
HAL Id: hal-04051494
https://hal.science/hal-04051494v1

Preprint submitted on 30 Mar 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Polyhedral Investigation of k Edge-Connected
L-Hop-Constrained Network Design Problem

Ibrahima Diarrassouba, Ridha A Mahjoub

To cite this version:
Ibrahima Diarrassouba, Ridha A Mahjoub. Polyhedral Investigation of k Edge-Connected L-Hop-
Constrained Network Design Problem. 2023. �hal-04051494�

https://hal.science/hal-04051494v1
https://hal.archives-ouvertes.fr

Polyhedral Investigation of k Edge-Connected
L-Hop-Constrained Network Design Problem

I. Diarrassouba1, A. R. Mahjoub2

1. Normandie Univ, UNIHAVRE, LMAH, FR-CNRS-3335, 76600 Le Havre, France
diarrasi@univ-lehavre.fr

2. Laboratoire LAMSADE, CNRS UMR 7243, Université Paris-Dauphine, PSL, Place du
Maréchal De Lattre de Tassigny, 75775, Paris Cedex 16, France

ridha.mahjoub@lamsade.dauphine.fr

Abstract. In this paper, we study the k edge-connected L-hop-constrained network design
problem. Given a weighted graph G = (V,E), a set D of pairs of nodes, two integers L ≥ 2 and
k ≥ 2, the problem consists in finding a minimum weight subgraph of G containing at least k
edge-disjoint paths of length at most L between every pair {s, t} of D. The problem has several
applications in telecommunications network design. It also has applications in reliable container
transportation network design. Even if the problem has been studied for several decades, it
appears, to the best of our knowledge, that the associated polytope is not well known, even
when L ∈ {2, 3}.
In this paper, we investigate the problem from a polyhedral point of view. In particular, we
consider the case where L ∈ {2, 3} and investigate the polytopes induced by the integer program-
ming formulations introduced in [24]. We first present these latter formulation, and introduce
several new classes of valid inequalities. Then, we study the conditions for these inequalities to
define facets and present separation algorithms for these inequalities.

Keywords. Hop-constrained survivable network, edge-disjoint paths, hop-constrained path,
valid inequalities, Branch-and-Cut algorithm.

1 Introduction

Let G = (V,E) be an undirected graph with node set V and edge set E and D ⊆ V ×V a set of
pairs of nodes, called demands with |D| = d. If a pair {s, t} is a demand in D, we call s and t
demand nodes or terminal nodes. Let L ≥ 2 be a fixed integer. If s and t are two nodes of V , an
L-st-path in G is a path between s and t of length at most L, where the length is the number
of edges (also called hops).
Given a weight function c : E → R, which associates the weight c(e) to each edge e ∈ E and
an integer k ≥ 2, the k-edge-connected L-hop-constrained network design problem (kHNDP for
short) consists in finding a minimum cost subgraph of G having at least k edge-disjoint L-st-
paths between each demand {s, t} ∈ D.

The kHNDP has applications in the design of survivable telecommunication networks where
bounded-length paths are required. Survivable networks must satisfy some connectivity require-
ments; that is, the networks should still be functional after the failure of certain links. As
pointed out in [53] (see also [50]), the topology that seems to be very efficient (and needed in
practice) is the uniform topology, that is to say that corresponding to networks that survive
after the failure of k − 1 or fewer edges, for some k ≥ 2. However, this requirement is often in-
sufficient regarding the reliability of a telecommunication network. In fact, the alternative paths
could be too long to guarantee an effective routing. In data networks, such as the Internet,
the elongation of the route of the information could cause a major loss in the transfer speed.

1

For other networks, the signal itself could be degraded by a longer routing. In such cases, the
L-path requirement guarantees exactly the needed quality of the alternative routes. Moreover,
in a telecommunication network, usually several commodities have to be routed in the network
between pairs of terminals. In order to ensure an effective routing, there must exist a sufficient
number of hop-constrained paths between each pair of terminals.

One can also find application of the kHNDP when designing reliable a container shipping service
in martitime transportation. Indeed, one of the key issue for container liner shipping companies
is to limit as much as possible the number of transshipments for each container, and this, for
reducing the chance of losing the container (see Balakrishnan and Vad Karsten [6]). Moreover,
ensuring edge- or node-disjoint maritime routes guaranties that the liner shipping network is
less vulnerable to disruption (See Lhomme [52]).

The kHNDP has been extensively investigated when there is only one demand in the network
(|D| = 1). In particular, the associated polytope has received special attention. In [48], Huygens
et al. study the kHNDP for k = 2 and L = 2, 3. They give an integer programming formulation
for the problem and show that the linear programming relaxation of this formulation completely
describes the associated polytope. From this, they obtain a minimal linear description of that
polytope. They also show that this formulation is no longer valid when L ≥ 4. In [22], Dahl
et al. study the kHNDP when L = 2 and k ≥ 2. They give a complete description of the
associated polytope in this case and show that it can be solved in polynomial time using linear
programming. Bendali et al. [9] generalize the results of [48] and [22] and give a complete
description of the polytope of the kHNDP, with |D| = 1, for any k ≥ 2 and L ∈ {2, 3}
In [18], Dahl considers the kHNDP for k = 1 and L = 3. He gives a complete description of
the dominant of the associated polytope. Dahl and Gouveia [19] consider the directed hop-
constrained path problem. They describe valid inequalities and characterize the associated
polytope when L ≤ 3. Huygens and Mahjoub [46] study the kHNDP when k = 2 and L ≥ 4.
They also study the variant of the problem where k node-disjoint paths of length at most L are
required between two terminals. They give an integer programming formulation for these two
problems when L = 4.

Diarrassouba et al. [24] consider the problem when L ∈ {2, 3} and k ≥ 2. They introduce four
extended integer programming formulations and compare these formulations to the so-called
natural formulation. They show that for L ∈ {2, 3}, the LP-bound provided by these extended
formulations has the same value as that provided by the natural formulation. They also solve,
for L = 2, 3 and k = 3, 4, 5, some instances of the problem using CPLEX and compare the
formulations in terms of efficiency.

Botton et al. [10] propose an extended formulation for the kHNDP for every L ≥ 2. They
also develop an exact algorithm based on a Benders decomposition method, and report com-
putational results for L ∈ {3, 4, 5}, k ∈ {1, 2, 3}, and with graphs having up to 21 nodes and
|D| ∈ {5, 10}.

More recently, Arslan et al. [57] investigate a variant of the kHNDP in which the designed
network is such that there exists an L-st-path after the removal of at most k− 1 edges from the
network, for any k ≥ 2. They present an integer programming formulation relying on the design
variables and present some computational results for this problem.

2

In [12], Coullard et al. investigate the structure of the polyhedron associated with the st-walks
of length L of a graph, where a walk is a path that may go through the same node more than
once. They present an extended formulation of the problem, and, using projection, they give
a linear description of the associated polyhedron. They also discuss classes of facets of that
polyhedron.

The kHNDP has also been studied when |D| ≥ 2. In [21], Dahl and Johannessen consider the
case where k = 1 and L = 2. They introduce valid inequalities and develop a Branch-and-Cut
algorithm. The problem of finding a minimum cost spanning tree with hop-constraints is also
considered in [37, 38, 40]. Here, the hop-constraints limit to a positive integer H the number
of links between the root and any terminal in the network. Dahl [17] studies the problem when
H = 2 from a polyhedral point of view, and gives a complete description of the associated poly-
tope when the graph is a wheel. Finally, Huygens et al. [49] consider the problem of finding a
minimum cost subgraph with at least two edge-disjoint L-hop-constrained paths between each
given pair of terminal nodes. They give an integer programming formulation of that problem for
L = 2, 3 and present several classes of valid inequalities. They also devise separation routines.
Using these, they propose a Branch-and-Cut algorithm and discuss some computational results.

Besides hop-constraints, another reliability condition, which is used in order to limit the length
of the routing, requires that each link of the network belongs to a ring (cycle) of bounded length.
In [33], Fortz et al. consider the 2-node connected subgraph problem with bounded rings. This
problem consists in finding a minimum cost 2-node connected subgraph (V, F) such that each
edge of F belongs to a cycle of length at most L. They describe several classes of facet-defining
inequalities for the associated polytope and devise a Branch-and-Cut algorithm for the problem.
In [32], Fortz et al. study the edge version of that problem. They give an integer programming
formulation for the problem in the space of the natural design variables and describe different
classes of valid inequalities. They study the separation problem for these inequalities and discuss
Branch-and-Cut algorithms.

The related k-edge-connected subgraph problem and its associated polytope have also been the
subject of extensive research in the past years. Grötschel and Monma [41] and Grötschel et
al. [42, 43] study the k-edge-connected subgraph problem within the framework of a general
survivable model. They discuss polyhedral aspects and devise cutting plane algorithms. Didi
Biha and Mahjoub [26] study that problem and give a complete description of the associated
polytope when the graph is series-parallel. In [27], Didi Biha and Mahjoub study the Steiner
version of that problem and characterize the polytope when k is even. Chopra in [11] studies
the dominant of that problem and introduces a class of valid inequalities for its polyhedron.
Barahona and Mahjoub [5] characterize the polytope for the class of Halin graphs. In [31],
Fonlupt and Mahjoub study the fractional extreme points of the linear programming relaxation
of the 2-edge-connected subgraph polytope. They introduce an ordering on these extreme points
and characterize the minimal extreme points with respect to that ordering. As a consequence,
they obtain a characterization of the graphs for which the linear programming relaxation of that
problem is integral. Didi Biha and Mahjoub [25] extend the results of Fonlupt and Mahjoub
[31] to the case k ≥ 3 and introduce some graph reduction operations. Kerivin et al. [51] study
that problem in the more general case where each node of the graph has a specific connectivity
requirement. They present different classes of facets of the associated polytope when the con-
nectivity requirement of each node is at most 2 and devise a Branch-and-Cut algorithm for the
problem in this case. In [8], Bendali et al. study the k-edge-connected subgraph problem for

3

the case k ≥ 3. They introduce several classes of valid inequalities and discuss the separation
algorithm for these inequalities. They devise a Branch-and-Cut algorithm using the reduction
operations of [25] and give some computational results for k = 3, 4, 5. A complete survey on the
k-edge-connected subgraph problem can be found in [50].

In this work, we are mainly interested in the polyhedral description of the kHNDP polytope
when L ∈ {2, 3}. We first present the integer programming formulations for the kHNDP in-
troduced by Diarrassouba et al. [24] when L = 2, 3 and k ≥ 2. We then introduce several
classes of valid inequalities for the polytope associated with the so-called natural formulation as
well as valid inequalities associated with some extended formulations. We also investigate the
conditions under which these inequalities define facets. Then, we discuss the separation problem
associated with these inequalities.

Notice that in this work, we consider two types of demand sets: rooted demands and disjoint
demands. A set of rooted demands is composed of demands which have the same node as source
node, while a set of disjoint demands is composed of demands in which each source node is
associated with only one destination node and vice-versa.

The paper is organized as follows. In Section 2, we present the integer programming formulations
introduced by [24], and in Section 3 we discuss the basic properties of the polytope associated
with these formulations. Then, in Sections 4, 5, 6 and 7, we introduce new valid inequalities
for the problem. In Section 8, we discuss some conditions under which they define facets and
Section ?? is dedicated to the separation algorithms for each class of inequality.
The rest of this section is devoted to more definitions and notation. An edge e ∈ E with
endnodes u and v is denoted by uv. Given two node subsets W and W ′, we denote by [W,W ′]
the set of edges having one endnode in W and the other in W ′. If W = {u}, we then write
[u,W ′] for [{u},W ′]. We also denote by W the node set V \W . The set of edges having only
one node in W is called a cut and denoted by δ(W). We will write δ(u) for δ({u}). Given two
nodes s, t ∈ V , a cut δ(W) such that s ∈ W and t ∈ W is called an st-cut.
We will also denote by H = (U,A) a directed graph where U is the set of nodes and A is the
set of arcs. An arc a with origin u and destination v will be denoted by (u, v). Given two node
subsets W and W ′ of U , we will denote by [W,W ′] the set of arcs whose origin is in W and
whose destination is in W ′. As before, we will write [u,W ′] for [{u},W ′] and W will denote the
node set U \W . The set of arcs having their origin in W and their destination in W is called a
cut or dicut in H and is denoted by δ+(W). We will also write δ+(u) for δ+({u}) with u ∈ U .
If s and t are two nodes of H such that s ∈ W and t ∈ W , then δ+(W) will be called an st-cut
or st-dicut in H. If W and W ′ are two node subsets of H, then [W,W ′]+ will denote the set of
arcs of H whose origins are in W and destinations are in W ′. As for undirected graphs, we will
write [u,W ′]+ for [{u},W ′]+.
Given an undirected graph G = (V,E) (resp. a directed graph H = (U,A)) and an edge subset
F ⊆ E (resp. an arc subset B ⊆ A), we let xF ∈ R

E (resp. yB ∈ R
A) be the incidence vector of

F (resp. B), that is the 0 − 1 vector such that xF (e) = 1 if e ∈ F (resp. yB(a) = 1 if a ∈ B)
and 0 otherwise. Given F a subset of E (resp. A) and a vector x ∈ R

E (resp. y ∈ R
A), x(F)

(resp. y(F)) will represent the term
∑

e∈F x(e) (resp.
∑

e∈F y(e)).

4

2 Integer programming formulations

In this section, we present five integer programming formulations, presented by Diarrassouba et
al. [24], for the kHNDP when L = 2, 3. The first formulation is the so-called natural formulation
whose variables set corresponds to the set of edges of the input graph while the other formulations
are extended formulations based on auxilliary graphs.

2.1 The natural formulation

Let G = (V,E) be an undirected graph, D ⊆ V ×V be a demand set, and two integers k ≥ 2 and
L ∈ {2, 3}. If an edge subset F ⊆ E induces a solution of the kHNDP, that is a subgraph (V, F)
contains k-edge-disjoint L-st-paths for every {s, t} ∈ D, then its incidence vector x satisfies the
following inequalities

x(δ(W)) ≥ k for all st-cuts δ(W), W ⊂ V, {s, t} ∈ D, (2.1)

x(e) ≥ 0 for all e ∈ E, (2.2)

x(e) ≤ 1 for all e ∈ E. (2.3)

Inequalities (2.1) are the so-called st-cut inequalities while (2.2) and (2.3) are the trivial inequal-
ities.

Now, for a demand {s, t} ∈ D, we consider the partition π = (V0, V1, ..., VL+1) of V such that
s ∈ V0, t ∈ VL+1 and Vi 6= ∅, for all i ∈ {1, ..., L}. Let T be the set of edges e = uv, where
u ∈ Vi, v ∈ Vj, and |i− j| > 1. The edge set T is called an L-st-path-cut. Figure 1 below gives
an example of L-st-path-cut with L = 3 and, V0 = {s} and VL+1 = {t}.

V2
V3 V4

ts

V1V0

Figure 1: Support graph of a L-st-path-cut with L = 3, V0 = {s}, VL+1 = {t} and T formed by
the solid edges.

The following inequality

x(T) ≥ k (2.4)

is the so-called L-st-path-cut inequality induced by π. Dahl [18] showed that the L-st-path-cut
(2.4) inequalities are valid for the kHNDP polytope when k = 1 and |D| = 1. It is not hard to
see that L-st-path-cut inequalities (2.4) are valid for the kHNDP polytope for any k ≥ 1, L ≥ 2
and |D| ≥ 2.

5

It can be shown (see [24] and [49]) that L-st-path-cut inequalities together with the st-cut
inequalities (2.1), (2.2) and (2.3) provide an integer programming formulation for the kHNDP
when L = 2, 3.

Theorem 2.1 [49] Let G = (V,E) be a graph, k ≥ 2 and L ∈ {2, 3}. Then, the kHNDP is
equivalent to the following integer program

min{cx; subject to (2.1) − (2.4), x ∈ Z
E}. (2.5)

Formulation (2.5) is called the natural formulation and is denoted by kHNDPNat. In [49],
Huygens et al. studied the polytope associated with this formulation and introduce some facet-
defining inequalities for the problem. They also develop a Branch-and-Cut algorithm for the
kHNDP when k = 2 and L = 2, 3.

In [9], Bendali et al. showed that L-st-path-cut inequalities define facets of the kHNDP if
and only if an L-st-path-cut inequality induced by a partition (V0, ..., VL+1), with s ∈ V0 and
t ∈ VL+1, is facet-defining only if |V0| = |VL+1| = 1. Therefore, in the remainder of the
paper, the only L-st-path-cuts that we will consider are those induced by partitions of the form
({s}, V1, ..., VL, {t}).

2.2 Demand decomposition based formulations

In this section, we present three integer programming formulations for the kHNDP for L = 2, 3
where we use a directed layered graph to model each hop-constrained subproblem. These for-
mulations are called separated formulations. The graph transformation supporting these formu-
lations is given below.

2.2.1 Graph transformation

Given G = (V,E) and {s, t} ∈ D, let G̃st = (Ṽst, Ãst) be the layered digraph obtained from G
as follows:

• Ṽst = Nst ∪N ′
st ∪ {s, t} with Nst = V \ {s, t} and N ′

st is a copy of Nst (each node u ∈ Nst

corresponds to a node u′ of N ′
st),

• Ãst is composed of four kinds of arcs:

– for all su ∈ E, (s, u) ∈ Ãst,

– for all vt ∈ E, (v′, t) ∈ Ãst,

– for all u ∈ Nst, we introduce min{|[s, u]|, |[u, t]|, k} arcs of the form (u, u′) ∈ Ãst,

– if L = 3, for all uv ∈ E \ {st} with u, v ∈ Nst, {(u, v
′), (v, u′)} ∈ Ãst (see Figure 2 for

an illustration with L = 3).

For an edge e = uv ∈ E, we denote by Ãst(e) the set of arcs of G̃st corresponding to the edge e:

• when u = s (resp. v = t), Ãst(e) contains (s, v) (resp. (u
′, t)),

• when u 6= s and v 6= t, if L = 3, Ãst(e) = {(u, v′), (v, u′)} and, if L = 2, Ãst(e) is empty.

6

Graph G̃s1,t1
Graph G̃s1,t2

Graph G̃s3,t3

s1 t1

t2s3

u t3

Graph G

s3

t2

u

t3

s′3

t′2

u′

t′3

t1
s1

t′1

u′

t′3

s′3

u

s3

t3

t1

s1 t2

s1

t1

u

t2

t′1

s′1

u′

t′2

s3 t3

Figure 2: Construction of graphs G̃st with D = {{s1, t1}, {s1, t2}, {s3, t3}} for L = 3 and k = 1.

Note that G̃st may have nodes different from u ∈ Nst ∪N ′
st with indegree or outdegree equal to

zero. These nodes can be removed from G̃st after its construction.

G̃st contains four layers: {s}, Nst, N
′
st, {t} and no circuit. Also, any st-dipath in G̃st is of length

no more than 3:

• the length is equal to 1 if the st-dipath is composed of the single arc (s, t),

• the length is equal to 3 for both st-dipaths of the form (s, u, u′, t) corresponding to path
(s, u, t) of length 2 in G, and st-dipaths of the form (s, u, v′, t) corresponding to path
(s, u, v, t), with u 6= v, of length 3 in G.

Moreover, notice that in G̃st there exist exactly min{|[s, u]|, |[u, t]|, k} arcs between two vertices
(u, u′), for every u ∈ V \ {s, t}. If G is simple, that is does not contain parallel edges, then
min{|[s, u]|, |[u, t]|, k} ≤ 1, for every u ∈ V \ {s, t}, and min{|[s, u]|, |[u, t]|, k} ≤ k for general
graphs. If G is simple and complete, then min{|[s, u]|, |[u, t]|, k} = 1, for every u ∈ V \ {s, t}.

Note that each graph G̃st contains |Ṽst| = 2|V | − 2 (= |Nst ∪ N ′
st ∪ {s, t}|) nodes and |Ãst| ≤

|δ(s)|+ |δ(t)|−|[s, t]|+k(|V |−2) arcs if L = 2 and |Ãst| ≤ 2|E|−|δ(s)|−|δ(t)|+ |[s, t]|+k(|V |−2)
arcs if L = 3, for all {s, t} ∈ D.

Diarrassouba et al. [24] (see also [9]) pointed out that a set of k arc-disjoint st-dipaths of G̃st

corresponds to a set of k edge-disjoint 3-st-paths in G, and vice-versa. This is summarized by
the following Corollary.

Corollary 2.1 [24]
Let H be a subgraph of G and let H̃st, {s, t} ∈ D, be the subgraph of G̃st obtained by considering
all the arcs of G̃st corresponding to an edge of H, plus the arcs of the form (u, u′), for all
u ∈ V {s, t}. Then H induces a solution of the kHNDP if H̃st contains k arc-disjoint st-dipaths,
for every {s, t} ∈ D. Conversely, given a set of subgraphs H̃st of G̃st, {s, t} ∈ D, if H is the

7

subgraph of G obtained by considering all the edges of G associated with at least one arc in
a subgraph H̃st, then H induces a solution of the kHNDP only if H̃st contains k arc-disjoint
st-dipaths, for every {s, t} ∈ D.

Also, Bendali et al. [9] showed that st-cuts and 3-st-path-cuts of G correspond to a set st-discuts
of G̃st which do not contain any arc of the form (u, u′), and vice-versa.

Lemma 2.1 [9] An edge set C which induces an st-cut or a 3-st-path-cut of G corresponds to
an st-dicut of G̃st which do not contain any arc of the form (u, u′), u ∈ V \{s, t}, and vice-versa.

2.2.2 Separated Flow Formulation

Given a demand {s, t}, we let f st ∈ R
Ãst be a flow vector on G̃st of value k between s and t.

Then f st satisfies the flow conservation constraints (2.6), given by

∑

a∈δ+(u)

f st
a −

∑

a∈δ−(u)

f st
a =





k if u = s,

0 if u ∈ Ṽst \ {s, t},
−k if u = t,



 ,

for all u ∈ Ṽst, {s, t} ∈ D (2.6)

and

f st
a ≤ x(e), for all a ∈ Ãst(e), e ∈ E, {s, t} ∈ D. (2.7)

f st
a ≤ 1, for all a = (u, u′), u ∈ V \ {s, t}, {s, t} ∈ D. (2.8)

f st
a ≥ 0, for all a ∈ Ãst, {s, t} ∈ D. (2.9)

x(e) ≤ 1, for all e ∈ E. (2.10)

Inequalities (2.7) are also called linking inequalities. They indicate that if an edge e ∈ E is not
in the solution, then the flow on every arc corresponding to e is 0. Inequalities (2.9)-(2.10) are
the trivial inequalities.

Thus, we have the following theorem.

Theorem 2.2 [24] The kHNDP for L = 2, 3 is equivalent to the following integer program

min{cx; subject to (2.6) − (2.10), x ∈ Z
E
+, f st ∈ R

Ãst
+ ,

for all {s, t} ∈ D}. (2.11)

Formulation (2.11) will be called the separated flow formulation and will be denoted by kHNDPSep
F low.

2.2.3 Separated Path Formulation

For each demand {s, t} ∈ D, let P̃st be the set of st-dipaths in G̃st and, for each P ∈ P̃st, let
µst(P) be a binary variable whose value is 1 if P is used in a solution and 0 if not.

8

If an edge subset F ⊆ E induces a solution of the kHNDP, then xF and (µst(P), P ∈ P̃st, {s, t} ∈
D) satisfy the following inequalities.

∑

P∈P̃st

µst(P) ≥ k, for all {s, t} ∈ D, (2.12)

∑

P∈P̃st,a∈P

µst(P) ≤ x(e), for all a ∈ Ãst(e), e ∈ E, {s, t} ∈ D, (2.13)

∑

P∈P̃st,a∈P

µst(P) ≤ 1, for all a = (u, u′), u ∈ V \ {s, t}, {s, t} ∈ D, (2.14)

x(e) ≤ 1, for all edge e ∈ E, (2.15)

µst(P) ≥ 0, for all P ∈ P̃st, {s, t} ∈ D. (2.16)

Inequalities (2.12) express the fact that the solution must contain at least k st-dipaths. Inequal-
ities (2.13) and (2.14) indicate that these st-dipaths are arc-disjoint.

The following theorem gives an integer programming formulation for the kHNDP using the
path-based model described above.

Theorem 2.3 [24] The kHNDP for L = 2, 3 is equivalent to the following integer program

min{cx; subject to (2.12) − (2.16), x ∈ Z
E
+, µ

st ∈ Z
P̃st
+ ,

for all {s, t} ∈ D}. (2.17)

Formulation (2.17) is called the separated path formulation and is denoted by kHNDPSep
Path. Note

that for each demand {s, t} ∈ D, the number of st-paths in the graph G̃st is bounded by |V |L−1,
which is polynomial for L = 2, 3. Thus, this formulation contains a polynomial number of
variables while the number of nontrivial inequalities is at most

d+
∑

{s,t}∈D

(|δ(s)| + |δ(t)| − |[s, t]|) + dk(|V | − 2) if L = 2,

d+ 2d|E| −
∑

{s,t}∈D

(|δ(s)| + |δ(t)| − |[s, t]|) + dk(|V | − 2) if L = 3,

which is polynomial.

2.2.4 Separated Cut Formulation

The previous two models include constraints guaranteeing that for each demand {s, t} ∈ D,
there exists a flow of value k under the arc capacities given by x. By the Max flow-Min cut
theorem, such a flow exists if and only if the capacity of any st-dicut, in each graph G̃st, is at
least k. This observation leads at once to the following formulation which provides the same LP
bound as the previous separated flow and path formulations.

Let H ⊆ E be an edge subset which induces a solution of the kHNDP in G and let H̃st be the
arc subset of G̃st, {s, t} ∈ D, corresponding to H. Then, the incidence vector xH of H and the

vectors yH̃st
st , {s, t} ∈ D, satisfy the following inequalities.

9

yst(δ
+(W̃)) ≥ k, for all st-dicut δ+(W̃) of G̃st, for all {s, t} ∈ D, (2.18)

yst(a) ≤ x(e), for all a ∈ Ã(e), e ∈ E, {s, t} ∈ D, (2.19)

yst(a) ≤ 1, for all a = (u, u′), for all u ∈ V \ {s, t}, {s, t} ∈ D, (2.20)

yst(a) ≥ 0, for all a ∈ Ãst, {s, t} ∈ D, (2.21)

x(e) ≤ 1, for all e ∈ E. (2.22)

Inequalities (2.18) will be called directed st-cut inequalities or st-dicut inequalities and inequali-
ties (2.19) linking inequalities. Inequalities (2.19) indicate that an arc a ∈ Ãst corresponding to
an edge e is not in H̃st if e is not taken in H. Inequalities (2.20)-(2.22) are the trivial inequalities.

Theorem 2.4 [24] The kHNDP for L = 2, 3 is equivalent to the following integer program

min{cx; subject to (2.18) − (2.22), x ∈ Z
E
+, yst ∈ Z

Ãst
+ ,

for all {s, t} ∈ D}. (2.23)

This formulation is called the separated cut formulation and is denoted by kHNDPSep
Cut. It contains

a polynomial number of variables. Indeed, for L = 2, the number of variables is

|E|+
∑

{s,t}∈D

|Ãst| ≤ |E|+
∑

{s,t}∈D

(|δ(s)| + |δ(t)| − |[s, t]|) + dk(|V | − 2),

and for L = 3, it is

|E|+
∑

{s,t}∈D

|Ãst| ≤ |E|+ 2d|E| −
∑

{s,t}∈D

(|δ(s)| + |δ(t)| − |[s, t]|) + dk(|V | − 2)

(recall that d = |D|).

However, the number of constraints is exponential since the number of directed st-cuts is expo-
nential in the size of G̃st, for all {s, t} ∈ D. As we will see in Section ?? linear programming
relaxation can be solved in polynomial time using a cutting plane algorithm.

In the next section, we present a further formulation for the kHNDP also based on directed
graphs. However, unlike the separated formulations, this formulation is supported by only one
directed graph.

2.3 Aggregated Formulation for the kHNDP

We denote by SD and TD respectively the sets of source and destination nodes of D. In the case
where two demands {s1, t1} and {s2, t2} are such that s1 = t2 = s, we keep a copy of s in both
SD and TD.
In this section, we will introduce a new formulation for the kHNDP which is supported by a
single directed graph G̃ = (Ṽ , Ã) obtained from G as follows:

• Ṽ = SD ∪ N ′ ∪ N ′′ ∪ TD with N ′ and N ′′ two copies of V ; we denote by u′ and u′′ the
nodes of N ′ and N ′′ corresponding to a node u ∈ V .

10

• Ã contains 6 kinds of arcs:

1. for each demand {s, t} ∈ D

– if st ∈ E, we add in Ã the arc (s, t′),

– if su ∈ E with u ∈ V \ {s, t}, we add an arc (s, u′),

– if vt ∈ E with v ∈ V \ {s, t}, we add an arc (v′′, t),

2. for each node u ∈ V , we add max
{s,t}∈D

{min{|[s, u]|, |[u, t]|, k}} arcs of the form (u′, u′′),

3. for each t ∈ TD, we add min{k,max{|[s, t]|, s ∈ SD with {s, t} ∈ D}} arcs of the form
(t′, t),

4. if L = 3, for each edge e = uv ∈ E, we add two arcs (u′, v′′) and (v′, u′′).

Figures 3 and 4 show examples for L = 2 and L = 3 with k = 1, respectively.

s′1

s′3

u′

t′3

t′1

t′2

s′′1

s′′3

u′′

t′′1

t′′2

t′′3

s1

t1

s1 t1

t2s3

u t3

t3

t2

s3

Graph G̃

Graph G

Figure 3: Construction of graph G̃ with D = {{s1, t1}, {s1, t2}, {s3, t3}}, L = 2 and k = 1.

11

s′1

s′3

u′

t′3

t′1

t′2

s′′1

s′′3

u′′

t′′1

t′′2

t′′3

s1

t1

s1 t1

t2s3

u t3

t3

t2

s3

Graph G̃

Graph G

Figure 4: Construction of graph G̃ with D = {{s1, t1}, {s1, t2}, {s3, t3}}, L = 3 and k = 1.

Notice that the digraph G̃ may have nodes u ∈ N ∪N ′ with indegree or outdegree equal to zero.
These nodes can be removed from G̃ after its construction. Also, note that when G is simple
(that is with no parallel edges), |[u′, u′′]+| = |[t′, t]+| ≤ 1, for every u ∈ V and every t ∈ TD, and
|[u′, u′′]+| = |[t′, t]+| = 1 if G is complete.

Remark that G̃ contains |Ṽ | = 2|V |+ |SD|+ |TD| nodes and |Ã| ≤ k|V |+
∑

s∈S

|δ(s)| +
∑

t∈T

|δ(t)|

arcs if L = 2, and |Ã| ≤ 2|E| + k|V |+
∑

s∈S

|δ(s)| +
∑

t∈T

|δ(t)| arcs if L = 3.

If G̃ = (Ṽ , Ã) is the digraph associated with G, then for an edge e ∈ E, we denote by Ã(e) the
set of arcs of G̃ corresponding to e.

Observe that G̃ is acyclic. Also note that for a given demand {s, t} ∈ D, every st-dipath in G̃
contains at most 3 arcs. An L-st-path P = (s, u, v, t) of G, where u and v may be the same,
corresponds to an st-dipath P̃ = (s, u′, v′′, t) in G̃. Conversely, every st-dipath P̃ = (s, u′, v′′, t)
of G̃, where u′ and v′′ may correspond to the same node of V , corresponds to an L-st-path
P = (s, u, v, t), where u and v may be the same. Moreover G̃ does not contain any arc of the
form (s, s′) and (t′′, t), for every s ∈ SD and t ∈ TD. If a node t ∈ TD appears in exactly one
demand {s, t}, then [s′′, t] = ∅. In the remainder of this section we will suppose w.l.o.g. that
each node of TD is involved, as destination, in only one demand. In fact, in general, if a node
t ∈ TD is involved, as destination, in more than one demand, say {s1, t}, ..., {sp, t}, with p ≥ 2,
then one may replace in TD t by p nodes t1, ..., tp and in D each demand {si, t} by {si, ti},
i = 1, ..., p.

Diarrassouba et al. [24] showed that looking for a solution of the kHNDP in G reduces to finding
k arc-disjoint st-dipaths in G̃, for all {s, t} ∈ D. Thus, if F ⊆ E is an edge subset of G that

12

induces a solution of the kHNDP, then x ∈ R
E and y ∈ R

Ã
+ satisfy the following inequalities

y(δ+(W̃)) ≥ k, for all st-dicut δ+(W̃), {s, t} ∈ D, (2.24)

y(a) ≤ x(e), for all a ∈ Ã(e), e ∈ E, (2.25)

y(a) ≥ 0, for all a ∈ Ã, (2.26)

x(e) ≤ 1, for all e ∈ E. (2.27)

They give the following theorem.

Theorem 2.5 [24] The kHNDP for L = 2, 3 is equivalent to the following integer program

min{cx; subject to (2.24) − (2.27), x ∈ Z
E
+, y ∈ Z

Ã
+}. (2.28)

Formulation (2.28) will be called the aggregated formulation and is denoted by kHNDPAg. In-
equalities (2.24) will be called directed st-cut inequalities or st-dicut inequalities and (2.25) will
be called linking inequalities. The latter indicate that an arc a, corresponding to an edge e, is
not chosen in the solution of kSNDP if e is not chosen in the solution of kHNDP.
This formulation contains |E| + |Ã| ≤ |E|+ k|V |+

∑

s∈SD

|δ(s)| +
∑

t∈TD

|δ(t)| variables if L = 2

and |E| + |Ã| ≤ 3|E| + k|V |+
∑

s∈SD

|δ(s)| +
∑

t∈TD

|δ(t)| variables if L = 3. The number of con-

straints is exponential since the st-dicuts are exponential in number. But, as it will turn out,
the separation problem for inequalities (2.24) can be solved in polynomial time and hence, the
linear programming relaxation of (2.28) so is.

3 The kHNDP polytopes

In the present section, we give some basic results on the polytope associated with the different
formulations we have presented before. These polytopes are named as follows

• kHNDPNat(G,D): polytope associated with the natural formulation,

• kHNDPAg(G,D): polytope associated with the aggregated formulation,

• kHNDPSep
Cu (G,D): polytope associated with the separated cut formulation,

• kHNDPSep
F lo(G,D): polytope associated with the separed flow formulation,

• kHNDPSep
Pa (G,D): polytope associated with the separated path formulation.

3.1 Polytope kHNDPAg(G,D)

We first consider the polytope kHNDPAg(G,D). Let G̃ = (Ṽ , Ã) be the directed graph associated
with G and D in the case of the Aggregated formulation. Let E∗ be the set of edges e ∈ E
such that there exists a demand {s, t} ∈ D such that G \ {e} does not contain k edge-disjoint
L-st-paths. Such an edge is said to be L-st-essential. Also consider an arc a ∈ Ã such that
there exists a demand {s, t} ∈ D such that the graph G̃ \ {a} does not contain k arc-disjoint
st-dipaths. Such an arc a is said to be st-essential. We will denote by Ã∗ the set of st-essential
arcs of G̃. The following theorem characterizes the dimension of kHNDPAg(G,D).

13

Theorem 3.1 dim(kHNDPAg(G,D)) = |E|+ |Ã| − |E∗| − |Ã∗|.

Proof. Obviously, we have that dim(kHNDPAg(G,D)) ≤ |E|+ |Ã| − |E∗| − |Ã∗|. Now we show

that dim(kHNDPAg(G,D)) ≥ |E|+ |Ã|− |E∗|− |Ã∗|. Recall that a solution of kHNDPAg(G,D)

is described by a pair (F̃ , F) where F̃ ⊆ Ã and F ⊆ E is the associated edge set. Also note that
an edge set F induces a solution of the kHNDP if and only if the associated arc set F̃ induces
a subgraph of G̃ containing k arc-disjoint st-dipaths for every {s, t} ∈ D.
Consider the pairs (Ã \ {a}, E), for all a ∈ Ã \ Ã∗. As a /∈ Ã∗, these pairs induce solutions of
kHNDPAg(G,D).

For every edge e ∈ E \E∗, consider the pair (Ã\Ã(e), E \{e}). Recall that, for all e ∈ E, Ã(e) is
the set of arcs of Ã corresponding to e. As e ∈ E \E∗, the subgraph induced by E \{e} contains
k edge-disjoint L-st-paths for every {s, t} ∈ D and the subgraph of G̃ induced by Ã \ Ã(e) also
contains k arc-disjoint st-dipaths for every {s, t} ∈ D. Hence this pair induces a solution of
kHNDPAg(G,D).

One can easily observe that these solutions, together with the solution given by the pair (Ã, E),
form a family of |E \ E∗| + |Ã \ Ã∗| + 1 solutions of the kHNDPAg whose incident vectors are

affinely independant. Therefore, dim(kHNDPAg(G,D)) ≥ |E| + |Ã| − |E∗| − |Ã∗|, which ends
the proof of the theorem. �

Consequently, kHNDPAg(G,D) is full dimensional if and only if E∗ = ∅ = Ã∗. The next result

shows that if G is complete and |V | ≥ k+2, then E∗ = ∅ = Ã∗, implying that kHNDPAg(G,D)
is full dimensional. But before, we give the following lemma.

Lemma 3.1 If G is complete, then for every {s, t} ∈ D, there exist at least |V |−1 edge-disjoint
3-st-paths in G, and |V | − 1 arc-disjoint st-dipaths in G̃.

Proof. Suppose that G is complete. Consider a demand {s, t} ∈ D and the arc set H̃ =
[s,N ′]∪[N ′, N ′′]∪[N ′′, t]∪[t′, t]. Clearly, since G is complete, |[s,N ′]| = |V |−1, |[N ′′, t]| = |V |−2.
Moreover, by the construction of G̃, there are |V | − 2 arcs of the form (u′, u′′) and the arc (t′, t).
The graph H thus contains st-dipaths (s, u′, u′′, t), for all u ∈ V \ {s, t}, and (s, t′, t). These
paths clearly forms |V | − 1 arc-disjoint st-dipath of H. Finally, these paths correspond in G
to paths (s, u, t), for all u ∈ V \ {s, t}, and path (s, t), which clearly form |V | − 1 edge-disjoint
3-st-paths of G. �

A consequence of Lemma 3.1 is that for a complete graph G with |V | ≥ k + 2, the graph G̃
contains at least k+1 arc-disjoint st-dipaths for every {s, t} ∈ D. This implies that E∗ = ∅ = Ã∗.
We thus have the following.

Corollary 3.1 If G is complete and |V | ≥ k + 2, then kHNDPAg(G,D) is full dimensional.

From here, and until the end of this section, we will assume that G is complete and |V | ≥ k+2,
and hence kHNDPAg(G,D) is full dimensional.

In what follows, we give necessary and sufficient conditions for the trivial inequalities to define
facets of kHNDPAg(G,D). Remark that the inequalities y(a) ≤ 1, for all a ∈ Ã, and x(e) ≥ 0,
for all e ∈ E, are redundant with respect to the inequalities

y(a) ≥ 0 for all a ∈ Ã,

x(e) ≤ 1 for all e ∈ E,

y(a) ≤ x(e) for all arc a ∈ Ã(e),

14

and hence, do not define facets.

Theorem 3.2 We have the following results.

i) Every inequality x(e) ≤ 1 defines a facet of kHNDPAg(G,D);

ii) An inequality y(a) ≥ 0 defines a facet of kHNDPAg(G,D) if and only if either |V | ≥ k + 3

or |V | = k + 2 and a does not belong to an st-dicut of G̃ of cardinality k + 1.

Proof. i) Let a ∈ Ã. Since G is complete and |V | ≥ k+2, by Lemma 3.1, the subgraph induced
by Ã \ {a} contains k arc-disjoint st-dipaths for every {s, t} ∈ D. Thus, the pair (Ã \ {a}, E)
induces a solution of kHNDPAg(G,D). Moreover, its incidence vector satisfies x(e) = 1.
Now let f ∈ E \ {e}. As before, the subgraph induced by E \ {f} contains k edge-disjoint
L-st-paths, for every {s, t} ∈ D. Thus, the pair (Ã \ Ã(f), E \ {f}) induces a solution of
kHNDPAg(G,D), whose incidence vector satisfies x(e) = 1.
It is not hard to see that these two families of solutions, together with the solution induced by
the pair (Ã, E), form |E|+ |Ã| solutions whose incidence vectors satisfy x(e) = 1 and are affinely
independant. This yields x(e) ≤ 1 defines a facet of kHNDPAg(G,D).

ii) Consider an arc a ∈ Ã and suppose that |V | ≥ k + 3. By Lemma 3.1, G̃ contains at least
k + 2 arc-disjoint st-dipaths for every {s, t} ∈ D, and G contains at least k + 2 edge-disjoint
L-st-paths. Thus for an edge e ∈ E, the pair (Ã \ ({a} ∪ Ã(e)), E \ {e}) induces a solution
of kHNDPAg(G,D). Also, for an arc a′ ∈ Ã \ {a}, the pair (Ã \ {a, a′}, E) induces a solution

of kHNDPAg(G,D). These solutions together with the solution (Ã \ {a}, E) form a family of

|Ã|+ |E| solutions whose incidence vectors satisfy y(a) = 0 and are affinely independant. Thus,
y(a) ≥ 0 defines a facet.

Now suppose that |V | = k+2. If a belongs to an st-dicut δ+(W̃) of k+1 arcs, then y(a) ≥ 0 is
redundant with respect to the inequalities

y(δ+(W̃)) ≥ k,

− y(a′) ≥ −1, for all a′ ∈ δ+(W̃) \ {a},

and hence cannot define a facet. If a does not belong to an st-dicut of k+1 arcs, then, the pairs
(Ã \ ({a}∪ Ã(e)), E \{e}), for all e ∈ E, and (Ã \{a, a′}, E), for all a′ ∈ Ã \{a} induce solutions
of kHNDPAg(G,D). These solutions together with the solution (Ã \ {a}, E) form a family of

|Ã|+ |E| solutions whose incidence vectors satisfy y(a) = 0 and are affinely independant. Thus
y(a) ≥ 0 defines a facet of kHNDPAg(G,D). � �

The next theorem gives necessary conditions for the directed st-cut inequalities to define facets
of kHNDPAg(G,D).

Theorem 3.3 Let W̃ ⊆ Ṽ be a node set such that there is a demand {s, t} ∈ D with s ∈ W̃

and t ∈ Ṽ \ W̃ . Then the st-dicut inequality y(δ+(W̃)) ≥ k defines a facet of kHNDPAg(G,D)
only if the following conditions hold

i) W̃ ∩ SD = {s} and (Ṽ \ W̃) ∩ TD = {t} (Recall that SD (resp. TD) is the set of terminals
of G that are source (resp. destination) in at least one demand);

ii) s′ ∈ Ṽ \ W̃ , s′′ ∈ W̃ and t′′ ∈ W̃ .

15

Proof. We will only show i). The proof for ii) follows the same lines. Suppose on the contrary

that there exists another node s1 6= s in W̃ ∩ SD. This implies that [s, s1] = ∅, and thus,

δ+(W̃ \ {s1}) = δ+(W̃) \ δ+(s1). Note that the edges of G associated with those of δ+(s1) are

those of δ(s1). As G is complete, δ+(s1) 6= ∅. Therefore, the st-dicut inequality induced by W̃
is redundant with respect to the inequalities

y(δ+(W̃ \ {s1})) ≥ k,

y(a) ≥ 0 for all a ∈ δ+(s1),

and hence, cannot define a facet. �

3.2 Polytope kHNDP
Sep
Cu (G,D)

Now we consider the Cut formulation. The results of this section will be given without proof.
In fact their proofs are similar to those of the previous section.
As before, we denote by E∗ the set of L-st-essential edges of G and Ã∗

st the set of st-essential arcs
of G̃st, for every {s, t} ∈ D. The following theorem gives the dimension of kHNDPSep

Cu (G,D).

Theorem 3.4 dim(kHNDPSep
Cu (G,D)) = |E|+

∑

{s,t}∈D

|Ãst| − |E∗| −
∑

{s,t}∈D

|Ã∗
st|.

Proof. Similar to the proof of Theorem 3.1. �

Lemma 3.2 If G is complete, then for every demand {s, t} ∈ D, there exist at least |V | − 1
arc-disjoint st-dipaths in G̃st.

Proof. Similar to the proof of Lemma 3.1. �

As a consequence, we have the following corollary.

Corollary 3.2 If G is complete and |V | ≥ k + 2, then kHNDPSep
Cu (G,D) is full dimensional.

Note that the inequalities yst(a) ≤ 1 and x(e) ≥ 0 are redundant with respect to yst(a) ≥ 0,
x(e) ≤ 1 and yst(a) ≤ x(e). The next theorem gives necessary and sufficient conditions for
inequalities (2.21) and (2.22) to define facets of kHNDPSep

Cu (G,D).

Theorem 3.5 If G is complete and |V | ≥ k + 2, then the following hold.

i) Every inequality x(e) ≤ 1 defines a facet of kHNDPSep
Cu (G,D).

ii) An inequality y(a) ≥ 0 defines a facet of kHNDPSep
Cu (G,D) if and only if either |V | ≥ k + 3

or |V | = k + 2 and a does not belong to an st-cut of cardinality k + 1.

Proof. Similar to the proof of Theorem 3.2. �

Now we address the dimension of the polytope associated with the natural formulation. The
following theorem gives the dimension of kHNDPNat(G,D). Its proof is omitted as it uses similar
arguments as Theorems 3.1. Also, the condition for kHNDPAg(G,D) to be full dimensional is
the same for kHNDPNat(G,D).

16

Theorem 3.6 dim(kHNDPNat(G,D)) = |E| − |E∗|. Moreover, if G is complete and |V | ≥
k + 2, then kHNDPNat(G,D) is full dimensional.

Proof. Similar to the proof of Theorem 3.1. �

In the following sections, we present several classes of valid inequalities for the kHNDP poly-
topes. From Section 4 to Section 6, the presented inequalities are valid for the polytope associ-
ated with the natural formulation of the problem, kHNDPNat(G,D). The inequalities presented
in Section 7, on the other hand, are valid for the aggregated and separated cut formulations
kHNDPAg(G,D) and kHNDPSep

F lo(G,D).

Recall that all the classes of inequalities we will introduce for the kHNDPNat(G,D) (i.e. for the
natural formulation) are also valid for the polytopes associated with the extended formulations
presented in the paper.

We start with the so-called Hop-Constrained partition inequalities for k ≥ 2 and L = 2, 3. To
the best of our knowledge, these inequalities have never been presented before in the literature.

4 Hop-Constrained Partition Inequalities for kHNDPNat(G,D)

Our new inequalities are defined for any k ≥ 2 and for L ∈ {2, 3}. Also we distinguish the case
where the demands are rooted or disjoint. We recall that SD and TD denote the set of origins
and the set of destinations of the demands, respectively. Also, remember that when the demands
are rooted, the set SD is reduced to one node s, that is SD = {s}, while for disjoint demands,
each source node is associated with only one destination node and vice-versa.

The main results of the present section are given in Theorems 4.1 and 4.2. Their proofs are
established later in subsections 4.3-4.6.

4.1 Hop-Constrained Partition inequalities for rooted demands

We first consider the case of rooted demands, that is SD = {s}. Let π = {V0, V1, ..., Vp}, p ≥ 2,
be a partition of V such that s ∈ V0 and Vi ∩ TD 6= ∅, i = 1, ..., p. The inequalities

x(δ(V0, V1, ..., Vp)) ≥





⌈
(k + 1)p

2

⌉
, if L = 2, (4.1)

⌈
(k + 2

k+1)p

2

⌉
, if L = 3, (4.2)

are called Hop-Constrained Partition inequality. The following theorem states that these in-
equalities are valid for the kHNDP when the demands are rooted.

Theorem 4.1 Consider the kHNDP with rooted demands and let π = {V0, V1, ..., Vp}, p ≥ 2, be
a partition of V such that s ∈ V0 and Vi ∩ TD 6= ∅, i = 1, ..., p. The Hop-Constrained partition
inequality (4.1) (resp. (4.2)), induced by π, is valid for the kHNDP for any k ≥ 2 and when
L = 2 (resp. L = 3).

Figures 5 and 6 present examples of partition supporting Hop-Constrained partition inequalities
in cases L = 2 and L = 3, respectively.

17

s

t1 t2 t5 t6t3 t4

Figure 5: Support graph of a Hop-Constrained partition inequality for rooted demands, L = 2
and k = 3, p = 6, V0 = {s} and Vi = {ti}, i = 1, ..., p.

s

t3t2t1 t4 t5 t6

t7

t8 t9 t10 t15t14t13t12t11

Figure 6: Support graph of a Hop-Constrained partition inequality for rooted demands, L = 3
and k = 4, p = 15, V0 = {s} and Vi = {ti}, i = 1, ..., p.

Figures 5 and 6 present partitions with p = 6 and p = 15, respectively, and where |Vi| = 1, for
every i ∈ {0, ..., p}. We can see that the solution depicted in Figure 5 is feasible for the kHNDP

for L = 2 and k = 3. Also, the number of edges in δ(π) is 12 =
⌈
(3+1)·6

2

⌉
. For Figure 6, the

solution is feasible for the kHNDP with L = 3 and k = 4, and the number of edges in δ(π) is

33 =
⌈
(4+2/5)·15

2

⌉
.

The proof of Theorem 4.1 will be established in Sections 4.3 and 4.4. Next we address the case
where the demands are disjoint.

4.2 Partition inequalities for disjoint demands

Consider the kHNDP with disjoint demands and let π = {V0, V1, ..., Vp}, p ≥ 2, be a partition
of V such that V0 ⊇ SD and Vi ∩ TD 6= ∅, i = 1, ..., p. The inequalities

x(δ(V0, V1, ..., Vp)) ≥





⌈
(k +

⌈
k
2

⌉
)p

2

⌉
, if L = 2, (4.3)

⌈
(k + k

k+1)p

2

⌉
, if L = 3, (4.4)

are called Hop-Constrained partition inequalities.

18

Theorem 4.2 Consider the kHNDP with disjoint demands and let π = {V0, V1, ..., Vp}, p ≥ 2,
be a partition such that V0 ⊇ SD and Vi ∩ TD 6= ∅, i = 1, ..., p. The Hop-Constrained partition
inequality (4.3) (resp. (4.4)), induced by π, is valid for the kHNDP for any k ≥ 2 and when
L = 2 (resp. L = 3).

Figures 7 and 8 illustrate the support graphs of Hop-Constrained partition inequalities in cases
L = 2 and L = 3, respectively, and disjoint demands.

s1

t3

s4s3s2

t1 t2 t4

V0

Figure 7: Support graph of a Hop-Constrained partition inequality for disjoint demands, L = 2
and k = 3. Here p = 4, Vi = {ti}, i = 1, ..., 4, and V0 = {s1, ..., s4}.

t1 t2

t3 t4

t5 t6

t7

t8

t9
t10

s10s9s8s7s6s5s4s3s1 s2
V0

Figure 8: Support graph of a Hop-Constrained partition inequality for disjoint demands, L = 3
and k = 4, p = 10, Vi = {ti}, i = 1, ..., p, and V0 = {s1, ..., sp}.

In Figure 7, the demand set is composed of pairs (si, ti), i = 1, ..., 4, and the considered partition
is π = {V0, V1, ..., Vp}, with p = 4, and V1 = {ti}, i = 1, ..., 4, and V0 = {s1, s2, s3, s4}. It is easy
to see that the solution presented here is feasible for the kHNDP with L = 2 and k = 3. Also,

19

the number of edges involved in δ(π) is 10 =
⌈
5·4
2

⌉
.

With Figure 8, the demand set is composed of pairs (si, ti), i = 1, ..., 10. The partition is obtained
for p = 10 and Vi = {ti}, i = 1, ..., 10 and V0 = {s1, ..., s10}. Here also, the solution is feasible

for the kHNDP with k = 4 and L = 3 and the number of edges in δ(π) is 24 =
⌈
(4+4/5)·10

2

⌉
.

Remark that the solutions presented in Figures 5, 6, 7 and 8 satisfy with equality the Hop-
Constrained partition inequality associated with each situation. This remark suggests that, un-
der suitable conditions, the Hop-Constrained partition inequalities (4.1)-(4.4) may define facets
of the kHNDP polytope.

In the next sections, we establish the proofs of Theorems 4.1 and 4.2. Notice that for each
proof and for sake of simplicity, we assume that the demand set is composed of pairs (si, ti),
i = 1, ..., p, Vi = {ti}, and si ∈ V0, for every i ∈ {1, ..., p}. Also, notice that for rooted demands,
si = s, for every i ∈ {1, ..., p}. Indeed, such an assumption does not change the number of edges
in δ(V0, V1, ..., Vp) nor the right-hand-side of each inequality.

4.3 Proof of Theorem 4.1 for rooted demands and L = 2

Consider a feasible solution for the kHNDP and let H be the subgraph of G induced by this
solution. Also, let Z1 (resp. Z2) be the set of nodes ti which are at distance 1 (resp. 2) from s
in H (see Figure 9 for illustration).

s

t1 t2 t5 t6t3 t4

t7 t8 t9
Z2

Z1

Figure 9: Support graph of a Hop-Constrained partition inequality for rooted demands, L = 2
and k = 3. Dashed edges are never used in a 2-sti-path.

Note that p = |Z1| + |Z2|. Now remark that, for every node ti ∈ Z2, a 2-sti-path of H cannot
use an edge passing through another node of Z2. Similarly, for every node ti ∈ Z1, a 2-sti-path
cannot use an edge passing through another node of Z2. Thus,

20

|δH(π)| ≥ k|Z2|+

⌈
k|Z1|+ |Z1|

2

⌉
,

=

⌈
k(|Z1|+ |Z2|) + |Z1|+ k|Z2|

2

⌉
,

=

⌈
kp+ |Z1|+ k|Z2|

2

⌉
,

=

⌈
(k + 1)p + (k − 1)|Z2|

2

⌉
,

≥

⌈
(k + 1)p

2

⌉
,

which proves the theorem.

4.4 Proof of Theorem 4.1 for rooted demands and L = 3

Consider a feasible solution of the kHNDP with k ≥ 2 and L = 3 and let H be the subgraph of
G induced by this solution. As before, we consider the graph Gπ induced by π and let Z1 (resp.
Z2) (resp. Z3) be the set of nodes at distance 1 (resp. 2) (resp. 3) from s. Also let Zr

1 be the
set of nodes ti ∈ Z1 such that |[s, ti]|+ |[ti, Z1 \ {ti}]| = r ≤ k− 1, and Zk

1 the set of nodes of Z1

such that |[s, ti]| + |[ti, Z1 \ {ti}]| ≥ k. In a similar way, let Zr
2 be the set of nodes ti ∈ Z2 such

that |[ti, Z1]| = r ≤ k − 1 and Zk
2 be the set of nodes ti ∈ Z2 such that |[ti, Z1]| ≥ k.

Figure 10 gives an illustration for L = 3 and k = 3.

Z3
2

Z3
1

Z1
1 Z2

1

Z3

Z3

Z2

Z1

Z1
2

Z2
2

t8t6t5

t4t3

t1

s

t9 t10 t11

t2 t7

Figure 10: Support graph of a Hop-Constrained partition inequality for rooted demands, L = 3,
k = 3 and p = 11.

Observe that

1. for every node ti ∈ Z1 ∪ Z2 ∪ Z3, a 3-sti-path never uses an edge passing through another
node of Z3.

2. for every node ti ∈ Z1, a 3-sti-path never uses an edge passing through a node of Z1
2 .

21

Observation 2) above implies that for every ti ∈ Z1,

|δH(ti)| = |[ti, Z
1
2]|+

k∑

r=2

|[ti, Z
r
2]|+ |[ti, Z1 \ {ti}]|+ |[s, ti]| ≥ k + |[ti, Z

1
2]|.

Also, recall that by the definition of Z1
2 , we have that |[Z1

2 , Z1]| = |Z1
2 |.

By adding the inequalities

|δH(ti)| ≥ k, for every ti ∈ Z2 ∪ Z3,

|δH(ti)| ≥ k + |[ti, Z
1
2]|, for every ti ∈ Z1,

|δH(s)| ≥
k∑

r=1

|Zr
1 |,

we obtain

2|δH(π)| ≥ kp+ |[Z1
2 , Z1]|+

k∑

r=1

|Zr
1 | = kp + |Z1

2 |+
k∑

r=1

|Zr
1 |.

By divinding this inequality by 2 and rounding up the right-hand-side, we get

|δH(π)| ≥




kp+ |Z1
2 |+

k∑

r=1

|Zr
1 |

2




. (4.5)

Now, if |Z1
2 |+

k∑

r=1

|Zr
1 | ≥

2p

k + 1
, then inequality (4.5) implies that

|δ(π)| ≥

⌈
kp+ 2p

k+1

2

⌉
,

and the result of the theorem holds.

Thus, assume now that |Z1
2 |+

k∑

r=1

|Zr
1 | <

2p

k + 1
. This implies that

k∑

r=2

|Zr
2 |+ |Z3| >

(k − 1)p

k + 1
.

Also, remember that

|[s, Z1]| ≥
k∑

r=1

|Zr
1 |, (4.6)

22

and that, by the definition of node sets Zr
1 , r = 1, ..., k, we have

|[s, ti]|+ |[ti, Z1 \ {ti}]| = r, for every ti ∈ Zr
1 , if r ≤ k − 1,

|[s, ti]|+ |[ti, Z1 \ {ti}]| ≥ k, for every ti ∈ Zk
1 .

This also implies that

|[s, Z1]|+
∑

u∈Z1

|[u,Z1 \ {u}]| =
k∑

r=1

∑

u∈Zr
1

(|[s, u]|+ |[u,Z1 \ {u}]|) ≥
k∑

r=1

r|Zr
1 |. (4.7)

Moreover, the definition of nodes sets Zr
2 , r = 1, ..., k, implies that

|[Z2, Z1]| ≥
k∑

r=1

r|Zr
2 |, (4.8)

∑

u∈Z2

|[u,Z2 \ {ti}]| ≥
k∑

r=1

(k − r)|Zr
2 |. (4.9)

Therefore, the number of edges in δ(π) is such that

|δH(π)| ≥ |[Z3, Z2]|+ |[Z2, Z1]|+ |[s, Z1]|+ |E(Z2)|+ |E(Z1)|

≥ k|Z3|+ |[Z2, Z1]|+ |[s, Z1]|+




∑

u∈Z2

|[u,Z2 \ {u}]| +
∑

u∈Z1

|[u,Z1 \ {u}]|

2



,

≥




2k|Z3|+ 2|[Z2, Z1]|+ 2|[s, Z1]|+
∑

u∈Z2

|[u,Z2 \ {u}]| +
∑

u∈Z1

|[u,Z1 \ {u}]|

2



.

The above inequality, together with (4.6), (4.7), (4.8) and (4.9), yield

|δH(π)| ≥




2k|Z3|+ 2

k∑

r=1

r|Zr
2 |+

k∑

r=1

(k − r)|Zr
2 |+

k∑

r=1

r|Zr
1 |+

k∑

r=1

|Zr
1 |

2




≥




2k|Z3|+ k

k∑

r=1

|Zr
2 |+

k∑

r=1

r|Zr
2 |+

k∑

r=1

r|Zr
1 |+

k∑

r=1

|Zr
1 |

2




. (4.10)

Now remark that

k∑

r=1

r|Zr
1 |+

k∑

r=1

|Zr
1 | ≥ 2

k∑

r=1

|Zr
1 |

k∑

r=2

r|Zr
2 | ≥ 2

k∑

r=2

|Zr
2 |.

23

These remarks together with inequality (4.10) imply that

|δH(π)| ≥




2k|Z3|+ k|Z1
2 |+ 2

k∑

r=1

|Zr
1 |+ (k + 2)

k∑

r=2

|Zr
2 |

2




≥




(k − 2)|Z1
2 |+ 2k|Z3|+ 2

(
|Z1

2 |+
k∑

r=1

|Zr
1 |

)
+ (k + 2)

k∑

r=2

|Zr
2 |

2




.

Since p = |Z3|+ |Z1
2 |+

k∑

r=2

|Zr
2 |+

k∑

r=1

|Zr
1 |, we can replace |Z1

2 |+
k∑

r=1

|Zr
1 | in the above expression

by p− |Z3| −
k∑

r=2

|Zr
2 |. We thus obtain

|δH(π)| ≥




(k − 2)|Z1
2 |+ 2k|Z3|+ 2

(
p− |Z3| −

k∑

r=2

|Zr
2 |

)
+ (k + 2)

k∑

r=2

|Zr
2 |

2




≥




2p+ k
k∑

r=2

|Zr
2 |+ 2(k − 1)|Z3|

2




. (4.11)

Now, as k ≥ 2, we have that 2(k − 1) ≥ k. Thus, inequality (4.11) implies that

|δH(π)| ≥




2p+ k

k∑

r=2

|Zr
2 |+ k|Z3|

2




. (4.12)

Finally, since by assumption

k∑

r=2

|Zr
2 |+ |Z3| >

(k − 1)p

k + 1
, inequality (4.12) implies that

|δH(π)| ≥

⌈
2p+ k (k−1)p

k+1

2

⌉
=

⌈
(k + 2

k+1)p

2

⌉
,

which ends the proof of the theorem.

24

4.5 Proof of Theorem 4.2 for disjoint demands and L = 2

We start the proof by the following observation. Since L = 2, if an edge titj is used simultane-
ously by a 2-siti-path and a 2-sjtj-path, then necessarily, these paths are of the form (si, tj , ti)
and (sj, ti, tj). In other words, if edge titj is used simultaneously in 2-paths for both ti and tj,
then the edges sitj and sjti are taken in the solution. Also, remark that edges of [si, ti] are never
used in a 2-path for another demand (sj, tj), for every i, j ∈ {1, ..., p}, with j 6= i.

For every i ∈ {1, ..., p}, we let Ci = [si, ti], Ei = [ti, Z \ {ti}], Bi = [ti, V0 \ {si}] and Ai =
[si, Z1 \ {ti}]. Also, we let ei = |Ei|, ci = |Ci|, bi = |Bi| and ai = |Ai|, for every i ∈ {1, ..., p}.
Figure 11 below gives an illustration of the above observations and notations.

t1 t2 t3

s3s2s1 si

ti

bi

ei

ci

ai

Figure 11: Illustrations of notations Ai, Bi, Ci, Ei, for L = 2 and p = 3. Thiner edges are edges
titj which are not used simultaneouly in 2-paths for ti and tj.

Now, for every i ∈ {1, ..., p}, we let Ei be the set of edges titj of Ei which are used simultane-
ously in a 2-path for both ti and tj. For sake of readability, we assume that Ei = Ei, that is
for every destination node ti, every edge titj in the solution is used in 2-paths for both ti and
tj. As a consequence, ei = ai = bi, for every i ∈ {1, ..., p}. Notice that the above assumption
is not too restrictive. Indeed, the proof will follow the same lines for the general case, that
is when |Ei| > |Ei|, for some i ∈ {1, ..., p}. The only difference will be the addition of extra-
terms corresponding to the fact that |Ei| > |Ei| which does not change the main arguments of
our proof. Thus, in the remaining, we assume that Ei = Ei and ei = ai = bi, for all i ∈ {1, ..., p}.

Remember that, from the cut inequality induced by each node set {ti}, we have

|δ(ti)| = ei + bi + ci ≥ k, for every i ∈ {1, ..., p}. (4.13)

From this, it is easy to see that

|δH(π)| ≥

⌈
kp+ |δH(V0)|

2

⌉
≥




kp+

p∑

i=1

(bi + ci)

2




. (4.14)

Clearly, to prove the theorem, it suffices to show that

p∑

i=1

(bi + ci) ≥

⌈
k

2

⌉
p.

25

For this purpose, let

P1 = {i ∈ {1, ..., p} such that ei <

⌈
k

2

⌉
}

and

P2 = {i ∈ {1, ..., p} such that ei ≥

⌈
k

2

⌉
}.

The definition of P1 implies that ei =
⌈
k
2

⌉
− αi, for some αi ≥ 1.

Also, as by our above assumption, ei = bi, for every i ∈ {1, ..., p}, and especially for i ∈ P1,
inequality (4.13) for i ∈ P1 implies that

ci ≥ k − 2ei = k − 2(

⌈
k

2

⌉
− αi) =

⌊
k

2

⌋
−

⌈
k

2

⌉
+ 2αi, for every i ∈ P1. (4.15)

Thus,

p∑

i=1

(bi + ci) =
k∑

i=1

(ei + ci) =
∑

i∈P1

(ei + ci) +
∑

i∈P2

(ei + ci),

≥
∑

i∈P1

(ei + ci) +
∑

i∈P2

ei. (4.16)

As mentioned before, ei ≥
⌈
k
2

⌉
, for every i ∈ P2, and ei =

⌈
k
2

⌉
− αi, for every i ∈ P1. Hence,

inequality (4.16) implies that

p∑

i=1

(bi + ci) ≥

⌈
k

2

⌉
|P1|+

∑

i∈P1

(ci − αi) +

⌈
k

2

⌉
|P2|.

This latter inequality, together with (4.15) and the fact that p = |P1|+ |P2|, imply that

p∑

i=1

(bi + ci) ≥

⌈
k

2

⌉
p+

∑

i∈P1

(

⌊
k

2

⌋
−

⌈
k

2

⌉
+ αi). (4.17)

Finally, since for every k ≥ 2,
⌊
k
2

⌋
−
⌈
k
2

⌉
∈ {−1, 0}, and since αi ≥ 1, for every i ∈ P1,

⌊
k

2

⌋
−

⌈
k

2

⌉
+ αi ≥ 0, for every i ∈ P1.

Therefore, inequality (4.17) implies that

p∑

i=1

(bi + ci) ≥

⌈
k

2

⌉
p,

which completes the proof of the theorem.

26

4.6 Proof of Theorem 4.2 for disjoint demands and L = 3

Remember that we assume in the proof that, the demand set is composed of pairs (si, ti), i =
1, ..., p, the partition π is such that Vi = {ti}, for every i ∈ {1, ..., p}, and that V0 = {s1, ..., sp}.
Consider a solution H which is feasible for the kHNDP with L = 3 and k ≥ 2, and denote by H
the subgraph of G induced by this solution.

As before, we consider the graph Gπ induced by π and let Z1 (resp. Z2) (resp. Z3) be the
set of nodes at distance 1 (resp. 2) (resp. 3) from s. Also let Zr

1 be the set of nodes ti ∈ Z1

such that |[ti, V0]| + |[ti, Z1 \ {ti}]| = r ≤ k − 1, and Zk
1 the set of nodes of Z1 such that

|[ti, V0]| + |[ti, Z1 \ {ti}]| ≥ k. In a similar way, let Zr
2 be the set of nodes ti ∈ Z2 such that

|[ti, Z1]| = r ≤ k − 1 and Zk
2 be the set of nodes ti ∈ Z2 such that |[ti, Z1]| ≥ k. Finally, we

denote by Sr
1 (resp. Sr

2) (resp. S3) the set of source nodes associated with the nodes of Zr
1 (resp.

Zr
2) (resp. Z3).

Figure 12 gives an illustration of these node sets for k = 3.

Z2
1Z1

1

S2
1

S2
2 S3

2

Z2
2

Z3
1

Z3
2

Z3

S3
1 S3

V0

Z1

Z2

Z3

S1
1

s4
s5

s6

s7

t7

t6

t5t4

t3t2

s2

t1

s1

s8s3

t8

Figure 12: Support graph of a Hop-Constrained partition inequality for disjoint demands, L = 3
and k = 3. Here p = 7, Vi = {ti}, i = 1, .., 7, V0 = {s1, ..., s7}. Z1

1 = {t1}, Z
2
1 = {t4, t5},

Z3
1 = {t7}, Z2

2 = {t2, t3}, Z3
2 = {t6}, Z3 = {t8}, S1

1 = {s1}, S2
2 = {s2, s3}, S2

1 = {s4, s5},
S3
2 = {s6}, S

3
1 = {s7}, S3 = {s8}.

First remark that if
k∑

r=1

|Zr
1 | ≥

kp

k + 1
, then, clearly,

|δH(π)| ≥

⌈
kp+ |[Z1, V0]|

2

⌉
,

≥

⌈
kp+ kp

k+1

2

⌉
(4.18)

and the result of the theorem holds. Hence, for the remain of the proof, we assume that
k∑

r=1

|Zr
1 | <

kp

k + 1
. As a consequence, |Z3|+

k∑

r=1

|Zr
2 | >

p

k + 1
.

Now observe that

27

1. for every ti ∈ Zr
1 , r = 1, ..., k, at least k − r 3-siti-paths use edges from [ti, Z2]. Each of

these paths also use edges from [si, Z1]. Thus, |[Z
′r
1 , Z1]| ≥ (k − r)|Zr

1 |.

2. for every ti ∈ Zr
2 , r = 1, ..., k, at least k − r 3-siti-paths use edges from [ti, Z2 \ {ti}], and

each of these paths also use edges from [si, Z1]. Thus, |[Z
′r
2 , Z1]| ≥ (k − r)|Zr

2 |.

3. for every ti ∈ Z3, any 3-siti-path does not use edges passing through another node of Z3

and uses an edge of [si, Z1]. Thus, |[Z3, Z2]| ≥ k|Z3| and |[Z
′

3, Z1]| ≥ k|Z3|.

These observations imply that

|[Z1, V0]| ≥
k∑

r=1

(k − r)(|Zr
1 |+ |Zr

2 |). (4.19)

Also, by the definition of node sets Zr
2 , we have

|[Z2, Z1]| ≥
k∑

r=1

r|Zr
2 |, (4.20)

|[Z1, V0]|+
∑

u∈Z1

|[u,Z1 \ {u}]| ≥
k∑

r=1

r|Zr
1 |, (4.21)

∑

u∈Z2

|[u,Z2 \ {u}]| ≥
k∑

r=1

(k − r)|Zr
2 |. (4.22)

Thus, the number of edges involved in δH(π) is

|δH(π)| ≥ |[Z3, Z2]|+ |[Z2, Z1]|+ |[Z1, V0]|+ |E(Z2)|+ |E(Z1)|,

≥ k|Z3|+ |[Z2, Z1]|+ |[Z1, V0]|+




∑

u∈Z2

|[u,Z2 \ {u}]|+
∑

u∈Z1

|[u,Z1 \ {u}]|

2




≥




2k|Z3|+ 2|[Z2, Z1]|+ 2|[Z1, V0]|+
∑

u∈Z2

|[u,Z2 \ {u}]| +
∑

u∈Z1

|[u,Z1 \ {u}]|

2



.

From the above inequality, together with (4.20), (4.21) and (4.22), we obtain

|δH(π)| ≥




2k|Z3|+ 2

k∑

r=1

r|Zr
2 |+ |[Z1, V0]|+

k∑

r=1

(k − r)|Zr
2 |+

k∑

r=1

r|Zr
1 |

2




≥




2k|Z3|+ k
k∑

r=1

|Zr
2 |+

k∑

r=1

r|Zr
2 |+

k∑

r=1

r|Zr
1 |+ |[Z1, V0]|

2




. (4.23)

28

By combining inequalities (4.23) and (4.19), we get

|δH(π)| ≥




2k|Z3|+ k

k∑

r=1

|Zr
2 |+

k∑

r=1

r|Zr
2 |+

k∑

r=1

r|Zr
1 |+

k∑

r=1

(k − r)(|Zr
1 |+ |Zr

2 |)

2




≥




2k|Z3|+ k
k∑

r=1

|Zr
2 |+ k

k∑

r=1

(|Zr
1 |+ |Zr

2 |)

2




≥




k

k∑

r=1

|Zr
2 |+ k

(
k∑

r=1

(|Zr
1 |+ |Zr

2 |) + |Z3|

)
+ k|Z3|

2




≥




kp+ k

(
k∑

r=1

|Zr
2 |+ |Z3|

)

2




. (4.24)

Finally, since, by assumption |Z3|+
k∑

r=1

|Zr
2 | >

p

k + 1
, inequality (4.24) implies that

|δ(π)| ≥

⌈
kp+ kp

k+1

2

⌉
,

which ends the proof of the theorem.

5 Steiner-SP-partition inequalities for kHNDPNat(G,D)

In [11], Chopra study the kECSP and introduces a class of inequalities called SP-partition
inequalities (see also [26]). These inequalities are defined as follows. Let π = (V1, ..., Vp), p ≥ 2,
be a partition of G such that the graph Gπ, induced by π, is series-parallel. Then, the inequality

x(δ(V1, ..., Vp)) ≥

⌈
k

2

⌉
p− 1 (5.1)

is called a SP-partition inequality. Chopra [11] showed that SP-partition inequalities (5.1) are
valid for the kECSP polytope. In what follows, we introduce a similar class of inequalities and
show that they are valid for the kHNDP polytopes.

Let π = (V1, ..., Vp), p ≥ 3, be a partition of V such that the graph Gπ = (Vπ, Eπ) is series-
parallel. Suppose that Vπ = {v1, ..., vp} where vi is the node of Gπ corresponding to the set Vi,

29

i = 1, ..., p. The partition π is said to be a Steiner-SP-partition if and only if π is a Steiner-
partition and either

1. p = 3 or

2. p ≥ 4 and there exists a node vi0 ∈ Vπ incident to exactly two nodes vi0−1 and vi0+1 such
that the partitions π1 and π2 obtained from π by contracting respectively the sets Vi0 ,
Vi0−1, Vi0 and Vi0+1 are themselves Steiner-SP-partitions.

The procedure to check if a partition is a Steiner-SP-partition is recursive. It stops when the
partition obtained after the different contractions is either a Steiner-partition and of size three
or it is not a Steiner-partition.

In the following theorem, we give necessary and sufficient condition for a Steiner-partition to be
a Steiner-SP-partition. Remind that the demand graph is denoted by GD = (RD, ED), where
RD is the set of terminal nodes of G. The edge set ED is obtained by adding an edge between
two nodes of RD if and only if {u, v} ∈ D.

Theorem 5.1 Let π = (V1, ..., Vp), p ≥ 3, be a partition of V such that Gπ is series-parallel.
The partition π is a Steiner-SP-partition of G if and only if the subgraph of GD induced by π is
connected.

Proof. First observe that, as π is a SP -partition of G, one can obtain from π a two-size
partition by applying repeatidly the following operation. Let πj = (V j

1 , ..., V
j
pj) be a SP -partition

of G. Suppose that V j
i0
, for some i0, is incident to exactly two elements V j

i0−1 and V j
i0+1.

Then, the operation consists in contracting the sets V j
i0−1 and V j

i0
and consider the partition

πj+1 = (V j+1
1 , ..., V j+1

pj+1) where

V j+1
i = V j

i for i = 1, ..., i0 − 2,

V j+1
i0−1 = V j

i0−1 ∪ V j
i0
,

V j+1
i = V j

i+1 for i = i0, ..., pj − 1.

Note that the new partition πj+1 induces a SP -partition of G and that we have p− 2 iterations
to obtain a two-size partition from π.
Now, we have that π is not a Steiner-SP-partition if and only if there exists an integer q ≤ p− 2
such that the partition πq = (V q

1 , ..., V
q
pq), obtained by application of the above operation, is not

a Steiner-partition, that is the node set V q
i0

of πq obtained by the contraction procedure to the
partition πq−1 is such that δGD

(V q
i0
) = ∅. Thus, if Vi1 , ..., Vir , r ≥ 2, are the node sets of π that

have been reduced to V q
i0

during the different steps of the contraction procedure, then we have

that δGD
(

r⋃

i=1

Vir) = ∅. Therefore, the subgraph of GD induced by π is not connected, which ends

the proof. �

As a consequence of Theorem 5.1, if the demand graph is connected (this is the case when,
for instance, all the demands are rooted in the same node), then every Steiner-partition of V ,
inducing a series-parallel subgraph of G, is a Steiner-SP-partition of V .
With a Steiner-SP-partition (V1, ..., Vp), p ≥ 3, we associate the following inequality

x(δ(V1, ..., Vp)) ≥

⌈
k

2

⌉
p− 1. (5.2)

Inequalities of type (5.2) will be called Steiner-SP-partition inequalities. We have the following.

30

Theorem 5.2 Inequality (5.2) is valid for kHNDPAg(G,D), kHNDPSep
Cu (G,D), kHNDPSep

F lo(G,D)

and kHNDPSep
Pa (G,D).

Proof. Let π = (V1, ..., Vp), p ≥ 3 be a Steiner-SP-partition. The proof is by induction on p. If
p = 3, then, as π is a Steiner-partition, the inequality

x(δ(V1, V2, V3)) ≥

⌈
3k

2

⌉
= 3

⌈
k

2

⌉
− 1

is valid.
Now suppose that every inequality (5.2), induced by a Steiner-SP-partition of p elements, p ≥ 3,
is valid for the kHNDP polytopes, and consider a Steiner-SP-partition π = (V1, ..., Vp, Vp+1). As
Gπ is series-parallel, there exists a node set Vi0 of π which is incident to exactly two elements
of π, say Vi0−1 and Vi0+1. We let F1 = [Vi0 , Vi0−1] and F2 = [Vi0 , Vi0+1]. Since π is a Steiner-
SP-partition and hence is a Steiner-partition, Vi0 induces a valid st-cut inequality, for some
{s, t} ∈ D. Hence we have that

x(F1) + x(F2) ≥ k.

W.l.o.g., we will suppose that

x(F1) ≥

⌈
k

2

⌉
. (5.3)

Consider the partition π′ = (V1, ..., Vi0−2, Vi0−1 ∪ Vi0 , Vi0+1, ..., Vp+1). As π is a Steiner-SP-
partition containing more than three elements, π′ is also a Steiner-SP-partition which contains
p elements. Thus, by the induction hypothesis, the Steiner-SP-partition inequality induced by
π′, that is

x(δ(V1, ..., Vi0−2, Vi0−1 ∪ Vi0 , Vi0+1, ..., Vp+1)) ≥

⌈
k

2

⌉
p− 1 (5.4)

is valid. By summing the inequalities (5.3) and (5.4), we get

x(δ(V1, ..., Vp, Vp+1)) ≥

⌈
k

2

⌉
(p+ 1)− 1,

which ends the proof of the theorem. �

Inequality (5.2) expresses the fact that, in a solution of the kHNDP, the multicut induced by a
Steiner-SP-partition contains at least

⌈
k
2

⌉
p−1 edges, since this solution contains k edge-disjoint

paths between every pair of nodes {s, t} ∈ D.

Chopra [11] also described a lifting procedure for inequalities (5.1) for the kECSP. This procedure
can be easily extended, for the kHNDP, to inequalities of type (5.2). It is described as follows.
Let G = (V,E) be a graph and k ≥ 3 an odd integer. Let G′ = (V,E ∪E′) be a graph obtained
from G by adding an edge set E′. Let π = (V1, ..., Vp) be a Steiner-SP-partition of G. Then

the following inequality is valid for kHNDPAg(G,D), kHNDPSep
Cu (G,D), kHNDPSep

F lo(G,D) and

kHNDPSep
Pa (G,D)

x(δG(V1, ..., Vp)) +
∑

e∈E′∩δG′ (V1,...,Vp)

a(e)x(e) ≥

⌈
k

2

⌉
p− 1, (5.5)

31

where a(e) is the length (in terms of edges) of a shortest path in Gπ between the endnodes of e,
for all e ∈ E′ ∩ δG′(V1, ..., Vp). We will call inequalities of type (5.5) lifted Steiner-SP-partition
inequalities.

Steiner-SP-partition inequalities (5.2) are shown to be valid for the kHNDP polytopes for any
L ≥ 2. However, we can show that when L = 2, they are dominated by partition inequalities
(4.1) and (4.3).

Theorem 5.3 When L = 2, the Steiner-SP-partition inequalities (5.2) are dominated by the
partition inequalities (4.1) and (4.3).

Proof. To prove the theorem, it suffices to show, for a given Steiner-SP-partition, that the right-
hand-side of the Steiner-SP-partition inequality is lower than that of the partition inequality
induced by this partition. In this proof, we do this only for L = 2 and rooted demands, the
proof being the same for disjoint demands. Thus, consider the case of rooted demands and a
partition π of V into p ≥ 2 node sets. Recall that the partition inequality (4.1) is of the form

x(δ(π)) ≥

⌈
(k + 1)p

2

⌉
, (5.6)

and Steiner-SP-partition inequality (5.2) is of form

x(δ(π)) ≥

⌈
k

2

⌉
p− 1.. (5.7)

We assume, w.l.o.g., that k is odd. We have that

⌈
(k + 1)p

2

⌉
− (

⌈
k

2

⌉
p− 1) ≥

(k + 1)p

2
−

k + 1

2
p− 1 = 1 > 0,

which shows that inequality (5.6) dominates (5.7). �

6 Futher valid inequalities for kHNDPNat(G,D)

In this section, we present two other classes of inequalities which are valid for the polytope
associated with the natural formulation of the kHNDP. These inequalities are generalizations of
those introduced by Huygens et al. [47] for the 2HNDP.

6.1 Double cut inequalities

In the following we introduce a class of inequalities that are valid for the kHNDP polytopes for
L ≥ 2 and k ≥ 2. They are given by the following theorem.

Theorem 6.1 Let {s, t} be a demand, i0 ∈ {0, ..., L} and
Π = {V0, ..., Vi0−1, V

1
i0
, V 2

i0
, Vi0+1, ..., VL+1} a family of node sets of V such that

π = (V0, ..., Vi0−1, V
1
i0
, V 2

i0
∪ Vi0+1, Vi0+2, ..., VL+1) induces a partition of V . Suppose that

1. V 1
i0
∪V 2

i0
induces an sj1tj1-cut of G with {sj1 , tj1} ∈ D and sj1 ∈ V 1

i0
or tj1 ∈ V 1

i0
(note that

sj1 and tj1 cannot be simultaneously in V 1
i0

and are not in V 2
i0
. Also note that V 2

i0
may be

empty);

32

2. Vi0+1 induces an sj2tj2-cut of G with {sj2 , tj2} ∈ D (note that j1 and j2 may be equal);

3. π induces an L-st-path-cut of G with s ∈ V0 (resp. t ∈ V0) and t ∈ VL+1 (resp. s ∈ VL+1).

Let E = [Vi0−1, V
1
i0
]∪ [Vi0+2, V

2
i0
∪ Vi0+1]∪


 ⋃

k,l/∈{i0,i0+1},|k−l|>1

[Vk, Vl]


 and F ⊆ E such that |F |

and k have different parities.

Let also Ê = (

i0−2⋃

i=0

[Vi, Vi+1]) ∪ (

L⋃

i=i0+2

[Vi, Vi+1]) ∪ F. Then, the inequality

x(δ(π) \ Ê) ≥

⌈
3k − |F |

2

⌉
, (6.1)

is valid for kHNDPAg(G,D), kHNDPSep
Cu (G,D), kHNDPSep

F lo(G,D) and kHNDPSep
Pa (G,D) (recall

that δ(π) is the set of edges of the E having their endnodes in different elements of π).

Proof. Let T be the L-st-path-cut of G induced by the partition π. As T is an L-st-path-cut,
and V 1

i0
∪ V 2

i0
and Vi0+1 induce st-cut with {s, t} ∈ {{sj1 , tj1}, {sj2 , tj2}}, the inequalities below

are valid for the kHNDP polytopes

x(T) ≥ k,

x(δ(V 1
i0 ∪ V 2

i0)) ≥ k,

x(δ(Vi0+1)) ≥ k,

− x(e) ≥ −1 for all e ∈ F,

x(e) ≥ 0 for all e ∈ E \ F.

By summing these inequalities, dividing by 2 and rounding up the right hand side, we obtain
inequality (6.1). �

Inequalities of type (6.1) are called double cut inequalities. They generalize those introduced by
Huygens and Mahjoub [46] for the kHNDP when k = 2. We discuss in the following special
cases for these inequalities. This concerns the case where L ∈ {2, 3} and i0 = 0.
The set of edges having a positive coefficient in inequality (6.1) plus the edges of F is called a
double cut. Figure 13 gives an example for L = 3 and i0 = 0.
Let L = 2, {s, t} ∈ D and Π = {V 1

0 , V
2
0 , V1, V2, V3} be a family of node sets of V such that

π = (V 1
0 , V

2
0 ∪ V1, V2, V3) induces a 2-st-path-cut, and V1 induces a valid s1t1-cut in G, for some

{s1, t1} ∈ D. If F ⊆ [V 2
0 ∪ V1, V2] is chosen such that |F | and k have different parities, then the

double cut inequality induced by Π and F in this case can be written as

x([V 1
0 , V1 ∪ V2 ∪ V3]) + x([V 2

0 , V1 ∪ V3]) + x([V1, V3])

+ x([V 2
0 ∪ V1, V2] \ F) ≥

⌈
3k − |F |

2

⌉
. (6.2)

Now let L = 3, {s, t} ∈ D and Π = {V 1
0 , V

2
0 , V1, V2, V3, V4} be a family of node sets of V such

that π = (V 1
0 , V

2
0 ∪ V1, V2, V3, V4) induces a 3-st-path-cut, and V1 induces a valid s1t1-cut in G.

If F ⊆ [V 2
0 ∪ V1 ∪ V4, V2] is chosen such that |F | and k have different parities, then the double

cut inequality induced by Π and F can be written as

x([V 1
0 , V1 ∪ V2 ∪ V3 ∪ V4]) + x([V 2

0 , V1 ∪ V3 ∪ V4]) + x([V1, V3 ∪ V4])

+ x([V 2
0 ∪ V1 ∪ V4, V2] \ F) ≥

⌈
3k − |F |

2

⌉
. (6.3)

33

V2
V3

t

V1
V4

s

V 1
0 V 2

0

s1

edges of the double cut not in F

edges not in the double cut

possible edges of F

Figure 13: A double cut with L = 3 and i0 = 0

As it will turn out, inequalities (6.2) and (6.3) are very effective in the Branch-and-Cut algorithms
we developed for the problem.

6.2 Triple path-cut inequalities

Here is a further class of valid inequalities. They also generalize inequalities given by Huygens
and Mahjoub [46]. We distinguish the cases where L = 2 and L = 3. We have the following
theorem.

Theorem 6.2 i) Let L = 2 and {V0, V1, V2, V
1
3 , V

2
3 , V

1
4 , V

2
4 } be a family of node sets of V such

that (V0, V1, V2, V
1
3 ∪ V 2

3 , V
1
4 ∪ V 2

4) induces a partition of V and there exist two demands {s1, t1}
and {s2, t2} with s1, s2 ∈ V0, t1 ∈ V 2

3 and t2 ∈ V 2
4 . The sets V 1

3 and V 1
4 may be empty and s1

and s2 may be the same. Let also V3 = V 1
3 ∪ V 2

3 , V4 = V 1
4 ∪ V 2

4 and F ⊆ [V 2
3 , V1 ∪ V 1

4]∪ [V 1
3 , V

2
4]

such that |F | and k have different parities. Then, the inequality

2x([V0, V2]) + x([V0, V3 ∪ V4]) + x([V 2
4 , V1 ∪ V 2

3])+

x(([V 2
3 , V1 ∪ V 1

4] ∪ [V 1
3 , V

2
4]) \ F) ≥

⌈
3k − |F |

2

⌉
(6.4)

is valid for kHNDPAg(G,D), kHNDPSep
Cu (G,D), kHNDPSep

F lo(G,D) and kHNDPSep
Pa (G,D).

ii) Let L = 3 and (V0, ..., V3, V
1
4 , V

2
4 , V

1
5 , V

2
5) be a family of node sets of V such that (V0, ..., V3, V

1
4 ∪

V 2
4 , V

1
5 ∪ V 2

5) induces a partition of V and there exist two demands {s1, t1} and {s2, t2} with
s1, s2 ∈ V0, t1 ∈ V 2

4 and t2 ∈ V 2
5 . The sets V 1

4 and V 1
5 may be empty and s1 and s2 may be the

same. Let also V4 = V 1
4 ∪ V 2

4 , V5 = V 1
5 ∪ V 2

5 and F ⊆ [V2, V
2
4]∪ [V3, V4 ∪ V5] such that |F | and k

have different parities. Then, the inequality

2x([V0, V2]) + 2x([V0, V3]) + 2x([V1, V3]) + x([V0 ∪ V1, V4 ∪ V5]) + x([V4, V5])+

x([V2, V
2
5]) + x(([V2, V

2
4] ∪ [V3, V4 ∪ V5]) \ F) ≥

⌈
3k − |F |

2

⌉
(6.5)

is valid for kHNDPAg(G,D), kHNDPSep
Cu (G,D), kHNDPSep

F lo(G,D) and kHNDPSep
Pa (G,D).

Proof.

i) Let T1 be the 2-s1t1-path-cut induced by the partition (V0, V1 ∪ V4, V2 ∪ V 1
3 , V

2
3) and T2 and

34

T3 the 2-s2t2-path-cuts induced by the partitions (V0, V1 ∪V3, V2 ∪V 1
4 , V

2
4) and (V0, V1, V2 ∪V3 ∪

V 1
4 , V

2
4), respectively. The following inequalities are valid for the kHNDP polytopes

x(T1) ≥ k,

x(T2) ≥ k,

x(T3) ≥ k,

− x(e) ≥ −1, for all e ∈ F,

x(e) ≥ 0, for all e ∈ ([V 2
3 , V1 ∪ V 1

4] ∪ [V 1
3 , V

2
4]) \ F.

By summing these inequalities, dividing by 2 and rounding up the right hand side, we get
inequality (6.4).
ii) Let T1 be the 3-s1t1-path-cut induced by the partition (V0, V1 ∪ V5, V2, V3 ∪ V 1

4 , V
2
4), and

T2 and T3 be the 3-s2t2-path-cuts induced by the partitions (V0, V1 ∪ V4, V2, V3 ∪ V 1
5 , V

2
5) and

(V0, V1, V2, V3 ∪ V4 ∪ V 1
5 , V

2
5), respectively. The following inequalities are valid for the kHNDP

polytopes

x(T1) ≥ k,

x(T2) ≥ k,

x(T3) ≥ k,

− x(e) ≥ −1, for all e ∈ F,

x(e) ≥ 0, for all e ∈ ([V2, V
2
4] ∪ [V3, V4 ∪ V5]) \ F.

By adding these inequalities, dividing by 2 and rounding up the right hand side, we get inequal-
ity (6.5). �

Inequalities of type (6.4) and (6.5) will be called triple path-cut inequalities. The set of edges
having a positive coefficient in inequality (6.4) ((6.5)) plus the edges of F will be called a triple
path-cut (see Figure 14 for an example with L = 2).

V 1
0

s2

s1 t1 t1

V1 V 1
3 V 2

3
V 1
4

V 2
4

V2

edges of the triple path cut not in F

edges not in the double cut

possible edges of F

Figure 14: A triple path-cut with L = 2

35

7 Valid inequalities for kHNDPAg(G,D) and kHNDP
Sep
Cu (G,D)

In this section, we introduce a class of inequalities that are valid for kHNDPAg(G,D) and

kHNDPSep
Cu (G,D). These inequalities are inspired from those introduced by Dahl [16] for the

polytope of the Survivable Directed Network Design Problem (kDNDP). The kDNDP consists,
given a directed graph H̃, a set of demands D and an integer k ≥ 2, in finding a minimum weight
subgraph of H̃ which contains k arc-disjoint st-dipaths for every demand {s, t} ∈ D. We will
first describe these inequalities for kHNDPAg(G,D) and then extend them to kHNDPSep

Cu (G,D).

7.1 Aggregated cut inequalities for kHNDPAg(G,D)

Let {W̃1, ..., W̃p}, p ≥ 2, be a family of node sets of Ṽ such that each set W̃i induces an st-dicut

of G̃, for some {s, t} ∈ D, and F̃ 0
i ⊆ δ+

G̃
(W̃i), for i = 1, ..., p. Let F̃ =

p⋃

i=1

[δ+
G̃
(W̃i) \ F̃

0
i] and, for

an arc a ∈ Ã, let r(a) be the number of sets δ+
G̃
(W̃i) \ F̃

0
i which contain the arc a. Note that if

a ∈ Ã does not belong to any set δ+
G̃
(W̃i) \ F̃ 0

i , then r(a) = 0. For an edge e ∈ E and an arc

subset Ũ ⊆ Ã, we let

r′(e, Ũ) =
∑

a∈Ã(e)∩Ũ

r(a).

The inequalities below are valid for kHNDPAg

y(δ+
G̃
(W̃i)) ≥ k for i = 1, ..., p,

− y(a) ≥ −1 for all a ∈ F̃ 0
i , i = 1, ..., p.

By summing these inequalities, we obtain

∑

a∈F̃

r(a)y(a) ≥ kp−

p∑

i=1

|F̃ 0
i |.

If F̃1 (resp. F̃2) denotes the set of arcs a ∈ F̃ such that r(a) is odd (resp. even), then the
previous inequality can be written as

∑

a∈F̃1

r(a)y(a) +
∑

a∈F̃2

r(a)y(a) ≥ kp−

p∑

i=1

|F̃ 0
i |. (7.1)

Let F̃ 2
1 ⊆ F̃1 such that, for every edge e ∈ E corresponding to an arc of F̃1, r

′(e, F̃ 2
1) is even. Let

E2 be the set of edges corresponding to the arcs of F̃ 2
1 . By summing inequality (7.1) together

with the inequalities

r(a)x(e) ≥ r(a)y(a), for all a ∈ F̃ 2
1 and e corresponding to a,

we get

∑

e∈E2

r′(e, F̃ 2
1)x(e) +

∑

a∈F̃1\F̃ 2
1

r(a)y(a) +
∑

a∈F̃2

r(a)y(a) ≥ kp−

p∑

i=1

|F̃ 0
i |. (7.2)

36

By dividing by 2 and rounding up the right hand side of inequality (7.2), we obtain the following
inequality

∑

e∈E2

r′(e, F̃ 2
1)

2
x(e) +

∑

a∈F̃1\F̃ 2
1

r(a) + 1

2
y(a) +

∑

a∈F̃2

r(a)

2
y(a) ≥




kp−

p∑

i=1

|F̃ 0
i |

2




. (7.3)

Inequalities of type (7.3) will be called aggregated cut inequalities. We give the following result
which directly comes from the above description.

Theorem 7.1 The aggregated cut inequalities (7.3) are valid for kHNDPAg(G,D) when L ∈
{2, 3}.

Inequalities (7.3) come from families of st-dicuts of G̃ which may have different forms of config-

urations for the node sets W̃1, ..., W̃p, p ≥ 2, and the arc sets F̃ 0
i ⊆ δ+

G̃
(W̃i), i = 1, ..., p. In the

following, we discuss a special case of these inequalities.
Let {W̃1, ..., W̃p}, p ≥ 2, be a family of node sets of Ṽ such that each set W̃i, i = 1, ..., p,

induces an st-dicut, for some {s, t} ∈ D, and let F̃ 0
i ⊆ δ+

G̃
(W̃i), i = 1, ..., p, be arc sets such

that 0 ≤ r(a) ≤ 2 for all a ∈ Ã. Let F̃2 (resp. F̃1) be the set of arcs such that r(a) = 2
(resp. r(a) = 1). Let F̃ 2

1 be the set of arcs a ∈ F̃1 for which there is another arc a′ ∈ F̃1

which corresponds to the same edge of E, and let E2 be the set of the corresponding edges. The
inequality of type (7.3) associated with this configuration can be written as

∑

a∈F̃2

y(a) +
∑

e∈E2

x(e) +
∑

a∈F̃1\F̃ 2
1

y(a) ≥




kp−

p∑

i=1

|F̃ 0
i |

2




. (7.4)

As it will turn out, inequalities (7.4) may define facets under certain conditions and will be
useful for solving the kHNDP using a Branch-and-Cut algorithm (Section ??).

7.2 Aggregated cut inequalities for kHNDP
Sep
Cu (G,D)

The aggregated cut inequalities can be defined for the polytope kHNDPSep
Cu (G,D) in a similar

way. Let G̃st = (Ṽst, Ãst), {s, t} ∈ D, be the directed graphs associated with G and {s, t} ∈ D in
Formulation (2.23). Let {{s1, t1}, ..., {sq , tq}} be a subset of demands. Consider a family of node

sets {W̃ s1t1
1 , ..., W̃ s1t1

p1 , ..., W̃
sqtq
1 , ..., W̃

sqtq
pq }, with pi ≥ 1, for all i ∈ {1, ..., q} and p =

q∑

i=1

pi ≥

2, where W̃ siti
j , j = 1, ..., pi, induces an siti-dicut in G̃siti . Let F̃ siti,0

j ⊆ δ+
G̃siti

(W̃ siti
j). Let

F̃ siti =

pi⋃

j=1

[δ+
G̃siti

(W̃ siti
j) \ F̃ siti,0

j], for every i ∈ {1, ..., q}, and for a given arc a ∈ Ãsiti , i = 1, ..., q,

we let rsiti(a) be the number of sets δ+
G̃siti

(W̃ siti
j) \ F̃ siti,0

j containing arc a. If a does not belong

to any of these sets, then rsiti(a) = 0. Given an edge e ∈ E and an arc subset Ũi ⊆ Ãsiti , we let

r′(e, Ũi) =
∑

a∈Ãsiti
(e)∩Ũi

rsiti(a).

37

The inequalities below are valid for kHNDPSep
Cu (G,D),

ysiti(δ
+

G̃siti

(W̃ siti
j)) ≥ k for j = 1, ..., pi, i = 1, ..., q,

− ysiti(a) ≥ −1 for a ∈ F̃ siti
j , j = 1, ..., pi, i = 1, ..., q.

By summing these inequalities, we get

q∑

i=1


 ∑

a∈F̃ siti

rsiti(a)ysiti(a)


 ≥ kp −

q∑

i=1

pi∑

j=1

|F̃ siti,0
j |.

Let F̃ siti,1 (resp. F̃ siti,2) be the set of arcs a ∈ F̃ siti having rsiti(a) odd (resp. even). The
inequality above can then be written as

q∑

i=1


 ∑

a∈F̃ siti,1

rsiti(a)ysiti(a) +
∑

a∈F̃ siti,2

rsiti(a)ysiti(a)


 ≥ kp −

q∑

i=1

pi∑

j=1

|F̃ siti,0
j |. (7.5)

Now we let F̃ siti,1
2 ⊆ F̃ siti,1, i = 1, ..., q, be the arc sets such that, for every edge e ∈ E associated

with an arc of F̃ siti,1
2 ,

q∑

i=1

r′(e, F̃ siti,1
2) is even. If E2 denotes the set of edges corresponding to

the arcs of F̃ siti,1
2 , i = 1, ..., q, then by adding inequality (7.5) and the inequalities

rsiti(a)x(e) ≥ rsiti(a)ysiti(a) for all a ∈ F̃ siti,1
2 where e corresponds to a,

we get

q∑

i=1




∑

a∈F̃ siti,1\F̃
siti,1

2

rsiti(a)ysiti(a) +
∑

a∈F̃ siti,2

rsiti(a)ysiti(a)


+

∑

e∈E2

(

q∑

i=1

r′(e, F̃ siti,1
2))x(e) ≥ kp−

q∑

i=1

pi∑

j=1

|F̃ siti,0
j |. (7.6)

Finally, by dividing inequality (7.6) by 2 and rounding up the right hand side of the resulting
inequality, we obtain

q∑

i=1




∑

a∈F̃ siti,1\F̃
siti,1

2

rsiti(a) + 1

2
ysiti(a) +

∑

a∈F̃ siti,2

rsiti(a)

2
ysiti(a)


+

∑

e∈E2

q∑

i=1

r′(e, F̃ siti,1
2)

2
x(e) ≥




kp −

q∑

i=1

pi∑

j=1

|F̃ siti
j |

2




. (7.7)

We then have the following result.

Theorem 7.2 Inequality (7.7) is valid for kHNDPSep
Cu (G,D).

38

Inequalities (7.7) will be also called aggregated cut inequalities.
We are going to describe a special case for inequalities (7.7), which will be utile in the Branch-
and-Cut algorithm based on the Cut formulation (see Section ??).

Let {W̃ s1t1
1 , ..., W̃ s1t1

p1 , ..., W̃
sqtq
1 , ..., W̃

sqtq
pq }, with pi ≥ 1, for i = 1, ..., q, and p =

q∑

i=1

pi ≥ 2, be

a family of node sets such that W̃ siti
j induces siti-dicut of G̃siti , i = 1, ..., q. Let F̃ siti,0

j ⊆

δ+
G̃siti

(W̃ siti
j) be arc sets and

F̃ siti =

p⋃

i=1

[δ+
G̃siti

(W̃ siti
j) \ F̃ siti,0

j]. Suppose that 0 ≤ rsiti(a) ≤ 2 for all a ∈ Ãsiti , i = 1, ..., q. Let

F̃ siti,2 be the set of arcs of F̃ siti having rsiti(a) = 2 and F̃ siti,1 the set of arcs of F̃ siti having
rsiti(a) = 1. Let F̃ siti,1

2 be the subset of arcs a ∈ F̃ siti,1 such that there exists another arc

a′ ∈ F̃ siti,1 which corresponds to the same edge of E, and let E2 be the set of the corresponding
edges.
Then the inequality (7.7), induced by this configuration, can be written as

q∑

i=1




∑

a∈F̃ siti,2

ysiti(a) +
∑

a∈F̃ siti,1\F̃
siti,1

2

ysiti(a)


+

∑

e∈E2

x(e) ≥




kp−

q∑

i=1

pi∑

j=1

|F̃ siti
j |

2




. (7.8)

7.3 Lifting procedure for aggregated cut inequalities

In what follows we define a lifting procedure for the aggregated cut inequalities for both Aggre-
gated and Cut formulations, (7.4) and (7.8). This will permit to extend these inequalities to a
more general class of valid inequalities.
Consider first the polytope kHNDPAg(G,D). The lifting procedure is given in the following
theorem.

Theorem 7.3 Let G = (V,E) be an undirected graph, D ⊆ V × V and G̃ = (Ṽ , Ã) be the
directed graph associated with G in the Aggregated formulation. Let

∑

e∈E

α(e)x(e) +
∑

a∈Ã

β(a)y(a) ≥ γ

be an inequality of type (7.4) induced by a family of node sets Π = {W̃1, ..., W̃p} and arc sets

F̃ 0
i ⊆ δ0i , p ≥ 2, which is valid for kHNDPAg(G,D). Let G′ = (V,E ∪ E′) be a graph obtained

by adding to G an edge set E′ and let G̃′ = (Ṽ , Ã ∪ Ã′) be the directed graph associated with G′

in the Aggregated formulation (Ã′ is the set of arcs corresponding to the edges of E′). Then, the
inequality

∑

e∈E

α(e)x(e) +
∑

a∈Ã

β(a)y(a) +
∑

a∈Ã′

⌈
q(a)

2

⌉
y(a) ≥ γ, (7.9)

is valid for kHNDPAg(G
′,D), where q(a) is the number of dicuts δ+

G̃′
(W̃i) containing the arc a,

for all a ∈ Ã′.

39

Proof. W.l.o.g., we will suppose that E′ = {e0}. The proof is similar in the case where more
than one edge are added to G. Also, for more clarity, we will consider that only one arc, say a0,
is associated with e0 in G̃′, that is we will consider that Ã′ = {a0}.
We are going to show that for every solution (x, y) ∈ kHNDPAg(G,D),

∑

e∈E

α(e)x(e) +
∑

a∈Ã

β(a)y(a) +

⌈
q(a0)

2

⌉
y(a0) ≥




kp−

p∑

i=1

|F̃ 0
i |

2




.

First, let ∆(x, y) = αx+ βy, that is

∆(x, y) =
∑

a∈F̃2

y(a) +
∑

e∈E2

x(e) +
∑

a∈F̃1\F̃ 2
1

y(a),

where F̃2, F̃1, F̃
2
1 and E2 are the arc and edge sets involved in αx+βy ≥ γ. The lifted inequality

can hence be written as

∆(x, y) +

⌈
q(a0)

2

⌉
y(a0) ≥




kp−

p∑

i=1

|F̃ 0
i |

2




. (7.10)

If y(a0) = 0, then obviously the restriction of (x, y) to E and Ã is in kHNDPAg(G,D). Thus,

∆(x, y) ≥




kp−

p∑

i=1

|F̃ 0
i |

2




, and hence (7.10) is satisfied.

Now suppose that y(a0) = 1. We have that

p∑

i=1

y(δ+
G̃
(W̃i) \ F̃

0
i) =

p∑

i=1

y(δ+
G̃
(W̃i))− y(F̃ 0

i)

= 2
∑

a∈F̃2

y(a) +
∑

a∈F̃ 2
1

y(a) +
∑

a∈F̃1\F̃ 2
1

y(a)

≤ 2
∑

a∈F̃2

y(a) + 2
∑

e∈E2

x(e) +
∑

a∈F̃1\F̃ 2
1

y(a)

= 2∆(x, y)−
∑

a∈F̃1\F̃ 2
1

y(a).

Thus we get

∆(x, y) ≥
1

2




p∑

i=1

y(δ+
G̃
(W̃i))−

p∑

i=1

y(F̃ 0
i) +

∑

a∈F̃1\F̃ 2
1

y(a)


,

≥
1

2

[
p∑

i=1

y(δ+
G̃
(W̃i))−

p∑

i=1

y(F̃ 0
i)

]
.

40

Hence,

∆(x, y) ≥




p∑

i=1

y(δ+
G̃
(W̃i))−

p∑

i=1

|F̃ 0
i |

2




. (7.11)

If W̃i, i = 1, ..., q(a0), are the node sets of Π such that the dicut δ+
G̃′
(W̃i) contains a0, then we

have that
y(δ+

G̃
(W̃i)) = y(δ+

G̃′
(W̃i))− y(a0), i = 1, ..., q(a0),

y(δ+
G̃
(W̃i)) = y(δ+

G̃′
(W̃i)), i = q(a0) + 1, ..., p.

As (x, y) induces a solution of kHNDPAg on G′, we have that y(δ+
G̃′
(W̃i)) ≥ k, i = 1, ..., p.

Moreover, since y(a0) = 1, we have that

y(δ+
G̃
(W̃i)) ≥ k − 1, i = 1, ..., q(a0). (7.12)

Thus, from (7.11) and (7.12), we obtain

∆(x, y) ≥




k(p− q(a0)) + (k − 1)q(a0)−

p∑

i=1

|F̃ 0
i |

2




,

≥




kp−

p∑

i=1

|F̃ 0
i | − q(a0)

2




,

≥




kp−

p∑

i=1

|F̃ 0
i |

2




−

⌈
q(a0)

2

⌉
.

Therefore, since y(a0) = 1, we get

∆(x, y) +

⌈
q(a0)

2

⌉
y(a0) ≥




kp−

p∑

i=1

|F̃ 0
i |

2




,

which ends the proof of the theorem. � �

Now we give a lifting procedure for aggregated cut inequalities (7.8) when the Cut formulation is
considered. This procedure is similar to that introduced for inequalities (7.4) for the Aggregated
formulation. It is given in the theorem below.

41

Theorem 7.4 Let G = (V,E) be an undirected graph, D ⊆ V ×V and G̃st be the directed graph
associated with G and a demand {s, t} ∈ D in the cut formulation, for all {s, t} ∈ D. Let

∑

e∈E

α(e)x(e) +

q∑

i=1

∑

a∈Ãsiti

βsiti(a)ysiti(a) ≥ γ,

be an inequality of type (7.8) induced by a demand set {{s1, t1}, ..., {sq , tq}}, a family of node

sets {W̃ s1t1
1 , ..., W̃ s1t1

p1 , ..., W̃
sqtq
1 , ..., W̃

sqtq
pq }, with pi ≥ 1, for all i ∈ {1, ..., q} and p =

q∑

i=1

pi ≥

2, and arc sets F̃ siti,0
j ⊆ δ

G̃siti

(W̃ siti
j), j = 1, ..., pi, i = 1, ..., q. Let G′ = (V,E ∪ E′) and

G̃′
st = (Ṽst, Ãst ∪ Ã′

st) be the directed graph associated with G′ in the Cut formulation, for all
{s, t} ∈ D(Ã′

st is the set of arcs corresponding to the edges of E′).
Then the inequality

∑

e∈E

α(e)x(e) +

q∑

i=1

∑

a∈Ãsiti

βsiti(a)ysiti(a) +

q∑

i=1

∑

a∈Ã′

siti

⌈
qsiti(a)

2

⌉
ysiti(a) ≥ γ (7.13)

is valid for kHNDPSep
Cu (G

′,D), where qsiti(a) is the number of dicuts δ+
G̃′

siti

(W̃ siti
j), in G̃′

siti ,

containing the arc a, for every a ∈ Ã′
siti , i = 1, ..., p.

Proof. Similar to that of Theorem 7.3. �

8 Facets

Throughout this section, we consider a complete graph G = (V,E) and suppose that |V | ≥ k+2.

The first result concerns necessary conditions for the aggregated cut inequalities (7.4) to define
facets for kHNDPAg(G,D). To this end, we first give the following lemma.

Lemma 8.1 Consider an inequality of type (7.4) induced by a family of node sets Π = {W̃1, ..., W̃p},

p ≥ 2, and arc subsets F̃ 0
i ⊆ δ+

G̃
(W̃i), i = 1, ..., p. Let F̃2, F̃1, F̃

2
1 and E2 be the arc and edge sets

involved in this inequality. Then (7.4) can be written as

p∑

i=1

y(δ+(W̃i)) + 2
∑

e∈E2

x(e)−
∑

a∈F̃ 2
1

y(a) +

p∑

i=1

(|F̃ 0
i | − y(F̃ 0

i)) +
∑

a∈F̃1\F̃ 2
1

y(a) ≥ kp+ 1. (8.1)

Moreover, (7.4) is tight for a solution (x0, y0) ∈ kHNDPAg(G,D) if and only if one of the
following conditions holds

i)

2
∑

e∈E2

x0(e)−
∑

a∈F̃ 2
1

y0(a) +

p∑

i=1

(|F̃ 0
i | − y0(F̃

0
i)) +

∑

a∈F̃1\F̃ 2
1

y0(a) = 1 (8.2)

and y0(δ
+(W̃i)) = k, for i = 1, ..., p;

42

ii)

2
∑

e∈E2

x0(e)−
∑

a∈F̃ 2
1

y0(a) +

p∑

i=1

(|F̃ 0
i | − y0(F̃

0
i)) +

∑

a∈F̃1\F̃ 2
1

y0(a) = 0 (8.3)

and there exists i0 ∈ {1, ..., p} such that y0(δ
+(W̃i)) = k, for i ∈ {1, ..., p} \ {i0} and

y0(δ
+(W̃i0)) = k + 1.

Proof. First we show that αx+βy ≥ γ is equivalent to (8.1). As kp and

p∑

i=1

|F̃ 0
i | have different

parities, αx+ βy ≥ γ is equivalent to

2
∑

e∈E2

x(e) + 2
∑

a∈F̃2

y(a) + 2
∑

a∈F̃1\F̃ 2
1

y(a) ≥ kp−

p∑

i=1

|F̃ 0
i |+ 1. (8.4)

From the st-dicuts induced by the sets W̃i, we have that
p∑

i=1

y(δ+(W̃i) \ F̃
0
i) = 2

∑

a∈F̃2

y(a) +
∑

a∈F̃ 2
1

y(a) +
∑

a∈F̃1\F̃ 2
1

y(a),

= 2
∑

a∈F̃2

y(a) + 2
∑

e∈E2

x(e)− 2
∑

e∈E2

x(e) +
∑

a∈F̃ 2
1

y(a) +
∑

a∈F̃1\F̃ 2
1

y(a).

together with (8.4), we get

p∑

i=1

y(δ+(W̃i) \ F̃
0
i) + 2

∑

e∈E2

x(e)−
∑

a∈F̃ 2
1

y(a) +
∑

a∈F̃1\F̃ 2
1

y(a) ≥ kp−

p∑

i=1

|F̃ 0
i |+ 1. (8.5)

By combining (8.5) and y(δ+(W̃i) \ F̃
0
i) = y(δ+(W̃i))− y(F̃ 0

i), i = 1, ..., p, we get (8.1).
Now consider a solution (x0, y0) ∈ kHNDPAg(G,D) satisfying (7.4) with equality. By the
previous result, we have that

p∑

i=1

y0(δ
+(W̃i)) +

p∑

i=1

(|F̃ 0
i | − y0(F̃

0
i)) + 2

∑

e∈E2

x0(e)−
∑

a∈F̃ 2
1

y0(a) +
∑

a∈F̃1\F̃ 2
1

y0(a) = kp+ 1.

(8.6)

As (x0, y0) induces a solution of the kHNDP, we have that y0(δ
+(W̃i)) ≥ k, i = 1, ..., p. Therefore,

p∑

i=1

y0(δ
+(W̃i)) ≥ kp, and hence,

p∑

i=1

(|F̃ 0
i | − y0(F̃

0
i)) + 2

∑

e∈E2

x0(e) −
∑

a∈F̃ 2
1

y0(a) +
∑

a∈F̃1\F̃ 2
1

y0(a) ≤ 1. (8.7)

If (8.7) is satisfied with equality, then, clearly y0(δ
+(W̃i)) = k, i = 1, ..., p. If not, as y0(δ

+(W̃i)) ≥

k, i = 1, ..., p, this yields y0(δ
+(W̃i0)) = k + 1 for some i0 ∈ {1, ..., p} and y0(δ

+(W̃i)) = k, for
i ∈ {1, ..., p} \ {i0}.

43

Conversely, if (8.7) is tight for (x0, y0) and y0(δ
+(W̃i)) = k for all i ∈ {1, ..., p}, then clearly,

(8.1) is tight for (x0, y0) and hence αx + βy ≥ γ is tight for (x0, y0). If (8.7) is not tight for
(x0, y0), that is

p∑

i=1

(|F̃ 0
i | − y0(F̃

0
i)) + 2

∑

e∈E2

x0(e) −
∑

a∈F̃ 2
1

y0(a) +
∑

a∈F̃1\F̃ 2
1

y0(a) = 0,

y0(δ
+(W̃i0)) = k + 1 for some i0 ∈ {1, ..., p} and y0(δ

+(W̃i0)) = k for i ∈ {1, ..., p} \ {i0}, then
clearly, (8.1) is also tight for (x0, y0). Thus, αx+ βy ≥ γ is tight for (x0, y0). � �

Corollary 8.1 Consider an inequality of type (7.4) induced by a family of node sets {W̃1, ..., W̃p},

p ≥ 2, and arc subsets F̃ 0
i ⊆ δ+

G̃
(W̃i), i = 1, ..., p. Let F̃2, F̃1, F̃

2
1 and E2 be the arc and edge sets

involved in this inequality. If (7.4) is tight for a solution (x0, y0) of kHNDPAg(G,D) then,

2
∑

e∈E2

x0(e)−
∑

a∈F̃ 2
1

y0(a) +

p∑

i=1

(|F̃ 0
i | − y0(F̃

0
i)) +

∑

a∈F̃1\F̃ 2
1

y0(a) ≤ 1. (8.8)

Theorem 8.1 Let Π = {W̃1, ..., W̃p}, p ≥ 2, be a family of node sets of Ṽ such that each set

W̃i, i = 1, ..., p, induces an siti-dicut of G̃, for some {si, ti} ∈ D, and F̃ 0
i ⊆ δ+

G̃
(W̃i). Suppose

that every arc of Ã belongs to at most two sets δ+
G̃
(W̃i) \ F̃

0
i . Then, the aggregated cut inequality

(7.4) induced by Π and F̃ 0
i , i = 1, ..., p, defines a facet of kHNDPAg(G,D) different from the

trivial and siti-dicut inequalities, only if for all i ∈ {1, ..., p}, the following conditions hold

1. |W̃i ∩ SD| = |(Ṽ \ W̃i) ∩ TD| = 1;

2. |W̃i ∩ SD| ≥ 2 and for all s ∈ (W̃i \ {si}) ∩ SD, [s, Ṽ \ W̃i] = ∅;

3. |(Ṽ \ W̃i) ∩ TD| ≥ 2 and for all t ∈ [(Ṽ \ W̃i) \ {ti}] ∩ TD, [W̃i, t] = ∅.

Proof. Let us denote by αx + βy ≥ γ the inequality (7.4) induced by Π and F̃ 0
i , i = 1, ..., p,

and suppose that it defines a facet of kHNDPAg(G,D). We will show that |W̃i ∩ SD| = 1, for

i = 1, ..., p. The proof follows the same lines for |(Ṽ \ W̃i) ∩ TD| = 1. Also the proof for 2) and
3) is similar.

Suppose, on the contrary, that there exists i0 ∈ {1, ..., p} such that W̃i0 induces an st-dicut of

G̃ and that (W̃i0 \ {s}) ∩ SD 6= ∅. Let s′ be a node of (W̃i0 \ {s}) ∩ SD, and suppose that

[s′, Ṽ \ W̃i0] 6= ∅ (see Figure 15).

44

W̃i0

t

s′

Ṽ \ W̃i0

s

Figure 15: A set W̃i0 containing two nodes of S

Let H̃0 = F̃2 ∩ [s′, Ṽ \ W̃i0] and H̃1 = (F̃1 \ F̃
2
1) ∩ [s′, Ṽ \ W̃i0]. Also let H̃2 = F̃ 2

1 ∩ [s′, Ṽ \ W̃i0],

H̃3 be the set of arcs of F̃ 2
1 corresponding to the same edges as the arcs of H̃2. Let E0 be the

edge set corresponding to the arcs of H̃2 and H̃3. Consider now the aggregated cut inequality
induced by {W̃ ′

1, ..., W̃
′
p} and F̃ 0′

i , i = 1, ..., p, where W̃ ′
i = W̃i, F̃

0′
i = F̃ 0

i , for i ∈ {1, ..., p} \ {i0},

and W̃ ′
i0

= W̃i0 \ {s
′}, F̃ 0′

i = F̃ 0
i \ [s′, Ṽ \ W̃i0]. Let F̃ ′

2, F̃
′
1, F̃

2′
1 and E′

2 be the set of arcs and

edges involved in this inequality. By the above observation, as the arcs of H̃3 correspond to
those of H̃2, we have that H̃3 ∩ [s′, Ṽ \ W̃i0] = ∅. Also, by the same observation, no arc of H̃0

may correspond to an arc of H̃2 and H̃3. Thus, we have that

F̃ ′
2 = F̃2 \ H̃0,

F̃ 2′

1 = F̃ 2
1 \ (H̃2 ∪ H̃3),

F̃ ′
1 \ F̃

2′
1 = [(F̃1 \ F̃

2
1) \ H̃1] ∪ H̃0 ∪ H̃3.

E′
2 = E2 \E0.

Therefore, the inequality (7.4) induced by {W̃ ′
1, ..., W̃

′
p} and F̃ 0′

i , i = 1, ..., p, can be written as

∑

a∈F̃2\H̃0

y(a) +
∑

e∈E2\E0

x(e) +
∑

a∈(F̃1\F̃ 2
1)\H̃1

+
∑

a∈H̃0

y(a) +
∑

a∈H̃3

y(a) ≥




kp−

p∑

i=1

|F̃ 0′
i |

2




. (8.9)

By summing up inequality (8.9) and the inequalities

x(e) ≥ y(a), for all a ∈ H̃3,

where e is the edge of E0 corresponding to a. (8.10)

y(a) ≥ 0, for all a ∈ H̃1, (8.11)

45

we get

∑

a∈F̃2

y(a) +
∑

e∈E2

x(e) +
∑

a∈F̃1\F̃ 2
1

y(a) ≥




kp−

p∑

i=1

|F̃ 0′
i |

2




. (8.12)

Clearly, if F̃i0 ∩ [s′, Ṽ \W̃i0] = ∅, then F̃ ′
i0
= F̃i0 and inequality (8.12) is the same as αx+βy ≥ γ.

Thus αx + βy ≥ γ is redundant with respect to (8.9)-(8.11), and hence cannot define a facet

of kHNDPAg(G,D). If F̃i0 ∩ [s′, Ṽ \ W̃i0] 6= ∅, then the right hand side of inequality (8.12) is
greater than that of αx + βy ≥ γ. Thus, αx + βy ≥ γ is dominated by (8.9)-(8.11), and hence
cannot define a facet of kHNDPAg(G,D). � �

The next theorems give necessary conditions for the double cut and triple path-cut inequalities
to define facets of the kHNDP polytopes. Before each theorem, we give two technical lemmas
which will be useful to prove the theorem. The first lemma, Lemma 8.2, is given without proof
since it is obtained from Theorem 3.4 of [9].

Lemma 8.2 [9] Let {s, t} ∈ D, T be a 3-st-path-cut ineduced by a partition (V0, ..., V4). If
an edge set F ⊆ E induces a solution of the kHNDP and is such that |F ∩ T | = k, then
|F ∩ ([s, V1] ∪ [V3, t] ∪ [s, t])| ≥ k.

Lemma 8.3 Let αx ≥ γ be a double cut inequality induced by a family of node sets Π =
(V 1

0 , V
2
0 , V1, ..., VL+1) of V , F ⊆ E and {s, t} ∈ D with s ∈ V 1

0 and t ∈ VL+1 (here i0 = 0).
Then, αx ≥ γ can be written as

x(T) + x(δ(V 1
0 ∪ V 2

0)) + x(δ(V1)) + x(E \ F) + |F | − x(F) ≥ 3k + 1, (8.13)

where T is the L-st-path-cut induced by the partition (V 1
0 , V

2
0 ∪ V1, V2, ..., VL+1).

Moreover, αx ≥ γ is tight for a solution x0 of kHNDPAg, kHNDPCut, kHNDPSep
F lo, kHNDPSep

Pa ,
where x0 ∈ R

E, if and only if one of the following conditions holds.

i) x0(E \ F) + |F | − x0(F) = 1 and x0(T) = x0(δ(V
1
0 ∪ V 2

0)) = x0(V1) = k;

ii) x0(E \ F) + |F | − x0(F) = 0 and

a) x0(T) = k + 1, x0(δ(V
1
0 ∪ V 2

0)) = k and x0(V1) = k;

b) x0(T) = k, x0(δ(V
1
0 ∪ V 2

0)) = k + 1 and x0(V1) = k;

c) x0(T) = k, x0(δ(V
1
0 ∪ V 2

0)) = k and x0(V1) = k + 1;

Proof. W.l.o.g., we will consider the polytope kHNDPAg(G,D). The proof is similar for

kHNDPCut(G,D), kHNDPSep
F lo(G,D) and kHNDPSep

Pa (G,D).
Let H denote the double cut induced by Π. The inequality αx ≥ γ is equivalent to

x(H \ E) + x(E \ F) ≥
3k − |F |+ 1

2
.

This implies that

2x(H \E) + 2x(E)− 2x(F) ≥ 3k − |F |+ 1. (8.14)

46

From the L-st-path-cut T and cuts δ(V 1
0 ∪ V 2

0) and δ(V1), we have that

x(T) + x(δ(V 1
0 ∪ V 2

0)) + x(δ(V1)) = 2x(H \ E) + x(E). (8.15)

By combining (8.14) and (8.15), we get

x(T) + x(δ(V 1
0 ∪ V 2

0)) + x(δ(V1)) + x(E)− 2x(F) ≥ 3k − |F |+ 1,

and hence

x(T) + x(δ(V 1
0 ∪ V 2

0)) + x(δ(V1)) + x(E \ F) + |F | − x(F) ≥ 3k + 1.

Therefore, αx ≥ γ is equivalent to (8.13).
Now suppose that αx ≥ γ is tight for (x0, y0). From the development above, we have that
inequality (8.13) is also tight for (x0, y0), that is

x0(T) + x0(δ(V
1
0 ∪ V 2

0)) + x0(δ(V1)) + x0(E \ F) + |F | − x0(F) = 3k + 1.

Since x0(T) ≥ k, x0(δ(V
1
0 ∪V

2
0)) ≥ k and x0(δ(V1)) ≥ k, it is clear that x0(E\F)+|F |−x0(F) ≤ 1.

Hence, if x0(E \ F) + |F | − x0(F) = 1, we have that x0(T) = x0(δ(V
1
0 ∪ V 2

0)) = x0(δ(V1)) = k.
If x0(E \ F) + |F | − x0(F) = 0, then, clearly, either x0(T), x0(δ(V

1
0 ∪ V 2

0)) or x0(δ(V1)) is equal
to k + 1 and the others are equal to k.
Consider now a solution (x0, y0) ∈ kHNDPAg(G,D) such that x0(E \ F) + |F | − x0(F) = 1
and x0(T) = x0(δ(V

1
0 ∪ V 2

0)) = x0(δ(V1)) = k. Then, clearly, inequality (8.13) is satisfied with
equality, and hence, αx ≥ γ is tight for (x0, y0). Similarly, if x0(E \ F) + |F | − x0(F) = 0 and
either x0(T), x0(δ(V

1
0 ∪V 2

0)) or x0(δ(V1)) is equal to k+1 with the others equal to k, then (8.13)
is satisfied with equality by x0 and hence, αx ≥ γ is tight for (x0, y0), which ends the proof of
the lemma. � �

Theorem 8.2 Suppose that L ≥ 2 and k ≥ 2, and let {s, t} ∈ D.
Let Π = {V 1

0 , V
2
0 , V1, ..., VL+1} be a family of node sets of V and F ⊆ E which induce a double

cut of G with respect to {s, t}, s ∈ V 1
0 and t ∈ VL+1 (here i0 = 0). Then, the double cut inequality

induced by Π and F defines a facet of kHNDPAg(G,D), kHNDPSep
Cu (G,D), kHNDPSep

F lo(G,D),

kHNDPSep
Pa (G,D) different from the trivial inequalities and inequalities (2.1)-(2.4) only if the

following conditions hold

i) |V 1
0 | = |VL+1| = 1;

ii) if L = 3, then |[V 1
0 , V

2
0 ∪ V1] ∪ [V3, V4] ∪ [V 1

0 , V4]| ≥ k.

Proof. The proof will be done for kHNDPAg(G,D) as it is similar for kHNDPSep
Cu (G,D),

kHNDPSep
F lo(G,D) and kHNDPSep

Pa (G,D). We will denote by αx ≥ γ the double cut inequal-
ity induced by Π and F , and assume that it defines a facet of kHNDPAg(G,D) different
from those induced by the trivial, cut and L-st-path-cut inequalities. Let F = {(x, y) ∈
kHNDPAg(G,D) such that αx = γ} and let T denote the L-st-path-cut induced by the par-
tition (V 1

0 , V
2
0 ∪ V1, V2, ..., VL+1).

i) Let us denote by H the double cut induced by Π and F . Suppose first that |V 1
0 | ≥ 2. By

considering the family of node sets Π′ = {{s}, V 2
0 ∪ V 1

0 \ {s}, V1, ..., VL+1}, the double cut H ′

47

induced by Π′ and F is such that H = H ′ ∪ [V 1
0 \ {s}, V1]. Thus, the double cut inequality

induced by H is redundant with respect to

x(H ′ \ F) ≥

⌈
3k − |F |

2

⌉

x(e) ≥, for all e ∈ [V 1
0 \ {s}, V1], (8.16)

and hence, cannot define a facet.
ii) We will show that F 6= ∅ only if ii) holds. As αx ≥ γ defines a facet different from
x(δ(V 1

0 ∪ V 2
0)) ≥ k, there exists a solution (x, y) ∈ F such that x(δ(V 1

0 ∪ V 2
0)) ≥ k + 1. Thus,

by Lemma 8.3, x(T) = k. Therefore, the graph induced by x contains exactly k edge-disjoint
L-st-paths. Moreover, each L-st-path intersects T only once. Thus, by Lemma 8.2, we have
that |[V 1

0 , VL+1]|+ |[V 1
0 , V

2
0 ∪ V1]|+ |[VL, VL+1]| ≥ k. � �

Lemma 8.4 Let αx ≥ γ be a triple path-cut inequality induced by a family of node set Π =
{V0, ..., VL, V

1
L+1, V

2
L+1, V

1
L+2, V

2
L+2} and F ⊆ E. Then αx ≥ γ can be written as

x(T1) + x(T2) + x(T3) + x(E \ F) + |F | − x(F) ≥ 3k + 1 (8.17)

where T1, T2 and T3 are the triple path-cuts induced by the partitions (V0, V1 ∪ V4, V2 ∪ V 1
3 , V

2
3),

(V0, V1∪V3, V2∪V
1
4 , V

2
4) and (V0, V1, V2∪V3∪V

1
4 , V

2
4), respectively, and E = [V 2

3 , V1∪V
1
4]∪[V

1
3 , V

2
4]

(resp. E = [V2, V
2
4] ∪ [V3, V4 ∪ V5]) if L = 2 (resp. L = 3).

Moreover, αx ≥ γ is tight for a solution x0 of the kHNDP, where x0 ∈ R
E, if and only if one of

the following inequalities holds

i) x0(E \ F) + |F | − x0(F) = 1 and x0(T1) = x0(T2) = x0(T3) = k;

ii) x0(E \ F) + |F | − x0(F) = 0 and, for some i0 ∈ {1, 2, 3}, x0(Ti0) = k + 1 and x0(Ti) = k
for i ∈ {1, 2, 3} \ {i0}.

Proof. Similar to that of Lemma 8.3. �

Theorem 8.3 Let L ∈ {2, 3} and consider Π = {V0, ..., VL, V
1
L+1, V

2
L+1, V

1
L+2, V

2
L+2} be a family

of node sets of V and F ⊆ E which induce a triple path-cut of G with respect to demands
{s1, t1} and {s2, t2}. Then, the triple path-cut inequality induced by Π and F defines a facet of
kHNDPAg(G,D), kHNDPSep

Cu (G,D), kHNDPSep
F lo(G,D), kHNDPSep

Pa (G,D) only if the following
conditions hold

i) V0 \ {s1, s2} = ∅;

ii) |V 2
L+1| = 1;

iii) |V 2
L+2| = 1;

iv) if L = 3, then

a) |[{s1, s2}, V1 ∪ V 1
5 ∪ {t2}]| + |[V3 ∪ V 1

4 , t1]|+ |[{s1, s2}, t1]| ≥ k;

b) |[{s1, s2}, V1 ∪ V 1
4 ∪ {t1}]| + |[V3 ∪ V 1

5 , t2]|+ |[{s1, s2}, t2]| ≥ k;

c) |[{s1, s2}, V1]|+ |[V3 ∪ V 1
4 ∪ {t1} ∪ V 1

5 , t2]|+ |[{s1, s2}, t2]| ≥ k.

48

Proof. For the proof of Conditions i)-iii), we will consider, w.l.o.g., that L = 3. We will
denote by αx ≥ γ the triple-cut inequality induced by Π and F and let F = {(x, y) ∈
kHNDP(G,D) such that αx = γ}.

i) Suppose that V0 \{s1, s2} 6= ∅ and denote by H the triple path-cut induced by Π and F . Con-
sider the family of node sets Π′ = {{s1, s2}, V0 \{s1, s2}∪V1, V2, V3, V

1
4 , V

2
4 , V

1
5 , V

2
5 } and F ′ = F .

If H ′ denotes the triple path-cut induced by Π′ and F ′, we have that H ′ = H \ [V0 \{s1, s2}, V2].
Thus, as V0 \ {s1, s2} 6= ∅, inequality (6.5) induced by Π and F is redundant with respect to the
inequalities

2x([{s1, s2}, V2]) + 2x([{s1, s2}, V3]) + 2x([V1 ∪ (V0 \ {s1, s2}), V3])+

x([{s1, s2} ∪ V1 ∪ (V0 \ {s1, s2}), V4 ∪ V5]) + x([V4, V5]) + x([V2, V
2
5])+

x(([V2, V
2
4] ∪ [V3, V4 ∪ V5]) \ F) ≥

⌈
3k − |F |

2

⌉
,

x(e) ≥ 0, for all e ∈ [V0 \ {s1, s2}, V2].

Therefore, the triple path-cut inequality induced by Π and F cannot define a facet of the kHNDP
polytopes.
ii) Now we show that |V 2

4 | = 1. Suppose, on the contrary, that |V 2
4 | ≥ 2. Let Π′ = {V0, ..., V3, V

1
4 ∪

V 2
4 \ {t1}, {t1}, V

1
5 , V

2
5 }. First suppose that F ∩ [V2, V

2
4 \ {t1}] = ∅ and let H ′ be the triple path-

cut induced by Π′ and F . As F ∩ [V2, V
2
4 \ {t1}] = ∅, we have that H ′ = H \ [V2, V

2
4 \ {t1}]. If

α′x ≥ γ′ denotes the triple path-cut inequality induced by Π′ and F , then it is not hard to see
that α′(e) = α(e), for all e ∈ H ′ \ F , and that γ′ = γ. Thus, αx ≥ γ is redundant with respect
to the following inequalities

α′x ≥ γ,

x(e) ≥ 0, for all e ∈ [V2, V
2
4 \ {t1}],

and hence, cannot define a facet of the kHNDP poytopes.
If F ∩ [V2, V

2
4 \ {t1}] 6= ∅, then we consider F ′ = F \ (F ∩ [V2, V

2
4 \ {t1}]) and let α′x ≥ γ′ be

the triple path-cut inequality induced by Π′ and F ′. Also let H ′ denote this triple path-cut. As
before, we have that H ′ = H \ [V2, V

2
4 \ {t1}] and, for all e ∈ H ′ \ F ′, α′(e) = α(e). Moreover,

γ =
⌈
3k−|F |

2

⌉
and γ′ =

⌈
3k−|F |+|F∩[V2,V 2

4 \{t1}]|
2

⌉
. As |F ∩ [V2, V

2
4 \{t1}]| ≥ 1, we have that γ′ ≥ γ.

This implies that αx ≥ γ is dominated by the inequalities

α′x ≥ γ′,

x(e) ≥ 0, for all e ∈ [V2, V
2
4 \ {t1}] \ F.

Thus, it cannot define a facet of the kHNDP poytopes.
iii) Suppose that |V 2

5 | ≥ 2. Consider Π′ = {V0, ..., V3, V
1
4 , V

2
4 , V

1
5 ∪ V 2

5 \ {t2}, {t2}} and let H
and H ′ denote the triple path-cuts induced by Π and F , and by Π′ and F respectively. If
F ∩ [V3, V

2
5 \ {t2}] = ∅, then, clearly, H ′ = H \ [V2, V

2
5 \ {t2}]. If F ∩ [V3, V

2
5 \ {t2}] 6= ∅, then it

is also not hard to see, as before, that H ′ = H \ [V2, V
2
5 \ {t2}].

This implies that the triple path-cut inequality induced by H is redundant with respect to that
induced by H ′ and the inequalities x(e) ≥ 0, for all e ∈ [V2, V

2
5 \ {t2}]. Thus, it cannot define a

facet.
iv) To show that conditions iv) are necessary for αx ≥ γ to define a facet, we show that the
sets Fi = {x ∈ R

E such that x induces a solution of the kHNDP and x(Ti) = k}, i = 1, 2, 3, are

49

non empty only if conditions iv) are satisfied. As F is different from the hyperspace induced by
the inequality x(e) ≥ 0 for some e ∈ F , there exists a solution (x, y) ∈ F such that x(e) = 0.
Thus, |F | − x(F) ≥ 1. By Lemma 8.4, this implies that x(E \ F) + |F | − x(F) = 1 and hence,
x(Ti) = k, for i = 1, 2, 3. Therefore, from Lemma 8.2, we obtain that

|[{s1, s2}, V1 ∪ V 1
5 ∪ {t2}]|+ |[V3 ∪ V 1

4 , t1]|+ |[{s1, s2}, t1]| ≥ k,

|[{s1, s2}, V1 ∪ V 1
4 ∪ {t1}]|+ |[V3 ∪ V 1

5 , t2]|+ |[{s1, s2}, t2]| ≥ k,

|[{s1, s2}, V1]|+ |[V3 ∪ V 1
4 ∪ {t1} ∪ V 1

5 , t2]|+ |[{s1, s2}, t2]| ≥ k,

which ends the proof of the theorem. � �

In the following section, we discuss the separation problem associated with the inequalities
present before and present separation algorithm for each of them.

9 Separation Procedures

9.1 Separation of st-cut and L-st-path-cut inequalities

The separation problem of st-cut and L-st-path-cut inequalities, when L = 2, 3, can be reduced
to computing a minimum weight st-dicut in the graph G̃st, for every (s, t) ∈ D, or in the aggre-
gated graph G̃. The reduction relies on the correspondance between st-cut and L-st-path-cuts,
on one hand, and particular st-dicuts in G̃st or in G̃ on the other hand (see [24] for more de-
tails). This correspondance implies that, for a solution x ∈ R

E, there exists a violated st-cut
or L-st-path-cut inequality if and only if, the weight of a minimum st-dicut in G̃st or in G̃ is < k.

The weights given to the arcs of G̃st or G̃ are as follows

• for an arc a of G̃st or G̃ corresponding to an edge e in G, we give the weight x(e) to arc a.

• for an arc a of G̃st or G̃ which does not correspond to any edge of G, we give a weight
sufficiently large.

Therefore, the separation problem of st-cut and L-st-path-cut inequalities can be solved in
polynomial time.

9.2 Separation of Hop-Constrained partition inequalities

In this section, we discuss our separation procedure for the Hop-Constrained partition inequali-
ties (4.1), (4.2), (4.3) and (4.4). The idea of our separation procedure is to reduce the separation
problem of these inequalities to computing a minimum weight cut in a suitable graph. Before
going further, it is worth noting that we believe that the separation problem of Inequalities (4.1),
(4.2), (4.3) and (4.4) is NP-hard. In fact, with the transformations we will present below, one
can see that, under some conditions, the separation problem of the Hop-Constrained partition
inequalities can be written as that of rounded capacity inequalities involved in the Capacitated
Vehicle Routing Poblem. On the other hand, Diarrassouba [23] showed that the separation prob-
lem associated with these latter inequalities is strongly NP-hard.This explains why we believe
that the separation problem of the Hop-Constrained partition inequalities is NP-hard in the
strong sense, and why we devise a separation heuristic.

50

We discuss first our separation procedure for the Hop-Constrained partition inequalities in the
case of rooted demands (both for L = 2 and L = 3). For our purpose, we consider the Hop-
Constrained partition inequalities (4.1) and (4.2) under a generic form. Let π = (V0, V1, ..., Vp),
p ≥ 2, with s ∈ V0 and Vi ∩ TD 6= ∅, for all i ∈ {1, ..., p}. The Hop-Constrained partition
inequality induced by π can be written as

x(δ(π)) ≥
⌈γp
C

⌉
, (9.1)

where {
γ = k + 1 and C = 2 if L = 2,
γ = k(k + 1) + 2 and C = 2(k + 1) if L = 3.

Also, we assume that there is no steiner node in the graph, that is the node set of the graph
is V = {s} ∪ TD, and that |Vi| = 1, for all i ∈ {1, ..., p} (recall that the demand set is rooted).
We denote by ti the only node of Vi, for every i ∈ {1, ..., p}. Now, for a solution x ∈ R

E, the
inequality (9.1) can be written as

p∑

i=1

x(δ(Vi)) + x(δ(V0)) =

p∑

i=1

x(δ(ti)) + x(δ(V0)) ≥ 2
⌈γp
C

⌉
. (9.2)

Now, if we let W = {t1, ..., tp}, since, the graph G is undirected, it appears that x(V0) = x(δ(W)).
Thus, the inequality (9.2) reduces to

p∑

i=1

x(δ(Vi)) + x(δ(V0)) =
∑

u∈W

x(δ(u)) + x(δ(W)) ≥ 2

⌈
γ|W |

C

⌉
, (9.3)

Also, observe that
⌈
γ|W |
C

⌉
= γ|W |

C + C−rW
C , where

rW =

{
γ|W | (mod C), if γ|W | (mod C) 6= 0,
C, if γ|W | (mod C) = 0.

Hence, Inequality (9.3) reduces to

∑

u∈W

x(δ(u)) + x(δ(W)) ≥ 2
γ|W |

C
+ 2

C − rW
C

. (9.4)

Finally, by replacing |W | by |V | − |W | in (9.4), we obtain

∑

u∈W

x(δ(u)) + x(δ(W)) +
2γ

C
|W | ≥ 2

γ|V |

C
+ 2

C − rW
C

. (9.5)

Notice that the node set W is such that s /∈ W .

Now we give the main piece of our separation algorithm. Consider a node t ∈ TD and assume
that t ∈ W . We construct the graph Gt = (V,Et) with

Et = E ∪ {su, for all u ∈ V \ {s}} ∪ {ut, for all u ∈ V \ {t}}.

We also give the weight z(e) to each edge e ∈ Et, where

• z(e) = x(e), for every e ∈ E,

51

• z(su) = 2γ
C , for every u ∈ V \ {s},

• z(tu) = x(δG(u)), for every u ∈ V \ {t}.

It is not hard to see that for a node set W ⊆ V with t ∈ W and s /∈ W ,

z(δGt
(W)) =

∑

u∈W

x(δG(u)) + x(δG(W)) +
2γ

C
|W |.

Clearly, z(δGt
(W)) corresponds to the left-hand-side of Inequality (9.5). Thus, if the graph G

does not contain steiner nodes and the demands are rooted, then there exists a violated Hop-
Constrained partition inequality, if and only if there exists a node t ∈ TD and a node set W ⊆ V
with t ∈ W and s /∈ W such that z(δGt

(W)) < 2γ|W |
C + 2C−rW

C .

We are now ready to describe our separation procedure. First, we contract all the steiner nodes
of G, if there is any, with a terminal node, in such a way that the reduced graph does not
contain any steiner node. Let Ĝ = (V̂ , Ê) be the reduced graph thus obtained. For convenience,
we will denote by V̂ = {s, t1, ..., td}. For every, t ∈ V̂ \ {s}, we construct the graph Gt, as
defined above, and define the weight vector z as described above. Then, we compute a minimum
weight cut δGt

(W), with t ∈ W and s /∈ W , and w.r.t. weight z. As mentionned above, if

z(δGt
(W)) < 2γ|W |

C + 2C−rW
C , then there is a Hop-Constrained partition inequality violated by

x. If t1, ..., tp are the nodes of Ĝ composing W , we build the partition π = (V0, V1, ..., Vp), such
that

• Vi, for all i ∈ {1, ..., p}, is composed of the destination ti ∈ W together with all the nodes
of G which have been contracted with ti in Ĝ,

• V0 = V \

p⋃

i=1

Vi.

The algorithm stops as soon as it finds a violated Hop-Constrained partition inequality, or when
every node t ∈ TD has been selected without finding any violated inequality.

Now, we address the case of disjoint demands. As for the case of rooted demands, we start by
writing the Hop-Constrained partition inequality under a generic form which is

x(δ(π)) ≥
⌈γp
C

⌉
, (9.6)

where {
γ = k +

⌈
k
2

⌉
, and C = 2 if L = 2,

γ = k(k + 2) and C = 2(k + 1) if L = 3.

Then, we contract all the steiner nodes with a terminal node so that the reduced graph does
not contain any steiner node. After this, we contract together all the source nodes s1, ..., sd,
into a super node s, and let Ĝ = (V̂ , Ê) denote the reduced rooted graph thus obtained. Our
separation procedure for the Hop-Constrained partition inequalities in the case of disjoint de-
mands then follows the same lines as for the rooted demands. For every node t ∈ V̂ \ {s}, we
build the graph Gt with the weight vector z, and compute a minimim weight cut δGt

(W) such

that t ∈ W and s /∈ W , w.r.t. weight z. If z(δGt
(W)) < 2γ|W |

C + 2C−rW
C , then there exists a

Hop-Constrained partition inequality violated by x, and this partition is obtained in the same
way as for the rooted demands. The algorithm stops as soon as a violated inequality is found

52

or all the nodes t ∈ V̂ \ {s} have been explored without finding any violated inequality.

Clearly, all the steps of our procedure can be implemented to run in polynomial time and the
whole algorithm can be bounded by |D|× (Runtime of a maximum Flow). By using the efficient
algorithm of Golberg and Tarjan [35] for computing maximum flows in the graphs Gt, our sep-
aration algorithm can be implmented to run in O(|D||V |3).

As it will turn out in the next sections, our separation procedure for the Hop-Constrained
partition inequalities is effective for finding violated inequalities, and this for every k ≥ 2, L = 2
and L = 3, and for both rooted and disjoint demands.

9.3 Separation of Steiner-SP -partition inequalities

Now we turn our attention to the separation of the Steiner-SP -partition inequalities. We devise
the following heuristic to separate inequalities (5.2). The main idea is to determine a Steiner-
partition π = (V1, ..., Vp), p ≥ 3, of V which induces an outerplanar subgraph of G(x) and such
that the subgraph of GD (the demand graph) induced by π is connected. By Theorem 5.1,
such a partition is a Steiner-SP -partition. Also, the partitions we are looking for are such that
|[Vi, Vi+1]| ≥

⌈
k
2

⌉
, i = 1, ..., p, (modulo p) and for every consecutive sets Vi and Vi+1, the edge

set [Vi, Vi+1] contains at least one edge with fractional value.
The heuristic works as follows. We first contract every pair of nodes t and u, where t is a
terminal node, u is a steiner node and x(δG(x)(u) \ {ut}) ≤ x(ut). The node resulting from
that contraction is considered as a terminal. Let G(x)′ = (V ′, E′) be the reduced graph thus
obtained.
We look in G(x)′ for a path Γ = {v′1v

′
2, v

′
2v

′
3, ..., v

′
p−2v

′
p−1}, p ≥ 3, such that v′1, ..., v

′
p−1 are

terminal nodes, |[v′i, v
′
i+1]| ≥

⌈
k
2

⌉
and [v′i, v

′
i+1] contains one edge or more with fractional value,

for i = 1, ..., p − 2. The partition π = (V1, ..., Vp), p ≥ 3, is constructed such that Vi is the node

set of G corresponding to v′i, i = 1, ..., p − 1, and Vp = V \ (

p−1⋃

i=1

Vi).

Afterwards, we check by a simple heuristic if the graph Gπ(x)
′ is outerplanar and if the subgraph

of GD induced by π is connected. If this is the case, then, we check if the Steiner-SP -partition
inequality induced by π is violated. If not, then we compute from π new partitions πi =
(Vi, Vi+1, V \ (Vi ∪ Vi+1)), i = 1, ..., p − 2. Clearly, these new partitions are Steiner-partitions
and, since they are of size 3, they induce Steiner-SP -partitions. We then check if the Steiner-
SP -partition inequality induced by πi is violated, for i = 1, ..., p − 2.
If none of these inequalities is violated by x, we apply again the procedure by looking for another
path. In order to avoid the detection of the same path, we label the nodes we met during the
search of the previous ones so that they won’t be considered again in the search of the new path.
This process is iterated until either we find a violated Steiner-SP -partition inequality or all the
nodes of V ′ are labeled. The heuristic can be implemented to run in O(|E′||V ′|+ |D|) time.

9.4 Separation of double cut inequalities

The separation of double cut inequalities is performed by looking for inequalities of type (6.2)
for L = 2 and of type (6.3) for L = 3 that are violated by the current solution.

The idea of the procedure is to find a partition π = (V0, ..., VL, VL+1), L ∈ {2, 3}, of G and
an edge set F ⊆ E, with |V0| = |V1| = 1 and [V0, V1] 6= ∅, which induces a double cut, with

53

i0 = 0, and whose weight is minimum with respect to x. The procedure works as follows. For all
{s, t} ∈ D, we compute the st-cut δG(s). If x(δG(s)) = k, then for every terminal s′ ∈ RD such
that x([s, s′]) > 0 and x(δG(s

′)) = k, we compute an L-st-path-cut T of G induced by a partition
π = (V0, ..., VL, VL+1) with V0 = {s} and V1 = {s′}. For this, we use the correspondance between
L-st-path-cuts in G and st-dicuts in the aggregated graph G̃, given by Lemma 2.1. Since the
desired partition π must be such that V0 = {s} and V1 = {s′}, we must have T ∩ [s, s′] = ∅ and
δG(s) \ [s, s

′] ⊆ T . Thus, any st-dicut of G̃ corresponding to T must contain arcs corresponding
to the edges of δG(s) \ [s, s

′] and no arcs corresponding to the edges of [s, s′]. Also remark that
this st-dicut does not contain any arc of the form (u′, u′′), u ∈ V or of the form (t′, t), t ∈ TD.
Therefore, to compute an st-dicut of G̃ corresponding to the desired L-st-path-cut, we start by
giving the arcs corresponding to the edges of [s, s′] an infinit capacity and removing all the arcs
corresponding to the edges of δG(s) \ [s, s′]. Then, we give to every arc of the form (u′, u′′),
u ∈ V and (t′, t), t ∈ TD, an infinit capacity. Afterwards, we compute a maximum flow between

s and t with respect to these capacities. Let δ+
G̃
(W̃) denote the st-dicut thus obtained.

To check that this dicut corresponds to an L-st-path-cut of G, we apply the following procedure.
We first remove from G all the edges corresponding to the arcs of δ+

G̃
(W̃). Then, we compute the

shortest paths between s and every node of V \ {s} with respect to length 1 on the remaining
edges. Let l(u) denotes the length of a shortest path between s and u, u ∈ V \{s}. If l(t) is finite,

then δ+
G̃
(W̃) corresponds to an L-st-path-cut of G. In this case, we construct the partition π such

that V0 = {s}, V1 = {s′}, Vi = {u ∈ V \{s, s′, t} | l(u) = i}, i = 2, ..., L, and VL+1 = V \ (
L⋃

i=0

Vi).

Let Ê be the edge set [V1, V2] (resp. [V1 ∪ V4, V2]) if L = 2 (resp. L = 3) having a positive value
with respect to x. We choose the edges of F among those of Ê having the highest value and
such that |F | and k have different parities. If |Ê| ≥ k − 1, then F consists of the k − 1 edges
having the highest value. If |Ê| < k − 1 and |Ê| has a parity different from that of k, then we
let F = Ê. If |Ê| < k − 1 and |Ê| has the same parity as k, then we let F = Ê \ {e0} where e0
is the edge of Ê having the smallest value.
Finally, we check if the inequality (6.2) (resp. (6.3)) for L = 2 (resp. L = 3) induced by π and
F is violated or not.
We repeat this procedure for every demand {s, t} ∈ D, and the violated inequalities found are
added to the constraint pool. To compute the maximum flow in G̃ we use the algorithm of

Goldberd and Tarjan [35] which runs in O(|Ã||Ṽ | log |Ṽ |2

|Ã|
) time. If G is complete and L = 3, we

have that |Ṽ | = 2|V |+ |SD|+ |TD| and |Ã| = (|V | − 1)(|V |+ |SD|+ |TD|). Thus, the maximum

flow algorithm runs in O(|V |3 log (2|V |+|SD|+|TD|)2

(|V |−1)(|V |+|SD|+|TD|)). To compute the shortest paths in G

between s and the other nodes of V , we use the algorithm of Dijkstra [28] which is implemented
to run is O(|V ||E| log(|V |)) time. As the computation of a cut in the graph G requires at most

|E| iterations, our separation procedure runs in O(|V |3 log |V | (2|V |+|SD|+|TD|)2

(|V |−1)(|V |+|SD|+|TD|))) time, and
hence is polynomial. If L = 2, the algorithm is also polynomial.
For the case of the separated flow formulations, the procedure is the same except that the
computation of the L-st-path-cut, induced by the partition π, is performed using the directed
graph G̃st associated with the demand {s, t}. We remove from G̃st all the arcs corresponding
to the edges of δG(s) \ [s, s

′], and those corresponding to the edges of [s, s′] are given an infinit
capacity. In the same way, we give an infinit capacity to every arc of the form (u, u′), with
u ∈ Ṽst. Then, we compute a maximum flow between s and t in G̃st. Also, for this formulations,
the algorithm remains polynomial.

54

9.5 Separation of triple path-cut inequalities

To separate triple path-cut inequalities, we devise a heuristic. This heuristic is based on Theorem
8.3. The procedure is given for L = 3. It is similar for L = 2. The main idea is to compute,
given two demands {s, t1} and {s, t2}, a family Π = {V0, V1, V2, V3, V

1
4 , V

2
4 , V

1
5 , V

2
5 } of node sets

from a 3-st1-path-cut T induced by a partition of the form (V0, V1 ∪ V 1
4 ∪ V 2

4 , V2, V3 ∪ V 1
5 , V

2
5).

In fact, from this latter partition, one can obtain a whole triple path-cut by fixing the sets V 1
4 ,

V 2
4 , V

1
5 and V 2

5 . In our procedure, we will look for those triple path-cuts such that V 1
4 = ∅,

V 2
4 = {t2}, V

1
5 = ∅ and V 2

5 = {t1}.
The procedure works as follows. For each source s ∈ SD, we apply the following steps. Let {s, t1}
and {s, t2} be two demands associated with s. We first look for a partition π = (V ′

0 , V
′
1 , V

′
2 , V

′
3 , V

′
4)

which induces an L-st1-path-cut of G, denoted by T , and such that V ′
0 = {s} and t2 ∈ V ′

1 . For

this, we use the correspondance between the L-st1-path-cuts in G and st1-dicuts in G̃. Since
t2 ∈ V ′

1 and V ′
0 = {s}, we have that T ∩ [s, t2] = ∅ and any arc of G̃, corresponding to the edges

of [s, t2], does not appear in an st1-dicut of G̃ corresponding to T . Thus, computing T reduces
to compute a minimum weight st1-dicut in G̃. To do this, we compute a maximum flow in G̃
between s and t1 with respect to the following capacities:

• for every arc of Ã([s, t2]) or of the form (u′, u′′) or (t′, t), with u ∈ N and t ∈ TD, we give
an infinit capacity;

• for every arc of Ã(e), with e ∈ E \ [s, t2], we give the capacity x(e).

Let δ+
G̃
(W̃) denote the directed cut thus obtained. We check if it corresponds to an L-st1-path-

cut by performing the following steps. First, we remove from G all the edges corresponding
to the arcs of δ+

G̃
(W̃) and compute all the shortest paths between s and the other nodes of G

with respect to the length 1 on the remaining edges. Let l(u) denote the length of the shortest

path between s and u, for all u ∈ V \ {s}. If l(t1) is finite, then δ+
G̃
(W̃) corresponds to an

L-st1-path-cut, denoted by T . In this case, we construct the partition π such that V ′
0 = {s},

V ′
i = {u ∈ V | l(u) = i}, for i ∈ {1, 2, 3}, and for all the nodes u ∈ V \ {t1} such that l(u) ≥ 4

or l(u) = +∞, we assign them alternatively to V ′
1 and V ′

3 . Finally, V
′
4 = V \ (

3⋃

i=0

V ′
i). Note that

t1 ∈ V ′
4 as l(t1) > 3 and t2 ∈ V ′

1 . Now the family of node sets Π is such that V0 = V ′
0 = {s},

V1 = V ′
1 \ {t2}, V2 = V ′

2 , V3 = V ′
3 , V

1
4 = ∅, V 2

4 = {t2}, V
1
5 = ∅ and V 2

5 = {t1}.
Let Ê be the set of edges of [V 2

3 , V1∪V 1
4]∪ [V 1

3 , V
2
4] having a positive value with respect to x. We

choose the edges of F among those of Ê having the highest value and such that |F | and k have
different parities. If |Ê| ≥ k − 1, then F consists of the k − 1 edges having the highest value.
If |Ê| < k − 1 and |Ê| has a parity different from that of k, then we let F = Ê. If |Ê| < k − 1
and |Ê| has the same parity as k, then we let F = Ê \ {e0} where e0 is the edge of Ê having the
smallest value.
Finally, we check if the triple path-cut inquality induced by Π and F is violated or not.
Our algorithm runs in polynomial time, as it consists, for every pair {{s, t1},{s, t2}} of demands,
in computing a maximum flow and shortest paths between s and the other nodes of G. In our
implementation, we use the algorithm of Goldberg and Tarjan [35] for the maximum flow and the

algorithm of Dijkstra [28] for the shortest paths which run in O(|V |3 log (2|V |+|SD|+|TD|)2

(|V |−1)(|V |+|SD|+|TD|)) and

O(|V |3 log |V |) time, respectively. Thus, the procedure runs inO(|D|2(|V |3 log |V | (2|V |+|SD|+|TD|)2

(|V |−1)(|V |+|SD|+|TD|)))
time, and thus, is polynomial.
For the case of the separated formulations, the procedure is the same except that the compu-
tation of the L-st-path-cut inducing the partition π is performed using the directed graph G̃st1

55

associated with the demand {s, t1}. All the arcs corresponding to the edges of [s, t2] are given
an infinit capacity. In the same way, we give an infinit capacity to every arc of the form (u, u′),
with u ∈ Ṽst and every arc corresponding to an edge e ∈ E \ [s, t2] is given the capacity x(e).
Then, we compute a maximum flow between s and t1 in G̃st1 .

9.5.1 Separation of aggregated cut inequalities

To separate the aggregated cut inequalities, we consider the inequalities of type (7.4) and (7.8)
and devise a heuristic to separate them. In particular, we consider the inequalities of type (7.4)
and (7.8) described in the two following lemmas. The separation procedure relies on a special
graph (introduced later) defined with respect to G̃ (G̃st, {s, t} ∈ D) and a fractional solution.
Recall that these inequalities are valid for the polytopes kHNDPAg(G,D) and kHNDPCu(G,D).

Lemma 9.1 Consider an inequality αx + βy ≥ γ of type (7.4) induced by a node set fam-

ily Π = {W̃1, ..., W̃p}, p ≥ 2, and arc subsets F̃ 0
i ⊆ δ+

G̃
(W̃i) such that |F̃ 0

i | = k − 1. Let

F̃ =

p⋃

i=1

(δ+
G̃
(W̃i) \ F̃

0
i), F̃2 be the set of arcs of Ã which appear twice in F̃ and F̃1 those which

appear once in F̃ . Suppose that for all arc a ∈ F̃1 there is another arc a′ ∈ F̃1 which corresponds
to the same edge of G as a. Let E2 be the set of edges of G corresponding to the arcs of F̃1.

If (x, y) ∈ R
E × R

Ã is a fractional solution of kHNDPAg(G,D) such that y(δ+
G̃
(W̃i)) = k and

y(a) = 1, for all a ∈ F̃ 0
i , i = 1, ..., p, then αx+ βy ≥ δ is violated by (x, y) if and only if

2
∑

e∈E2

x(e)−
∑

a∈F̃1

y(a) < 1. (9.7)

Proof. First observe that inequality αx+ βy ≥ δ is violated by (x, y) if and only if

∑

a∈F̃2

y(a) +
∑

e∈E2

x(e) <
p+ 1

2
. (9.8)

Since y(δ+
G̃
(W̃i)) = k, |F̃ 0

i | = k − 1 and y(a) = 1 for all a ∈ F̃ 0
i , we have that

y(δ+
G̃
(W̃i) \ F̃

0
i) = 1 for i = 1, ..., p.

Thus,

p∑

i=1

y(δ+
G̃
(W̃i) \ F̃

0
i) = 2

∑

a∈F̃2

y(a) +
∑

a∈F̃1

y(a) = p and hence,

∑

a∈F̃2

y(a) =
p

2
−

1

2

∑

a∈F̃1

y(a). (9.9)

From (9.8) and (9.9), we get

p−
∑

a∈F̃1

y(a) + 2
∑

e∈E2

x(e) < p+ 1.

and the result follows. �

56

Lemma 9.2 Consider an inequality αx+
∑

{s,t}∈D

ystβst ≥ γ of type (7.8) induced by a family

of node sets Π = {W̃ s1t1
1 , ..., W̃ s1t1

p1 , ..., W̃
sqtq
1 , ..., W̃

sqtq
pq }, with pi ≥ 1, for i = 1, ..., q, and

p =

q∑

i=1

pi ≥ 2, and arc subsets F̃ siti,0
j ⊆ δ+

G̃siti

(W̃ siti
j) such that |F̃ siti,0

j | = k − 1, j = 1, ..., pi,

i = 1, ..., q. Let F̃ siti =

pi⋃

j=1

[δ+
G̃siti

(W̃ siti
j) \ F̃ siti,0

j], i = 1, ..., q. Also let F̃ siti,2 be the set of arcs

of Ãsiti which appear twice in F̃ siti and F̃ siti,1 those which appear once in F̃ siti . Suppose that
for all arc a ∈ F̃ siti,1, there exists a unique arc a′ ∈ F̃ si′ ti′ ,1 for some i′ ∈ {1, ..., q} which
corresponds to the same edge of G as a. Let E2 be the set of edges of G corresponding to these
arcs.
If (x, ys1t1 , ..., ysdtd) is a fractional solution of kHNDPCu(G,D) such that

ysiti(δ
+

G̃siti

(W̃siti)) = k and ysiti(a) = 1, for all a ∈ F̃ siti,0, i = 1, ..., q, then

αx+
∑

{s,t}∈D

ystβst ≥ γ is violated by (x, ys1t1 , ..., ysdtd) if and only if

2
∑

e∈E2

x(e)−

q∑

i=1

∑

a∈F̃ siti

ysiti(a) < 1. (9.10)

Proof. Similar to the proof of Lemma 9.1. �

In the following, we are going to discuss the separation of the aggregated cut inequalities (7.4)
for kHNDPAg. After that, we will describe the separation procedure for the aggregated cut
inequalities (7.8) related to kHNDPCu.
To this end, we introduce an undirected graph, denoted by H(x, y), obtained from G̃ and defined
with respect to (x, y). As we will see, the main property of this graph is that there is a matching
between some particular cycles of H(x, y) and inequalities of type (7.4), described as in Lemma
9.1. The graph H(x, y) is obtained as follows.
For each arc of Ã having a fractional value with respect to y, we add a node in H(x, y). For
convenience, we will denote by a the node of H(x, y) corresponding to an arc a of G̃. We add
an edge in H(x, y) between two nodes a1 and a2 if one of the conditions below is satisfied.

1. There exists an st-dicut of G̃(y), say δ+
G̃(y)

(W̃), for some {s, t} ∈ D, which contains a1 and

a2, and such that y(δ+
G̃(y)

(W̃)) = k, |δ+
G̃(y)

(W̃) ∩ Ã1(y)| = k − 1 and δ+
G̃(y)

(W̃) ∩ Ãf (y) =

{a1, a2}.

2. The arcs a1 and a2 correspond to the same edge of G.

The edges added by Condition 1 will be said of type 1 and those added by Condition 2 will
be said of type 2. As we will see later, both edges of type 1 and 2 can be find in polynomial
time. Figures 16 and 17 give respectively the support graph G̃(y) of a fractional solution (x, y)
of kHNDPAg(G,D) and the graph H(x, y) associated with that solution.

57

Arc with value 1

Arc with value 0.5

12’

1′

4’

3

21’

3’

2’

15’ 15”

2”

3”

21”

4”

12”

1”

2

4

1

Figure 16: The support graph G̃(y) of a fractional solution (x, y) for L = 3 and k = 3

58

Edge of type 1
Edge of type 2

21”,2

15”,22’,21” 3’,15”

12’,3”

21’,2” 2’,15”4’,21”12’,4”

15’,2”

3,15’

3,12’

12”,4

21”,43’,12”

21’,4”

4’,12”

Figure 17: Graph H(x, y) obtained from G̃(y)

59

Note that in the case where there is an edge of type 1 in H(x, y) between two nodes a1 and a2,
we have that y(a1)+ y(a2) = 1. Also, if there is an edge of type 2 between two nodes a1 and a2,
then x(e) > 0 where e is the edge of G corresponding to a1 and a2. Also it is not hard to see
that, if in H(x, y) there are two edges of type 2 of the form a1a2 and a2a3, then there is also an
edge of type 2 between a1 and a3 (a1, a2 and a3 form a triangle).
Now we give the main property of H(x, y).

Lemma 9.3 Let C = {a1a2, a2a3, ..., a|C|a1} be a cycle of H(x, y) and {ai1aj1 , ..., aipajp} the set
of edges of C of type 1. Also, let V1 be the set of nodes of C incident to two consecutive edges of
type 1. Suppose that p ≥ 2 and that C does not contain two consecutive edges of type 2. Then,
C yields an inequality of type (7.4) defined by Π = {W̃1, ..., W̃p} and F̃ 0

r = δG̃(y)(W̃r)\{air , ajr},

r = 1, ..., p, where W̃r is the node set of G̃ associated with the edge airajr in H(x, y).

Proof. First observe that the arcs of Ã(y) which appear twice in F̃ =

p⋃

i=1

[δG̃(y)(W̃r) \ F̃
0
i] are

those of G̃(y) corresponding to the nodes of V1, while the arcs which appear once in F̃ are those
of Ã(y) corresponding to the nodes of {a1, ..., a|C|} \ V1. Thus we let F̃2 and F̃1 be these two
sets of arcs, respectively. Since every node a ∈ {a1, ..., a|C|} \ V1 is incident to one edge of C of

type 2, say aa′, the arcs a and a′ are in F̃1 and correspond to the same edge of G. Thus, the
aggregated cut inequality associated with this configuration can be written as

∑

a∈F̃2

y(a) +
∑

e∈E2

x(e) ≥
⌈p
2

⌉
,

where E2 is the edge set of G corresponding to the arcs of F̃1. �

To illustrate that lemma, on Figure 17, the cycle

C = {(3, 15′)(3, 12′), (3, 12′)(21′′, 4), (21′′, 4)(4′, 21′′), (4′, 21′′)(3′, 15′′), (3′, 15′′)(3, 15′)}

contains three edges of type 1, (3, 15′)(3, 12′), (3, 12′)(21′′, 4) and (4′, 21′′)(3′, 15′′), and two edges
of type 2, (21′′, 4)(4′, 21′′) and (3′, 15′′)(3, 15′), that are not incident. One can see on Figure 16

that the node sets W̃1 = {3}, W̃2 = {3, 2′, 15′, 21′′, 3′′, 2′′, 15′′, 2} and W̃3 = {1, 12′, 3′, 4′, 1′′, 12′′, 4′′, 3′′, 2′′, 4}
induce two 3− 4-dicuts and one 1− 2-dicut of G̃(y), and that these dicuts contain respectively
the pairs of arcs {(3, 15′), (3, 12′)}, {(3, 12′), (21′′, 4)} and {(4′, 21′′), (3′, 15′′)}. Moreover, they

are such that y(δ+
G̃(y)

(W̃i)) = k and |δ+
G̃(y)

(W̃i) ∩ Ã1(y)| = k − 1, i ∈ {1, 2, 3}. Finally, it ob-

viously follows that Π = {W̃1, W̃2, W̃3} and F̃ 0
1 = {(3, 1′), (3, 2′)}, F̃ 0

2 = {(3, 1′), (2′′, 4)} and

F̃ 0
3 = {(4′′, 2), (3′′, 2)} induce an aggregated cut inequality of type (7.4). Furthermore, this

inequality is violated by (x, y).
Before describing the construction procedure for H(x, y), we give the following lemma.

Lemma 9.4 Let (x, y) be a fractional solution of kHNDPAg(G,D), and let a1 and a2 be two arcs

of G̃ with fractional values and {s, t} ∈ D. If there exists a minimum weight st-dicut of G̃(y),

say δ+
G̃(y)

(W̃), such that {a1, a2} ⊆ δ+
G̃(y)

(W̃) and δ+
G̃(y)

(W̃) \ {a1, a2} ⊆ Ã1(y), then δ+
G̃(y)

(W̃)

can be considered in such a way that every arc a ∈ δ+
G̃(y)

(W̃) \ {a1, a2} is either in δ+
G̃(y)

(s) or in

δ−
G̃(y)

(t) \ [t′, t]G̃(y).

60

Proof. Let δ+
G̃(y)

(W̃) be a minimum weight st-dicut of G̃(y) containing a1 and a2 and such that

δ+
G̃(y)

(W̃) \ {a1, a2} ⊆ Ã1(y). Suppose also that there is an arc a ∈ δ+
G̃(y)

(W̃) \ {a1, a2} which

is not in δ+
G̃(y)

(s) ∪ [δ−
G̃(y)

(t) \ {(t′, t)}]. Hence, a is either of the form (u′, v′′), with u′ ∈ N ′,

v′′ ∈ N ′′ and u and v may be the same, or of the form (t′, t). If a = (u′, v′′), then u′ ∈ W̃ and

the node set W̃ ′ = W̃ \ {u′} induces an st-dicut. Since δ+
G̃(y)

(W̃) is a minimum weight st-dicut,

[s, u′]
G̃(y)

6= ∅ and therefore, δ+
G̃(y)

(W̃ ′) = (δ+
G̃(y)

(W̃) \ {(u′, v′′)})∪ {(s, u′)}. Since δ+
G̃(y)

(W̃) is of

minimum weight with respect to y, we have that y(s, u′) ≥ y(u′, v′′). As y(u′, v′′) = 1, we also

have that y(s, u′) = 1 and that δ+
G̃(y)

(W̃ ′) is a minimum weight st-dicut. If a = (t′, t), then since

δ+
G̃(y)

(W̃) is of minimum weight in G̃(y), there is an arc of the form (s, t′). Thus, W̃ ′ = W̃ \ {t′}

induces an st-dicut of G̃(y). Moreover, as the weight of δ+
G̃(y)

(W̃) is minimum with respect to y,

we have that y(s, t′) ≥ y(t′, t) = 1. Hence, y(s, t′) = 1 and δ+
G̃(y)

(W̃ ′) is also of minimum weight.

By repeating this operation until δ+
G̃(y)

(W̃) does not contain any arc of the form (u′, v′′) or

(t′, t), we obtain a minimum weight st-dicut of G̃(y) which contains a1 and a2, such that

δ+
G̃(y)

(W̃) \ {a1, a2} ⊆ Ã1(y) and such that every arc of δ+
G̃(y)

(W̃) \ {a1, a2} is either in δ+
G̃(y)

(s)

or in δ−
G̃(y)

(t) \ [t′, t]G̃(y), which ends the proof of the Lemma. �

A consequence of Lemma 9.4 is that an st-dicut δ+
G̃(y)

(W̃) of G̃(y) containing two arcs a1 and

a2 with fractional values, such that y(δ+
G̃(y)

(W̃)) = k and δ+
G̃(y)

(W̃) ∩ Ãf (y) = {a1, a2} can be

obtained by computing st-dicuts of G̃(y) containing a1 and a2 and such that δ+
G̃(y)

(W̃)\{a1, a2} ⊆

δ+
G̃(y)

(s) ∪ (δ−
G̃(y)

(t) \ {(t′, t)}).

The construction of the graph H(x, y) is performed by computing first the edges of type 2. For
every pair of arcs (a, a′) ∈ Ã(y) × Ã(y), corresponding to the same edge of E and having a
fractional value, we add an edge of type 2 between the corresponding nodes in H(x, y). To
compute the edges of type 1, we use a procedure based on Lemma 9.4. The idea is to compute
a maximum flow in G̃(y) with respect to appropriate capacities separating s and t. Given two
arcs a1 and a2 such that y(a1) + y(a2) = 1 and a pair {s, t} ∈ D, we first give 0 as capacity
to a1 and a2. Then, we give an infinit capacity to every other arc of G̃(y) having a fractional
value. This ensures that a1 and a2 are the only arcs of fractional values present in the st-dicut
we will obtain. We give an infinit capacity to every arc of δ+

G̃(y)
(s) and δ−

G̃(y)
(t) indicent to a1

and a2 and having value 1. We also give an infinit capacity to every arc of [t′, t]G̃(y). For all

other arc a, we give y(a) as capacity (note that for these arcs, y(a) = 1). Then, we compute

a maximum flow between s and t with respect to these capacities. Let δ+
G̃(y)

(W̃) denote the

st-dicut thus obtained. By Lemma 9.4, we have that δ+
G̃(y)

\ {a1, a2} ⊆ Ã1(y). We then check

if y(δ+
G̃(y)

(W̃)) = k and |δ+
G̃(y)

(W̃) \ {a1, a2}| = k − 1. If this is the case, then we add an edge

of type 1 between the nodes of H(x, y) corresponding to a1 and a2. We repeat this procedure
for all pairs of arcs (a1, a2) having fractional value and such that y(a1) + y(a2) = 1, and for all
demand {s, t} ∈ D.
Now we describe the separation procedure of the aggregated cut inequalities. The procedure is
based on Lemma 9.1. Thus we generate inequalities of type (7.4) which satisfy the conditions
of that lemma. First, we compute H(x, y) as described above. Then we compute one or more

61

cycles of H(x, y) which contain an odd number of edges of type 1 and which do not contain two
consecutive edges of type 2. By Lemma 9.3, every cycle satisfying these conditions yields an
aggregated cut inequality of type (7.4). We then check if for each inequality thus obtained, (x, y)
satisfies inequality (9.7). If this is the case, then by Lemma 9.1, this inequality is violated by
(x, y) and added to the set of violated inequalities. If no cycle is found or if for every inequality
of type (7.4) obtained, (x, y) does not satisfy inequality (9.7), then the procedure ends with
failure.
To detect cycles of H(x, y) satisfying the conditions of Lemma 9.3, we use a procedure in which
we compute shortest paths in an auxiliary graph obtained fromH(x, y). LetHb be the undirected
graph obtained as follows. The node set of Hb is composed of two copies, denoted by V ′

b and
V ′′
b , of the node set of H(x, y). The copies of a node a of H(x, y) are denoted by a′ and a′′ with

a′ ∈ V ′
b and a′′ ∈ V ′′

b . For every edge a1a2 of H(x, y) of type 1, we add in Hb two edges of the
form a′1a

′′
2 and a′2a

′′
1 and give them 1 as length. For every edge a1a2 of H(x, y) of type 2, we add

in Hb two edges of the form a′1a
′
2 and a′′1a

′′
2 and give them a length M sufficiently large. Figure

18 shows an example of graph Hb obtained from a subgraph of H(x, y) given in Figure 17. It is
not hard to see that a path between two nodes a′ and a′′ of Hb corresponds to a cycle of H(x, y)
containing node a and an odd number of edges of type 1, and does not contain two consecutive
edges of type 2, and vice versa.

Edge of type 1

Edge of type 2

1 1

1 1

1 1

∞

Graph Hb

∞

∞

∞

Subgraph of H(x, y)

(21”,4)

(3’,15”)

(4’,21”)”

(3’,15”)”

(21”,4)”

(3,12’)”

(21”,4)’

(3’,15”)’

(4’,21”)’

(3,12’)’

(3,15’)’

(3,12’)

(3,15’)

(4’,21”)

(3,15’)”

Figure 18: Graph Hb obtained from a subgraph of H(x, y)

For our separation procedure, we compute the shortest paths between each pair of nodes (a′, a′′)
of Hb, for every node a of H(x, y).

Now we turn to the aggregated cut inequalities for the Cut formulation. The separation proce-
dure for these inequalities is similar to that described above for kHNDPAg. Given a fractional
solution (x, ys1t1 , ..., ysdtd) of kHNDPCu(G,D), we construct the graph H(x, ys1t1 , ..., ysdtd) in

a similar way as H(x, y), that is for all {s, t} ∈ D, and for every arc a ∈ Ãf
st(yst) we asso-

ciate a node in H(x, ys1t1 , ..., ysdtd). We add an edge, called of type 1, between two nodes a1

62

and a2 if they belong to the same graph G̃st, yst(a1) + yst(a2) = 1 and there exists an st-

dicut δ+
G̃st(yst)

(W̃) containing a1 and a2 and such that δ+
G̃st(yst)

(W̃) ∩ Ãf
st(yst) = {a1, a2} and

|(δ+
G̃st(yst)

(W̃) \ {a1, a2})∩ Ã1
st(yst)| = k− 1. We also add an edge, called of type 2, between two

nodes a1 ∈ Ãf
siti

(ysiti) and a2 ∈ Ãf
si′ ti′

(ysi′ ti′) if the arcs a1 and a2 correspond to the same edge
of G.
The st-dicut δ+

G̃st(yst)
(W̃) used to set edges of type 1 can be computed with the procedure used

for kHNDPAg. As before, every cycle of H(x, ys1t1 , ..., ysdtd) which contains an odd number of
edges of type 1 and which does not contain two consecutive edges of type 2 yields an inequality of
type (7.8). These cycles are computed by looking for shortest paths in a graph Hb obtained in a
similar way as for kHNDPAg. Finally, for each cycle thus obtained, we check if (x, ys1t1 , ..., ysdtd)

satisfies or not inequality (9.10) with respect to the sets E2 and F̃ siti,1 obtained from that cycle.
If this is the case, then by Lemma 9.2, the corresponding inequality of type (7.8) is violated by
(x, ys1t1 , ..., ysdtd) and hence added to the set of violated inequalities.
The procedure is the same for all the formulations and is described below.

10 Concluding remarks

In this paper, we have studied the kHNDP and particularly focused on the polytope associated
with the problem. We have introduced several classes of inequalities that are valid for the
polytope associated with the natural formulation, as well as inequalities valid for an extended
formulation of the kHNDP. We have also investigated conditions for the various inequalities to
define facets. Then, we have presented separation algorithms for each class of inequalities.
The next step of this study is to devise a Branch-and-Cut algorithm using the inequalities pre-
sented in this report, and conduct a computational study for assessing the efficiency of these
inequaliyties. The litterature shows that some computational effort must be done for efficiently
solving the kHNDP, espcially for large scale instances.

Finally, it appears that the polytope associated with the natural formulation of the kHNDP
remains not well known when L ≥ 4. To the best of our knowledge, except Huygens and Mahjoub
[46] who explicitly described the inequalities which are necessary in the natural formulation of the
kHNDP for L = 4 and k = 2, no further class of valid inequalities is known for that formulation
when L ≥ 4 and k ≥ 2. Thus, identifiying new classes of facet-defining inequalities for any L ≥ 4
could represent an interesting challenge from a theoretical point of view but also for practical
purposes, as these inequalities may help in efficiently solving the kHNDP for any L ≥ 4.

References

[1] CPLEX, ”http://www-01.ibm.com/software/commerce/optimization/cplex-optimizer/”.

[2] TSPLIB, ”http://www.iwr.uni-heidelberg.de/groups/comopt/software/TSPLIB95/”.

[3] M. Bäıou, F. Barahona and A. R. Mahjoub, ”Separation of partition inequalities”, Mathe-
matics of Operations Research 25, 2000, pp. 243-254.

[4] M. Bäıou and A. R. Mahjoub, ”Steiner 2-edge connected subgraph polytopes on series-
parallel graphs”, SIAM Journal on Discrete Mathematics 10, 1997, pp. 505-514.

63

[5] F. Barahona and A. R. Mahjoub, ”On two-connected subgraph polytopes”, Discrete Math-
ematics 147, 1995, pp. 19-34.

[6] A. Balakrishnana, C. Vad Karsten, ”Container shipping service selection and cargo routing
with transshipment limits”, European Journal of Operational Research 263, 2017, pp. 652-
663.

[7] R. E. Bellman, ”On a Routing Problem”, Quarterly of Applyied Mathematics 16 (1), pp.
87-90, 1958.

[8] F. Bendali, I. Diarrassouba, M. Didi Biha, A. R. Mahjoub and J. Mailfert, ”A Branch-and-
Cut algorithm for the k-edge-connected subgraph problem”, Networks 55 (1), 2010, pp.
13-32.

[9] F. Bendali, I. Diarrassouba, A. R. Mahjoub and J. Mailfert, ”On the k-edge-disjoint 3-hop-
constrained paths polytope”, Discrete Optimization 7 (4), 2010, pp. 222-233.

[10] Q. Botton, B. Fortz, L. Gouveia, M. Poss, ”Benders Decomposition for the Hop-Constrained
Survivable Network Design Problem”, INFORMS Journal on Computing 25 (1), 2013, pp
1-191.

[11] S. Chopra, ”The k-edge connected spanning subgraph polyhedron”, SIAM Journal on Dis-
crete Matematics 7, 1994, pp. 245-259.

[12] C. R. Coullard, A. B. Gamble and J. Lui, ”The k-walk polyhedron”, Advances in Opti-
mization and Approximation, Nonconvex Optimization Application 1, D-Z Du and J. Sun
editions, Kluwer Academic Publishers, Dordrecht, The Netherlands, 1994, pp. 9-29.

[13] R. Coullard, A. Rais, R. L. Radin, D. K. Wagner, ”Linear time algorithm for the 2-connected
Steiner subgraph problem on special classes of graphs”, Networks 23, 1993, pp. 195-206.

[14] R. Coullard, A. Rais, R. L. Radin, D. K. Wagner, ”The Dominant of the 2-connected Steiner
subgraph polytope for W4-free graphs”, Discrete Applied Mathematics 66, 1996, pp. 33-43.

[15] G. Dahl, ”Directed Steiner problems with connectivity constraints”, Discrete Appilied Math-
ematics 47, 1993, pp. 109-128.

[16] G. Dahl, ”The Design of Survivable Directed Networks”, Telecommunication Systems 2,
1992, pp. 349-377.

[17] G. Dahl, ”The 2-hop spanning tree problem”, Operations Research Letters 23 (1-2), 1999,
pp. 21-26.

[18] G. Dahl, ”Notes on polyhedra associated with hop-constrained paths”, Operations Research
Letters 25 (2), 1999, pp. 97-100.

[19] G. Dahl and L. Gouveia, ”On the directed hop-constrained shortest path problem”, Oper-
ations Research Letters 32, 2004, pp. 15-22.

[20] G. Dahl, N. Foldnes and L. Gouveia, ”A note on hop-constrained walk polytopes”. to appear
in Operations Research Letters.

[21] G. Dahl and B. Johannessen, ”The 2-path network problem”, Networks 43 (3), 2004, pp.
190-199.

64

[22] G. Dahl, D. Huygens, A. R. Mahjoub and P. Pesneau, ”On the k edge-disjoint 2-hop-
constrained paths polytope”, Operation Research Letters 34 (5), 2006, pp. 577-582.

[23] I. Diarrassouba, ”On the complexity of the separation problem for rounded capacity in-
equalities”, Discrete Optimization 25,2017, pp. 86-104.

[24] I. Diarrassouba, V. Gabrel, L. Gouveia, A. R. Mahjoub, P. Pesneau, ”Integer program-
ming formulations for the k-edge-connected 3-hop-constrained network design problem”,
Networks Volume 67 (2), 2016, pp. 148-169.

[25] M. Didi Biha and A. R. Mahjoub, ”The k-edge connected subgraph problem I: Polytopes
and critical extreme points”, Linear Algebra and its Applications 381, 2004, pp. 117-139.

[26] M. Didi Biha and A. R. Mahjoub, ”k-edge connected polyhedra on series-parallel graphs”,
Operations Research Letters 19, 1996, pp. 71-78.

[27] M. Didi Biha and A. R. Mahjoub, ”Steiner k-edge connected subgraph polyhedra”, Journal
of Combinatorial Optimization 4, 2000, pp. 131-134.

[28] E. W. Dijkstra, ”A note on two problems in connexion with graphs”, Numerische Mathe-
matik. 1, 1959, pp. 269-271.

[29] D. Eppstein, ”Finding the k Shortest Paths”, SIAM Journal on Computing 28(2), 1999,
pp. 652-673

[30] K. P. Eswaran and R. E. Tarjan, ”Augmentation problems”, SIAM Journal on Computing
5, 1976, pp. 653-665.

[31] J. Fonlupt and A. R. Mahjoub, ”Critical extreme points of the 2-edge connected spanning
subgraph polytope”, Mathematical Programming 105, 2006, pp. 289-310.

[32] B. Fortz, A. R. Mahjoub, S. T. McCormick and P. Pesneau, ”Two-edge connected subgraphs
with bounded rings: Polyhedral results and Branch-and-Cut”, Mathematical Programming
105 (1), 2006, pp. 85-111.

[33] B. Fortz, M. Labbe and F. Maffioli, ”Solving the two-connected network with bounded
meshes problem”, Operations Research Letters 48, 2000, pp. 866-877.

[34] A. Frank, ” Augmenting graphs to meet edge-connectivity requirements”, SIAM Journal
on Discrete Mathematics 5, 1992, pp. 22-53.

[35] A. Goldberg and R. E. Tarjan, ”A New Approach to the Maximum Flow Problem”, Journal
of the Association for Computing Machinery 35, 1988, pp. 921-940.

[36] R. E. Gomory and T. C. Hu, ”Multi-Terminal Network Flows”, Journal of the Society for
Industrial and Applied Mathematics 9, 1961, pp. 551-570.

[37] L. Gouveia, ”Multicommodity flow models for spanning trees with hop constraints”, Oper-
ations Research Letters 25 (2), 1999, pp. 97-100.

[38] L. Gouveia, ”Using variable redefinition for computing lower bounds for minimum span-
ning”, INFORMS Journal on Computing 10 (2), 1998, pp. 180-188.

65

[39] L. Gouveia and P. icio and A. de Sousa and R. Valadas, ”MPLS over WDM Network Design
with Packet Level QoS Constraints based on ILP Models”, In Proceedings of INFOCOM
2003, 2003.

[40] L. Gouveia and C. Requejo, ”A new Lagrangean relaxation approach for the hop-contrained
minimum spanning tree problem”, European Journal of Operations Research 25 (2), 2001,
pp. 539-552.

[41] M. Grötschel and C. L. Monma, ”Integer polyhedra arising from certain network design
problems with connectivity constraints”, SIAM Journal on Discrete Mathematics 3, 1990,
pp. 502-523.

[42] M. Grötschel, C. L. Monma and M. Stoer, ”Polyhedral approches to network survivability”,
In F. Roberts, F. Hwang and C. L. Monma, eds, Reliability of computer and Communication
newtorks, Vol 5, Series Discrete Mathematics and Computer Science, AMS/ACM, 1991, pp.
121-141.

[43] M. Grötschel, C. L. Monma and M. Stoer, ”Polyhedral and computational investi-
gations arising for designing communication networks with high survivability require-
ments”,Operation Research 43, 1995, pp. 1012-1024.

[44] D. Gusfield, ”Very simple method for all pairs network flow analysis”, Society of Industrial
and Applied Mathematics 009, 1990, pp. 143-155.

[45] J. Hershberger, M. Maxel, S. Suri , ”ACM Transactions on Algorithms”, Transactions on
Algorithms (TALG) vol 3(4), 2007.

[46] D. Huygens and A. R. Mahjoub, ”Integer programming formulation for the two 4-hop-
constrained paths problem”, Networks 49 (2), 2007, pp. 135-144.

[47] D. Huygens, A. R. Mahjoub, M. Labbe and P. Pesneau, ”The two-edge connected hop-
constrained network design problem: Valid inequalities and Branch-and-Cut”, Networks 49
(1), 2007, pp. 116-133.

[48] D. Huygens, A. R. Mahjoub and P. Pesneau, ”Two edge-disjoint hop-constrained paths and
polyhedra”, SIAM Journal on Discrete Mathematics 18 (2), 2004, pp. 287-312.

[49] D. Huygens, M. Labbe, A. R. Mahjoub and P. Pesneau, ”The two edge-connected hop-
constrained network design problem: valid inequalities and Branch-and-Cut”, Networks 49
(1), 2007, pp. 116-133.

[50] H. Kerivin and A. R. Mahjoub, ”Design of Survivable Networks: A Survey”, Networks 46,
2005, pp. 1-21.

[51] H. Kerivin, A. R. Mahjoub and C. Nocq, ”(1,2)-survivable networks: Facets and Branch-
and-Cut”, The Sharpest Cut, MPS-SIAM Series in Optimization, M. Grötschel (Editor),
2004, pp. 121-152.

[52] Serge Lhomme, ”Vulnerability and resilience of ports and maritime networks to cascading
failures and targeted attacks”, In C. Ducruet eds., Maritime Networks, 2016, pp. 229-241.

[53] C.-W. Ko and C. L. Monma, ”Heuristics for designing highly survivable communication
networks”, Technical Report, Bellcore, Morristown, New Jersey, 1989.

66

[54] A. R. Mahjoub, ”Two-edge Connected spanning subgraphs and polyhedra”, Mathematical
Programming 64, 1994, pp. 199-208.

[55] A. R. Mahjoub, ”On perfectly Two-edge connected subgraphs and polyhedra”, Discrete
Mathematics 170, 1997, pp. 153-172.

[56] C. L. Monma, B. S. Munson and W. R. Pulleyblank, ”Minimum weight two-connected
spanning networks”, Operations Research 37, 1989, pp. 153-171.

[57] Okan Arslan, Ola Jabali, Gilbert Laporte, ”A Flexible, Natural Formulation for the Network
Design Problem with Vulnerability Constraints”, INFORMS Journal on Computing 32 (1),
2020, pp. 1-198.

[58] A. Schrijver, ”Combinatorial Optimization - Polyhedra and Efficiency. Algorithms and Com-
binatorics”, Vol. 24. Springer, Berlin, Heidelberg, 2003.

[59] Gerald Gamrath, Daniel Anderson, Ksenia Bestuzheva, Wei-Kun Chen, Leon Eifler,
Maxime Gasse, Patrick Gemander, Ambros Gleixner, Leona Gottwald, Katrin Halbig, Gre-
gor Hendel, Christopher Hojny, Thorsten Koch, Pierre Le Bodic, Stephen J. Maher, Frederic
Matter, Matthias Miltenberger, Erik Mühmer, Benjamin Müller, Marc E. Pfetsch, Franziska
Schlösser, Felipe Serrano, Yuji Shinano, Christine Tawfik, Stefan Vigerske, Fabian Wegschei-
der, Dieter Weninger, Jakob Witzig, ”The SCIP Optimization Suite 7.0”, Technical Report
- Optimization Online, March 2020.

[60] M. Stoer, ”Design of Survivable Networks”, PhD. Thesis, University of Augsburg, 1992.

67

