
P

> " yo(6* (W3)) > kp, and hence,
i=1

P
S UEN = voFED)) +2 > wole) = Y wola)+ > wola) < 1. (8.7)
=1 e€Es a€F? acFy\F?
If (8.7) is satisfied with equality, then, clearly yo(67 (W;)) = k, i = 1, ..., p. If not, as yo(6+(W;)) >
k,i=1,..,p, this yields yo(6T(W;,)) = k + 1 for some iy € {1,...,p} and yo(6T(W;)) = k, for
i€ (1P} \ o).
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Conversely, if (8.7) is tight for (zg,yo) and y0(5+(Wi)) =k for all © € {1,...,p}, then clearly,
(8.1) is tight for (xo,y0) and hence ax + By > ~ is tight for (xo,y0). If (8.7) is not tight for
(z0,Y0), that is

p

S U = yo(FD) +2 > wole) = > wola)+ > wola) =0,

i=1 c€Es acF? ac o\ P2

y0(5+(/ﬂ7i0)) = k + 1 for some i € {1,...,p} and y0(5+(/ﬂ7i0)) =k forie {1,...,p} \ {io}, then
clearly, (8.1) is also tight for (zg,yo). Thus, ax + Sy >~ is tight for (xo,yo). O O

Corollary 8.1 Consider an inequality of type (7.4) induced by a family of node sets {Wl, . W o}
p > 2, and arc subsets F0 - 5+(W) i=1,...p. Let Iy, I, Fl and Ey be the arc and edge sets
involved in this inequality. If (7 4) 1is tight for a solution (zo,y0) of KHNDP 44(G, D) then,

p

2 Z zo(e) — Z yo(a) + Z(|ﬁ¢0| —5(FY)) + Z yo(a) < 1. (88)

e€Ey aeﬁf i=1 a€Fy \ﬁf

Theorem 8.1 Let Il = {Wl, . W bt D > 2, be a family of node sets 0f‘~/ such that each set
WZ, i =1,...,p, induces an s;t;-dicut ofG for some {s;,t;} € D, and F0 - 5+(Wi). Suppose

that every arc ofA belongs to at most two sets 5+( )\F0 Then, the aggregated cut inequality

(7.4) induced by 11 and FZO, i =1,..,p, defines a facet of kKHNDP 4,(G, D) different from the
trivial and s;t;-dicut inequalities, only if for all i € {1,...,p}, the following conditions hold

1. Wi Sp|=|(V\W;)NTp| = 1;
2. [Win Sp| >