I Diarrassouba 
  
A R Mahjoub 
email: ridha.mahjoub@lamsade.dauphine.fr
  
Polyhedral Investigation of k Edge-Connected L-Hop-Constrained Network Design Problem

Keywords: Hop-constrained survivable network, edge-disjoint paths, hop-constrained path, valid inequalities, Branch-and-Cut algorithm

. We first present these latter formulation, and introduce several new classes of valid inequalities. Then, we study the conditions for these inequalities to define facets and present separation algorithms for these inequalities.

Introduction

Let G = (V, E) be an undirected graph with node set V and edge set E and D ⊆ V × V a set of pairs of nodes, called demands with |D| = d. If a pair {s, t} is a demand in D, we call s and t demand nodes or terminal nodes. Let L ≥ 2 be a fixed integer. If s and t are two nodes of V , an L-st-path in G is a path between s and t of length at most L, where the length is the number of edges (also called hops). Given a weight function c : E → R, which associates the weight c(e) to each edge e ∈ E and an integer k ≥ 2, the k-edge-connected L-hop-constrained network design problem (kHNDP for short) consists in finding a minimum cost subgraph of G having at least k edge-disjoint L-stpaths between each demand {s, t} ∈ D.

The kHNDP has applications in the design of survivable telecommunication networks where bounded-length paths are required. Survivable networks must satisfy some connectivity requirements; that is, the networks should still be functional after the failure of certain links. As pointed out in [START_REF] Ko | Heuristics for designing highly survivable communication networks[END_REF] (see also [START_REF] Kerivin | Design of Survivable Networks: A Survey[END_REF]), the topology that seems to be very efficient (and needed in practice) is the uniform topology, that is to say that corresponding to networks that survive after the failure of k -1 or fewer edges, for some k ≥ 2. However, this requirement is often insufficient regarding the reliability of a telecommunication network. In fact, the alternative paths could be too long to guarantee an effective routing. In data networks, such as the Internet, the elongation of the route of the information could cause a major loss in the transfer speed.

For other networks, the signal itself could be degraded by a longer routing. In such cases, the L-path requirement guarantees exactly the needed quality of the alternative routes. Moreover, in a telecommunication network, usually several commodities have to be routed in the network between pairs of terminals. In order to ensure an effective routing, there must exist a sufficient number of hop-constrained paths between each pair of terminals.

One can also find application of the kHNDP when designing reliable a container shipping service in martitime transportation. Indeed, one of the key issue for container liner shipping companies is to limit as much as possible the number of transshipments for each container, and this, for reducing the chance of losing the container (see Balakrishnan and Vad Karsten [START_REF] Balakrishnana | Container shipping service selection and cargo routing with transshipment limits[END_REF]). Moreover, ensuring edge-or node-disjoint maritime routes guaranties that the liner shipping network is less vulnerable to disruption (See Lhomme [START_REF] Lhomme | Vulnerability and resilience of ports and maritime networks to cascading failures and targeted attacks[END_REF]).

The kHNDP has been extensively investigated when there is only one demand in the network (|D| = 1). In particular, the associated polytope has received special attention. In [START_REF] Huygens | Two edge-disjoint hop-constrained paths and polyhedra[END_REF], Huygens et al. study the kHNDP for k = 2 and L = 2, 3. They give an integer programming formulation for the problem and show that the linear programming relaxation of this formulation completely describes the associated polytope. From this, they obtain a minimal linear description of that polytope. They also show that this formulation is no longer valid when L ≥ 4. In [START_REF] Dahl | On the k edge-disjoint 2-hopconstrained paths polytope[END_REF], Dahl et al. study the kHNDP when L = 2 and k ≥ 2. They give a complete description of the associated polytope in this case and show that it can be solved in polynomial time using linear programming. Bendali et al. [START_REF] Bendali | On the k-edge-disjoint 3-hopconstrained paths polytope[END_REF] generalize the results of [START_REF] Huygens | Two edge-disjoint hop-constrained paths and polyhedra[END_REF] and [START_REF] Dahl | On the k edge-disjoint 2-hopconstrained paths polytope[END_REF] and give a complete description of the polytope of the kHNDP, with |D| = 1, for any k ≥ 2 and L ∈ {2, 3} In [START_REF] Dahl | Notes on polyhedra associated with hop-constrained paths[END_REF], Dahl considers the kHNDP for k = 1 and L = 3. He gives a complete description of the dominant of the associated polytope. Dahl and Gouveia [START_REF] Dahl | On the directed hop-constrained shortest path problem[END_REF] consider the directed hopconstrained path problem. They describe valid inequalities and characterize the associated polytope when L ≤ 3. Huygens and Mahjoub [START_REF] Huygens | Integer programming formulation for the two 4-hopconstrained paths problem[END_REF] study the kHNDP when k = 2 and L ≥ 4. They also study the variant of the problem where k node-disjoint paths of length at most L are required between two terminals. They give an integer programming formulation for these two problems when L = 4. Diarrassouba et al. [START_REF] Diarrassouba | Integer programming formulations for the k-edge-connected 3-hop-constrained network design problem[END_REF] consider the problem when L ∈ {2, 3} and k ≥ 2. They introduce four extended integer programming formulations and compare these formulations to the so-called natural formulation. They show that for L ∈ {2, 3}, the LP-bound provided by these extended formulations has the same value as that provided by the natural formulation. They also solve, for L = 2, 3 and k = 3, 4, 5, some instances of the problem using CPLEX and compare the formulations in terms of efficiency.

Botton et al. [START_REF] Botton | Benders Decomposition for the Hop-Constrained Survivable Network Design Problem[END_REF] propose an extended formulation for the kHNDP for every L ≥ 2. They also develop an exact algorithm based on a Benders decomposition method, and report computational results for L ∈ {3, 4, 5}, k ∈ {1, 2, 3}, and with graphs having up to 21 nodes and |D| ∈ {5, 10}.

More recently, Arslan et al. [START_REF] Arslan | A Flexible, Natural Formulation for the Network Design Problem with Vulnerability Constraints[END_REF] investigate a variant of the kHNDP in which the designed network is such that there exists an L-st-path after the removal of at most k -1 edges from the network, for any k ≥ 2. They present an integer programming formulation relying on the design variables and present some computational results for this problem.

In [START_REF] Coullard | The k-walk polyhedron[END_REF], Coullard et al. investigate the structure of the polyhedron associated with the st-walks of length L of a graph, where a walk is a path that may go through the same node more than once. They present an extended formulation of the problem, and, using projection, they give a linear description of the associated polyhedron. They also discuss classes of facets of that polyhedron.

The kHNDP has also been studied when |D| ≥ 2. In [START_REF] Dahl | The 2-path network problem[END_REF], Dahl and Johannessen consider the case where k = 1 and L = 2. They introduce valid inequalities and develop a Branch-and-Cut algorithm. The problem of finding a minimum cost spanning tree with hop-constraints is also considered in [START_REF] Gouveia | Multicommodity flow models for spanning trees with hop constraints[END_REF][START_REF] Gouveia | Using variable redefinition for computing lower bounds for minimum spanning[END_REF][START_REF] Gouveia | A new Lagrangean relaxation approach for the hop-contrained minimum spanning tree problem[END_REF]. Here, the hop-constraints limit to a positive integer H the number of links between the root and any terminal in the network. Dahl [17] studies the problem when H = 2 from a polyhedral point of view, and gives a complete description of the associated polytope when the graph is a wheel. Finally, Huygens et al. [START_REF] Huygens | The two edge-connected hopconstrained network design problem: valid inequalities and Branch-and-Cut[END_REF] consider the problem of finding a minimum cost subgraph with at least two edge-disjoint L-hop-constrained paths between each given pair of terminal nodes. They give an integer programming formulation of that problem for L = 2, 3 and present several classes of valid inequalities. They also devise separation routines. Using these, they propose a Branch-and-Cut algorithm and discuss some computational results.

Besides hop-constraints, another reliability condition, which is used in order to limit the length of the routing, requires that each link of the network belongs to a ring (cycle) of bounded length. In [START_REF] Fortz | Solving the two-connected network with bounded meshes problem[END_REF], Fortz et al. consider the 2-node connected subgraph problem with bounded rings. This problem consists in finding a minimum cost 2-node connected subgraph (V, F ) such that each edge of F belongs to a cycle of length at most L. They describe several classes of facet-defining inequalities for the associated polytope and devise a Branch-and-Cut algorithm for the problem. In [START_REF] Fortz | Two-edge connected subgraphs with bounded rings: Polyhedral results and Branch-and-Cut[END_REF], Fortz et al. study the edge version of that problem. They give an integer programming formulation for the problem in the space of the natural design variables and describe different classes of valid inequalities. They study the separation problem for these inequalities and discuss Branch-and-Cut algorithms.

The related k-edge-connected subgraph problem and its associated polytope have also been the subject of extensive research in the past years. Grötschel and Monma [START_REF] Grötschel | Integer polyhedra arising from certain network design problems with connectivity constraints[END_REF] and Grötschel et al. [START_REF] Grötschel | Polyhedral approches to network survivability[END_REF][START_REF] Grötschel | Polyhedral and computational investigations arising for designing communication networks with high survivability requirements[END_REF] study the k-edge-connected subgraph problem within the framework of a general survivable model. They discuss polyhedral aspects and devise cutting plane algorithms. Didi Biha and Mahjoub [START_REF] Biha | k-edge connected polyhedra on series-parallel graphs[END_REF] study that problem and give a complete description of the associated polytope when the graph is series-parallel. In [START_REF] Biha | Steiner k-edge connected subgraph polyhedra[END_REF], Didi Biha and Mahjoub study the Steiner version of that problem and characterize the polytope when k is even. Chopra in [START_REF] Chopra | The k-edge connected spanning subgraph polyhedron[END_REF] studies the dominant of that problem and introduces a class of valid inequalities for its polyhedron. Barahona and Mahjoub [START_REF] Barahona | On two-connected subgraph polytopes[END_REF] characterize the polytope for the class of Halin graphs. In [START_REF] Fonlupt | Critical extreme points of the 2-edge connected spanning subgraph polytope[END_REF], Fonlupt and Mahjoub study the fractional extreme points of the linear programming relaxation of the 2-edge-connected subgraph polytope. They introduce an ordering on these extreme points and characterize the minimal extreme points with respect to that ordering. As a consequence, they obtain a characterization of the graphs for which the linear programming relaxation of that problem is integral. Didi Biha and Mahjoub [START_REF] Biha | The k-edge connected subgraph problem I: Polytopes and critical extreme points[END_REF] extend the results of Fonlupt and Mahjoub [START_REF] Fonlupt | Critical extreme points of the 2-edge connected spanning subgraph polytope[END_REF] to the case k ≥ 3 and introduce some graph reduction operations. Kerivin et al. [START_REF] Kerivin | 1,2)-survivable networks: Facets and Branchand-Cut[END_REF] study that problem in the more general case where each node of the graph has a specific connectivity requirement. They present different classes of facets of the associated polytope when the connectivity requirement of each node is at most 2 and devise a Branch-and-Cut algorithm for the problem in this case. In [START_REF] Bendali | A Branch-and-Cut algorithm for the k-edge-connected subgraph problem[END_REF], Bendali et al. study the k-edge-connected subgraph problem for the case k ≥ 3. They introduce several classes of valid inequalities and discuss the separation algorithm for these inequalities. They devise a Branch-and-Cut algorithm using the reduction operations of [START_REF] Biha | The k-edge connected subgraph problem I: Polytopes and critical extreme points[END_REF] and give some computational results for k = 3, 4, 5. A complete survey on the k-edge-connected subgraph problem can be found in [START_REF] Kerivin | Design of Survivable Networks: A Survey[END_REF].

In this work, we are mainly interested in the polyhedral description of the kHNDP polytope when L ∈ {2, 3}. We first present the integer programming formulations for the kHNDP introduced by Diarrassouba et al. [START_REF] Diarrassouba | Integer programming formulations for the k-edge-connected 3-hop-constrained network design problem[END_REF] when L = 2, 3 and k ≥ 2. We then introduce several classes of valid inequalities for the polytope associated with the so-called natural formulation as well as valid inequalities associated with some extended formulations. We also investigate the conditions under which these inequalities define facets. Then, we discuss the separation problem associated with these inequalities.

Notice that in this work, we consider two types of demand sets: rooted demands and disjoint demands. A set of rooted demands is composed of demands which have the same node as source node, while a set of disjoint demands is composed of demands in which each source node is associated with only one destination node and vice-versa.

The paper is organized as follows. In Section 2, we present the integer programming formulations introduced by [START_REF] Diarrassouba | Integer programming formulations for the k-edge-connected 3-hop-constrained network design problem[END_REF], and in Section 3 we discuss the basic properties of the polytope associated with these formulations. Then, in Sections 4, 5, 6 and 7, we introduce new valid inequalities for the problem. In Section 8, we discuss some conditions under which they define facets and Section ?? is dedicated to the separation algorithms for each class of inequality. The rest of this section is devoted to more definitions and notation. An edge e ∈ E with endnodes u and v is denoted by uv. Given two node subsets W and W ′ , we denote by [W, W ′ ] the set of edges having one endnode in W and the other in W ′ . If W = {u}, we then write [u, W ′ ] for [{u}, W ′ ]. We also denote by W the node set V \ W . The set of edges having only one node in W is called a cut and denoted by δ(W ). We will write δ(u) for δ({u}). Given two nodes s, t ∈ V , a cut δ(W ) such that s ∈ W and t ∈ W is called an st-cut. We will also denote by H = (U, A) a directed graph where U is the set of nodes and A is the set of arcs. An arc a with origin u and destination v will be denoted by (u, v). Given two node subsets W and W ′ of U , we will denote by [W, W ′ ] the set of arcs whose origin is in W and whose destination is in W ′ . As before, we will write [u, W ′ ] for [{u}, W ′ ] and W will denote the node set U \ W . The set of arcs having their origin in W and their destination in W is called a cut or dicut in H and is denoted by δ + (W ). We will also write δ + (u) for δ + ({u}) with u ∈ U . If s and t are two nodes of H such that s ∈ W and t ∈ W , then δ + (W ) will be called an st-cut or st-dicut in H. If W and W ′ are two node subsets of H, then [W, W ′ ] + will denote the set of arcs of H whose origins are in W and destinations are in W ′ . As for undirected graphs, we will write [u,

W ′ ] + for [{u}, W ′ ] + . Given an undirected graph G = (V, E) (resp. a directed graph H = (U, A)) and an edge subset F ⊆ E (resp. an arc subset B ⊆ A), we let x F ∈ R E (resp. y B ∈ R A ) be the incidence vector of F (resp. B), that is the 0 -1 vector such that x F (e) = 1 if e ∈ F (resp. y B (a) = 1 if a ∈ B)
and 0 otherwise. Given F a subset of E (resp. A) and a vector x ∈ R E (resp. y ∈ R A ), x(F ) (resp. y(F )) will represent the term e∈F x(e) (resp. e∈F y(e)).

Integer programming formulations

In this section, we present five integer programming formulations, presented by Diarrassouba et al. [START_REF] Diarrassouba | Integer programming formulations for the k-edge-connected 3-hop-constrained network design problem[END_REF], for the kHNDP when L = 2, 3. The first formulation is the so-called natural formulation whose variables set corresponds to the set of edges of the input graph while the other formulations are extended formulations based on auxilliary graphs.

The natural formulation

Let G = (V, E) be an undirected graph, D ⊆ V × V be a demand set, and two integers k ≥ 2 and L ∈ {2, 3}. If an edge subset F ⊆ E induces a solution of the kHNDP, that is a subgraph (V, F ) contains k-edge-disjoint L-st-paths for every {s, t} ∈ D, then its incidence vector x satisfies the following inequalities

x(δ(W )) ≥ k for all st-cuts δ(W ), W ⊂ V, {s, t} ∈ D, (2.1) 
x(e) ≥ 0 for all e ∈ E,

x(e) ≤ 1 for all e ∈ E.

(2.3) 

Inequalities (2.
= (V 0 , V 1 , ..., V L+1 ) of V such that s ∈ V 0 , t ∈ V L+1 and V i = ∅,
for all i ∈ {1, ..., L}. Let T be the set of edges e = uv, where u ∈ V i , v ∈ V j , and |i -j| > 1. The edge set T is called an L-st-path-cut. Figure 1 below gives an example of L-st-path-cut with L = 3 and, V 0 = {s} and V L+1 = {t}.

V 2 V 3 V 4 t s V 1 V 0 Figure 1: Support graph of a L-st-path-cut with L = 3, V 0 = {s}, V L+1 =
{t} and T formed by the solid edges.

The following inequality

x(T ) ≥ k (2.4)
is the so-called L-st-path-cut inequality induced by π. Dahl [START_REF] Dahl | Notes on polyhedra associated with hop-constrained paths[END_REF] showed that the L-st-path-cut (2.4) inequalities are valid for the kHNDP polytope when k = 1 and |D| = 1. It is not hard to see that L-st-path-cut inequalities (2.4) are valid for the kHNDP polytope for any k ≥ 1, L ≥ 2 and |D| ≥ 2.

It can be shown (see [START_REF] Diarrassouba | Integer programming formulations for the k-edge-connected 3-hop-constrained network design problem[END_REF] and [START_REF] Huygens | The two edge-connected hopconstrained network design problem: valid inequalities and Branch-and-Cut[END_REF]) that L-st-path-cut inequalities together with the st-cut inequalities (2.1), (2.2) and (2.3) provide an integer programming formulation for the kHNDP when L = 2, 3.

Theorem 2.1 [START_REF] Huygens | The two edge-connected hopconstrained network design problem: valid inequalities and Branch-and-Cut[END_REF] Let G = (V, E) be a graph, k ≥ 2 and L ∈ {2, 3}. Then, the kHNDP is equivalent to the following integer program min{cx; subject to (2.1) -(2.4), x ∈ Z E }.

(2.5) Formulation (2.5) is called the natural formulation and is denoted by kHNDP N at . In [START_REF] Huygens | The two edge-connected hopconstrained network design problem: valid inequalities and Branch-and-Cut[END_REF], Huygens et al. studied the polytope associated with this formulation and introduce some facetdefining inequalities for the problem. They also develop a Branch-and-Cut algorithm for the kHNDP when k = 2 and L = 2, 3.

In [START_REF] Bendali | On the k-edge-disjoint 3-hopconstrained paths polytope[END_REF], Bendali et al. showed that L-st-path-cut inequalities define facets of the kHNDP if and only if an L-st-path-cut inequality induced by a partition (V 0 , ..., V L+1 ), with s ∈ V 0 and

t ∈ V L+1 , is facet-defining only if |V 0 | = |V L+1 | = 1.
Therefore, in the remainder of the paper, the only L-st-path-cuts that we will consider are those induced by partitions of the form ({s}, V 1 , ..., V L , {t}).

Demand decomposition based formulations

In this section, we present three integer programming formulations for the kHNDP for L = 2, 3 where we use a directed layered graph to model each hop-constrained subproblem. These formulations are called separated formulations. The graph transformation supporting these formulations is given below.

Graph transformation

Given G = (V, E) and {s, t} ∈ D, let G st = ( V st , A st ) be the layered digraph obtained from G as follows:

• V st = N st ∪ N ′ st ∪ {s, t} with N st = V \ {s, t} and N ′ st is a copy of N st (each node u ∈ N st corresponds to a node u ′ of N ′ st ),
• A st is composed of four kinds of arcs:

for all su ∈ E, (s, u) 2 for an illustration with L = 3).

∈ A st , -for all vt ∈ E, (v ′ , t) ∈ A st , -for all u ∈ N st , we introduce min{|[s, u]|, |[u, t]|, k} arcs of the form (u, u ′ ) ∈ A st , -if L = 3, for all uv ∈ E \ {st} with u, v ∈ N st , {(u, v ′ ), (v, u ′ )} ∈ A st (see Figure
For an edge e = uv ∈ E, we denote by A st (e) the set of arcs of G st corresponding to the edge e: Note that G st may have nodes different from u ∈ N st ∪ N ′ st with indegree or outdegree equal to zero. These nodes can be removed from G st after its construction.

• when u = s (resp. v = t), A st (e) contains (s, v) (resp. (u ′ , t)), • when u = s and v = t, if L = 3, A st (e) = {(u, v ′ ), (v, u ′ )} and, if L = 2, A st (e) is empty. Graph Gs 1 ,t 1 Graph Gs 1 ,t 2 Graph Gs 3 ,t 3 s 1 t 1 t 2 s 3 u t 3 Graph G s 3 t 2 u t 3 s ′ 3 t ′ 2 u ′ t ′ 3 t 1 s 1 t ′ 1 u ′ t ′ 3 s ′ 3 u s 3 t 3 t 1 s 1 t 2 s 1 t 1 u t 2 t ′ 1 s ′ 1 u ′ t ′ 2 s 3 t 3
G st contains four layers: {s}, N st , N ′ st , {t} and no circuit. Also, any st-dipath in G st is of length no more than 3:

• the length is equal to 1 if the st-dipath is composed of the single arc (s, t),

• the length is equal to 3 for both st-dipaths of the form (s, u, u ′ , t) corresponding to path (s, u, t) of length 2 in G, and st-dipaths of the form (s, u, v 

Note that each graph

G st contains | V st | = 2|V | -2 (= |N st ∪ N ′ st ∪ {s, t}|) nodes and | A st | ≤ |δ(s)|+|δ(t)|-|[s, t]|+k(|V |-2) arcs if L = 2 and | A st | ≤ 2|E|-|δ(s)|-|δ(t)|+|[s, t]|+k(|V |-2) arcs if L = 3, for all {s, t} ∈ D.
Diarrassouba et al. [START_REF] Diarrassouba | Integer programming formulations for the k-edge-connected 3-hop-constrained network design problem[END_REF] (see also [START_REF] Bendali | On the k-edge-disjoint 3-hopconstrained paths polytope[END_REF]) pointed out that a set of k arc-disjoint st-dipaths of G st corresponds to a set of k edge-disjoint 3-st-paths in G, and vice-versa. This is summarized by the following Corollary.

Corollary 2.1 [24]

Let H be a subgraph of G and let H st , {s, t} ∈ D, be the subgraph of G st obtained by considering all the arcs of G st corresponding to an edge of H, plus the arcs of the form (u, u ′ ), for all u ∈ V {s, t}. Then H induces a solution of the kHNDP if H st contains k arc-disjoint st-dipaths, for every {s, t} ∈ D. Conversely, given a set of subgraphs H st of G st , {s, t} ∈ D, if H is the subgraph of G obtained by considering all the edges of G associated with at least one arc in a subgraph H st , then H induces a solution of the kHNDP only if H st contains k arc-disjoint st-dipaths, for every {s, t} ∈ D. Also, Bendali et al. [START_REF] Bendali | On the k-edge-disjoint 3-hopconstrained paths polytope[END_REF] showed that st-cuts and 3-st-path-cuts of G correspond to a set st-discuts of G st which do not contain any arc of the form (u, u ′ ), and vice-versa. Lemma 2.1 [START_REF] Bendali | On the k-edge-disjoint 3-hopconstrained paths polytope[END_REF] An edge set C which induces an st-cut or a 3-st-path-cut of G corresponds to an st-dicut of G st which do not contain any arc of the form (u, u ′ ), u ∈ V \{s, t}, and vice-versa.

Separated Flow Formulation

Given a demand {s, t}, we let f st ∈ R Ast be a flow vector on G st of value k between s and t. Then f st satisfies the flow conservation constraints (2.6), given by

a∈δ + (u) f st a - a∈δ -(u) f st a =    k if u = s, 0 if u ∈ V st \ {s, t}, -k if u = t,    , for all u ∈ V st , {s, t} ∈ D (2.6)
and

f st a ≤ x(e)
, for all a ∈ A st (e), e ∈ E, {s, t} ∈ D.

(2.7)

f st a ≤ 1, for all a = (u, u ′ ), u ∈ V \ {s, t}, {s, t} ∈ D. (2.8) 
f st a ≥ 0, for all a ∈ A st , {s, t} ∈ D.

(2.9)

x(e) ≤ 1, for all e ∈ E.

(2.10) Inequalities (2.7) are also called linking inequalities. They indicate that if an edge e ∈ E is not in the solution, then the flow on every arc corresponding to e is 0. Inequalities (2.9)-(2.10) are the trivial inequalities.

Thus, we have the following theorem.

Theorem 2.2 [START_REF] Diarrassouba | Integer programming formulations for the k-edge-connected 3-hop-constrained network design problem[END_REF] The kHNDP for L = 2, 3 is equivalent to the following integer program

min{cx; subject to (2.6) -(2.10), x ∈ Z E + , f st ∈ R Ast + , for all {s, t} ∈ D}.
(2.11) Formulation (2.11) will be called the separated flow formulation and will be denoted by kHNDP Sep F low .

Separated Path Formulation

For each demand {s, t} ∈ D, let P st be the set of st-dipaths in G st and, for each P ∈ P st , let µ st (P ) be a binary variable whose value is 1 if P is used in a solution and 0 if not.

If an edge subset F ⊆ E induces a solution of the kHNDP, then x F and (µ st (P ), P ∈ P st , {s, t} ∈ D) satisfy the following inequalities. The following theorem gives an integer programming formulation for the kHNDP using the path-based model described above.

Theorem 2.3 [START_REF] Diarrassouba | Integer programming formulations for the k-edge-connected 3-hop-constrained network design problem[END_REF] The kHNDP for L = 2, 3 is equivalent to the following integer program min{cx; subject to (2.12) -(2.16), x ∈ Z E + , µ st ∈ Z Pst + , for all {s, t} ∈ D}.

(2.17) Formulation (2.17) is called the separated path formulation and is denoted by kHNDP Sep P ath . Note that for each demand {s, t} ∈ D, the number of st-paths in the graph G st is bounded by |V | L-1 , which is polynomial for L = 2, 3. Thus, this formulation contains a polynomial number of variables while the number of nontrivial inequalities is at most

d + {s,t}∈D (|δ(s)| + |δ(t)| -|[s, t]|) + dk(|V | -2) if L = 2, d + 2d|E| - {s,t}∈D (|δ(s)| + |δ(t)| -|[s, t]|) + dk(|V | -2) if L = 3,
which is polynomial.

Separated Cut Formulation

The previous two models include constraints guaranteeing that for each demand {s, t} ∈ D, there exists a flow of value k under the arc capacities given by x. By the Max flow-Min cut theorem, such a flow exists if and only if the capacity of any st-dicut, in each graph G st , is at least k. This observation leads at once to the following formulation which provides the same LP bound as the previous separated flow and path formulations.

Let H ⊆ E be an edge subset which induces a solution of the kHNDP in G and let H st be the arc subset of G st , {s, t} ∈ D, corresponding to H. Then, the incidence vector x H of H and the vectors y Hst st , {s, t} ∈ D, satisfy the following inequalities. 

y st (δ + ( W )) ≥ k, for all st-dicut δ + ( W ) of G st ,
| A st | ≤ |E| + {s,t}∈D (|δ(s)| + |δ(t)| -|[s, t]|) + dk(|V | -2),
and for L = 3, it is

|E| + {s,t}∈D | A st | ≤ |E| + 2d|E| - {s,t}∈D (|δ(s)| + |δ(t)| -|[s, t]|) + dk(|V | -2) (recall that d = |D|).
However, the number of constraints is exponential since the number of directed st-cuts is exponential in the size of G st , for all {s, t} ∈ D. As we will see in Section ?? linear programming relaxation can be solved in polynomial time using a cutting plane algorithm.

In the next section, we present a further formulation for the kHNDP also based on directed graphs. However, unlike the separated formulations, this formulation is supported by only one directed graph.

Aggregated Formulation for the kHNDP

We denote by S D and T D respectively the sets of source and destination nodes of D. In the case where two demands {s 1 , t 1 } and {s 2 , t 2 } are such that s 1 = t 2 = s, we keep a copy of s in both S D and T D . In this section, we will introduce a new formulation for the kHNDP which is supported by a single directed graph G = ( V , A) obtained from G as follows:

• V = S D ∪ N ′ ∪ N ′′ ∪ T D with N ′
and N ′′ two copies of V ; we denote by u ′ and u ′′ the nodes of N ′ and N ′′ corresponding to a node u ∈ V .

• A contains 6 kinds of arcs: Figures 3 and4 show examples for L = 2 and L = 3 with k = 1, respectively. Notice that the digraph G may have nodes u ∈ N ∪ N ′ with indegree or outdegree equal to zero. These nodes can be removed from G after its construction. Also, note that when G is simple (that is with no parallel edges), Observe that G is acyclic. Also note that for a given demand {s, t} ∈ D, every st-dipath in G contains at most 3 arcs. An L-st-path P = (s, u, v, t) of G, where u and v may be the same, corresponds to an st-dipath P = (s, u ′ , v ′′ , t) in G. Conversely, every st-dipath P = (s, u ′ , v ′′ , t) of G, where u ′ and v ′′ may correspond to the same node of V , corresponds to an L-st-path P = (s, u, v, t), where u and v may be the same. Moreover G does not contain any arc of the form (s, s ′ ) and (t ′′ , t), for every s ∈ S D and t ∈ T D . If a node t ∈ T D appears in exactly one demand {s, t}, then [s ′′ , t] = ∅. In the remainder of this section we will suppose w.l.o.g. that each node of T D is involved, as destination, in only one demand. In fact, in general, if a node t ∈ T D is involved, as destination, in more than one demand, say {s 1 , t}, ..., {s p , t}, with p ≥ 2, then one may replace in T D t by p nodes t 1 , ..., t p and in D each demand {s i , t} by {s i , t i }, i = 1, ..., p.

s ′ 1 s ′ 3 u ′ t ′ 3 t ′ 1 t ′ 2 s ′′ 1 s ′′ 3 u ′′ t ′′ 1 t ′′ 2 t ′′ 3 s1 t1 s1 t1 t2 s3 u t3 t3 t2 s3 Graph G Graph G Figure 3: Construction of graph G with D = {{s 1 , t 1 }, {s 1 , t 2 }, {s 3 , t 3 }}, L = 2 and k = 1. s ′ 1 s ′ 3 u ′ t ′ 3 t ′ 1 t ′ 2 s ′′ 1 s ′′ 3 u ′′ t ′′ 1 t ′′ 2 t ′′
|[u ′ , u ′′ ] + | = |[t ′ , t] + | ≤ 1, for every u ∈ V and every t ∈ T D , and |[u ′ , u ′′ ] + | = |[t ′ , t] + | = 1 if G is complete. Remark that G contains | V | = 2|V | + |S D | + |T D |
Diarrassouba et al. [START_REF] Diarrassouba | Integer programming formulations for the k-edge-connected 3-hop-constrained network design problem[END_REF] showed that looking for a solution of the kHNDP in G reduces to finding k arc-disjoint st-dipaths in G, for all {s, t} ∈ D. Thus, if F ⊆ E is an edge subset of G that induces a solution of the kHNDP, then x ∈ R E and y ∈ R A + satisfy the following inequalities

y(δ + ( W )) ≥ k, for all st-dicut δ + ( W ), {s, t} ∈ D, (2.24) 
y(a) ≤ x(e), for all a ∈ A(e), e ∈ E, (2.25)

y(a) ≥ 0, for all a ∈ A, (2.26) 
x(e) ≤ 1, for all e ∈ E.

(2.27)

They give the following theorem.

Theorem 2.5 [START_REF] Diarrassouba | Integer programming formulations for the k-edge-connected 3-hop-constrained network design problem[END_REF] The kHNDP for L = 2, 3 is equivalent to the following integer program

min{cx; subject to (2.24) -(2.27), x ∈ Z E + , y ∈ Z A + }.
(2.28) Formulation (2.28) will be called the aggregated formulation and is denoted by kHNDP Ag . Inequalities (2.24) will be called directed st-cut inequalities or st-dicut inequalities and (2.25) will be called linking inequalities. The latter indicate that an arc a, corresponding to an edge e, is not chosen in the solution of kSNDP if e is not chosen in the solution of kHNDP.

This formulation contains |E| + | A| ≤ |E| + k|V | + s∈S D |δ(s)| + t∈T D |δ(t)| variables if L = 2 and |E| + | A| ≤ 3|E| + k|V | + s∈S D |δ(s)| + t∈T D |δ(t)| variables if L = 3.
The number of constraints is exponential since the st-dicuts are exponential in number. But, as it will turn out, the separation problem for inequalities (2.24) can be solved in polynomial time and hence, the linear programming relaxation of (2.28) so is.

The kHNDP polytopes

In the present section, we give some basic results on the polytope associated with the different formulations we have presented before. These polytopes are named as follows

• kHNDP N at (G, D): polytope associated with the natural formulation,

• kHNDP Ag (G, D): polytope associated with the aggregated formulation,

• kHNDP Sep Cu (G, D): polytope associated with the separated cut formulation,

• kHNDP Sep F lo (G, D): polytope associated with the separed flow formulation,

• kHNDP Sep P a (G, D): polytope associated with the separated path formulation.

Polytope kHNDP Ag (G, D)

We first consider the polytope kHNDP Ag (G, D). Let G = ( V , A) be the directed graph associated with G and D in the case of the Aggregated formulation. Let E * be the set of edges e ∈ E such that there exists a demand {s, t} ∈ D such that G \ {e} does not contain k edge-disjoint L-st-paths. Such an edge is said to be L-st-essential. Also consider an arc a ∈ A such that there exists a demand {s, t} ∈ D such that the graph G \ {a} does not contain k arc-disjoint st-dipaths. Such an arc a is said to be st-essential. We will denote by A * the set of st-essential arcs of G. The following theorem characterizes the dimension of kHNDP Ag (G, D).

Theorem 3.1 dim(kHNDP Ag (G, D)) = |E| + | A| -|E * | -| A * |.
Proof. Obviously, we have that dim(kHNDP

Ag (G, D)) ≤ |E| + | A| -|E * | -| A * |. Now we show that dim(kHNDP Ag (G, D)) ≥ |E| + | A| -|E * | -| A * |.
Recall that a solution of kHNDP Ag (G, D) is described by a pair ( F , F ) where F ⊆ A and F ⊆ E is the associated edge set. Also note that an edge set F induces a solution of the kHNDP if and only if the associated arc set F induces a subgraph of G containing k arc-disjoint st-dipaths for every {s, t} ∈ D.

Consider the pairs ( A \ {a}, E), for all a ∈ A \ A * . As a / ∈ A * , these pairs induce solutions of kHNDP Ag (G, D).

For every edge e ∈ E \ E * , consider the pair ( A \ A(e), E \ {e}). Recall that, for all e ∈ E, A(e) is the set of arcs of A corresponding to e. As e ∈ E \ E * , the subgraph induced by E \ {e} contains k edge-disjoint L-st-paths for every {s, t} ∈ D and the subgraph of G induced by A \ A(e) also contains k arc-disjoint st-dipaths for every {s, t} ∈ D. Hence this pair induces a solution of kHNDP Ag (G, D). One can easily observe that these solutions, together with the solution given by the pair ( A, E), form a family of

|E \ E * | + | A \ A * | + 1 solutions of the kHNDP Ag whose incident vectors are affinely independant. Therefore, dim(kHNDP Ag (G, D)) ≥ |E| + | A| -|E * | -| A * |, which ends the proof of the theorem. Consequently, kHNDP Ag (G, D) is full dimensional if and only if E * = ∅ = A * . The next result shows that if G is complete and |V | ≥ k + 2, then E * = ∅ = A * , implying that kHNDP Ag (G, D)
is full dimensional. But before, we give the following lemma.

Lemma 3.1 If G is complete, then for every {s, t} ∈ D, there exist at least |V | -1 edge-disjoint 3-st-paths in G, and |V | -1 arc-disjoint st-dipaths in G. Proof. Suppose that G is complete. Consider a demand {s, t} ∈ D and the arc set H = [s, N ′ ]∪[N ′ , N ′′ ]∪[N ′′ , t]∪[t ′ , t]. Clearly, since G is complete, |[s, N ′ ]| = |V |-1, |[N ′′ , t]| = |V |-2.
Moreover, by the construction of G, there are |V | -2 arcs of the form (u ′ , u ′′ ) and the arc (t ′ , t). The graph H thus contains st-dipaths (s, u ′ , u ′′ , t), for all u ∈ V \ {s, t}, and (s, t ′ , t). These paths clearly forms |V | -1 arc-disjoint st-dipath of H. Finally, these paths correspond in G to paths (s, u, t), for all u ∈ V \ {s, t}, and path (s, t), which clearly form |V | -1 edge-disjoint 3-st-paths of G.

A consequence of Lemma 3.1 is that for a complete graph G with |V | ≥ k + 2, the graph G contains at least k+1 arc-disjoint st-dipaths for every {s, t} ∈ D. This implies that E * = ∅ = A * . We thus have the following.

Corollary 3.1 If G is complete and |V | ≥ k + 2, then kHNDP Ag (G, D) is full dimensional.
From here, and until the end of this section, we will assume that G is complete and

|V | ≥ k + 2, and hence kHNDP Ag (G, D) is full dimensional.
In what follows, we give necessary and sufficient conditions for the trivial inequalities to define facets of kHNDP Ag (G, D). Remark that the inequalities y(a) ≤ 1, for all a ∈ A, and x(e) ≥ 0, for all e ∈ E, are redundant with respect to the inequalities The next theorem gives necessary conditions for the directed st-cut inequalities to define facets of kHNDP Ag (G, D).

Theorem 3.3 Let W ⊆ V be a node set such that there is a demand {s, t} ∈ D with s ∈ W and t ∈ V \ W . Then the st-dicut inequality y(δ + ( W )) ≥ k defines a facet of kHNDP Ag (G, D) only if the following conditions hold i) W ∩ S D = {s} and ( V \ W ) ∩ T D = {t} (Recall that S D (resp. T D ) is the set of terminals of G that are source (resp. destination) in at least one demand); ii) s ′ ∈ V \ W , s ′′ ∈ W and t ′′ ∈ W .
Proof. We will only show i). The proof for ii) follows the same lines. Suppose on the contrary that there exists another node s 1 = s in W ∩ S D . This implies that [s, s 1 ] = ∅, and thus,

δ + ( W \ {s 1 }) = δ + ( W ) \ δ + (s 1
). Note that the edges of G associated with those of δ + (s 1 ) are those of δ(s 1 ). As G is complete, δ + (s 1 ) = ∅. Therefore, the st-dicut inequality induced by W is redundant with respect to the inequalities

y(δ + ( W \ {s 1 })) ≥ k, y(a) ≥ 0 for all a ∈ δ + (s 1 ),
and hence, cannot define a facet.

Polytope kHNDP Sep Cu (G, D)

Now we consider the Cut formulation. The results of this section will be given without proof.

In fact their proofs are similar to those of the previous section.

As before, we denote by E * the set of L-st-essential edges of G and A * st the set of st-essential arcs of G st , for every {s, t} ∈ D. The following theorem gives the dimension of kHNDP Sep Cu (G, D).

Theorem 3.4 dim(kHNDP Sep Cu (G, D)) = |E| + {s,t}∈D | A st | -|E * | - {s,t}∈D | A * st |.
Proof. Similar to the proof of Theorem 3.1.

Lemma 3.2 If G is complete, then for every demand {s, t} ∈ D, there exist at least |V | -1 arc-disjoint st-dipaths in G st .
Proof. Similar to the proof of Lemma 3.1.

As a consequence, we have the following corollary. Proof. Similar to the proof of Theorem 3.2. Now we address the dimension of the polytope associated with the natural formulation. The following theorem gives the dimension of kHNDP N at (G, D). Its proof is omitted as it uses similar arguments as Theorems 3.1. Also, the condition for kHNDP Ag (G, D) to be full dimensional is the same for kHNDP N at (G, D).

Theorem 3.6 dim(kHNDP N at (G, D)) = |E| -|E * |. Moreover, if G is complete and |V | ≥ k + 2, then kHNDP N at (G, D) is full dimensional.
Proof. Similar to the proof of Theorem 3.1.

In the following sections, we present several classes of valid inequalities for the kHNDP polytopes. From Section 4 to Section 6, the presented inequalities are valid for the polytope associated with the natural formulation of the problem, kHNDP N at (G, D). The inequalities presented in Section 7, on the other hand, are valid for the aggregated and separated cut formulations kHNDP Ag (G, D) and kHNDP Sep F lo (G, D).

Recall that all the classes of inequalities we will introduce for the kHNDP N at (G, D) (i.e. for the natural formulation) are also valid for the polytopes associated with the extended formulations presented in the paper.

We start with the so-called Hop-Constrained partition inequalities for k ≥ 2 and L = 2, 3. To the best of our knowledge, these inequalities have never been presented before in the literature.

4 Hop-Constrained Partition Inequalities for kHNDP N at (G, D)

Our new inequalities are defined for any k ≥ 2 and for L ∈ {2, 3}. Also we distinguish the case where the demands are rooted or disjoint. We recall that S D and T D denote the set of origins and the set of destinations of the demands, respectively. Also, remember that when the demands are rooted, the set S D is reduced to one node s, that is S D = {s}, while for disjoint demands, each source node is associated with only one destination node and vice-versa.

The main results of the present section are given in Theorems 4.1 and 4.2. Their proofs are established later in subsections 4.3-4.6.

Hop-Constrained Partition inequalities for rooted demands

We first consider the case of rooted demands, that is

S D = {s}. Let π = {V 0 , V 1 , ..., V p }, p ≥ 2, be a partition of V such that s ∈ V 0 and V i ∩ T D = ∅, i = 1, ..., p. The inequalities x(δ(V 0 , V 1 , ..., V p )) ≥          (k + 1)p 2 , if L = 2, ( 4.1) 
(k + 2 k+1 )p 2 , if L = 3, (4.2) 
are called Hop-Constrained Partition inequality. The following theorem states that these inequalities are valid for the kHNDP when the demands are rooted. 

Partition inequalities for disjoint demands

Consider the kHNDP with disjoint demands and let

π = {V 0 , V 1 , ..., V p }, p ≥ 2, be a partition of V such that V 0 ⊇ S D and V i ∩ T D = ∅, i = 1, ..., p. The inequalities x(δ(V 0 , V 1 , ..., V p )) ≥            (k + k 2 )p 2 , if L = 2, (4.3) (k + k k+1 )p 2 , if L = 3, (4.4) 
are called Hop-Constrained partition inequalities. In Figure 7, the demand set is composed of pairs (s i , t i ), i = 1, ..., 4, and the considered partition is π = {V 0 , V 1 , ..., V p }, with p = 4, and V 1 = {t i }, i = 1, ..., 4, and V 0 = {s 1 , s 2 , s 3 , s 4 }. It is easy to see that the solution presented here is feasible for the kHNDP with L = 2 and k = 3. Also, the number of edges involved in δ(π) is 10 = 5•4 2 .

With Figure 8, the demand set is composed of pairs (s i , t i ), i = 1, ..., 10. The partition is obtained for p = 10 and V i = {t i }, i = 1, ..., 10 and V 0 = {s 1 , ..., s 10 }. Here also, the solution is feasible for the kHNDP with k = 4 and L = 3 and the number of edges in δ(π) is 24 = (4+4/5)•10 2 .

Remark that the solutions presented in Figures 5,6, 7 and 8 satisfy with equality the Hop-Constrained partition inequality associated with each situation. This remark suggests that, under suitable conditions, the Hop-Constrained partition inequalities (4.1)-(4.4) may define facets of the kHNDP polytope.

In the next sections, we establish the proofs of Theorems 4.1 and 4.2. Notice that for each proof and for sake of simplicity, we assume that the demand set is composed of pairs (s i , t i ), i = 1, ..., p, V i = {t i }, and s i ∈ V 0 , for every i ∈ {1, ..., p}. Also, notice that for rooted demands, s i = s, for every i ∈ {1, ..., p}. Indeed, such an assumption does not change the number of edges in δ(V 0 , V 1 , ..., V p ) nor the right-hand-side of each inequality.

Proof of Theorem 4.1 for rooted demands and L = 2

Consider a feasible solution for the kHNDP and let H be the subgraph of G induced by this solution. Also, let Z 1 (resp. Z 2 ) be the set of nodes t i which are at distance 1 (resp. 2) from s in H (see Figure 9 for illustration). Note that p = |Z 1 | + |Z 2 |. Now remark that, for every node t i ∈ Z 2 , a 2-st i -path of H cannot use an edge passing through another node of Z 2 . Similarly, for every node t i ∈ Z 1 , a 2-st i -path cannot use an edge passing through another node of Z 2 . Thus,

|δ H (π)| ≥ k|Z 2 | + k|Z 1 | + |Z 1 | 2 , = k(|Z 1 | + |Z 2 |) + |Z 1 | + k|Z 2 | 2 , = kp + |Z 1 | + k|Z 2 | 2 , = (k + 1)p + (k -1)|Z 2 | 2 , ≥ (k + 1)p 2 ,
which proves the theorem.

4.4 Proof of Theorem 4.1 for rooted demands and L = 3

Consider a feasible solution of the kHNDP with k ≥ 2 and L = 3 and let H be the subgraph of G induced by this solution. As before, we consider the graph G π induced by π and let Z 1 (resp. Z 2 ) (resp. Z 3 ) be the set of nodes at distance 1 (resp. 2) (resp. 3) from s. Also let Z r 1 be the set of nodes 10 gives an illustration for L = 3 and k = 3. Observe that 1. for every node t i ∈ Z 1 ∪ Z 2 ∪ Z 3 , a 3-st i -path never uses an edge passing through another node of Z 3 .

t i ∈ Z 1 such that |[s, t i ]| + |[t i , Z 1 \ {t i }]| = r ≤ k -1, and Z k 1 the set of nodes of Z 1 such that |[s, t i ]| + |[t i , Z 1 \ {t i }]| ≥ k. In a similar way, let Z r 2 be the set of nodes t i ∈ Z 2 such that |[t i , Z 1 ]| = r ≤ k -1 and Z k 2 be the set of nodes t i ∈ Z 2 such that |[t i , Z 1 ]| ≥ k. Figure
Z 3 2 Z 3 1 Z 1 1 Z 2 1 Z 3 Z 3 Z 2 Z 1 Z 1 
2. for every node t i ∈ Z 1 , a 3-st i -path never uses an edge passing through a node of Z 1 2 .

Observation 2) above implies that for every

t i ∈ Z 1 , |δ H (t i )| = |[t i , Z 1 2 ]| + k r=2 |[t i , Z r 2 ]| + |[t i , Z 1 \ {t i }]| + |[s, t i ]| ≥ k + |[t i , Z 1 2 ]|.
Also, recall that by the definition of Z 1 2 , we have that

|[Z 1 2 , Z 1 ]| = |Z 1 2 |.
By adding the inequalities

|δ H (t i )| ≥ k, for every t i ∈ Z 2 ∪ Z 3 , |δ H (t i )| ≥ k + |[t i , Z 1 2 ]|, for every t i ∈ Z 1 , |δ H (s)| ≥ k r=1 |Z r 1 |, we obtain 2|δ H (π)| ≥ kp + |[Z 1 2 , Z 1 ]| + k r=1 |Z r 1 | = kp + |Z 1 2 | + k r=1 |Z r 1 |.
By divinding this inequality by 2 and rounding up the right-hand-side, we get

|δ H (π)| ≥          kp + |Z 1 2 | + k r=1 |Z r 1 | 2          . (4.5) Now, if |Z 1 2 | + k r=1 |Z r 1 | ≥ 2p k + 1
, then inequality (4.5) implies that

|δ(π)| ≥ kp + 2p k+1 2 ,
and the result of the theorem holds.

Thus, assume now that

|Z 1 2 | + k r=1 |Z r 1 | < 2p k + 1
. This implies that

k r=2 |Z r 2 | + |Z 3 | > (k -1)p k + 1 .
Also, remember that

|[s, Z 1 ]| ≥ k r=1 |Z r 1 |, (4.6) 
and that, by the definition of node sets Z r 1 , r = 1, ..., k, we have

|[s, t i ]| + |[t i , Z 1 \ {t i }]| = r, for every t i ∈ Z r 1 , if r ≤ k -1, |[s, t i ]| + |[t i , Z 1 \ {t i }]| ≥ k, for every t i ∈ Z k 1 . This also implies that |[s, Z 1 ]| + u∈Z 1 |[u, Z 1 \ {u}]| = k r=1 u∈Z r 1 (|[s, u]| + |[u, Z 1 \ {u}]|) ≥ k r=1 r|Z r 1 |. (4.7)
Moreover, the definition of nodes sets Z r 2 , r = 1, ..., k, implies that

|[Z 2 , Z 1 ]| ≥ k r=1 r|Z r 2 |, (4.8 
)

u∈Z 2 |[u, Z 2 \ {t i }]| ≥ k r=1 (k -r)|Z r 2 |. (4.9)
Therefore, the number of edges in δ(π) is such that

|δ H (π)| ≥ |[Z 3 , Z 2 ]| + |[Z 2 , Z 1 ]| + |[s, Z 1 ]| + |E(Z 2 )| + |E(Z 1 )| ≥ k|Z 3 | + |[Z 2 , Z 1 ]| + |[s, Z 1 ]| +       u∈Z 2 |[u, Z 2 \ {u}]| + u∈Z 1 |[u, Z 1 \ {u}]| 2       , ≥       2k|Z 3 | + 2|[Z 2 , Z 1 ]| + 2|[s, Z 1 ]| + u∈Z 2 |[u, Z 2 \ {u}]| + u∈Z 1 |[u, Z 1 \ {u}]| 2      
.

The above inequality, together with (4.6), (4.7), (4.8) and (4.9), yield

|δ H (π)| ≥          2k|Z 3 | + 2 k r=1 r|Z r 2 | + k r=1 (k -r)|Z r 2 | + k r=1 r|Z r 1 | + k r=1 |Z r 1 | 2          ≥          2k|Z 3 | + k k r=1 |Z r 2 | + k r=1 r|Z r 2 | + k r=1 r|Z r 1 | + k r=1 |Z r 1 | 2          . (4.10) Now remark that k r=1 r|Z r 1 | + k r=1 |Z r 1 | ≥ 2 k r=1 |Z r 1 | k r=2 r|Z r 2 | ≥ 2 k r=2 |Z r 2 |.
These remarks together with inequality (4.10) imply that

|δ H (π)| ≥          2k|Z 3 | + k|Z 1 2 | + 2 k r=1 |Z r 1 | + (k + 2) k r=2 |Z r 2 | 2          ≥          (k -2)|Z 1 2 | + 2k|Z 3 | + 2 |Z 1 2 | + k r=1 |Z r 1 | + (k + 2) k r=2 |Z r 2 | 2          . Since p = |Z 3 | + |Z 1 2 | + k r=2 |Z r 2 | + k r=1 |Z r 1 |, we can replace |Z 1 2 | + k r=1 |Z r 1 | in the above expression by p -|Z 3 | - k r=2 |Z r 2 |. We thus obtain |δ H (π)| ≥          (k -2)|Z 1 2 | + 2k|Z 3 | + 2 p -|Z 3 | - k r=2 |Z r 2 | + (k + 2) k r=2 |Z r 2 | 2          ≥          2p + k k r=2 |Z r 2 | + 2(k -1)|Z 3 | 2          . (4.11)
Now, as k ≥ 2, we have that 2(k -1) ≥ k. Thus, inequality (4.11) implies that

|δ H (π)| ≥          2p + k k r=2 |Z r 2 | + k|Z 3 | 2          . (4.12)
Finally, since by assumption

k r=2 |Z r 2 | + |Z 3 | > (k -1)p k + 1 , inequality (4.12) implies that |δ H (π)| ≥ 2p + k (k-1)p k+1 2 = (k + 2 k+1 )p 2 ,
which ends the proof of the theorem.

Proof of Theorem 4.2 for disjoint demands and L = 2

We start the proof by the following observation. Since L = 2, if an edge t i t j is used simultaneously by a 2-s i t i -path and a 2-s j t j -path, then necessarily, these paths are of the form (s i , t j , t i ) and (s j , t i , t j ). In other words, if edge t i t j is used simultaneously in 2-paths for both t i and t j , then the edges s i t j and s j t i are taken in the solution. Also, remark that edges of [s i , t i ] are never used in a 2-path for another demand (s j , t j ), for every i, j ∈ {1, ..., p}, with j = i.

For every i ∈ {1, ..., p}, we let Now, for every i ∈ {1, ..., p}, we let E i be the set of edges t i t j of E i which are used simultaneously in a 2-path for both t i and t j . For sake of readability, we assume that E i = E i , that is for every destination node t i , every edge t i t j in the solution is used in 2-paths for both t i and t j . As a consequence, e i = a i = b i , for every i ∈ {1, ..., p}. Notice that the above assumption is not too restrictive. Indeed, the proof will follow the same lines for the general case, that is when

C i = [s i , t i ], E i = [t i , Z \ {t i }], B i = [t i , V 0 \ {s i }] and A i = [s i , Z 1 \ {t i }]. Also, we let e i = |E i |, c i = |C i |, b i = |B i | and a i = |A i |,
|E i | > |E i |,
for some i ∈ {1, ..., p}. The only difference will be the addition of extraterms corresponding to the fact that |E i | > |E i | which does not change the main arguments of our proof. Thus, in the remaining, we assume that E i = E i and e i = a i = b i , for all i ∈ {1, ..., p}.

Remember that, from the cut inequality induced by each node set {t i }, we have

|δ(t i )| = e i + b i + c i ≥ k, for every i ∈ {1, ..., p}. (4.13) 
From this, it is easy to see that

|δ H (π)| ≥ kp + |δ H (V 0 )| 2 ≥         kp + p i=1 (b i + c i ) 2         . (4.14)
Clearly, to prove the theorem, it suffices to show that p i=1

(b i + c i ) ≥ k 2 p.
For this purpose, let

P 1 = {i ∈ {1, ..., p} such that e i < k 2 }
and

P 2 = {i ∈ {1, ..., p} such that e i ≥ k 2 }.
The definition of P 1 implies that e i = k 2α i , for some α i ≥ 1.

Also, as by our above assumption, e i = b i , for every i ∈ {1, ..., p}, and especially for i ∈ P 1 , inequality (4.13) for i ∈ P 1 implies that

c i ≥ k -2e i = k -2( k 2 -α i ) = k 2 - k 2 + 2α i , for every i ∈ P 1 . (4.15)
Thus, 

p i=1 (b i + c i ) = k i=1 (e i + c i ) = i∈P 1 (e i + c i ) + i∈P 2 (e i + c i ), ≥ i∈P 1 (e i + c i ) + i∈P 2 e i . ( 4 
(b i + c i ) ≥ k 2 |P 1 | + i∈P 1 (c i -α i ) + k 2 |P 2 |.
This latter inequality, together with (4.15) and the fact that

p = |P 1 | + |P 2 |, imply that p i=1 (b i + c i ) ≥ k 2 p + i∈P 1 ( k 2 - k 2 + α i ). (4.17) 
Finally, since for every k ≥ 2, k 2 -k 2 ∈ {-1, 0}, and since α i ≥ 1, for every i ∈ P 1 ,

k 2 - k 2 + α i ≥ 0, for every i ∈ P 1 .
Therefore, inequality (4.17) implies that p i=1

(b i + c i ) ≥ k 2 p,
which completes the proof of the theorem.

Proof of Theorem 4.2 for disjoint demands and L = 3

Remember that we assume in the proof that, the demand set is composed of pairs (s i , t i ), i = 1, ..., p, the partition π is such that V i = {t i }, for every i ∈ {1, ..., p}, and that V 0 = {s 1 , ..., s p }. Consider a solution H which is feasible for the kHNDP with L = 3 and k ≥ 2, and denote by H the subgraph of G induced by this solution.

As before, we consider the graph G π induced by π and let Z 1 (resp. Z 2 ) (resp. Z 3 ) be the set of nodes at distance 1 (resp. 2) (resp. 3) from s. Also let Z r 1 be the set of nodes

t i ∈ Z 1 such that |[t i , V 0 ]| + |[t i , Z 1 \ {t i }]| = r ≤ k -1, and Z k 1 the set of nodes of Z 1 such that |[t i , V 0 ]| + |[t i , Z 1 \ {t i }]| ≥ k.
In a similar way, let Z r 2 be the set of nodes

t i ∈ Z 2 such that |[t i , Z 1 ]| = r ≤ k -1 and Z k 2 be the set of nodes t i ∈ Z 2 such that |[t i , Z 1 ]| ≥ k.
Finally, we denote by S r 1 (resp. S r 2 ) (resp. S 3 ) the set of source nodes associated with the nodes of Z r 1 (resp. Z r

2 ) (resp. Z 3 ). Figure 12 gives an illustration of these node sets for k = 3. 

Z 2 1 Z 1 1 S 2 1 S 2 2 S 3 2 Z 2 2 Z 3 1 Z 3 2 Z 3 S 3 1 S 3 V 0 Z 1 Z 2 Z 3 S 1 
V i = {t i }, i = 1, .., 7, V 0 = {s 1 , ..., s 7 }. Z 1 1 = {t 1 }, Z 2 1 = {t 4 , t 5 }, Z 3 1 = {t 7 }, Z 2 2 = {t 2 , t 3 }, Z 3 2 = {t 6 }, Z 3 = {t 8 }, S 1 1 = {s 1 }, S 2 2 = {s 2 , s 3 }, S 2 1 = {s 4 , s 5 }, S 3 2 = {s 6 }, S 3 1 = {s 7 }, S 3 = {s 8 }.
First remark that if

k r=1 |Z r 1 | ≥ kp k + 1 , then, clearly, |δ H (π)| ≥ kp + |[Z 1 , V 0 ]| 2 , ≥ kp + kp k+1 2 (4.18)
and the result of the theorem holds. Hence, for the remain of the proof, we assume that

k r=1 |Z r 1 | < kp k + 1 . As a consequence, |Z 3 | + k r=1 |Z r 2 | > p k + 1 .
Now observe that 1. for every t i ∈ Z r 1 , r = 1, ..., k, at least kr 3-s i t i -paths use edges from [t i , Z 2 ]. Each of these paths also use edges from [s

i , Z 1 ]. Thus, |[Z ′ r 1 , Z 1 ]| ≥ (k -r)|Z r 1 |.
2. for every t i ∈ Z r 2 , r = 1, ..., k, at least kr 3-s i t i -paths use edges from [t i , Z 2 \ {t i }], and each of these paths also use edges from [s

i , Z 1 ]. Thus, |[Z ′ r 2 , Z 1 ]| ≥ (k -r)|Z r 2 |.
3. for every t i ∈ Z 3 , any 3-s i t i -path does not use edges passing through another node of Z 3 and uses an edge of [s

i , Z 1 ]. Thus, |[Z 3 , Z 2 ]| ≥ k|Z 3 | and |[Z ′ 3 , Z 1 ]| ≥ k|Z 3 |. These observations imply that |[Z 1 , V 0 ]| ≥ k r=1 (k -r)(|Z r 1 | + |Z r 2 |). (4.19)
Also, by the definition of node sets Z r 2 , we have

|[Z 2 , Z 1 ]| ≥ k r=1 r|Z r 2 |, (4.20 
)

|[Z 1 , V 0 ]| + u∈Z 1 |[u, Z 1 \ {u}]| ≥ k r=1 r|Z r 1 |, (4.21 
)

u∈Z 2 |[u, Z 2 \ {u}]| ≥ k r=1 (k -r)|Z r 2 |. (4.22) 
Thus, the number of edges involved in δ H (π) is

|δ H (π)| ≥ |[Z 3 , Z 2 ]| + |[Z 2 , Z 1 ]| + |[Z 1 , V 0 ]| + |E(Z 2 )| + |E(Z 1 )|, ≥ k|Z 3 | + |[Z 2 , Z 1 ]| + |[Z 1 , V 0 ]| +       u∈Z 2 |[u, Z 2 \ {u}]| + u∈Z 1 |[u, Z 1 \ {u}]| 2       ≥       2k|Z 3 | + 2|[Z 2 , Z 1 ]| + 2|[Z 1 , V 0 ]| + u∈Z 2 |[u, Z 2 \ {u}]| + u∈Z 1 |[u, Z 1 \ {u}]| 2       .
From the above inequality, together with (4.20), (4.21) and (4.22), we obtain 

|δ H (π)| ≥          2k|Z 3 | + 2 k r=1 r|Z r 2 | + |[Z 1 , V 0 ]| + k r=1 (k -r)|Z r 2 | + k r=1 r|Z r 1 | 2          ≥          2k|Z 3 | + k k r=1 |Z r 2 | + k r=1 r|Z r 2 | + k r=1 r|Z r 1 | + |[Z 1 , V 0 ]| 2          . ( 4 
(π)| ≥          2k|Z 3 | + k k r=1 |Z r 2 | + k r=1 r|Z r 2 | + k r=1 r|Z r 1 | + k r=1 (k -r)(|Z r 1 | + |Z r 2 |) 2          ≥          2k|Z 3 | + k k r=1 |Z r 2 | + k k r=1 (|Z r 1 | + |Z r 2 |) 2          ≥          k k r=1 |Z r 2 | + k k r=1 (|Z r 1 | + |Z r 2 |) + |Z 3 | + k|Z 3 | 2          ≥          kp + k k r=1 |Z r 2 | + |Z 3 | 2          . (4.24) 
Finally, since, by assumption

|Z 3 | + k r=1 |Z r 2 | > p k + 1
, inequality (4.24) implies that

|δ(π)| ≥ kp + kp k+1 2 ,
which ends the proof of the theorem.

5 Steiner-SP-partition inequalities for kHNDP N at (G, D)

In [START_REF] Chopra | The k-edge connected spanning subgraph polyhedron[END_REF], Chopra study the kECSP and introduces a class of inequalities called SP-partition inequalities (see also [START_REF] Biha | k-edge connected polyhedra on series-parallel graphs[END_REF]). These inequalities are defined as follows. Let π = (V 1 , ..., V p ), p ≥ 2, be a partition of G such that the graph G π , induced by π, is series-parallel. Then, the inequality

x(δ(V 1 , ..., V p )) ≥ k 2 p -1 (5.1)
is called a SP-partition inequality. Chopra [START_REF] Chopra | The k-edge connected spanning subgraph polyhedron[END_REF] showed that SP-partition inequalities (5.1) are valid for the kECSP polytope. In what follows, we introduce a similar class of inequalities and show that they are valid for the kHNDP polytopes.

Let π = (V 1 , ..., V p ), p ≥ 3, be a partition of V such that the graph G π = (V π , E π ) is seriesparallel. Suppose that V π = {v 1 , ..., v p } where v i is the node of G π corresponding to the set V i , i = 1, ..., p. The partition π is said to be a Steiner-SP-partition if and only if π is a Steinerpartition and either 1. p = 3 or 2. p ≥ 4 and there exists a node v i 0 ∈ V π incident to exactly two nodes v i 0 -1 and v i 0 +1 such that the partitions π 1 and π 2 obtained from π by contracting respectively the sets V i 0 , V i 0 -1 , V i 0 and V i 0 +1 are themselves Steiner-SP-partitions.

The procedure to check if a partition is a Steiner-SP-partition is recursive. It stops when the partition obtained after the different contractions is either a Steiner-partition and of size three or it is not a Steiner-partition.

In the following theorem, we give necessary and sufficient condition for a Steiner-partition to be a Steiner-SP-partition. Remind that the demand graph is denoted by Proof. First observe that, as π is a SP -partition of G, one can obtain from π a two-size partition by applying repeatidly the following operation. Let π j = (V j 1 , ..., V j p j ) be a SP -partition of G. Suppose that V j i 0 , for some i 0 , is incident to exactly two elements V j i 0 -1 and V j i 0 +1 . Then, the operation consists in contracting the sets V j i 0 -1 and V j i 0 and consider the partition

G D = (R D , E D ),
π j+1 = (V j+1 1 , ..., V j+1 p j+1 )
where

V j+1 i = V j i for i = 1, ..., i 0 -2, V j+1 i 0 -1 = V j i 0 -1 ∪ V j i 0 , V j+1 i = V j
i+1 for i = i 0 , ..., p j -1. Note that the new partition π j+1 induces a SP -partition of G and that we have p -2 iterations to obtain a two-size partition from π. Now, we have that π is not a Steiner-SP-partition if and only if there exists an integer q ≤ p -2 such that the partition π q = (V q 1 , ..., V q pq ), obtained by application of the above operation, is not a Steiner-partition, that is the node set V q i 0 of π q obtained by the contraction procedure to the partition π q-1 is such that δ G D (V q i 0 ) = ∅. Thus, if V i 1 , ..., V ir , r ≥ 2, are the node sets of π that have been reduced to V q i 0 during the different steps of the contraction procedure, then we have

that δ G D ( r i=1
V ir ) = ∅. Therefore, the subgraph of G D induced by π is not connected, which ends the proof.

As a consequence of Theorem 5.1, if the demand graph is connected (this is the case when, for instance, all the demands are rooted in the same node), then every Steiner-partition of V , inducing a series-parallel subgraph of G, is a Steiner-SP-partition of V . With a Steiner-SP-partition (V 1 , ..., V p ), p ≥ 3, we associate the following inequality

x(δ(V 1 , ..., V p )) ≥ k 2 p -1. (5.2)
Inequalities of type (5.2) will be called Steiner-SP-partition inequalities. We have the following. Proof. Let π = (V 1 , ..., V p ), p ≥ 3 be a Steiner-SP-partition. The proof is by induction on p. If p = 3, then, as π is a Steiner-partition, the inequality

x(δ(V 1 , V 2 , V 3 )) ≥ 3k 2 = 3 k 2 -1
is valid. Now suppose that every inequality (5.2), induced by a Steiner-SP-partition of p elements, p ≥ 3, is valid for the kHNDP polytopes, and consider a Steiner-SP-partition π = (V 1 , ..., V p , V p+1 ). As G π is series-parallel, there exists a node set V i 0 of π which is incident to exactly two elements of π, say V i 0 -1 and V i 0 +1 . We let

F 1 = [V i 0 , V i 0 -1 ] and F 2 = [V i 0 , V i 0 +1
]. Since π is a Steiner-SP-partition and hence is a Steiner-partition, V i 0 induces a valid st-cut inequality, for some {s, t} ∈ D. Hence we have that

x(F 1 ) + x(F 2 ) ≥ k.
W.l.o.g., we will suppose that

x(F 1 ) ≥ k 2 . (5.3) Consider the partition π ′ = (V 1 , ..., V i 0 -2 , V i 0 -1 ∪ V i 0 , V i 0 +1 , ..., V p+1 ).
As π is a Steiner-SPpartition containing more than three elements, π ′ is also a Steiner-SP-partition which contains p elements. Thus, by the induction hypothesis, the Steiner-SP-partition inequality induced by π ′ , that is

x(δ(V 1 , ..., V i 0 -2 , V i 0 -1 ∪ V i 0 , V i 0 +1 , ..., V p+1 )) ≥ k 2 p -1 (5.4)
is valid. By summing the inequalities (5.3) and (5.4), we get

x(δ(V 1 , ..., V p , V p+1 )) ≥ k 2 (p + 1) -1,
which ends the proof of the theorem.

Inequality (5.2) expresses the fact that, in a solution of the kHNDP, the multicut induced by a Steiner-SP-partition contains at least k 2 p -1 edges, since this solution contains k edge-disjoint paths between every pair of nodes {s, t} ∈ D.

Chopra [START_REF] Chopra | The k-edge connected spanning subgraph polyhedron[END_REF] also described a lifting procedure for inequalities (5.1) for the kECSP. This procedure can be easily extended, for the kHNDP, to inequalities of type (5.2). It is described as follows. Let G = (V, E) be a graph and k ≥ 3 an odd integer. Let G ′ = (V, E ∪ E ′ ) be a graph obtained from G by adding an edge set E ′ . Let π = (V 1 , ..., V p ) be a Steiner-SP-partition of G. Then the following inequality is valid for kHNDP Ag (G, D), kHNDP Sep Cu (G, D), kHNDP Sep F lo (G, D) and

kHNDP Sep P a (G, D) x(δ G (V 1 , ..., V p )) + e∈E ′ ∩δ G ′ (V 1 ,...,Vp) a(e)x(e) ≥ k 2 p -1, (5.5) 
where a(e) is the length (in terms of edges) of a shortest path in G π between the endnodes of e, for all e ∈ E ′ ∩ δ G ′ (V 1 , ..., V p ). We will call inequalities of type (5.5) lifted Steiner-SP-partition inequalities.

Steiner-SP-partition inequalities (5.2) are shown to be valid for the kHNDP polytopes for any L ≥ 2. However, we can show that when L = 2, they are dominated by partition inequalities (4.1) and (4.3). Proof. To prove the theorem, it suffices to show, for a given Steiner-SP-partition, that the righthand-side of the Steiner-SP-partition inequality is lower than that of the partition inequality induced by this partition. In this proof, we do this only for L = 2 and rooted demands, the proof being the same for disjoint demands. Thus, consider the case of rooted demands and a partition π of V into p ≥ 2 node sets. Recall that the partition inequality (4.1) is of the form

x(δ(π)) ≥ (k + 1)p 2 , (5.6) 
and Steiner-SP-partition inequality (5.2) is of form

x(δ(π)) ≥ k 2 p -1.. (5.7)
We assume, w.l.o.g., that k is odd. We have that

(k + 1)p 2 -( k 2 p -1) ≥ (k + 1)p 2 - k + 1 2 p -1 = 1 > 0,
which shows that inequality (5.6) dominates (5.7).

6 Futher valid inequalities for kHNDP N at (G, D)

In this section, we present two other classes of inequalities which are valid for the polytope associated with the natural formulation of the kHNDP. These inequalities are generalizations of those introduced by Huygens et al. [START_REF] Huygens | The two-edge connected hopconstrained network design problem: Valid inequalities and Branch-and-Cut[END_REF] for the 2HNDP.

Double cut inequalities

In the following we introduce a class of inequalities that are valid for the kHNDP polytopes for L ≥ 2 and k ≥ 2. They are given by the following theorem.

Theorem 6.1 Let {s, t} be a demand, i 0 ∈ {0, ..., L} and

Π = {V 0 , ..., V i 0 -1 , V 1 i 0 , V 2 i 0 , V i 0 +1 , ..., V L+1 } a family of node sets of V such that π = (V 0 , ..., V i 0 -1 , V 1 i 0 , V 2 i 0 ∪ V i 0 +1 , V i 0 +2 , ..., V L+1 ) induces a partition of V . Suppose that 1. V 1 i 0 ∪ V 2 i 0 induces an s j 1 t j 1 -cut of G with {s j 1 , t j 1 } ∈ D and s j 1 ∈ V 1 i 0 or t j 1 ∈ V 1
i 0 (note that s j 1 and t j 1 cannot be simultaneously in V 1 i 0 and are not in V 2 i 0 . Also note that V 2 i 0 may be empty); 2. V i 0 +1 induces an s j 2 t j 2 -cut of G with {s j 2 , t j 2 } ∈ D (note that j 1 and j 2 may be equal);

π induces an

L-st-path-cut of G with s ∈ V 0 (resp. t ∈ V 0 ) and t ∈ V L+1 (resp. s ∈ V L+1 ). Let E = [V i 0 -1 , V 1 i 0 ] ∪ [V i 0 +2 , V 2 i 0 ∪ V i 0 +1 ] ∪   k,l / ∈{i 0 ,i 0 +1},|k-l|>1 [V k , V l ]   and F ⊆ E such that |F |
and k have different parities.

Let also Ê = ( Proof. Let T be the L-st-path-cut of G induced by the partition π. As T is an L-st-path-cut, and V 1 i 0 ∪ V 2 i 0 and V i 0 +1 induce st-cut with {s, t} ∈ {{s j 1 , t j 1 }, {s j 2 , t j 2 }}, the inequalities below are valid for the kHNDP polytopes

i 0 -2 i=0 [V i , V i+1 ]) ∪ ( L i=i 0 +2 [V i , V i+1 ]) ∪ F. Then, the inequality x(δ(π) \ Ê) ≥ 3k -|F | 2 , ( 6 
x(T ) ≥ k, x(δ(V 1 i 0 ∪ V 2 i 0 )) ≥ k, x(δ(V i 0 +1 )) ≥ k, -x(e) ≥ -1
for all e ∈ F,

x(e) ≥ 0 for all e ∈ E \ F.

By summing these inequalities, dividing by 2 and rounding up the right hand side, we obtain inequality (6.1).

Inequalities of type (6.1) are called double cut inequalities. They generalize those introduced by Huygens and Mahjoub [START_REF] Huygens | Integer programming formulation for the two 4-hopconstrained paths problem[END_REF] for the kHNDP when k = 2. We discuss in the following special cases for these inequalities. This concerns the case where L ∈ {2, 3} and i 0 = 0. The set of edges having a positive coefficient in inequality (6.1) plus the edges of F is called a double cut. Figure 13 gives an example for L = 3 and i

0 = 0. Let L = 2, {s, t} ∈ D and Π = {V 1 0 , V 2 0 , V 1 , V 2 , V 3 } be a family of node sets of V such that π = (V 1 0 , V 2 0 ∪ V 1 , V 2 , V 3 ) induces a 2-st-path-cut, and V 1 induces a valid s 1 t 1 -cut in G, for some {s 1 , t 1 } ∈ D. If F ⊆ [V 2 0 ∪ V 1 , V 2
] is chosen such that |F | and k have different parities, then the double cut inequality induced by Π and F in this case can be written as

x([V 1 0 , V 1 ∪ V 2 ∪ V 3 ]) + x([V 2 0 , V 1 ∪ V 3 ]) + x([V 1 , V 3 ]) + x([V 2 0 ∪ V 1 , V 2 ] \ F ) ≥ 3k -|F | 2 . (6.2) Now let L = 3, {s, t} ∈ D and Π = {V 1 0 , V 2 0 , V 1 , V 2 , V 3 , V 4 } be a family of node sets of V such that π = (V 1 0 , V 2 0 ∪ V 1 , V 2 , V 3 , V 4 ) induces a 3-st-path-cut, and V 1 induces a valid s 1 t 1 -cut in G. If F ⊆ [V 2 0 ∪ V 1 ∪ V 4 , V 2
] is chosen such that |F | and k have different parities, then the double cut inequality induced by Π and F can be written as

x([V 1 0 , V 1 ∪ V 2 ∪ V 3 ∪ V 4 ]) + x([V 2 0 , V 1 ∪ V 3 ∪ V 4 ]) + x([V 1 , V 3 ∪ V 4 ]) + x([V 2 0 ∪ V 1 ∪ V 4 , V 2 ] \ F ) ≥ 3k -|F | 2 . (6.3) 
T 3 the 2-s 2 t 2 -path-cuts induced by the partitions (V 0 , V 1 ∪ V 3 , V 2 ∪ V 1 4 , V 2 4 ) and (V 0 , V 1 , V 2 ∪ V 3 ∪ V 1 4 , V 2 
4 ), respectively. The following inequalities are valid for the kHNDP polytopes

x(T 1 ) ≥ k, x(T 2 ) ≥ k, x(T 3 ) ≥ k, -x(e) ≥ -1, for all e ∈ F,
x(e) ≥ 0, for all e ∈ ([

V 2 3 , V 1 ∪ V 1 4 ] ∪ [V 1 3 , V 2 4 ]) \ F.
By summing these inequalities, dividing by 2 and rounding up the right hand side, we get inequality (6.4).

ii) Let T 1 be the 3-

s 1 t 1 -path-cut induced by the partition (V 0 , V 1 ∪ V 5 , V 2 , V 3 ∪ V 1 4 , V 2 4 
), and T 2 and T 3 be the 3-s 2 t 2 -path-cuts induced by the partitions

(V 0 , V 1 ∪ V 4 , V 2 , V 3 ∪ V 1 5 , V 2 5 
) and

(V 0 , V 1 , V 2 , V 3 ∪ V 4 ∪ V 1 5 , V 2 5 
), respectively. The following inequalities are valid for the kHNDP polytopes

x(T 1 ) ≥ k, x(T 2 ) ≥ k, x(T 3 ) ≥ k, -x(e) ≥ -1,
for all e ∈ F,

x(e) ≥ 0, for all e ∈ ([V 2 , V 2 4 ] ∪ [V 3 , V 4 ∪ V 5 ]) \ F.
By adding these inequalities, dividing by 2 and rounding up the right hand side, we get inequality (6.5).

Inequalities of type (6.4) and (6.5) will be called triple path-cut inequalities. The set of edges having a positive coefficient in inequality (6.4) ((6.5)) plus the edges of F will be called a triple path-cut (see Figure 14 for an example with L = 2). In this section, we introduce a class of inequalities that are valid for kHNDP Ag (G, D) and kHNDP Sep Cu (G, D). These inequalities are inspired from those introduced by Dahl [START_REF] Dahl | The Design of Survivable Directed Networks[END_REF] for the polytope of the Survivable Directed Network Design Problem (kDNDP). The kDNDP consists, given a directed graph H, a set of demands D and an integer k ≥ 2, in finding a minimum weight subgraph of H which contains k arc-disjoint st-dipaths for every demand {s, t} ∈ D. We will first describe these inequalities for kHNDP Ag (G, D) and then extend them to kHNDP Sep Cu (G, D).

V 1 0 s 2 s 1 t 1 t 1 V 1 V 1 3 V 2 3 V 1 4 V 2 4 V 2 
7.1 Aggregated cut inequalities for kHNDP Ag (G, D)

Let { W 1 , ..., W p }, p ≥ 2, be a family of node sets of V such that each set W i induces an st-dicut of G, for some {s, t} ∈ D, and The inequalities below are valid for kHNDP Ag

F 0 i ⊆ δ + G ( W i ), for i = 1, ..., p. Let F = p i=1 [δ + G ( W i ) \ F 0 i ]
y(δ + G ( W i )) ≥ k for i = 1, ..., p, -y(a) ≥ -1 for all a ∈ F 0 i , i = 1, ..., p.
By summing these inequalities, we obtain

a∈ F r(a)y(a) ≥ kp - p i=1 | F 0 i |.
If F 1 (resp. F 2 ) denotes the set of arcs a ∈ F such that r(a) is odd (resp. even), then the previous inequality can be written as

a∈ F 1 r(a)y(a) + a∈ F 2 r(a)y(a) ≥ kp - p i=1 | F 0 i |. (7.1) 
Let F 2 1 ⊆ F 1 such that, for every edge e ∈ E corresponding to an arc of

F 1 , r ′ (e, F 2 1 
) is even. Let E 2 be the set of edges corresponding to the arcs of F 2 1 . By summing inequality (7.1) together with the inequalities r(a)x(e) ≥ r(a)y(a), for all a ∈ F 2

1 and e corresponding to a, we get

e∈E 2 r ′ (e, F 2 1 )x(e) + a∈ F 1 \ F 2 1 r(a)y(a) + a∈ F 2 r(a)y(a) ≥ kp - p i=1 | F 0 i |. (7.2) 
By dividing by 2 and rounding up the right hand side of inequality (7.2), we obtain the following inequality

e∈E 2 r ′ (e, F 2 1 ) 2 
x(e)

+ a∈ F 1 \ F 2 1 r(a) + 1 2 y(a) + a∈ F 2 r(a) 2 y(a) ≥         kp - p i=1 | F 0 i | 2         . (7.3) 
Inequalities of type (7.3) will be called aggregated cut inequalities. We give the following result which directly comes from the above description.

Theorem 7.1 The aggregated cut inequalities (7.3) are valid for kHNDP Ag (G, D) when L ∈ {2, 3}.

Inequalities (7.3) come from families of st-dicuts of G which may have different forms of configurations for the node sets W 1 , ..., W p , p ≥ 2, and the arc sets

F 0 i ⊆ δ + G ( W i ), i = 1, ..., p.
In the following, we discuss a special case of these inequalities. Let { W 1 , ..., W p }, p ≥ 2, be a family of node sets of V such that each set W i , i = 1, ..., p, induces an st-dicut, for some {s, t} ∈ D, and let

F 0 i ⊆ δ + G ( W i ), i = 1, .
.., p, be arc sets such that 0 ≤ r(a) ≤ 2 for all a ∈ A. Let F 2 (resp. F 1 ) be the set of arcs such that r(a) = 2 (resp. r(a) = 1). Let F 2 1 be the set of arcs a ∈ F 1 for which there is another arc a ′ ∈ F 1 which corresponds to the same edge of E, and let E 2 be the set of the corresponding edges. The inequality of type (7.3) associated with this configuration can be written as

a∈ F 2 y(a) + e∈E 2 x(e) + a∈ F 1 \ F 2 1 y(a) ≥         kp - p i=1 | F 0 i | 2         . (7.4) 
As it will turn out, inequalities (7.4) may define facets under certain conditions and will be useful for solving the kHNDP using a Branch-and-Cut algorithm (Section ??).

Aggregated cut inequalities for kHNDP Sep Cu (G, D)

The aggregated cut inequalities can be defined for the polytope kHNDP Sep Cu (G, D) in a similar way. Let G st = ( V st , A st ), {s, t} ∈ D, be the directed graphs associated with G and {s, t} ∈ D in Formulation (2.23). Let {{s 1 , t 1 }, ..., {s q , t q }} be a subset of demands. Consider a family of node

sets { W s 1 t 1 1 , ..., W s 1 t 1 p 1 , ..., W sqtq 1 
, ..., W sqtq pq }, with p i ≥ 1, for all i ∈ {1, ..., q} and p = q i=1 p i ≥ 2, where W s i t i j , j = 1, ..., p i , induces an

s i t i -dicut in G s i t i . Let F s i t i ,0 j ⊆ δ + Gs i t i ( W s i t i j ). Let F s i t i = p i j=1 [δ + Gs i t i ( W s i t i j ) \ F s i t i ,0 j
], for every i ∈ {1, ..., q}, and for a given arc a ∈ A s i t i , i = 1, ..., q, we let r s i t i (a) be the number of sets δ +

Gs i t i ( W s i t i j ) \ F s i t i ,0 j containing arc a. If a does not belong
to any of these sets, then r s i t i (a) = 0. Given an edge e ∈ E and an arc subset

U i ⊆ A s i t i , we let r ′ (e, U i ) = a∈ As i t i (e)∩ U i r s i t i (a).
The inequalities below are valid for kHNDP Sep Cu (G, D),

y s i t i (δ + Gs i t i ( W s i t i j )) ≥ k for j = 1, ..., p i , i = 1, ..., q, -y s i t i (a) ≥ -1 for a ∈ F s i t i j , j = 1, ..., p i , i = 1, ..., q.
By summing these inequalities, we get

q i=1   a∈ F s i t i r s i t i (a)y s i t i (a)   ≥ kp - q i=1 p i j=1 | F s i t i ,0 j |. Let F s i t i ,1 (resp. F s i t i ,2
) be the set of arcs a ∈ F s i t i having r s i t i (a) odd (resp. even). The inequality above can then be written as

q i=1   a∈ F s i t i ,1 r s i t i (a)y s i t i (a) + a∈ F s i t i ,2 r s i t i (a)y s i t i (a)   ≥ kp - q i=1 p i j=1 | F s i t i ,0 j |. (7.5) 
Now we let F s i t i ,1 2 ⊆ F s i t i ,1 , i = 1, ..., q, be the arc sets such that, for every edge e ∈ E associated with an arc of

F s i t i ,1 2 , q i=1 r ′ (e, F s i t i ,1 2 
) is even. If E 2 denotes the set of edges corresponding to the arcs of F s i t i ,1

2

, i = 1, ..., q, then by adding inequality (7.5) and the inequalities

r s i t i (a)x(e) ≥ r s i t i (a)y s i t i (a) for all a ∈ F s i t i ,1 2 
where e corresponds to a, we get

q i=1    a∈ F s i t i ,1 \ F s i t i ,1 2 
r s i t i (a)y s i t i (a) + a∈ F s i t i ,2 r s i t i (a)y s i t i (a)   + e∈E 2 ( q i=1 r ′ (e, F s i t i ,1 2 
))x(e) ≥ kp -

q i=1 p i j=1 | F s i t i ,0 j |. (7.6) 
Finally, by dividing inequality (7.6) by 2 and rounding up the right hand side of the resulting inequality, we obtain

q i=1    a∈ F s i t i ,1 \ F s i t i ,1 2 
r s i t i (a) + 1 2 y s i t i (a) + a∈ F s i t i ,2 r s i t i (a) 2 y s i t i (a)   + e∈E 2 q i=1 r ′ (e, F s i t i ,1 2 ) 2 x(e) ≥          kp - q i=1 p i j=1 | F s i t i j | 2          . ( 7.7) 
We then have the following result.

Theorem 7.2 Inequality (7.7) is valid for kHNDP Sep Cu (G, D).

Inequalities (7.7) will be also called aggregated cut inequalities.

We are going to describe a special case for inequalities (7.7), which will be utile in the Branchand-Cut algorithm based on the Cut formulation (see Section ??).

Let { W s 1 t 1 1 , ..., W s 1 t 1 p 1 , ..., W sqtq 1 
, ..., W sq tq pq }, with p i ≥ 1, for i = 1, ..., q, and p = q i=1 p i ≥ 2, be a family of node sets such that W s i t i j induces s i t i -dicut of G s i t i , i = 1, ..., q. Let F s i t i ,0 j ⊆ δ + Gs i t i ( W s i t i j ) be arc sets and

F s i t i = p i=1 [δ + Gs i t i ( W s i t i j ) \ F s i t i ,0 j
]. Suppose that 0 ≤ r s i t i (a) ≤ 2 for all a ∈ A s i t i , i = 1, ..., q. Let F s i t i ,2 be the set of arcs of F s i t i having r s i t i (a) = 2 and F s i t i ,1 the set of arcs of

F s i t i having r s i t i (a) = 1. Let F s i t i ,1 2 
be the subset of arcs a ∈ F s i t i ,1 such that there exists another arc a ′ ∈ F s i t i ,1 which corresponds to the same edge of E, and let E 2 be the set of the corresponding edges. Then the inequality (7.7), induced by this configuration, can be written as

q i=1    a∈ F s i t i ,2 y s i t i (a) + a∈ F s i t i ,1 \ F s i t i ,1 2 
y s i t i (a)    + e∈E 2 x(e) ≥          kp - q i=1 p i j=1 | F s i t i j | 2          . (7.8)

Lifting procedure for aggregated cut inequalities

In what follows we define a lifting procedure for the aggregated cut inequalities for both Aggregated and Cut formulations, (7.4) and (7.8). This will permit to extend these inequalities to a more general class of valid inequalities. Consider first the polytope kHNDP Ag (G, D). The lifting procedure is given in the following theorem. 

F 0 i ⊆ δ 0 i , p ≥ 2, which is valid for kHNDP Ag (G, D). Let G ′ = (V, E ∪ E ′
) be a graph obtained by adding to G an edge set E ′ and let G ′ = ( V , A ∪ A ′ ) be the directed graph associated with G ′ in the Aggregated formulation ( A ′ is the set of arcs corresponding to the edges of E ′ ). Then, the inequality is valid for kHNDP Ag (G ′ , D), where q(a) is the number of dicuts δ + G ′ ( W i ) containing the arc a, for all a ∈ A ′ . Proof. W.l.o.g., we will suppose that E ′ = {e 0 }. The proof is similar in the case where more than one edge are added to G. Also, for more clarity, we will consider that only one arc, say a 0 , is associated with e 0 in G ′ , that is we will consider that A ′ = {a 0 }. We are going to show that for every solution (x, y) ∈ kHNDP Ag (G, D), e∈E α(e)x(e)

+ a∈ A β(a)y(a) + q(a 0 ) 2 y(a 0 ) ≥         kp - p i=1 | F 0 i | 2         . First, let ∆(x, y) = αx + βy, that is ∆(x, y) = a∈ F 2 y(a) + e∈E 2
x(e)

+ a∈ F 1 \ F 2 1 y(a),
where F 2 , F 1 , F 2 1 and E 2 are the arc and edge sets involved in αx + βy ≥ γ. The lifted inequality can hence be written as

∆(x, y) + q(a 0 ) 2 y(a 0 ) ≥         kp - p i=1 | F 0 i | 2         . (7.10)
If y(a 0 ) = 0, then obviously the restriction of (x, y) to E and A is in kHNDP Ag (G, D). Thus,

∆(x, y) ≥         kp- p i=1 | F 0 i | 2        
, and hence (7.10) is satisfied. Now suppose that y(a 0 ) = 1. We have that

p i=1 y(δ + G ( W i ) \ F 0 i ) = p i=1 y(δ + G ( W i )) -y( F 0 i ) = 2 a∈ F 2 y(a) + a∈ F 2 1 y(a) + a∈ F 1 \ F 2 1 y(a) ≤ 2 a∈ F 2 y(a) + 2 e∈E 2 x(e) + a∈ F 1 \ F 2 1 y(a) = 2∆(x, y) - a∈ F 1 \ F 2 1 y(a).
Thus we get

∆(x, y) ≥ 1 2    p i=1 y(δ + G ( W i )) - p i=1 y( F 0 i ) + a∈ F 1 \ F 2 1 y(a)   , ≥ 1 2 p i=1 y(δ + G ( W i )) - p i=1 y( F 0 i ) . Hence, ∆(x, y) ≥         p i=1 y(δ + G ( W i )) - p i=1 | F 0 i | 2         . (7.11)
If W i , i = 1, ..., q(a 0 ), are the node sets of Π such that the dicut δ + G ′ ( W i ) contains a 0 , then we have that

y(δ + G ( W i )) = y(δ + G ′ ( W i )) -y(a 0 ), i = 1, ..., q(a 0 ), y(δ + G ( W i )) = y(δ + G ′ ( W i )), i = q(a 0 ) + 1, ..., p.
As (x, y) induces a solution of kHNDP Ag on G ′ , we have that y(δ + G ′ ( W i )) ≥ k, i = 1, ..., p. Moreover, since y(a 0 ) = 1, we have that

y(δ + G ( W i )) ≥ k -1, i = 1, ..., q(a 0 ).
(7.12) Thus, from (7.11) and (7.12), we obtain

∆(x, y) ≥         k(p -q(a 0 )) + (k -1)q(a 0 ) - p i=1 | F 0 i | 2         , ≥         kp - p i=1 | F 0 i | -q(a 0 ) 2         , ≥         kp - p i=1 | F 0 i | 2         - q(a 0 ) 2 .
Therefore, since y(a 0 ) = 1, we get

∆(x, y) + q(a 0 ) 2 y(a 0 ) ≥         kp - p i=1 | F 0 i | 2        
, which ends the proof of the theorem. Now we give a lifting procedure for aggregated cut inequalities (7.8) when the Cut formulation is considered. This procedure is similar to that introduced for inequalities (7.4) for the Aggregated formulation. It is given in the theorem below. p i ≥ 2, and arc sets F s i t i ,0 j ⊆ δ Gs i t i ( W s i t i j ), j = 1, ..., p i , i = 1, ..., q. Let G ′ = (V, E ∪ E ′ ) and G ′ st = ( V st , A st ∪ A ′ st ) be the directed graph associated with G ′ in the Cut formulation, for all {s, t} ∈ D( A ′ st is the set of arcs corresponding to the edges of E ′ ). Then the inequality e∈E α(e)x(e) + q i=1 a∈ As i t i

β s i t i (a)y s i t i (a) + q i=1 a∈ A ′ s i t i q s i t i (a) 2 y s i t i (a) ≥ γ (7.13)
is valid for kHNDP Sep Cu (G ′ , D), where q

s i t i (a) is the number of dicuts δ + G ′ s i t i ( W s i t i j ), in G ′ s i t i ,
containing the arc a, for every a ∈ A ′ s i t i , i = 1, ..., p.

Proof. Similar to that of Theorem 7.3.

Facets

Throughout this section, we consider a complete graph G = (V, E) and suppose that |V | ≥ k + 2.

The first result concerns necessary conditions for the aggregated cut inequalities (7.4) to define facets for kHNDP Ag (G, D). To this end, we first give the following lemma.

Lemma 8.1 Consider an inequality of type (7.4) induced by a family of node sets Π = { W 1 , ..., W p }, p ≥ 2, and arc subsets

F 0 i ⊆ δ + G ( W i ), i = 1, ..., p. Let F 2 , F 1 , F 2 
1 and E 2 be the arc and edge sets involved in this inequality. Then (7.4) can be written as

p i=1 y(δ + ( W i )) + 2 e∈E 2 x(e) - a∈ F 2 1 y(a) + p i=1 (| F 0 i | -y( F 0 i )) + a∈ F 1 \ F 2 1 y(a) ≥ kp + 1. (8.1)
Moreover, (7.4) is tight for a solution (x 0 , y 0 ) ∈ kHNDP Ag (G, D) if and only if one of the following conditions holds i)

2 e∈E 2 x 0 (e) - a∈ F 2 1 y 0 (a) + p i=1 (| F 0 i | -y 0 ( F 0 i )) + a∈ F 1 \ F 2 1 y 0 (a) = 1 (8.2)
and y 0 (δ + ( W i )) = k, for i = 1, ..., p; 

(| F 0 i | -y 0 ( F 0 i )) + a∈ F 1 \ F 2 1 y 0 (a) = 0 (8.3)
and there exists i 0 ∈ {1, ..., p} such that y 0 (δ + ( W i )) = k, for i ∈ {1, ..., p} \ {i 0 } and y 0 (δ

+ ( W i 0 )) = k + 1.
Proof. First we show that αx + βy ≥ γ is equivalent to (8.1). As kp and

p i=1 | F 0 i | have different parities, αx + βy ≥ γ is equivalent to 2 e∈E 2
x(e) + 2

a∈ F 2 y(a) + 2 a∈ F 1 \ F 2 1 y(a) ≥ kp - p i=1 | F 0 i | + 1. (8.4)
From the st-dicuts induced by the sets W i , we have that

p i=1 y(δ + ( W i ) \ F 0 i ) = 2 a∈ F 2 y(a) + a∈ F 2 1 y(a) + a∈ F 1 \ F 2 1 y(a), = 2 a∈ F 2 y(a) + 2 e∈E 2
x(e) -2 e∈E 2

x(e)

+ a∈ F 2 1 y(a) + a∈ F 1 \ F 2 1 y(a).
together with (8.4), we get

p i=1 y(δ + ( W i ) \ F 0 i ) + 2 e∈E 2
x(e) -

a∈ F 2 1 y(a) + a∈ F 1 \ F 2 1 y(a) ≥ kp - p i=1 | F 0 i | + 1. (8.5) 
By combining (8.5) and y(δ + ( W i ) \ F 0 i ) = y(δ + ( W i ))y( F 0 i ), i = 1, ..., p, we get (8.1). Now consider a solution (x 0 , y 0 ) ∈ kHNDP Ag (G, D) satisfying (7.4) with equality. By the previous result, we have that

p i=1 y 0 (δ + ( W i )) + p i=1 (| F 0 i | -y 0 ( F 0 i )) + 2 e∈E 2 x 0 (e) - a∈ F 2 1 y 0 (a) + a∈ F 1 \ F 2 1 y 0 (a) = kp + 1. (8.6) 
As (x 0 , y 0 ) induces a solution of the kHNDP, we have that y 0 (δ

+ ( W i )) ≥ k, i = 1, ..., p. Therefore, p i=1 y 0 (δ + ( W i )) ≥ kp, and hence, p i=1 (| F 0 i | -y 0 ( F 0 i )) + 2 e∈E 2 x 0 (e) - a∈ F 2 1 y 0 (a) + a∈ F 1 \ F 2 1 y 0 (a) ≤ 1. (8.7)
If (8.7) is satisfied with equality, then, clearly y 0 (δ + ( W i )) = k, i = 1, ..., p. If not, as y 0 (δ + ( W i )) ≥ k, i = 1, ..., p, this yields y 0 (δ + ( W i 0 )) = k + 1 for some i 0 ∈ {1, ..., p} and y 0 (δ + ( W i )) = k, for i ∈ {1, ..., p} \ {i 0 }.

Conversely, if (8.7) is tight for (x 0 , y 0 ) and y 0 (δ + ( W i )) = k for all i ∈ {1, ..., p}, then clearly, (8.1) is tight for (x 0 , y 0 ) and hence αx + βy ≥ γ is tight for (x 0 , y 0 ). If (8.7) is not tight for (x 0 , y 0 ), that is

p i=1 (| F 0 i | -y 0 ( F 0 i )) + 2 e∈E 2 x 0 (e) - a∈ F 2 1 y 0 (a) + a∈ F 1 \ F 2 1
y 0 (a) = 0, y 0 (δ + ( W i 0 )) = k + 1 for some i 0 ∈ {1, ..., p} and y 0 (δ + ( W i 0 )) = k for i ∈ {1, ..., p} \ {i 0 }, then clearly, (8.1) is also tight for (x 0 , y 0 ). Thus, αx + βy ≥ γ is tight for (x 0 , y 0 ).

Corollary 8.1 Consider an inequality of type (7.4) induced by a family of node sets { W 1 , ..., W p }, p ≥ 2, and arc subsets

F 0 i ⊆ δ + G ( W i ), i = 1, ..., p. Let F 2 , F 1 , F 2 
1 and E 2 be the arc and edge sets involved in this inequality. If (7.4) is tight for a solution (x 0 , y 0 ) of kHNDP Ag (G, D) then, 

2 e∈E 2 x 0 (e) - a∈ F 2 1 y 0 (a) + p i=1 (| F 0 i | -y 0 ( F 0 i )) + a∈ F 1 \ F 2 1 y 0 (a) ≤ 1. ( 8 
F 0 i ⊆ δ + G ( W i ).
Suppose that every arc of A belongs to at most two sets δ + G ( W i ) \ F 0 i . Then, the aggregated cut inequality (7.4) induced by Π and F 0 i , i = 1, ..., p, defines a facet of kHNDP Ag (G, D) different from the trivial and s i t i -dicut inequalities, only if for all i ∈ {1, ..., p}, the following conditions hold

1. | W i ∩ S D | = |( V \ W i ) ∩ T D | = 1; 2. | W i ∩ S D | ≥ 2 and for all s ∈ ( W i \ {s i }) ∩ S D , [s, V \ W i ] = ∅; 3. |( V \ W i ) ∩ T D | ≥ 2 and for all t ∈ [( V \ W i ) \ {t i }] ∩ T D , [ W i , t] = ∅.
Proof. Let us denote by αx + βy ≥ γ the inequality (7.4) induced by Π and F 0 i , i = 1, ..., p, and suppose that it defines a facet of kHNDP Ag (G, D). We will show that | W i ∩ S D | = 1, for i = 1, ..., p. The proof follows the same lines for |( V \ W i ) ∩ T D | = 1. Also the proof for 2) and 3) is similar. Suppose, on the contrary, that there exists i 0 ∈ {1, ..., p} such that W i 0 induces an st-dicut of G and that ( W i 0 \ {s}) ∩ S D = ∅. Let s ′ be a node of ( W i 0 \ {s}) ∩ S D , and suppose that [s ′ , V \ W i 0 ] = ∅ (see Figure 15).

W i0 t s ′ V \ W i0 s Figure 15: A set W i 0 containing two nodes of S Let H 0 = F 2 ∩ [s ′ , V \ W i 0 ] and H 1 = ( F 1 \ F 2 1 ) ∩ [s ′ , V \ W i 0 ]. Also let H 2 = F 2 1 ∩ [s ′ , V \ W i 0 ], H 3 be the set of arcs of F 2
1 corresponding to the same edges as the arcs of H 2 . Let E 0 be the edge set corresponding to the arcs of H 2 and H 3 . Consider now the aggregated cut inequality induced by { W ′ 1 , ..., W ′ p } and F 0 ′ i , i = 1, ..., p, where

W ′ i = W i , F 0 ′ i = F 0 i , for i ∈ {1, ..., p} \ {i 0 }, and W ′ i 0 = W i 0 \ {s ′ }, F 0 ′ i = F 0 i \ [s ′ , V \ W i 0 ]. Let F ′ 2 , F ′ 1 , F 2 ′
1 and E ′ 2 be the set of arcs and edges involved in this inequality. By the above observation, as the arcs of H 3 correspond to those of H 2 , we have that H 3 ∩ [s ′ , V \ W i 0 ] = ∅. Also, by the same observation, no arc of H 0 may correspond to an arc of H 2 and H 3 . Thus, we have that

F ′ 2 = F 2 \ H 0 , F 2 ′ 1 = F 2 1 \ ( H 2 ∪ H 3 ), F ′ 1 \ F 2 ′ 1 = [( F 1 \ F 2 1 ) \ H 1 ] ∪ H 0 ∪ H 3 . E ′ 2 = E 2 \ E 0 .
Therefore, the inequality (7.4) induced by { W ′ 1 , ..., W ′ p } and F 0 ′ i , i = 1, ..., p, can be written as

a∈ F 2 \ H 0 y(a) + e∈E 2 \E 0 x(e) + a∈( F 1 \ F 2 1 )\ H 1 + a∈ H 0 y(a) + a∈ H 3 y(a) ≥         kp - p i=1 | F 0 ′ i | 2         . (8.9)
By summing up inequality (8.9) and the inequalities

x(e) ≥ y(a), for all a ∈ H 3 , where e is the edge of E 0 corresponding to a. x(e)

+ a∈ F 1 \ F 2 1 y(a) ≥         kp - p i=1 | F 0 ′ i | 2         . (8.12) Clearly, if F i 0 ∩ [s ′ , V \ W i 0 ] = ∅, then F ′ i 0 = F i 0 and inequality (8.
12) is the same as αx + βy ≥ γ. Thus αx + βy ≥ γ is redundant with respect to (8.9)- (8.11), and hence cannot define a facet of kHNDP Ag (G, D). If F i 0 ∩ [s ′ , V \ W i 0 ] = ∅, then the right hand side of inequality (8.12) is greater than that of αx + βy ≥ γ. Thus, αx + βy ≥ γ is dominated by (8.9)-(8.11), and hence cannot define a facet of kHNDP Ag (G, D).

The next theorems give necessary conditions for the double cut and triple path-cut inequalities to define facets of the kHNDP polytopes. Before each theorem, we give two technical lemmas which will be useful to prove the theorem. The first lemma, Lemma 8.2, is given without proof since it is obtained from Theorem 3.4 of [START_REF] Bendali | On the k-edge-disjoint 3-hopconstrained paths polytope[END_REF]. Lemma 8.2 [START_REF] Bendali | On the k-edge-disjoint 3-hopconstrained paths polytope[END_REF] Let {s, t} ∈ D, T be a 3-st-path-cut ineduced by a partition (V 0 , ..., V 4 ). If an edge set F ⊆ E induces a solution of the kHNDP and is such that

|F ∩ T | = k, then |F ∩ ([s, V 1 ] ∪ [V 3 , t] ∪ [s, t])| ≥ k. Lemma 8.3 Let αx ≥ γ be a double cut inequality induced by a family of node sets Π = (V 1 0 , V 2 0 , V 1 , ..., V L+1 ) of V , F ⊆ E and {s, t} ∈ D with s ∈ V 1 0 and t ∈ V L+1 (here i 0 = 0). Then, αx ≥ γ can be written as x(T ) + x(δ(V 1 0 ∪ V 2 0 )) + x(δ(V 1 )) + x(E \ F ) + |F | -x(F ) ≥ 3k + 1, (8.13) 
where T is the L-st-path-cut induced by the partition

(V 1 0 , V 2 0 ∪ V 1 , V 2 , ..., V L+1
). Moreover, αx ≥ γ is tight for a solution x 0 of kHNDP Ag , kHNDP Cut , kHNDP Sep F lo , kHNDP Sep P a , where x 0 ∈ R E , if and only if one of the following conditions holds.

i) x 0 (E \ F ) + |F | -x 0 (F ) = 1 and x 0 (T ) = x 0 (δ(V 1 0 ∪ V 2 0 )) = x 0 (V 1 ) = k; ii) x 0 (E \ F ) + |F | -x 0 (F ) = 0 and a) x 0 (T ) = k + 1, x 0 (δ(V 1 0 ∪ V 2 0 )) = k and x 0 (V 1 ) = k; b) x 0 (T ) = k, x 0 (δ(V 1 0 ∪ V 2 0 )) = k + 1 and x 0 (V 1 ) = k; c) x 0 (T ) = k, x 0 (δ(V 1 0 ∪ V 2 0 )) = k and x 0 (V 1 ) = k + 1;
Proof. W.l.o.g., we will consider the polytope kHNDP Ag (G, D). The proof is similar for kHNDP Cut (G, D), kHNDP Sep F lo (G, D) and kHNDP Sep P a (G, D). Let H denote the double cut induced by Π. The inequality αx ≥ γ is equivalent to .14) non empty only if conditions iv) are satisfied. As F is different from the hyperspace induced by the inequality x(e) ≥ 0 for some e ∈ F , there exists a solution (x, y) ∈ F such that x(e) = 0. Thus, |F |x(F ) ≥ 1. By Lemma 8.4, this implies that x(E \ F ) + |F |x(F ) = 1 and hence, x(T i ) = k, for i = 1, 2, 3. Therefore, from Lemma 8.2, we obtain that

x(H \ E) + x(E \ F ) ≥ 3k -|F | + 1 2 . This implies that 2x(H \ E) + 2x(E) -2x(F ) ≥ 3k -|F | + 1. ( 8 
|[{s 1 , s 2 }, V 1 ∪ V 1 5 ∪ {t 2 }]| + |[V 3 ∪ V 1 4 , t 1 ]| + |[{s 1 , s 2 }, t 1 ]| ≥ k, |[{s 1 , s 2 }, V 1 ∪ V 1 4 ∪ {t 1 }]| + |[V 3 ∪ V 1 5 , t 2 ]| + |[{s 1 , s 2 }, t 2 ]| ≥ k, |[{s 1 , s 2 }, V 1 ]| + |[V 3 ∪ V 1 4 ∪ {t 1 } ∪ V 1 5 , t 2 ]| + |[{s 1 , s 2 }, t 2 ]| ≥ k,
which ends the proof of the theorem.

In the following section, we discuss the separation problem associated with the inequalities present before and present separation algorithm for each of them.

9 Separation Procedures 9.1 Separation of st-cut and L-st-path-cut inequalities

The separation problem of st-cut and L-st-path-cut inequalities, when L = 2, 3, can be reduced to computing a minimum weight st-dicut in the graph G st , for every (s, t) ∈ D, or in the aggregated graph G. The reduction relies on the correspondance between st-cut and L-st-path-cuts, on one hand, and particular st-dicuts in G st or in G on the other hand (see [START_REF] Diarrassouba | Integer programming formulations for the k-edge-connected 3-hop-constrained network design problem[END_REF] for more details). This correspondance implies that, for a solution x ∈ R E , there exists a violated st-cut or L-st-path-cut inequality if and only if, the weight of a minimum st-dicut in G st or in G is < k.

The weights given to the arcs of G st or G are as follows

• for an arc a of G st or G corresponding to an edge e in G, we give the weight x(e) to arc a.

• for an arc a of G st or G which does not correspond to any edge of G, we give a weight sufficiently large.

Therefore, the separation problem of st-cut and L-st-path-cut inequalities can be solved in polynomial time.

Separation of Hop-Constrained partition inequalities

In this section, we discuss our separation procedure for the Hop-Constrained partition inequalities (4.1), (4.2), (4.3) and (4.4). The idea of our separation procedure is to reduce the separation problem of these inequalities to computing a minimum weight cut in a suitable graph. Before going further, it is worth noting that we believe that the separation problem of Inequalities (4.1), (4.2), (4.3) and (4.4) is NP-hard. In fact, with the transformations we will present below, one can see that, under some conditions, the separation problem of the Hop-Constrained partition inequalities can be written as that of rounded capacity inequalities involved in the Capacitated Vehicle Routing Poblem. On the other hand, Diarrassouba [START_REF] Diarrassouba | On the complexity of the separation problem for rounded capacity inequalities[END_REF] showed that the separation problem associated with these latter inequalities is strongly NP-hard.This explains why we believe that the separation problem of the Hop-Constrained partition inequalities is NP-hard in the strong sense, and why we devise a separation heuristic.

We discuss first our separation procedure for the Hop-Constrained partition inequalities in the case of rooted demands (both for L = 2 and L = 3). For our purpose, we consider the Hop-Constrained partition inequalities (4.1) and (4.2) under a generic form. Let π = (V 0 , V 1 , ..., V p ), p ≥ 2, with s ∈ V 0 and V i ∩ T D = ∅, for all i ∈ {1, ..., p}. The Hop-Constrained partition inequality induced by π can be written as

x(δ(π)) ≥ γp C , (9.1) 
where γ = k + 1 and C = 2 if L = 2, γ = k(k + 1) + 2 and C = 2(k + 1) if L = 3.

Also, we assume that there is no steiner node in the graph, that is the node set of the graph is V = {s} ∪ T D , and that |V i | = 1, for all i ∈ {1, ..., p} (recall that the demand set is rooted). We denote by t i the only node of V i , for every i ∈ {1, ..., p}. Now, for a solution x ∈ R E , the inequality (9.1) can be written as

p i=1 x(δ(V i )) + x(δ(V 0 )) = p i=1 x(δ(t i )) + x(δ(V 0 )) ≥ 2 γp C . (9.2) 
Now, if we let W = {t 1 , ..., t p }, since, the graph G is undirected, it appears that x(V 0 ) = x(δ(W )). Thus, the inequality (9.2) reduces to Notice that the node set W is such that s / ∈ W . Now we give the main piece of our separation algorithm. Consider a node t ∈ T D and assume that t ∈ W . We construct the graph G t = (V, E t ) with E t = E ∪ {su, for all u ∈ V \ {s}} ∪ {ut, for all u ∈ V \ {t}}.

p i=1 x(δ(V i )) + x(δ(V 0 )) = u∈W x(δ(u)) + x(δ(W )) ≥ 2 γ|W | C , (9.3) 
We also give the weight z(e) to each edge e ∈ E t , where

• z(e) = x(e), for every e ∈ E,

• z(su) = 2γ C , for every u ∈ V \ {s}, • z(tu) = x(δ G (u)), for every u ∈ V \ {t}. Clearly, z(δ Gt (W )) corresponds to the left-hand-side of Inequality (9.5). Thus, if the graph G does not contain steiner nodes and the demands are rooted, then there exists a violated Hop-Constrained partition inequality, if and only if there exists a node t ∈ T D and a node set W ⊆ V with t ∈ W and s / ∈ W such that z(δ

G t (W )) < 2 γ|W | C + 2 C-r W C .
We are now ready to describe our separation procedure. First, we contract all the steiner nodes of G, if there is any, with a terminal node, in such a way that the reduced graph does not contain any steiner node. Let Ĝ = ( V , Ê) be the reduced graph thus obtained. For convenience, we will denote by V = {s, t 1 , ..., t d }. For every, t ∈ V \ {s}, we construct the graph G t , as defined above, and define the weight vector z as described above. Then, we compute a minimum weight cut δ Gt (W ), with t ∈ W and s / ∈ W , and w.r.t. weight z. As mentionned above, if

z(δ Gt (W )) < 2 γ|W | C + 2 C-r W C
, then there is a Hop-Constrained partition inequality violated by x. If t 1 , ..., t p are the nodes of Ĝ composing W , we build the partition π = (V 0 , V 1 , ..., V p ), such that • V i , for all i ∈ {1, ..., p}, is composed of the destination t i ∈ W together with all the nodes of G which have been contracted with t i in Ĝ,

• V 0 = V \ p i=1 V i .
The algorithm stops as soon as it finds a violated Hop-Constrained partition inequality, or when every node t ∈ T D has been selected without finding any violated inequality. Now, we address the case of disjoint demands. As for the case of rooted demands, we start by writing the Hop-Constrained partition inequality under a generic form which is Then, we contract all the steiner nodes with a terminal node so that the reduced graph does not contain any steiner node. After this, we contract together all the source nodes s 1 , ..., s d , into a super node s, and let Ĝ = ( V , Ê) denote the reduced rooted graph thus obtained. Our separation procedure for the Hop-Constrained partition inequalities in the case of disjoint demands then follows the same lines as for the rooted demands. For every node t ∈ V \ {s}, we build the graph G t with the weight vector z, and compute a minimim weight cut δ Gt (W ) such that t ∈ W and s / ∈ W , w.r.t. weight z. If z(δ Gt (W )) < 2 γ|W | C + 2 C-r W C , then there exists a Hop-Constrained partition inequality violated by x, and this partition is obtained in the same way as for the rooted demands. The algorithm stops as soon as a violated inequality is found ( W ) \ {a 1 , a 2 }) ∩ A 1 st (y st )| = k -1. We also add an edge, called of type 2, between two nodes a 1 ∈ A f s i t i (y s i t i ) and a 2 ∈ A f s i ′ t i ′ (y s i ′ t i ′ ) if the arcs a 1 and a 2 correspond to the same edge of G. The st-dicut δ + Gst(y st ) ( W ) used to set edges of type 1 can be computed with the procedure used for kHNDP Ag . As before, every cycle of H(x, y s 1 t 1 , ..., y s d t d ) which contains an odd number of edges of type 1 and which does not contain two consecutive edges of type 2 yields an inequality of type (7.8). These cycles are computed by looking for shortest paths in a graph H b obtained in a similar way as for kHNDP Ag . Finally, for each cycle thus obtained, we check if (x, y s 1 t 1 , ..., y s d t d ) satisfies or not inequality (9.10) with respect to the sets E 2 and F s i t i ,1 obtained from that cycle. If this is the case, then by Lemma 9.2, the corresponding inequality of type (7.8) is violated by (x, y s 1 t 1 , ..., y s d t d ) and hence added to the set of violated inequalities. The procedure is the same for all the formulations and is described below.

x(δ(π)) ≥ γp C , (9.6) 

Concluding remarks

In this paper, we have studied the kHNDP and particularly focused on the polytope associated with the problem. We have introduced several classes of inequalities that are valid for the polytope associated with the natural formulation, as well as inequalities valid for an extended formulation of the kHNDP. We have also investigated conditions for the various inequalities to define facets. Then, we have presented separation algorithms for each class of inequalities. The next step of this study is to devise a Branch-and-Cut algorithm using the inequalities presented in this report, and conduct a computational study for assessing the efficiency of these inequaliyties. The litterature shows that some computational effort must be done for efficiently solving the kHNDP, espcially for large scale instances.

Finally, it appears that the polytope associated with the natural formulation of the kHNDP remains not well known when L ≥ 4. To the best of our knowledge, except Huygens and Mahjoub [START_REF] Huygens | Integer programming formulation for the two 4-hopconstrained paths problem[END_REF] who explicitly described the inequalities which are necessary in the natural formulation of the kHNDP for L = 4 and k = 2, no further class of valid inequalities is known for that formulation when L ≥ 4 and k ≥ 2. Thus, identifiying new classes of facet-defining inequalities for any L ≥ 4 could represent an interesting challenge from a theoretical point of view but also for practical purposes, as these inequalities may help in efficiently solving the kHNDP for any L ≥ 4.

Figure 2 :

 2 Figure 2: Construction of graphs G st with D = {{s 1 , t 1 }, {s 1 , t 2 }, {s 3 , t 3 }} for L = 3 and k = 1.

Figure 4 :

 4 Figure 4: Construction of graph G with D = {{s 1 , t 1 }, {s 1 , t 2 }, {s 3 , t 3 }}, L = 3 and k = 1.

  nodes and | A| ≤ k|V | + s∈S |δ(s)| + t∈T |δ(t)| arcs if L = 2, and | A| ≤ 2|E| + k|V | + s∈S |δ(s)| + t∈T |δ(t)| arcs if L = 3. If G = ( V , A) is the digraph associated with G, then for an edge e ∈ E, we denote by A(e) the set of arcs of G corresponding to e.

Theorem 3 . 2

 32 y(a) ≥ 0 for all a ∈ A, x(e) ≤ 1 for all e ∈ E, y(a) ≤ x(e) for all arc a ∈ A(e), and hence, do not define facets. We have the following results. i) Every inequality x(e) ≤ 1 defines a facet of kHNDP Ag (G, D); ii) An inequality y(a) ≥ 0 defines a facet of kHNDP Ag (G, D) if and only if either |V | ≥ k + 3 or |V | = k + 2 and a does not belong to an st-dicut of G of cardinality k + 1. Proof. i) Let a ∈ A. Since G is complete and |V | ≥ k + 2, by Lemma 3.1, the subgraph induced by A \ {a} contains k arc-disjoint st-dipaths for every {s, t} ∈ D. Thus, the pair ( A \ {a}, E) induces a solution of kHNDP Ag (G, D). Moreover, its incidence vector satisfies x(e) = 1. Now let f ∈ E \ {e}. As before, the subgraph induced by E \ {f } contains k edge-disjoint L-st-paths, for every {s, t} ∈ D. Thus, the pair ( A \ A(f ), E \ {f }) induces a solution of kHNDP Ag (G, D), whose incidence vector satisfies x(e) = 1. It is not hard to see that these two families of solutions, together with the solution induced by the pair ( A, E), form |E| + | A| solutions whose incidence vectors satisfy x(e) = 1 and are affinely independant. This yields x(e) ≤ 1 defines a facet of kHNDP Ag (G, D). ii) Consider an arc a ∈ A and suppose that |V | ≥ k + 3. By Lemma 3.1, G contains at least k + 2 arc-disjoint st-dipaths for every {s, t} ∈ D, and G contains at least k + 2 edge-disjoint L-st-paths. Thus for an edge e ∈ E, the pair ( A \ ({a} ∪ A(e)), E \ {e}) induces a solution of kHNDP Ag (G, D). Also, for an arc a ′ ∈ A \ {a}, the pair ( A \ {a, a ′ }, E) induces a solution of kHNDP Ag (G, D). These solutions together with the solution ( A \ {a}, E) form a family of | A| + |E| solutions whose incidence vectors satisfy y(a) = 0 and are affinely independant. Thus, y(a) ≥ 0 defines a facet. Now suppose that |V | = k + 2. If a belongs to an st-dicut δ + ( W ) of k + 1 arcs, then y(a) ≥ 0 is redundant with respect to the inequalities y(δ + ( W )) ≥ k, y(a ′ ) ≥ -1, for all a ′ ∈ δ + ( W ) \ {a}, and hence cannot define a facet. If a does not belong to an st-dicut of k + 1 arcs, then, the pairs ( A \ ({a} ∪ A(e)), E \ {e}), for all e ∈ E, and ( A \ {a, a ′ }, E), for all a ′ ∈ A \ {a} induce solutions of kHNDP Ag (G, D). These solutions together with the solution ( A \ {a}, E) form a family of | A| + |E| solutions whose incidence vectors satisfy y(a) = 0 and are affinely independant. Thus y(a) ≥ 0 defines a facet of kHNDP Ag (G, D).

Corollary 3 . 2

 32 If G is complete and |V | ≥ k + 2, then kHNDP Sep Cu (G, D) is full dimensional. Note that the inequalities y st (a) ≤ 1 and x(e) ≥ 0 are redundant with respect to y st (a) ≥ 0, x(e) ≤ 1 and y st (a) ≤ x(e). The next theorem gives necessary and sufficient conditions for inequalities (2.21) and (2.22) to define facets of kHNDP Sep Cu (G, D). Theorem 3.5 If G is complete and |V | ≥ k + 2, then the following hold. i) Every inequality x(e) ≤ 1 defines a facet of kHNDP Sep Cu (G, D). ii) An inequality y(a) ≥ 0 defines a facet of kHNDP Sep Cu (G, D) if and only if either |V | ≥ k + 3 or |V | = k + 2 and a does not belong to an st-cut of cardinality k + 1.

Theorem 4 . 1

 41 Figures 5 and 6 present examples of partition supporting Hop-Constrained partition inequalities in cases L = 2 and L = 3, respectively.

Figure 5 :

 5 Figure 5: Support graph of a Hop-Constrained partition inequality for rooted demands, L = 2 and k = 3, p = 6, V 0 = {s} and V i = {t i }, i = 1, ..., p.

  s

Figure 6 :

 6 Figure 6: Support graph of a Hop-Constrained partition inequality for rooted demands, L = 3 and k = 4, p = 15, V 0 = {s} and V i = {t i }, i = 1, ..., p.

Figures 5 2 . 2 .

 522 Figures 5 and 6 present partitions with p = 6 and p = 15, respectively, and where |V i | = 1, for every i ∈ {0, ..., p}. We can see that the solution depicted in Figure5is feasible for the kHNDP for L = 2 and k = 3. Also, the number of edges in δ(π) is 12 = (3+1)•6 2 . For Figure6, the solution is feasible for the kHNDP with L = 3 and k = 4, and the number of edges in δ(π) is 33 = (4+2/5)•15 2

Theorem 4 . 2

 42 Figures 7 and 8 illustrate the support graphs of Hop-Constrained partition inequalities in cases L = 2 and L = 3, respectively, and disjoint demands.

Figure 7 :

 7 Figure 7: Support graph of a Hop-Constrained partition inequality for disjoint demands, L = 2 and k = 3. Here p = 4, V i = {t i }, i = 1, ..., 4, and V 0 = {s 1 , ..., s 4 }.

Figure 8 :

 8 Figure 8: Support graph of a Hop-Constrained partition inequality for disjoint demands, L = 3 and k = 4, p = 10, V i = {t i }, i = 1, ..., p, and V 0 = {s 1 , ..., s p }.

Figure 9 :

 9 Figure 9: Support graph of a Hop-Constrained partition inequality for rooted demands, L = 2 and k = 3. Dashed edges are never used in a 2-st i -path.

Figure 10 :

 10 Figure 10: Support graph of a Hop-Constrained partition inequality for rooted demands, L = 3, k = 3 and p = 11.

Figure 12 :

 12 Figure 12: Support graph of a Hop-Constrained partition inequality for disjoint demands, L = 3 and k = 3. Herep = 7, V i = {t i }, i = 1, .., 7, V 0 = {s 1 , ..., s 7 }. Z 1 1 = {t 1 }, Z 2 1 = {t 4 , t 5 }, Z 3 1 = {t 7 }, Z 2 2 = {t 2 , t 3 }, Z 3 2 = {t 6 }, Z 3 = {t 8 }, S 1 1 = {s 1 }, S 2 2 = {s 2 , s 3 }, S 2 1 = {s 4 , s 5 }, S32 = {s 6 }, S 3 1 = {s 7 }, S 3 = {s 8 }.

Theorem 5 . 2

 52 Inequality (5.2) is valid for kHNDP Ag (G, D), kHNDP Sep Cu (G, D), kHNDP Sep F lo (G, D) and kHNDP Sep P a (G, D).

Theorem 5 . 3

 53 When L = 2, the Steiner-SP-partition inequalities (5.2) are dominated by the partition inequalities (4.1) and (4.3).

. 1 )

 1 is valid for kHNDP Ag (G, D), kHNDP Sep Cu (G, D), kHNDP Sep F lo (G, D) and kHNDP Sep P a (G, D) (recall that δ(π) is the set of edges of the E having their endnodes in different elements of π).

Figure 14 : 2 7

 142 Figure 14: A triple path-cut with L = 2

  and, for an arc a ∈ A, let r(a) be the number of sets δ + G ( W i ) \ F 0 i which contain the arc a. Note that if a ∈ A does not belong to any set δ + G ( W i ) \ F 0 i , then r(a) = 0. For an edge e ∈ E and an arc subset U ⊆ A, we let r ′ (e, U ) = a∈ A(e)∩ U r(a).

Theorem 7 . 3

 73 Let G = (V, E) be an undirected graph, D ⊆ V × V and G = ( V , A) be the directed graph associated with G in the Aggregated formulation. Let e∈E α(e)x(e) + a∈ A β(a)y(a) ≥ γ be an inequality of type (7.4) induced by a family of node sets Π = { W 1 , ..., W p } and arc sets

(8. 10 )

 10 y(a) ≥ 0, for all a ∈ H 1 ,

  Also, observe thatγ|W | C = γ|W | C + C-r W C, wherer W = γ|W | (mod C), if γ|W | (mod C) = 0, C, if γ|W | (mod C) = 0.Hence, Inequality (9.3) reduces to u∈W x(δ(u)) + x(δ(W )) replacing |W | by |V | -|W | in (9.4), we obtain u∈W x(δ(u)) + x(δ(W )

  It is not hard to see that for a node set W ⊆ V with t ∈ W and s / ∈ W ,z(δ Gt (W )) = u∈W x(δ G (u)) + x(δ G (W )) + 2γ C |W |.

where γ = k + k 2 ,

 2 and C = 2 if L = 2, γ = k(k + 2) and C = 2(k + 1) if L = 3.

Figure 16 : 3 and a 2

 1632 Figure 16: The support graph G(y) of a fractional solution (x, y) for L = 3 and k = 3

  for all {s, t} ∈ D,

		(2.18)
	y st (a) ≤ x(e), for all a ∈ A(e), e ∈ E, {s, t} ∈ D,	(2.19)
	y st (a) ≤ 1, for all a = (u, u ′ ), for all u ∈ V \ {s, t}, {s, t} ∈ D,	(2.20)
	y st (a) ≥ 0, for all a ∈ A st , {s, t} ∈ D,	(2.21)
	x(e) ≤ 1, for all e ∈ E.	(2.22)
	Inequalities (2.18) will be called directed st-cut inequalities or st-dicut inequalities and inequali-
	ties (2.19) linking inequalities. Inequalities (2.19) indicate that an arc a ∈ A st corresponding to
	an edge e is not in H st if e is not taken in H. Inequalities (2.20)-(2.22) are the trivial inequalities.
	Theorem 2.4 [24] The kHNDP for L = 2, 3 is equivalent to the following integer program
	min{cx; subject to (2.18) -(2.22), x ∈ Z E + , y st ∈ Z Ast + ,	
	for all {s, t} ∈ D}.	(2.23)
	This formulation is called the separated cut formulation and is denoted by kHNDP Sep Cut . It contains
	a polynomial number of variables. Indeed, for L = 2, the number of variables is	
	|E| +	
	{s,t}∈D	

  1. for each demand {s, t} ∈ D if st ∈ E, we add in A the arc (s, t ′ ), -if su ∈ E with u ∈ V \ {s, t}, we add an arc (s, u ′ ), -if vt ∈ E with v ∈ V \ {s, t}, we add an arc (v ′′ , t), = 3, for each edge e = uv ∈ E, we add two arcs (u ′ , v ′′ ) and (v ′ , u ′′ ).

	2. for each node u ∈ V , we add max {s,t}∈D	{min{|[s, u]|, |[u, t]|, k}} arcs of the form (u ′ , u ′′ ),
	3. for each t ∈ T D , we add min{k, max{|[s, t]|, s ∈ S D with {s, t} ∈ D}} arcs of the form (t ′ , t),
	4. if L	

  for every i ∈ {1, ..., p}. Figure11below gives an illustration of the above observations and notations.

	t1	t2	t3	ti	ei
					bi
			ci		
	s1	s2	s3	si	

ai

Figure 11: 

Illustrations of notations A i , B i , C i , E i , for L = 2 and p = 3. Thiner edges are edges t i t j which are not used simultaneouly in 2-paths for t i and t j .

  where R D is the set of terminal nodes of G. The edge set E D is obtained by adding an edge between two nodes of R D if and only if {u, v} ∈ D.

Theorem 5.1 Let π = (V 1 , ..., V p ), p ≥ 3, be a partition of V such that G π is series-parallel.

The partition π is a Steiner-SP-partition of G if and only if the subgraph of G D induced by π is connected.

  Theorem 7.4 Let G = (V, E) be an undirected graph, D ⊆ V × V and G st be the directed graph associated with G and a demand {s, t} ∈ D in the cut formulation, for all {s, t} ∈ D. Let s i t i (a)y s i t i (a) ≥ γ, be an inequality of type (7.8) induced by a demand set {{s 1 , t 1 }, ..., {s q , t q }}, a family of node sets { W s 1 t 1

					q
			α(e)x(e) +
		e∈E		i=1 a∈ As i t i
					q
	1	, ..., W s 1 t 1 p 1 , ..., W	sqtq 1	, ..., W	sqtq pq }, with p i ≥ 1, for all i ∈ {1, ..., q} and p =
					i=1

β

edges of the double cut not in F edges not in the double cut possible edges of F Figure 13: A double cut with L = 3 and i 0 = 0 As it will turn out, inequalities (6.2) and (6.3) are very effective in the Branch-and-Cut algorithms we developed for the problem.

Triple path-cut inequalities

Here is a further class of valid inequalities. They also generalize inequalities given by Huygens and Mahjoub [START_REF] Huygens | Integer programming formulation for the two 4-hopconstrained paths problem[END_REF]. We distinguish the cases where L = 2 and L = 3. We have the following theorem.

) induces a partition of V and there exist two demands {s 1 , t 1 } and {s 2 , t 2 } with s 1 , s 2 ∈ V 0 , t 1 ∈ V 2 3 and t 2 ∈ V 2 4 . The sets V 1 3 and V 1 4 may be empty and s 1 and s 2 may be the same. Let also 2 4 ] such that |F | and k have different parities. Then, the inequality

is valid for kHNDP Ag (G, D), kHNDP Sep Cu (G, D), kHNDP Sep F lo (G, D) and kHNDP Sep P a (G, D). ii) Let L = 3 and (V 0 , ..., V 3 , V 1 4 , V 2 4 , V 1 5 , V 2 5 ) be a family of node sets of V such that (V 0 , ...,

) induces a partition of V and there exist two demands {s 1 , t 1 } and {s 2 , t 2 } with s 1 , s 2 ∈ V 0 , t 1 ∈ V 2 4 and t 2 ∈ V 2 5 . The sets V 1 4 and V 1 5 may be empty and s 1 and s 2 may be the same. Let also

] such that |F | and k have different parities. Then, the inequality Proof. i) Let T 1 be the 2-s 1 t 1 -path-cut induced by the partition

3 ) and T 2 and

From the L-st-path-cut T and cuts δ(V 1 0 ∪ V 2 0 ) and δ(V 1 ), we have that

By combining (8.14) and (8.15), we get

and hence

Therefore, αx ≥ γ is equivalent to (8.13). Now suppose that αx ≥ γ is tight for (x 0 , y 0 ). From the development above, we have that inequality (8.13) is also tight for (x 0 , y 0 ), that is

) is equal to k + 1 and the others are equal to k.

Then, clearly, inequality (8.13) is satisfied with equality, and hence, αx ≥ γ is tight for (x 0 , y 0 ). Similarly, if

) is equal to k + 1 with the others equal to k, then (8.13) is satisfied with equality by x 0 and hence, αx ≥ γ is tight for (x 0 , y 0 ), which ends the proof of the lemma. Theorem 8.2 Suppose that L ≥ 2 and k ≥ 2, and let {s, t} ∈ D.

.., V L+1 } be a family of node sets of V and F ⊆ E which induce a double cut of G with respect to {s, t}, s ∈ V 1 0 and t ∈ V L+1 (here i 0 = 0). Then, the double cut inequality induced by Π and F defines a facet of kHNDP Ag (G, D), kHNDP 

Proof. The proof will be done for kHNDP Ag (G, D) as it is similar for kHNDP Sep Cu (G, D), kHNDP Sep F lo (G, D) and kHNDP Sep P a (G, D). We will denote by αx ≥ γ the double cut inequality induced by Π and F , and assume that it defines a facet of kHNDP Ag (G, D) different from those induced by the trivial, cut and L-st-path-cut inequalities. Let F = {(x, y) ∈ kHNDP Ag (G, D) such that αx = γ} and let T denote the L-st-path-cut induced by the partition ( 

. Thus, the double cut inequality induced by H is redundant with respect to

and hence, cannot define a facet. ii) We will show that F = ∅ only if ii) holds. As αx ≥ γ defines a facet different from

Thus, by Lemma 8.3, x(T ) = k. Therefore, the graph induced by x contains exactly k edge-disjoint L-st-paths. Moreover, each L-st-path intersects T only once. Thus, by Lemma 8.2, we have that

Lemma 8.4 Let αx ≥ γ be a triple path-cut inequality induced by a family of node set

Then αx ≥ γ can be written as

where T 1 , T 2 and T 3 are the triple path-cuts induced by the partitions

), respectively, and

). Moreover, αx ≥ γ is tight for a solution x 0 of the kHNDP, where x 0 ∈ R E , if and only if one of the following inequalities holds

ii) x 0 (E \ F ) + |F |x 0 (F ) = 0 and, for some i 0 ∈ {1, 2, 3}, x 0 (T i 0 ) = k + 1 and x 0 (T i ) = k for i ∈ {1, 2, 3} \ {i 0 }.

Proof. Similar to that of Lemma 8.3. 

Proof. For the proof of Conditions i)-iii), we will consider, w.l.o.g., that L = 3. We will denote by αx ≥ γ the triple-cut inequality induced by Π and F and let F = {(x, y) ∈ kHNDP(G, D) such that αx = γ}.

i) Suppose that V 0 \ {s 1 , s 2 } = ∅ and denote by H the triple path-cut induced by Π and F . Consider the family of node sets

} and F ′ = F . If H ′ denotes the triple path-cut induced by Π ′ and F ′ , we have that

Thus, as V 0 \ {s 1 , s 2 } = ∅, inequality (6.5) induced by Π and F is redundant with respect to the inequalities

Therefore, the triple path-cut inequality induced by Π and F cannot define a facet of the kHNDP polytopes.

ii) Now we show that |V 2 4 | = 1. Suppose, on the contrary, that

denotes the triple path-cut inequality induced by Π ′ and F , then it is not hard to see that α ′ (e) = α(e), for all e ∈ H ′ \ F , and that γ ′ = γ. Thus, αx ≥ γ is redundant with respect to the following inequalities

and hence, cannot define a facet of the kHNDP poytopes.

) and let α ′ x ≥ γ ′ be the triple path-cut inequality induced by Π ′ and F ′ . Also let H ′ denote this triple path-cut. As before, we have that

Thus, it cannot define a facet of the kHNDP poytopes.

iii

and let H and H ′ denote the triple path-cuts induced by Π and F , and by Π ′ and F respectively. If

This implies that the triple path-cut inequality induced by H is redundant with respect to that induced by H ′ and the inequalities x(e) ≥ 0, for all e ∈ [V 2 , V 2 5 \ {t 2 }]. Thus, it cannot define a facet. iv) To show that conditions iv) are necessary for αx ≥ γ to define a facet, we show that the sets F i = {x ∈ R E such that x induces a solution of the kHNDP and x(T i ) = k}, i = 1, 2, 3, are or all the nodes t ∈ V \ {s} have been explored without finding any violated inequality.

Clearly, all the steps of our procedure can be implemented to run in polynomial time and the whole algorithm can be bounded by |D| × (Runtime of a maximum Flow). By using the efficient algorithm of Golberg and Tarjan [START_REF] Goldberg | A New Approach to the Maximum Flow Problem[END_REF] for computing maximum flows in the graphs G t , our separation algorithm can be implmented to run in O(|D||V | 3 ).

As it will turn out in the next sections, our separation procedure for the Hop-Constrained partition inequalities is effective for finding violated inequalities, and this for every k ≥ 2, L = 2 and L = 3, and for both rooted and disjoint demands.

Separation of Steiner-SP -partition inequalities

Now we turn our attention to the separation of the Steiner-SP -partition inequalities. We devise the following heuristic to separate inequalities (5.2). The main idea is to determine a Steinerpartition π = (V 1 , ..., V p ), p ≥ 3, of V which induces an outerplanar subgraph of G(x) and such that the subgraph of G D (the demand graph) induced by π is connected. By Theorem 5.1, such a partition is a Steiner-SP -partition. Also, the partitions we are looking for are such that

.., p, (modulo p) and for every consecutive sets V i and V i+1 , the edge set [V i , V i+1 ] contains at least one edge with fractional value. The heuristic works as follows. We first contract every pair of nodes t and u, where t is a terminal node, u is a steiner node and x(δ

] contains one edge or more with fractional value, for i = 1, ..., p -2. The partition π = (V 1 , ..., V p ), p ≥ 3, is constructed such that V i is the node set of G corresponding to v ′ i , i = 1, ..., p -1, and

Afterwards, we check by a simple heuristic if the graph G π (x) ′ is outerplanar and if the subgraph of G D induced by π is connected. If this is the case, then, we check if the Steiner-SP -partition inequality induced by π is violated. If not, then we compute from π new partitions

Clearly, these new partitions are Steiner-partitions and, since they are of size 3, they induce Steiner-SP -partitions. We then check if the Steiner-SP -partition inequality induced by π i is violated, for i = 1, ..., p -2.

If none of these inequalities is violated by x, we apply again the procedure by looking for another path. In order to avoid the detection of the same path, we label the nodes we met during the search of the previous ones so that they won't be considered again in the search of the new path. This process is iterated until either we find a violated Steiner-SP -partition inequality or all the nodes of V ′ are labeled. The heuristic can be implemented to run in

Separation of double cut inequalities

The separation of double cut inequalities is performed by looking for inequalities of type (6.2) for L = 2 and of type (6.3) for L = 3 that are violated by the current solution.

The idea of the procedure is to find a partition π = (V 0 , ..., V L , V L+1 ), L ∈ {2, 3}, of G and an edge set

which induces a double cut, with i 0 = 0, and whose weight is minimum with respect to x. The procedure works as follows. For all {s, t} ∈ D, we compute the st-cut δ G (s). If x(δ G (s)) = k, then for every terminal

For this, we use the correspondance between L-st-path-cuts in G and st-dicuts in the aggregated graph G, given by Lemma 2.1. Since the desired partition π must be such that

Thus, any st-dicut of G corresponding to T must contain arcs corresponding to the edges of δ G (s) \ [s, s ′ ] and no arcs corresponding to the edges of [s, s ′ ]. Also remark that this st-dicut does not contain any arc of the form (u ′ , u ′′ ), u ∈ V or of the form (t ′ , t), t ∈ T D . Therefore, to compute an st-dicut of G corresponding to the desired L-st-path-cut, we start by giving the arcs corresponding to the edges of [s, s ′ ] an infinit capacity and removing all the arcs corresponding to the edges of δ G (s) \ [s, s ′ ]. Then, we give to every arc of the form (u ′ , u ′′ ), u ∈ V and (t ′ , t), t ∈ T D , an infinit capacity. Afterwards, we compute a maximum flow between s and t with respect to these capacities. Let δ + G ( W ) denote the st-dicut thus obtained. To check that this dicut corresponds to an L-st-path-cut of G, we apply the following procedure. We first remove from G all the edges corresponding to the arcs of δ + G ( W ). Then, we compute the shortest paths between s and every node of V \ {s} with respect to length 1 on the remaining edges. Let l(u) denotes the length of a shortest path between s and u, u ∈ V \{s}. If l(t) is finite, then δ + G ( W ) corresponds to an L-st-path-cut of G. In this case, we construct the partition π such Finally, we check if the inequality (6.2) (resp. (6.3)) for L = 2 (resp. L = 3) induced by π and F is violated or not. We repeat this procedure for every demand {s, t} ∈ D, and the violated inequalities found are added to the constraint pool. To compute the maximum flow in G we use the algorithm of Goldberd and Tarjan [START_REF] Goldberg | A New Approach to the Maximum Flow Problem[END_REF] 

To compute the shortest paths in G between s and the other nodes of V , we use the algorithm of Dijkstra [START_REF] Dijkstra | A note on two problems in connexion with graphs[END_REF] which is implemented to run is O(|V ||E| log(|V |)) time. As the computation of a cut in the graph G requires at most |E| iterations, our separation procedure runs in O(|V

)) time, and hence is polynomial. If L = 2, the algorithm is also polynomial. For the case of the separated flow formulations, the procedure is the same except that the computation of the L-st-path-cut, induced by the partition π, is performed using the directed graph G st associated with the demand {s, t}. We remove from G st all the arcs corresponding to the edges of δ G (s) \ [s, s ′ ], and those corresponding to the edges of [s, s ′ ] are given an infinit capacity. In the same way, we give an infinit capacity to every arc of the form (u, u ′ ), with u ∈ V st . Then, we compute a maximum flow between s and t in G st . Also, for this formulations, the algorithm remains polynomial.

Separation of triple path-cut inequalities

To separate triple path-cut inequalities, we devise a heuristic. This heuristic is based on Theorem 8.3. The procedure is given for L = 3. It is similar for L = 2. The main idea is to compute, given two demands {s, t 1 } and {s, t 2 }, a family Π = {V

). In fact, from this latter partition, one can obtain a whole triple path-cut by fixing the sets V 1 4 , V 2 4 , V 1 5 and V 2 5 . In our procedure, we will look for those triple path-cuts such that

= {t 1 }. The procedure works as follows. For each source s ∈ S D , we apply the following steps. Let {s, t 1 } and {s, t 2 } be two demands associated with s. We first look for a partition π

) which induces an L-st 1 -path-cut of G, denoted by T , and such that V ′ 0 = {s} and t 2 ∈ V ′ 1 . For this, we use the correspondance between the L-st 1 -path-cuts in G and st 1 -dicuts in G. Since t 2 ∈ V ′ 1 and V ′ 0 = {s}, we have that T ∩ [s, t 2 ] = ∅ and any arc of G, corresponding to the edges of [s, t 2 ], does not appear in an st 1 -dicut of G corresponding to T . Thus, computing T reduces to compute a minimum weight st 1 -dicut in G. To do this, we compute a maximum flow in G between s and t 1 with respect to the following capacities:

• for every arc of A([s, t 2 ]) or of the form (u ′ , u ′′ ) or (t ′ , t), with u ∈ N and t ∈ T D , we give an infinit capacity;

• for every arc of A(e), with e ∈ E \ [s, t 2 ], we give the capacity x(e).

Let δ + G ( W ) denote the directed cut thus obtained. We check if it corresponds to an L-st 1 -pathcut by performing the following steps. First, we remove from G all the edges corresponding to the arcs of δ + G ( W ) and compute all the shortest paths between s and the other nodes of G with respect to the length 1 on the remaining edges. Let l(u) denote the length of the shortest path between s and u, for all u ∈ V \ {s}. If l(t 1 ) is finite, then δ + G ( W ) corresponds to an L-st 1 -path-cut, denoted by T . In this case, we construct the partition π such that V ′ 0 = {s},

, and for all the nodes u ∈ V \ {t 1 } such that l(u) ≥ 4

or l(u) = +∞, we assign them alternatively to V ′ 1 and V ′ 3 . Finally, Finally, we check if the triple path-cut inquality induced by Π and F is violated or not. Our algorithm runs in polynomial time, as it consists, for every pair {{s, t 1 },{s, t 2 }} of demands, in computing a maximum flow and shortest paths between s and the other nodes of G. In our implementation, we use the algorithm of Goldberg and Tarjan [START_REF] Goldberg | A New Approach to the Maximum Flow Problem[END_REF] for the maximum flow and the algorithm of Dijkstra [START_REF] Dijkstra | A note on two problems in connexion with graphs[END_REF] for the shortest paths which run in O(|V

)) time, and thus, is polynomial. For the case of the separated formulations, the procedure is the same except that the computation of the L-st-path-cut inducing the partition π is performed using the directed graph G st 1 associated with the demand {s, t 1 }. All the arcs corresponding to the edges of [s, t 2 ] are given an infinit capacity. In the same way, we give an infinit capacity to every arc of the form (u, u ′ ), with u ∈ V st and every arc corresponding to an edge e ∈ E \ [s, t 2 ] is given the capacity x(e). Then, we compute a maximum flow between s and t 1 in G st 1 .

Separation of aggregated cut inequalities

To separate the aggregated cut inequalities, we consider the inequalities of type (7.4) and (7.8) and devise a heuristic to separate them. In particular, we consider the inequalities of type (7.4) and (7.8) described in the two following lemmas. The separation procedure relies on a special graph (introduced later) defined with respect to G ( G st , {s, t} ∈ D) and a fractional solution.

Recall that these inequalities are valid for the polytopes kHNDP Ag (G, D) and kHNDP Cu (G, D). Lemma 9.1 Consider an inequality αx + βy ≥ γ of type (7.4) induced by a node set family Π = { W 1 , ..., W p }, p ≥ 2, and arc subsets

be the set of arcs of A which appear twice in F and F 1 those which appear once in F . Suppose that for all arc a ∈ F 1 there is another arc a ′ ∈ F 1 which corresponds to the same edge of G as a. Let E 2 be the set of edges of G corresponding to the arcs of 

and y(a) = 1 for all a ∈ F 0 i , we have that

Thus, p i ≥ 2, and arc subsets

], i = 1, ..., q. Also let F s i t i ,2 be the set of arcs of A s i t i which appear twice in F s i t i and F s i t i ,1 those which appear once in F s i t i . Suppose that for all arc a ∈ F s i t i ,1 , there exists a unique arc a ′ ∈ F s i ′ t i ′ ,1 for some i ′ ∈ {1, ..., q} which corresponds to the same edge of G as a. Let E 2 be the set of edges of G corresponding to these arcs. x(e) -q i=1 a∈ F s i t i

Proof. Similar to the proof of Lemma 9.1.

In the following, we are going to discuss the separation of the aggregated cut inequalities (7.4) for kHNDP Ag . After that, we will describe the separation procedure for the aggregated cut inequalities (7.8) related to kHNDP Cu .

To this end, we introduce an undirected graph, denoted by H(x, y), obtained from G and defined with respect to (x, y). As we will see, the main property of this graph is that there is a matching between some particular cycles of H(x, y) and inequalities of type (7.4), described as in Lemma 9.1. The graph H(x, y) is obtained as follows.

For each arc of A having a fractional value with respect to y, we add a node in H(x, y). For convenience, we will denote by a the node of H(x, y) corresponding to an arc a of G. We add an edge in H(x, y) between two nodes a 1 and a 2 if one of the conditions below is satisfied.

1. There exists an st-dicut of G(y), say δ + G(y)

( W ), for some {s, t} ∈ D, which contains a 1 and a 2 , and such that y(δ + G(y)

2. The arcs a 1 and a 2 correspond to the same edge of G.

The edges added by Condition 1 will be said of type 1 and those added by Condition 2 will be said of type 2. As we will see later, both edges of type 1 and 2 can be find in polynomial time. Figures 16 and17 give respectively the support graph G(y) of a fractional solution (x, y) of kHNDP Ag (G, D) and the graph H(x, y) associated with that solution.

Note that in the case where there is an edge of type 1 in H(x, y) between two nodes a 1 and a 2 , we have that y(a 1 ) + y(a 2 ) = 1. Also, if there is an edge of type 2 between two nodes a 1 and a 2 , then x(e) > 0 where e is the edge of G corresponding to a 1 and a 2 . Also it is not hard to see that, if in H(x, y) there are two edges of type 2 of the form a 1 a 2 and a 2 a 3 , then there is also an edge of type 2 between a 1 and a 3 (a 1 , a 2 and a 3 form a triangle). Now we give the main property of H(x, y).

Lemma 9.3 Let C = {a 1 a 2 , a 2 a 3 , ..., a |C| a 1 } be a cycle of H(x, y) and {a i 1 a j 1 , ..., a ip a jp } the set of edges of C of type 1. Also, let V 1 be the set of nodes of C incident to two consecutive edges of type 1. Suppose that p ≥ 2 and that C does not contain two consecutive edges of type 2. Then, C yields an inequality of type (7.4) defined by Π = { W 1 , ..., W p } and F 0 r = δ G(y) ( W r ) \ {a ir , a jr }, r = 1, ..., p, where W r is the node set of G associated with the edge a ir a jr in H(x, y).

Proof. First observe that the arcs of A(y) which appear twice in

those of G(y) corresponding to the nodes of V 1 , while the arcs which appear once in F are those of A(y) corresponding to the nodes of {a 1 , ..., a |C| } \ V 1 . Thus we let F 2 and F 1 be these two sets of arcs, respectively. Since every node a ∈ {a 1 , ..., a |C| } \ V 1 is incident to one edge of C of type 2, say aa ′ , the arcs a and a ′ are in F 1 and correspond to the same edge of G. Thus, the aggregated cut inequality associated with this configuration can be written as

where E 2 is the edge set of G corresponding to the arcs of F 1 .

To illustrate that lemma, on Figure 17, the cycle 

′′ , 2)} induce an aggregated cut inequality of type (7.4). Furthermore, this inequality is violated by (x, y). Before describing the construction procedure for H(x, y), we give the following lemma. 

can be considered in such a way that every arc a ∈ δ + G(y)

( W ) be a minimum weight st-dicut of G(y) containing a 1 and a 2 and such that δ + G(y) ( W ) \ {a 1 , a 2 } ⊆ A 1 (y). Suppose also that there is an arc a ∈ δ + G(y)

Hence, a is either of the form (u ′ , v ′′ ), with u ′ ∈ N ′ , v ′′ ∈ N ′′ and u and v may be the same, or of the form (t ′ , t). If a = (u ′ , v ′′ ), then u ′ ∈ W and the node set

( W ) is of minimum weight with respect to y, we have that y(s, u ′ ) ≥ y(u ′ , v ′′ ). As y(u ′ , v ′′ ) = 1, we also have that y(s, u ′ ) = 1 and that δ + G(y)

( W ) is of minimum weight in G(y), there is an arc of the form (s, t ′ ). Thus, W ′ = W \ {t ′ } induces an st-dicut of G(y). Moreover, as the weight of δ + G(y) ( W ) is minimum with respect to y, we have that y(s, t ′ ) ≥ y(t ′ , t) = 1. Hence, y(s, t ′ ) = 1 and δ + G(y) ( W ′ ) is also of minimum weight.

By repeating this operation until δ + G(y) ( W ) does not contain any arc of the form (u ′ , v ′′ ) or (t ′ , t), we obtain a minimum weight st-dicut of G(y) which contains a 1 and a 2 , such that 

The construction of the graph H(x, y) is performed by computing first the edges of type 2. For every pair of arcs (a, a ′ ) ∈ A(y) × A(y), corresponding to the same edge of E and having a fractional value, we add an edge of type 2 between the corresponding nodes in H(x, y). To compute the edges of type 1, we use a procedure based on Lemma 9.4. The idea is to compute a maximum flow in G(y) with respect to appropriate capacities separating s and t. Given two arcs a 1 and a 2 such that y(a 1 ) + y(a 2 ) = 1 and a pair {s, t} ∈ D, we first give 0 as capacity to a 1 and a 2 . Then, we give an infinit capacity to every other arc of G(y) having a fractional value. This ensures that a 1 and a 2 are the only arcs of fractional values present in the st-dicut we will obtain. We give an infinit capacity to every arc of δ + G(y) (s) and δ - G(y) (t) indicent to a 1 and a 2 and having value 1. We also give an infinit capacity to every arc of [t ′ , t] G(y) . For all other arc a, we give y(a) as capacity (note that for these arcs, y(a) = 1). Then, we compute a maximum flow between s and t with respect to these capacities. Let δ + G(y) ( W ) denote the st-dicut thus obtained. By Lemma 9.4, we have that δ

If this is the case, then we add an edge of type 1 between the nodes of H(x, y) corresponding to a 1 and a 2 . We repeat this procedure for all pairs of arcs (a 1 , a 2 ) having fractional value and such that y(a 1 ) + y(a 2 ) = 1, and for all demand {s, t} ∈ D. Now we describe the separation procedure of the aggregated cut inequalities. The procedure is based on Lemma 9.1. Thus we generate inequalities of type (7.4) which satisfy the conditions of that lemma. First, we compute H(x, y) as described above. Then we compute one or more cycles of H(x, y) which contain an odd number of edges of type 1 and which do not contain two consecutive edges of type 2. By Lemma 9.3, every cycle satisfying these conditions yields an aggregated cut inequality of type (7.4). We then check if for each inequality thus obtained, (x, y) satisfies inequality (9.7). If this is the case, then by Lemma 9.1, this inequality is violated by (x, y) and added to the set of violated inequalities. If no cycle is found or if for every inequality of type (7.4) obtained, (x, y) does not satisfy inequality (9.7), then the procedure ends with failure.

To detect cycles of H(x, y) satisfying the conditions of Lemma 9.3, we use a procedure in which we compute shortest paths in an auxiliary graph obtained from H(x, y). Let H b be the undirected graph obtained as follows. The node set of H b is composed of two copies, denoted by V ′ b and V ′′ b , of the node set of H(x, y). The copies of a node a of H(x, y) are denoted by a ′ and a ′′ with a ′ ∈ V ′ b and a ′′ ∈ V ′′ b . For every edge a 1 a 2 of H(x, y) of type 1, we add in H b two edges of the form a ′ 1 a ′′ 2 and a ′ 2 a ′′ 1 and give them 1 as length. For every edge a 1 a 2 of H(x, y) of type 2, we add in H b two edges of the form a ′ 1 a ′ 2 and a ′′ 1 a ′′ 2 and give them a length M sufficiently large. Figure 18 shows an example of graph H b obtained from a subgraph of H(x, y) given in Figure 17. It is not hard to see that a path between two nodes a ′ and a ′′ of H b corresponds to a cycle of H(x, y) containing node a and an odd number of edges of type 1, and does not contain two consecutive edges of type 2, and vice versa. For our separation procedure, we compute the shortest paths between each pair of nodes (a ′ , a ′′ ) of H b , for every node a of H(x, y).

Now we turn to the aggregated cut inequalities for the Cut formulation. The separation procedure for these inequalities is similar to that described above for kHNDP Ag . Given a fractional solution (x, y s 1 t 1 , ..., y s d t d ) of kHNDP Cu (G, D), we construct the graph H(x, y s 1 t 1 , ..., y s d t d ) in a similar way as H(x, y), that is for all {s, t} ∈ D, and for every arc a ∈ A f st (y st ) we associate a node in H(x, y s 1 t 1 , ..., y s d t d ). We add an edge, called of type 1, between two nodes a 1