
HAL Id: hal-04051492
https://hal.science/hal-04051492v1

Submitted on 30 Mar 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Conflict Optimization for Binary CSP Applied to
Minimum Partition into Plane Subgraphs and Graph

Coloring
Loïc Crombez, Guilherme da Fonseca, Florian Fontan, Yan Gerard, Aldo
Gonzalez-Lorenzo, Pascal Lafourcade, Luc Libralesso, Benjamin Momège,

Jack Spalding-Jamieson, Brandon Zhang, et al.

To cite this version:
Loïc Crombez, Guilherme da Fonseca, Florian Fontan, Yan Gerard, Aldo Gonzalez-Lorenzo, et al..
Conflict Optimization for Binary CSP Applied to Minimum Partition into Plane Subgraphs and Graph
Coloring. ACM Journal of Experimental Algorithmics, 2023, �10.1145/3588869�. �hal-04051492�

https://hal.science/hal-04051492v1
https://hal.archives-ouvertes.fr

Conflict Optimization for Binary CSP Applied to
Minimum Partition into Plane Subgraphs and Graph Coloring

LOÏC CROMBEZ, LIMOS, Université Clermont Auvergne, France

GUILHERME D. DA FONSECA, LIS, Aix-Marseille Université, France

FLORIAN FONTAN, Independent Researcher, France

YAN GERARD, LIMOS, Université Clermont Auvergne, France

ALDO GONZALEZ-LORENZO, LIS, Aix-Marseille Université, France

PASCAL LAFOURCADE, LIMOS, Université Clermont Auvergne, France

LUC LIBRALESSO, LIMOS, Université Clermont Auvergne, France

BENJAMIN MOMÈGE, Independent Researcher, France

JACK SPALDING-JAMIESON, David R. Cheriton School of Computer Science, University of Waterloo, Canada

BRANDON ZHANG, Independent Researcher, Canada

DA WEI ZHENG, Department of Computer Science, University of Illinois at Urbana-Champaign, USA

CG:SHOP is an annual geometric optimization challenge and the 2022 edition proposed the problem of coloring a certain geometric
graph defined by line segments. Surprisingly, the top three teams used the same technique, called conflict optimization. This technique
has been introduced in the 2021 edition of the challenge, to solve a coordinated motion planning problem. In this paper, we present the
technique in the more general framework of binary constraint satisfaction problems (binary CSP). Then, the top three teams describe
their different implementations of the same underlying strategy. We evaluate the performance of those implementations to vertex
color not only geometric graphs, but also other types of graphs.

CCS Concepts: • Theory of computation → Design and analysis of algorithms; Computational Geometry.

Additional Key Words and Phrases: CG:SHOP 2022, Constraint Satisfaction Problems, Graph Coloring, DIMACS

1 INTRODUCTION

The CG:SHOP challenge (Computational Geometry: Solving Hard Optimization Problems) is an annual geometric
optimization competition, whose first edition took place in 2019. The 2022 edition proposed a problem called minimum

partition into plane subgraphs. The input is a graph𝐺 embedded in the plane with edges drawn as straight line segments,
and the goal is to partition the set of edges into a small number of plane graphs (Fig. 1) [6]. This goal can be formulated
as a vertex coloring problem on a graph𝐺 ′ defined as follows. The vertices of𝐺 ′ are the segments defining the edges of
𝐺 , and the edges of 𝐺 ′ correspond to pairs of crossing segments (segments that intersect only at a common endpoint
are not considered crossing).

Authors’ addresses: Loïc Crombez, crombezloic@gmail.com, LIMOS, Université Clermont Auvergne, Clermont-Fd, France; Guilherme D. da Fonseca,
guilherme.fonseca@lis-lab.fr, LIS, Aix-Marseille Université, , France; Florian Fontan, dev@florian-fontan.fr, Independent Researcher, Paris, France; Yan
Gerard, yan.gerard@uca.fr, LIMOS, Université Clermont Auvergne, Clermont-Fd, France; Aldo Gonzalez-Lorenzo, aldo.gonzalez-lorenzo@univ-amu.fr,
LIS, Aix-Marseille Université, , France; Pascal Lafourcade, pascal.lafourcade@uca.fr, LIMOS, Université Clermont Auvergne, Clermont-Fd, France; Luc
Libralesso, libralesso.l@gmail.com, LIMOS, Université Clermont Auvergne, Clermont-Fd, France; Benjamin Momège, benjamin.momege@gmail.com,
Independent Researcher, Clermont-Ferrand, France; Jack Spalding-Jamieson, jacksj@uwaterloo.ca, David R. Cheriton School of Computer Science,
University of Waterloo, Waterloo, Canada; Brandon Zhang, brandon.zhang@alumni.ubc.ca, Independent Researcher, Vancouver, Canada; Da Wei Zheng,
dwzheng2@illinois.edu, Department of Computer Science, University of Illinois at Urbana-Champaign, IL, USA.

1

2
Loïc Crombez, Guilherme D. da Fonseca, Florian Fontan, Yan Gerard, Aldo Gonzalez-Lorenzo, Pascal Lafourcade, Luc

Libralesso, Benjamin Momège, Jack Spalding-Jamieson, Brandon Zhang, and Da Wei Zheng

Fig. 1. A partition of the input graph of the CG:SHOP2022 instance vispecn2518 into 57 plane graphs. It is the smallest instance
of the challenge with 2518 segments. On top left, you see all 57 colors together. On top right, you see a clique of size 57, hence the
solution is optimal. Each of the 57 colors is then presented in small figures.

The three top-ranking teams (Lasa, Gitastrophe, and Shadoks) on the CG:SHOP 2022 challenge all used a common
approach called conflict optimization [3, 7, 26] while the fourth team used a SAT-Boosted Tabu Search [25]. Conflict
optimization is a technique used by Shadoks to obtain the first place in the CG:SHOP 2021 challenge for low-makespan
coordinated motion planning [4], and the main ideas of the technique lent themselves well to the 2022 challenge. Next,
we describe the conflict optimizer as a metaheuristic to solve constraint satisfaction problems (CSP) [29]. We start by
describing a CSP.

A CSP is a triple of

• variables 𝑋 = (𝑥1, . . . , 𝑥𝑛),
• domains D = (𝐷1, . . . , 𝐷𝑛), and
• constraints R.

Each variable 𝑥𝑖 must be assigned a value in the corresponding domain 𝐷𝑖 such that all constraints are satisfied. In
general, the constraints may forbid arbitrary subsets of values. We restrict our attention to a particular type of constraints

Conflict Optimization for Binary CSP Applied to
Minimum Partition into Plane Subgraphs and Graph Coloring 3

(binary CSP), which only involve pairs of assignments. A partial evaluation is an assignment of a subset of the variables,
called evaluated, with the remaining variables called non-evaluated. All constraints involving a non-evaluated variable
are satisfied by default. We only consider assignments and partial assignments that satisfy all constraints.

The conflict optimizer iteratively modifies a partial evaluation with the goal of emptying the set 𝑆 of non-evaluated
variables, at which point it stops. At each step, a variable 𝑥𝑖 is removed from 𝑆 . If there exists a value 𝑥 ∈ 𝐷𝑖 that satisfies
all constraints, then we assign the value 𝑥 to the variable 𝑥𝑖 . Otherwise, we proceed as follows. For each possible value
𝑥 ∈ 𝐷𝑖 , we consider the set 𝐾 (𝑖, 𝑥) of variables (other than 𝑥𝑖) that are part of constraints violated by the assignment
𝑥𝑖 = 𝑥 . We assign to 𝑥𝑖 the value 𝑥 that minimizes ∑︁

𝑥 𝑗 ∈𝐾 (𝑖,𝑥)
𝑤 (𝑗),

where𝑤 (𝑗) is a weight function to be described later. The variables 𝑥 𝑗 ∈ 𝐾 (𝑖, 𝑥) become non-evaluated and added to 𝑆 .
The weight function should be such that𝑤 (𝑗) increases each time 𝑥 𝑗 is added to 𝑆 , in order to avoid loops that keep

moving the same variables back and forth from 𝑆 . Let 𝑞(𝑗) be the number of times 𝑥 𝑗 became non-evaluated. A possible
weight function is𝑤 (𝑗) = 𝑞(𝑗). More generally, we can have𝑤 (𝑗) = 𝑞(𝑗)𝑝 for some exponent 𝑝 (typically between 1
and 2). Of course, several details of the conflict optimizer are left open. For example, which element to choose from 𝑆 ,
whether some random noise should be added to𝑤 , and the decision to restart the procedure from scratch after a certain
time.

The CSP as is, does not apply to optimization problems. However, we can, impose a maximum value 𝑘 of the objective
function in order to obtain a CSP. The conflict optimizer was introduced in a lowmakespan coordinated motion planning
setting. In that setting, the variables are the robots, the domains are their paths (of length at most 𝑘) and the constraints
forbid collisions between two paths. In the graph coloring setting, the domains are the 𝑘 colors of the vertices and the
constraints forbid adjacent vertices from having the same color.

The conflict optimizer can be adapted to non-binary CSP, but in that case multiple variables may be unassigned for a
single violated constraint. The strategy has some resemblance to the similarly named min-conflicts algorithm [21], but
notable differences are that a partial evaluation is kept instead of an invalid evaluation and the weight function that
changes over time.

While the conflict optimization strategy is simple, there are different ways to apply it to the graph coloring problem.
The goal of the paper is to present how the top three teams applied it or complemented it with additional strategies. We
compare the relative benefits of each variant on the instances given in the CG:SHOP 2022 challenge. We also compare
them to baselines on some instances issued from graph coloring benchmarks.

The paper is organized as follows. Section 2 presents the details of the conflict optimization strategy applied to
graph coloring. In the three sections that follow, the three teams Lasa, Gitastrophe, and Shadoks present the different
parameters and modified strategies that they used to make the algorithm more efficient for the CG:SHOP 2022 challenge.
The last section is devoted to the experimental results.

1.1 Literature Review

The study of graph coloring goes back to the 4-color problem (1852) and it has been intensively studied since the 1970s
(see [14, 17] for surveys). Many heuristics have been proposed [10, 13, 19, 23], as well as exact algorithms [5, 12, 18].
We briefly present two classes of algorithms: greedy algorithms and exact algorithms.

4
Loïc Crombez, Guilherme D. da Fonseca, Florian Fontan, Yan Gerard, Aldo Gonzalez-Lorenzo, Pascal Lafourcade, Luc

Libralesso, Benjamin Momège, Jack Spalding-Jamieson, Brandon Zhang, and Da Wei Zheng

Greedy algorithms. These algorithms are used to find good quality initial solutions in a short amount of time. The
classic greedy heuristic considers the vertices in arbitrary order and colors each vertex with the smallest non-conflicting
color. The two most famous modern greedy heuristics are DSATUR [2] and Recursive Largest First (RLF) [16]. At each
step (until all vertices are colored), DSATUR selects the vertex 𝑣 that has the largest number of different colors in its
neighbourhood. Ties are broken by selecting a vertex with maximum degree. The vertex 𝑣 is colored with the smallest
non-conflicting color. RLF searches for a large independent set 𝐼 , assigns the vertices 𝐼 the same color, removes 𝐼 from
𝐺 ′, and repeats until all vertices are colored.

Exact algorithms. Some exact methods use a branch-and-bound strategy, for example extending the DSATUR heuristic
by allowing it to backtrack [8, 24]. Another type of exact method (branch-and-cut-and-price) decomposes the vertex
coloring problem into an iterative resolution of two sub-problems [9, 12, 20]. The “master problem” maintains a small
set of valid colors using a set-covering formulation. The “pricing problem” finds a new valid coloring that is promising
by solving a maximum weight independent set problem. Exact algorithms are usually able to find the optimal coloring
for graphs with a few hundred vertices. However, even the smallest CG:SHOP 2022 competition instances involve at
least a few thousands vertices.

2 CONFLICT OPTIMIZATION FOR GRAPH COLORING

Henceforth, we will only refer to the intersection conflict graph 𝐺 ′ induced by the instance. Vertices will refer to the
vertices 𝑉 (𝐺 ′), and edges will refer to the edges 𝐸 (𝐺 ′). Our goal is to partition the vertices using a minimum set of 𝑘
color classes C = {𝐶1, . . . ,𝐶𝑘 }, where no two vertices in the same color class 𝐶𝑖 are incident to a common edge.

2.1 Conflict Optimization

We consider the classical problem of coloring the vertices of a graph 𝐺 ′ = (𝑉 (𝐺 ′), 𝐸 (𝐺 ′)). We assume that an initial
solution C = {𝐶1, . . . ,𝐶𝑘 } has been previously computed (the choice of the initial solution does not seem to impact
the quality of the final solution produced by the conflict optimizer). The goal of the conflict optimizer is to reduce the
number of colors of C by one. When (and if) the conflict optimizer terminates, it will give such a solution. However,
after a certain amount of time or when a certain situation arrives, we may decide to abort the execution of the conflict
optimizer without any solution, and perhaps try again.

Throughout the execution, we maintain a partial coloring, which is a valid coloring for a subset of the vertices. The
complementary subset of uncolored vertices is called the conflict set and denoted 𝑆 . The conflict optimizer proceeds as
follows:

(1) Pick a color class 𝐶𝑖 to be eliminated. Uncolor all vertices in 𝐶𝑖 and make 𝑆 ← 𝐶𝑖 . A valid vertex-coloring is
maintained for the set𝑉 (𝐺 ′) \ 𝑆 . If 𝑆 is empty, we have a valid vertex coloring of𝐺 ′ which uses one fewer color.

(2) Pick and remove an element 𝑣 from 𝑆 . For each color class, compute the conflict score with 𝑣 . The conflict score
of a color class 𝐶 𝑗 is

𝑠𝑐𝑜𝑟𝑒 (𝐶 𝑗) = 𝑓 (𝐶 𝑗)
∑︁
𝑢∈𝐶 𝑗

(𝑢,𝑣) ∈𝐸 (𝐺 ′)

𝑤 (𝑢) (1)

where the weight𝑤 (𝑢) is a variable depending on the the number of times that 𝑢 has been removed from the
conflict set 𝑆 in previous iterations, and where 𝑓 (𝐶 𝑗) is a random variable adding randomness in the process.

(3) Pick the color class 𝐶 𝑗 with the lowest conflict score. Uncolor all vertices in 𝐶 𝑗 which are adjacent to 𝑣 and add
those vertices to 𝑆 . This step is slightly modified when the BDFS option detailed in the later is activated. In

Conflict Optimization for Binary CSP Applied to
Minimum Partition into Plane Subgraphs and Graph Coloring 5

this case, the algorithm does not put in the conflict set 𝑆 all the vertices in conflict with 𝑆 . Some of them are
recolored easily so that they do not enter in the conflict set 𝑆 . Insert 𝑣 into 𝐶 𝑗 .

(4) Repeat steps 2 and 3 until the set 𝑆 is empty.

The three teams provided different variants of the algorithm by playing with different options of the optimizer.

(a) The first option is the choice of the initial color 𝐶𝑖 to be eliminated at the first step of the loop. It is random for
Gitastrophe, and the smallest color class for Shadoks and Lasa variants.

(b) The second option is the way to choose the element 𝑣 from 𝑆 in step 2. Random for Gitastrophe, a fifo queue for
Shadoks, and the element that provides the least total conflict score after its removal for Lasa.

(c) The third option is the choice of the weight function𝑤 (·) defined on the vertices. Different functions can be
used, all depending on the parameter 𝑞(𝑢) that is defined as the number of times that a vertex 𝑢 has been
removed from 𝑆 . Lasa uses𝑤 (𝑢) = 1 + 𝑞(𝑢). Gitastrophe uses𝑤 (𝑢) = 1 + 𝑞(𝑢)2. Shadoks uses𝑤 (𝑢) = 1 + 𝑞(𝑢)𝑝

with 𝑝 ∈ [1, 2]. Shadoks also add a threshold 𝑞max with𝑤 (𝑢) = ∞ if 𝑞(𝑢) > 𝑞max. Gitastrophe also has such a
threshold, but instead uses it as a heuristic to abort the execution and start again.

(d) The fourth option is the choice of 𝑓 (𝐶𝑖). Lasa and Gitastrophe simply set 𝑓 (𝐶𝑖) = 1, while Shadoks use a
Gaussian random variable with average 1 for 𝑓 (𝐶𝑖). The right amount of randomness, controlled by the variance
𝜎 , has a significant impact on the search time.

(e) The fifth option is that Shadoks add a Bounded Depth-First Search (BDFS) option which detects vertices that
can be recolored easily. These vertices are recolored immediately, instead of entering 𝑆 , and consequently does
not suffer an increase in the value of 𝑞(·).

Some extra options are useful in order to drive the computation.

• Restart: The computation is restarted from step 2 if the size of the conflict set 𝑆 becomes too large because the
coloring of 𝑉 (𝐺 ′) \ 𝑆 has deteriorated too much to come back to a valid coloring.

• Multistart: Shadoks also use a multistart option to restart from step 1 with a random eliminated color 𝐶𝑖 and a
color shuffle.

The different parameters, options and complementary strategies used by each team are described in the next three
sections.

3 LASA TEAM

3.1 Finding Initial Solutions

Lasa team used two approaches to find initial solutions:

(1) DSATUR is the classical graph coloring algorithm presented in Section 1.
(2) Orientation greedy is almost the only algorithm where the geometry of the segments is used. If segments are

almost parallel, it is likely that they do not intersect (thus forming an independent set). This greedy algorithm
first sorts the segments by orientation, ranging from −𝜋2 to 𝜋

2 . For each segment in this order, the algorithm
tries to color it using the first available color. If no color has been found, a new color is created for coloring the
considered segment. This algorithm is efficient, produces interesting initial solutions and takes into account the
specificities of the competition.

6
Loïc Crombez, Guilherme D. da Fonseca, Florian Fontan, Yan Gerard, Aldo Gonzalez-Lorenzo, Pascal Lafourcade, Luc

Libralesso, Benjamin Momège, Jack Spalding-Jamieson, Brandon Zhang, and Da Wei Zheng

3.2 Conflict Optimization

TABUCOL inspired neighbourhood. One classical approach for the vertex coloring involves allowing solutions with
conflicting vertices (two adjacent vertices with the same color). It was introduced in 1987 [13] and called TABUCOL. It
starts with an initial solution, removes a color (usually the one with the least number of vertices), and assigns uncolored
vertices with a new color among the remaining ones. This is likely to lead to some conflicts (i.e. two adjacent vertices
sharing a same color). The local search scheme selects a conflicting vertex, and tries to swap its color, choosing the
new coloring that minimises the number of conflicts. If it reaches a state with no conflict, it provides a solution with
one color less than the initial solution. The process is repeated until the stopping criterion is met. While the original
TABUCOL algorithm includes a “tabu-list” mechanism to avoid cycling, it is not always sufficient, and requires some
hyper-parameter tuning in order to obtain a good performance on a large variety of instances. To overcome this issue,
we use a neighbourhood, but replace the “tabu-list” by the conflict optimizer scheme presented above.

PARTIALCOL inspired neighbourhood. PARTIALCOL another local search algorithm solving the vertex coloring
problem was introduced in 2008. This algorithm proposes a new local search scheme that allows partial coloring
(thus allowing uncolored vertices). The goal is to minimize the number of uncolored vertices. Similarly to TABUCOL,
PARTIALCOL starts with an initial solution, removes one color (unassigning its vertices), and performs local search
iterations until no vertex is left uncolored. When coloring a vertex, the adjacent conflicting vertices are uncolored. Then,
the algorithm repeats the process until all vertices are colored, or the stopping criterion is met. This neighbourhood was
also introduced alongside a tabu-search procedure. The tabu-search scheme is also replaced by a conflict-optimization
scheme. Note that this neighbourhood was predominantly used by the other teams.

4 GITASTROPHE

4.1 Solution Initialization

The gitastrophe team uses the traditional greedy algorithm of Welsh and Powell [30] to obtain initial solutions: order
the vertices in decreasing order of degree, and assign each vertex the minimum-label color not used by its neighbors.
During the challenge Gitastrophe attempted to use different orderings for the greedy algorithm, such as sorting by the
slope of the line segment associated with each vertex (as the orientation greedy initialization presented in Section 3),
and also tried numerous other strategies. Ultimately, after running the solution optimizer for approximately the same
amount of time, all initializations resulted in an equal number of colors.

4.2 Modifications to the Conflict Optimizer

Taking inspiration from memetic algorithms, which alternate between an intensification and a diversification stage, the
algorithm continually switched between a phase using the above conflict score, and one minimizing only the number of
conflicts. Thus during the conflict-minimization phase, the random variables 𝑓 (𝐶 𝑗) and𝑤 (𝑢) are both fixed equal to 1
leading to a conflict score

𝑠𝑐𝑜𝑟𝑒 (𝐶 𝑗) =
∑︁

𝑢∈𝐶 𝑗 ,(𝑢,𝑣) ∈𝐸 (𝐺 ′)
1.

Each phase lasted for 105 iterations. Adding the conflict-minimization phase gave minor improvements to some of the
challenge instances.

Conflict Optimization for Binary CSP Applied to
Minimum Partition into Plane Subgraphs and Graph Coloring 7

5 SHADOKS

In this section, we describe the choices used by the Shadoks team for the options described in Section 2.1.

Option (a). The Shadoks generally chose to eliminate the color with the smallest number of elements. However, if
the multistart option is toggled on, then a random color is used each time.

Option (b). The conflict set 𝑆 is stored in a queue. The Shadoks tried other strategies, but found that the queue gives
the best results.

Option (c). The weight function used is 𝑤 (𝑢) = 1 + 𝑞(𝑢)𝑝 , mostly with 𝑝 = 1.2. The effect of the parameter 𝑝 is
shown in Fig. 2. Notice that in all figures, the number of colors shown is the average of ten executions of the code using
different random seeds.

 220

 230

 240

 0 1 2 3 4 5

N
u
m

b
e
r

o
f

co
lo

rs

Running time (CPU hours)

p=0.5 p=1.0 p=1.5 p=2.0 p=3.0 p=5.0

Fig. 2. Number of colors over time for the instance vispecn13806 using different values 𝑝 . The algorithm uses 𝜎 = 0.15, easy vertices,
𝑞max = 59022, but does not use the BDFS nor any clique.

If 𝑞(𝑢) is larger than a threshold 𝑞max, the Shadoks set𝑤 (𝑢) = ∞ so that the vertex 𝑢 never reenters 𝑆 . If at some
point an uncolored vertex 𝑣 is adjacent to some vertex𝑢 of infinite weight in every color class, then the conflict optimizer
is restarted. When restarting, the initial coloring is shuffled by moving some vertices from their initial color class to a
new one.

Looking at Fig. 3, the value of 𝑞max does not seem to have much influence as long as it is not too small. Throughout
the challenge the Shadoks almost exclusively used 𝑞max = 2000 · (75000/𝑚)2, where𝑚 is the number of vertices. This
value roughly ensures a restart every few hours.

If the clique option is toggled on, each vertex 𝑢 in the largest known clique has𝑤 (𝑢) = ∞. The impact of the clique
option on the computation is shown in Fig. 4. The idea is that since each vertex of the clique must have a different
color, it is useless to change their color. The algorithm works by recoloring the other vertices. During the challenge, the
Shadoks used several methods to produce large cliques, including simulated annealing and mixed integer programming.

Option (d). The Shadoks use the function 𝑓 as a Gaussian random variable of mean 1 and variance 𝜎 . A good default
value is 𝜎 = 0.15. The effect of the variance is shown in Fig. 5. Notice that setting 𝜎 = 0 gives much worse results.

Option (e). The goal of BDFS is to further optimize very good solutions that the conflict optimizer is not able to
improve otherwise. Fig. 4 shows the influence of BDFS. While on this figure, the advantages of BDFS cannot be noticed,
its use near the end of the challenge improved about 30 solutions.

8
Loïc Crombez, Guilherme D. da Fonseca, Florian Fontan, Yan Gerard, Aldo Gonzalez-Lorenzo, Pascal Lafourcade, Luc

Libralesso, Benjamin Momège, Jack Spalding-Jamieson, Brandon Zhang, and Da Wei Zheng

 220

 230

 240

 0 1 2 3 4 5

N
u
m

b
e
r

o
f

co
lo

rs

Running time (CPU hours)

qmax=0.5k qmax=5k qmax=50k qmax=100k qmax=250k

Fig. 3. Number of colors over time with different values of 𝑞max obtained on the instance vispecn13806. Parameters are 𝜎 = 0.15,
𝑝 = 1.2, no clique knowledge, and no BDFS.

 220

 230

 240

 0 12 24 36 48 60 72

N
u
m

b
e
r

o
f

co
lo

rs

Running time (CPU hours)

no clique, no BDFS
no clique, BDFS

clique, no BDFS
clique, BDFS

Fig. 4. Number of colors over time with and without clique knowledge and BDFS obtained on the instance vispecn13806. Parameters
are 𝜎 = 0.15, 𝑝 = 1.2, and 𝑞max = 1500000.

 220

 230

 240

 0 1 2 3 4 5

N
u
m

b
e
r

o
f

co
lo

rs

Running time (CPU hours)

σ=0.00 σ=0.05 σ=0.10 σ=0.15 σ=0.20

Fig. 5. Number of colors over time for the instance vispecn13806 for different values of 𝜎 . In both figures the algorithm uses 𝑝 = 1.2,
easy vertices, 𝑞max = 59022, but does not use the BDFS nor any clique. For 𝜎 ≥ 0.25, no solution better than 248 colors is found.

The bounded depth-first search (BDFS) algorithm tries to improve the dequeuing process. The goal is to prevent a
vertex in conflict with some adjacent colored vertices from entering in the conflict set. At the first level, the algorithm
searches for a recoloring of some adjacent vertices which allows us to directly recolor the conflict vertex. If no solution

Conflict Optimization for Binary CSP Applied to
Minimum Partition into Plane Subgraphs and Graph Coloring 9

is found, the algorithm could recolor some vertices at larger distances from the conflict vertex. To do so, a local search
is performed by trying to recolor vertices at a bounded distance from the conflict vertex in the current partial solution.

The BDFS algorithm has two parameters: adjacency bound 𝑎max and depth 𝑑 . In order to recolor a vertex 𝑣 , BDFS
gets the set C of color classes with at most 𝑎max neighbors of 𝑣 . If a class in C has no neighbor of 𝑣 , 𝑣 is assigned to 𝐶 .
Otherwise, for each class 𝐶 ∈ C, BDFS tries to recolor the vertices in 𝐶 which are adjacent to 𝑣 by recursively calling
itself with depth 𝑑 − 1. At depth 𝑑 = 0 the algorithm stops trying to color the vertices.

During the challenge the Shadoks used BDFS with parameters 𝑎max = 3 and 𝑑 = 3. The depth was increased to 5
(resp. 7) when the number of vertices in the queue was 2 (resp. 1).

Degeneracy order. Given a target number of colors 𝑘 , we call easy vertices a set of vertices 𝑌 such that, if the remainder
of the vertices of 𝐺 ′ are colored using 𝑘 colors, then we are guaranteed to be able to color all vertices of 𝐺 ′ with 𝑘
colors. This is obtained using the degeneracy order 𝑌 . To obtain 𝑌 we iteratively remove from the graph a vertex 𝑣 that
has at most 𝑘 − 1 neighbors, appending 𝑣 to the end of 𝑌 . We repeat until no other vertex can be added to 𝑌 . Notice that,
once we color the remainder of the graph with at least 𝑘 colors, we can use a greedy coloring for 𝑌 in order from last to
first without increasing the number of colors used. Removing the easy vertices reduces the total number of vertices,
making the conflict optimizer more effective. The Shadoks always toggle this option on (the challenge instances contain
from 0 to 23% easy vertices).

6 RESULTS

We provide the results of the experiments performed with the code from the three teams on two classes of instances.
First, we present the results on some selected CG:SHOP 2022 instances. These instances are intersection graphs of
line segments. Second, we execute the code on graphs that are not intersection graphs, namely the classic DIMACS
graphs [15], comparing the results of our conflict optimizer implementations to previous solutions. The source code for
the three teams is available at:

• Lasa: https://github.com/librallu/dogs-color
• Gitastrophe: https://github.com/jacketsj/cgshop2022-gitastrophe
• Shadoks: https://github.com/gfonsecabr/shadoks-CGSHOP2022

6.1 CG:SHOP 2022 Instances

We selected 14 instances (out of 225) covering the different types of instances given in the CG:SHOP 2022 challenge.
The results are presented in Table 1. For comparison, we executed the HEAD [22] code on some instances using the
default parameters. The table shows the smallest number of colors for which HEAD found a solution. We ran HEAD for
1 hour of repetitions for each target number of colors on a single CPU core (the HEAD solver takes the target number
of colors as a parameter and we increased this parameter one by one). At the end of the challenge, 8 colorings computed
by Lasa, 11 colorings computed by Gitastrophe, and 23 colorings computed by Shadoks over 225 instances have been
proved optimal (their number of colors is equal to the size of a clique).

In order to compare the efficiency of the algorithms, we executed the different implementations on the CG:SHOP
instance vispecn13806. The edge density of this graph is 19%, the largest clique that we found has 177 vertices and
the best coloring found during the challenge uses 218 colors. Notice that vispecn13806 is the same instance used in
other Shadoks experiments in Section 5. Notice also that HEAD algorithm provides 283 colors after one hour compared
to less than 240 colors for the conflict optimizers. We ran the three implementations on three different servers and

https://github.com/librallu/dogs-color
 https://github.com/jacketsj/cgshop2022-gitastrophe
https://github.com/gfonsecabr/shadoks-CGSHOP2022

10
Loïc Crombez, Guilherme D. da Fonseca, Florian Fontan, Yan Gerard, Aldo Gonzalez-Lorenzo, Pascal Lafourcade, Luc

Libralesso, Benjamin Momège, Jack Spalding-Jamieson, Brandon Zhang, and Da Wei Zheng

Table 1. Several CG:SHOP 2022 results. We compare the size of the largest known clique to the smallest coloring found by each team
on a selection of 14 CG:SHOP 2022 instances.

Instance Clique Best HEAD [22] Lasa Gitastrophe Shadoks
rvisp5013 46 49 59 50 49 49
rsqrpecn8051 173 175 207 177 176 175
vispecn13806 77 218 283 224 221 218
rsqrp14364 134 136 174 137 137 136
vispecn19370 169 192 266 197 194 192
rvisp24116 97 104 166 110 105 104
visp26405 78 81 112 83 81 81
sqrp28863 190 190 297 191 191 190
visp38574 118 133 199 138 134 133
sqrpecn45700 460 462 465 465 462
reecn51526 308 310 315 312 310
vispecn58391 305 367 380 369 367
vispecn65831 357 439 453 440 439
sqrp72075 264 269 272 271 269

compared the results shown in Figure 6. For each implementation, the 𝑥 coordinate is the running time in hours, while
the 𝑦 coordinate is the smallest number of colors found at that time.

Fig. 6. Number of colors over time (in hours) for the instance vispecn13806.

Conflict Optimization for Binary CSP Applied to
Minimum Partition into Plane Subgraphs and Graph Coloring 11

6.2 Results on DIMACS Graphs

We tested the implementation of each team on the DIMACS instances [15] to gauge the performance of the conflict
optimizer on other classes of graphs. We compared our results to the best known bounds and to the state of the art
coloring algorithms HEAD [22] and QACOL [27, 28].

The time limit for Lasa’s algorithms is 1 hour. CWLS is Lasa’s conflict optimizer with the neighbourhood presented
in TABUCOL [13], while PWLS is the optimizer with the neighbourhood presented in PARTIALCOL [1]. Gitastrophe
algorithm ran 10 minutes after which the number of colors no longer decreases. Shadoks algorithm ran for 1 hour
without the BDFS option (results with BDFS are worse).

Results are presented in Table 2. We only kept the difficult DIMACS instances. For the other instances, all the results
match the best known bounds. The DIMACS instances had comparatively few edges (on the order of thousands or
millions); the largest intersection graphs considered in the CG:SHOP challenge had over 1.5 billion edges.

Table 2. Comparison of our method with state-of-the-art graph coloring algorithms. The conflict optimizer underperforms except on
the geometric graphs r* and dsjr*.

Instance Best HEAD [22] QACOL [27, 28] Lasa CWLS Lasa PWLS Gitastrophe Shadoks
dsjc250.5 28 28 28 28 29 29 28
dsjc500.1 12 12 12 13 13 13 13
dsjc500.5 47 47 48 49 51 52 50
dsjc500.9 126 126 126 126 130 130 128
dsjc1000.1 20 20 20 21 22 21 21
dsjc1000.5 82 82 82 89 94 93 91
dsjc1000.9 222 222 222 223 240 235 231
r250.5 65 65 65 65 65 65 65
r1000.1c 98 98 98 98 98 98 98
r1000.5 234 245 238 234 234 234 237
dsjr500.1c 84 85 85 85 85 85 85
dsjr500.5 122 - 122 122 122 122 122
le450_25c 25 25 25 26 26 26 26
le450_25d 25 25 25 26 26 26 26
flat300_28_0 28 31 31 31 32 33 32
flat1000_50_0 50 50 - 50 50 91 54
flat1000_60_0 60 60 - 60 92 93 90
flat1000_76_0 81 81 81 88 93 92 90
C2000.5 145 146 145 165 173 173 168
C4000.5 260 266 259 311 320 317 312

We notice that the conflict optimizer works extremely poorly on random graphs, but it is fast and appears to perform
well on geometric graphs (r250.5, r1000.1c, r1000.5, dsjr500.1c and dsjr500.5), matching the best-known results [11].
Interestingly, these geometric graphs are not intersection graphs as in the CG:SHOP challenge, but are generated
based on a distance threshold. On the DIMACS graphs, Lasa implementation shows better performance than the other
implementations.

7 ACKNOWLEDGMENTS

We would like to thank the challenge organizers and other competitors for their time, feedback, and making this whole
event possible.

12
Loïc Crombez, Guilherme D. da Fonseca, Florian Fontan, Yan Gerard, Aldo Gonzalez-Lorenzo, Pascal Lafourcade, Luc

Libralesso, Benjamin Momège, Jack Spalding-Jamieson, Brandon Zhang, and Da Wei Zheng

The Shadoks would like to thank Hélène Toussaint, Raphaël Amato, Boris Lonjon, and William Guyot-Lénat from
LIMOS, as well as the Qarma and TALEP teams and Manuel Bertrand from LIS, who continue to make the computational
resources of the LIMOS and LIS clusters available to our research.

The work of Loïc Crombez has been sponsored by the French government research program “Investissements
d’Avenir” through the IDEX-ISITE initiative 16-IDEX-0001 (CAP 20-25). The work of Guilherme D. da Fonseca is
supported by the French ANR PRC grant ADDS (ANR-19-CE48-0005). The work of Yan Gerard is supported by the
French ANR PRC grants ADDS (ANR-19-CE48-0005), ACTIVmap (ANR-19-CE19-0005) and by the French government
IDEX-ISITE initiative 16-IDEX-0001 (CAP 20-25). The work of Aldo Gonzalez-Lorenzo is supported by the French ANR
PRC grant COHERENCE4D (ANR-20-CE10-0002). The work of Pascal Lafourcade is supported by the French ANR
PRC grant MobiS5 (ANR-18-CE39-0019), DECRYPT (ANR-18-CE39-0007), SEVERITAS (ANR-20-CE39-0005) and by the
French government IDEX-ISITE initiative 16-IDEX-0001 (CAP 20-25). The work of Luc Libralesso is supported by the
French ANR PRC grant DECRYPT (ANR-18-CE39-0007).

REFERENCES
[1] Ivo Blöchliger and Nicolas Zufferey. 2008. A graph coloring heuristic using partial solutions and a reactive tabu scheme. Computers & Operations

Research 35, 3 (2008), 960–975. https://doi.org/10.1016/j.cor.2006.05.014
[2] Daniel Brélaz. 1979. New methods to color the vertices of a graph. Commun. ACM 22, 4 (1979), 251–256. https://doi.org/10.1145/359094.359101
[3] Loïc Crombez, Guilherme Dias da Fonseca, Yan Gerard, and Aldo Gonzalez-Lorenzo. 2022. Shadoks Approach to Minimum Partition into Plane

Subgraphs (CG Challenge). In 38th International Symposium on Computational Geometry, SoCG 2022, June 7-10, 2022, Berlin, Germany (LIPIcs), Xavier
Goaoc andMichael Kerber (Eds.), Vol. 224. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 71:1–71:8. https://doi.org/10.4230/LIPIcs.SoCG.2022.71

[4] Loïc Crombez, Guilherme Dias da Fonseca, Yan Gerard, Aldo Gonzalez-Lorenzo, Pascal Lafourcade, and Luc Libralesso. 2022. Shadoks Approach to
Low-Makespan Coordinated Motion Planning. ACM J. Exp. Algorithmics 27 (2022), 3.2:1–3.2:17. https://doi.org/10.1145/3524133

[5] David Eppstein. 2002. Small maximal independent sets and faster exact graph coloring. J. Graph Algorithms Appl 7, 2 (2002), 131–140.
arXiv:https://doi.org/10.48550/arXiv.cs/0011009

[6] Sándor P. Fekete, Phillip Keldenich, Dominik Krupke, and Stefan Schirra. 2022. Minimum Partition into Plane Subgraphs: The CG: SHOP Challenge
2022. CoRR abs/2203.07444 (2022). arXiv:2203.07444 https://arxiv.org/abs/2203.07444

[7] Florian Fontan, Pascal Lafourcade, Luc Libralesso, and Benjamin Momège. 2022. Local Search with Weighting Schemes for the CG: SHOP 2022
Competition (CG Challenge). In 38th International Symposium on Computational Geometry, SoCG 2022, June 7-10, 2022, Berlin, Germany (LIPIcs), Xavier
Goaoc andMichael Kerber (Eds.), Vol. 224. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 73:1–73:6. https://doi.org/10.4230/LIPIcs.SoCG.2022.73

[8] Fabio Furini, Virginie Gabrel, and Ian-Christopher Ternier. 2017. An Improved DSATUR-Based Branch-and-Bound Algorithm for the Vertex
Coloring Problem. Networks 69, 1 (2017), 124–141. https://doi.org/10.1002/net.21716

[9] Fabio Furini and Enrico Malaguti. 2012. Exact weighted vertex coloring via branch-and-price. Discrete Optimization 9, 2 (2012), 130–136.
https://doi.org/10.1016/j.disopt.2012.03.002

[10] Philippe Galinier and Jin-Kao Hao. 1999. Hybrid evolutionary algorithms for graph coloring. Journal of combinatorial optimization 3, 4 (1999),
379–397. https://doi.org/10.1023/A:1009823419804

[11] Olivier Goudet, Cyril Grelier, and Jin-KaoHao. 2021. A deep learning guidedmemetic framework for graph coloring problems. arXiv:cs.LG/2109.05948
[12] Stefano Gualandi and Federico Malucelli. 2012. Exact solution of graph coloring problems via constraint programming and column generation.

INFORMS Journal on Computing 24, 1 (2012), 81–100. https://doi.org/10.1287/ijoc.1100.0436
[13] Alain Hertz and Dominique de Werra. 1987. Using tabu search techniques for graph coloring. Computing 39, 4 (1987), 345–351. https:

//doi.org/10.1007/BF02239976
[14] Tommy R. Jensen and Bjarne Toft. 2011. Graph coloring problems. John Wiley & Sons.
[15] David S Johnson and Michael A Trick. 1996. Cliques, coloring, and satisfiability: second DIMACS implementation challenge, October 11-13, 1993.

Vol. 26. American Mathematical Society.
[16] Frank Thomson Leighton. 1979. A graph coloring algorithm for large scheduling problems. Journal of research of the national bureau of standards 84,

6 (1979), 489. https://doi.org/10.6028/jres.084.024
[17] R. M. R. Lewis. 2015. A Guide to Graph Colouring: Algorithms and Applications (1st ed.). Springer Publishing Company, Incorporated.
[18] C. Lucet, F. Mendes, and A. Moukrim. 2006. An exact method for graph coloring. Computers & Operations Research 33, 8 (2006), 2189–2207.

https://doi.org/10.1016/j.cor.2005.01.008
[19] David W. Matula, George Marble, and Joel D. Isaacson. 1972. Graph Coloring Algorithms. In Graph Theory and Computing, Ronald C. Read (Ed.).

Academic Press, 109–122. https://doi.org/10.1016/B978-1-4832-3187-7.50015-5

https://doi.org/10.1016/j.cor.2006.05.014
https://doi.org/10.1145/359094.359101
https://doi.org/10.4230/LIPIcs.SoCG.2022.71
https://doi.org/10.1145/3524133
http://arxiv.org/abs/https://doi.org/10.48550/arXiv.cs/0011009
https://arxiv.org/abs/2203.07444
https://doi.org/10.4230/LIPIcs.SoCG.2022.73
https://doi.org/10.1002/net.21716
https://doi.org/10.1016/j.disopt.2012.03.002
https://doi.org/10.1023/A:1009823419804
http://arxiv.org/abs/cs.LG/2109.05948
https://doi.org/10.1287/ijoc.1100.0436
https://doi.org/10.1007/BF02239976
https://doi.org/10.1007/BF02239976
https://doi.org/10.6028/jres.084.024
https://doi.org/10.1016/j.cor.2005.01.008
https://doi.org/10.1016/B978-1-4832-3187-7.50015-5

Conflict Optimization for Binary CSP Applied to
Minimum Partition into Plane Subgraphs and Graph Coloring 13

[20] Anuj Mehrotra and Michael A Trick. 1996. A column generation approach for graph coloring. INFORMS Journal on Computing 8, 4 (1996), 344–354.
https://doi.org/10.1287/ijoc.8.4.344

[21] Steven Minton, Mark D Johnston, Andrew B Philips, and Philip Laird. 1992. Minimizing conflicts: a heuristic repair method for constraint satisfaction
and scheduling problems. Artificial intelligence 58, 1-3 (1992), 161–205. https://doi.org/10.1016/0004-3702(92)90007-K

[22] Laurent Moalic and Alexandre Gondran. 2018. Variations on memetic algorithms for graph coloring problems. Journal of Heuristics 24, 1 (2018),
1–24. arXiv:https://doi.org/10.48550/arXiv.1401.2184

[23] Isabel Méndez-Díaz and Paula Zabala. 2006. A Branch-and-Cut algorithm for graph coloring. Discrete Applied Mathematics 154, 5 (2006), 826–847.
https://doi.org/10.1016/j.dam.2005.05.022

[24] Pablo San Segundo. 2012. A new DSATUR-based algorithm for exact vertex coloring. Computers & Operations Research 39, 7 (2012), 1724–1733.
https://doi.org/10.1016/j.cor.2011.10.008

[25] André Schidler. 2022. SAT-Based Local Search for Plane Subgraph Partitions (CG Challenge). In 38th International Symposium on Computational
Geometry, SoCG 2022, June 7-10, 2022, Berlin, Germany (LIPIcs), Xavier Goaoc and Michael Kerber (Eds.), Vol. 224. Schloss Dagstuhl - Leibniz-Zentrum
für Informatik, 74:1–74:8. https://doi.org/10.4230/LIPIcs.SoCG.2022.74

[26] Jack Spalding-Jamieson, Brandon Zhang, and Da Wei Zheng. 2022. Conflict-Based Local Search for Minimum Partition into Plane Subgraphs (CG
Challenge). In 38th International Symposium on Computational Geometry, SoCG 2022, June 7-10, 2022, Berlin, Germany (LIPIcs), Xavier Goaoc and
Michael Kerber (Eds.), Vol. 224. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 72:1–72:6. https://doi.org/10.4230/LIPIcs.SoCG.2022.72

[27] Olawale Titiloye and Alan Crispin. 2011. Quantum annealing of the graph coloring problem. Discrete Optimization 8 (2011), 376–384. https:
//doi.org/10.1016/j.disopt.2010.12.001

[28] Olawale Titiloye and Alan Crispin. 2012. Parameter tuning patterns for random graph coloring with quantum annealing. PloS one 7, 11 (2012).
https://doi.org/10.1371/journal.pone.0050060

[29] Edward P. K. Tsang. 1993. Foundations of constraint satisfaction.
[30] D. J. A. Welsh and M. B. Powell. 1967. An upper bound for the chromatic number of a graph and its application to timetabling problems. Comput. J.

10, 1 (01 1967), 85–86. https://doi.org/10.1093/comjnl/10.1.85 arXiv:https://academic.oup.com/comjnl/article-pdf/10/1/85/1069035/100085.pdf

https://doi.org/10.1287/ijoc.8.4.344
https://doi.org/10.1016/0004-3702(92)90007-K
http://arxiv.org/abs/https://doi.org/10.48550/arXiv.1401.2184
https://doi.org/10.1016/j.dam.2005.05.022
https://doi.org/10.1016/j.cor.2011.10.008
https://doi.org/10.4230/LIPIcs.SoCG.2022.74
https://doi.org/10.4230/LIPIcs.SoCG.2022.72
https://doi.org/10.1016/j.disopt.2010.12.001
https://doi.org/10.1016/j.disopt.2010.12.001
https://doi.org/10.1371/journal.pone.0050060
https://doi.org/10.1093/comjnl/10.1.85
http://arxiv.org/abs/https://academic.oup.com/comjnl/article-pdf/10/1/85/1069035/100085.pdf

	Abstract
	1 Introduction
	1.1 Literature Review

	2 Conflict Optimization for Graph Coloring
	2.1 Conflict Optimization

	3 Lasa Team
	3.1 Finding Initial Solutions
	3.2 Conflict Optimization

	4 Gitastrophe
	4.1 Solution Initialization
	4.2 Modifications to the Conflict Optimizer

	5 Shadoks
	6 Results
	6.1 CG:SHOP 2022 Instances
	6.2 Results on DIMACS Graphs

	7 Acknowledgments
	References

