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A R T I C L E  I N F O   

Keywords: 
Surgical workflow analysis 
Endoscopic vision 
Surgical data science 
Laparoscopic cholecystectomy 

A B S T R A C T   

Purpose: Surgical workflow and skill analysis are key technologies for the next generation of cognitive surgical 
assistance systems. These systems could increase the safety of the operation through context-sensitive warnings 
and semi-autonomous robotic assistance or improve training of surgeons via data-driven feedback. In surgical 
workflow analysis up to 91% average precision has been reported for phase recognition on an open data single- 
center video dataset. In this work we investigated the generalizability of phase recognition algorithms in a 
multicenter setting including more difficult recognition tasks such as surgical action and surgical skill. 
Methods: To achieve this goal, a dataset with 33 laparoscopic cholecystectomy videos from three surgical centers 
with a total operation time of 22 h was created. Labels included framewise annotation of seven surgical phases 
with 250 phase transitions, 5514 occurences of four surgical actions, 6980 occurences of 21 surgical instruments 
from seven instrument categories and 495 skill classifications in five skill dimensions. The dataset was used in the 
2019 international Endoscopic Vision challenge, sub-challenge for surgical workflow and skill analysis. Here, 12 
research teams trained and submitted their machine learning algorithms for recognition of phase, action, in-
strument and/or skill assessment. 
Results: F1-scores were achieved for phase recognition between 23.9% and 67.7% (n = 9 teams), for instrument 
presence detection between 38.5% and 63.8% (n = 8 teams), but for action recognition only between 21.8% and 
23.3% (n = 5 teams). The average absolute error for skill assessment was 0.78 (n = 1 team). 
Conclusion: Surgical workflow and skill analysis are promising technologies to support the surgical team, but 
there is still room for improvement, as shown by our comparison of machine learning algorithms. This novel 
HeiChole benchmark can be used for comparable evaluation and validation of future work. In future studies, it is 
of utmost importance to create more open, high-quality datasets in order to allow the development of artificial 
intelligence and cognitive robotics in surgery.   

1. Introduction 

Surgical workflow and skill analysis are key technologies for the 
development and seemingless integration of artificial intelligence sys-
tems (AI) in the operating room (OR) and thus a main building block of 
surgical data science (Maier-Hein et al., 2022). Surgical AI systems may 
increase the safety and efficiency of the operation through early 
context-sensitive warnings (Katić et al., 2013), OR management (Tanzi 
et al., 2020) and procedure time prediction (Aksamentov et al., 2017; 
Bodenstedt et al., 2019), continuing surgical education (Maier-Hein 
et al., 2017) and professional development (Greenberg et al., 2018) by 
objective assessment of surgical skill and competency (Funke et al., 
2019; Hashimoto et al., 2019; Vedula et al., 2017), as well as 
semi-autonomous assistance (Lalys and Jannin, 2014; Vercauteren et al., 
2020). Surgical AI may also help to locate critical events in surgical 
videos and document safety measures (Korndorffer et al., 2020; Mas-
cagni et al., 2021). Furthermore, if today’s robotic telemanipulators are 
to become cognitive assistance systems, which perceive their environ-
ment, interpret it according to previous experience and perform a 
context-aware action in a semi-autonomous way, they will have to un-
derstand the surgical workflow and learn from the skilled surgeons 
(Maier-Hein et al., 2022; Wagner et al., 2021). Thus, surgical workflow 
and skill analysis are a prerequisite for the next generation of surgical 
robotics. 

A great obstacle to train the underlying machine learning (ML) al-
gorithms to created AI applications in surgery is the lack of high quality 
annotated datasets (Maier-Hein et al., 2021). The use of ML has been 
successfully researched on the basis of annotated non-surgical data 
(Topol, 2019). At the same time, research on surgical data, especially 
laparoscopic videos is comparatively underrepresented, even though the 
availability of surgical video data is increasing thanks to time-efficient 
and cost-effective recording and storage of those videos. A reason may 
be that the process of video annotation with meaningful information for 
ML is time-consuming and laborious. As a result, only few surgical video 
datasets are openly available for research, even though the publication 
rate for the analysis of surgical procedures has increased in recent years 
(Loukas, 2018). For instance, the Cholec80 dataset contains videos of 80 
laparoscopic cholecystectomies from a single center and annotation of 
surgical phase and instrument presence with a phase recognition 
average precision of up to 91% (Twinanda et al., 2017). Similar results 
have been reported on a larger multicenter dataset of 1243 laparoscopic 

cholecystectomies, but this data is not openly available (Bar et al., 
2020). Another open dataset is the Heidelberg colorectal dataset. It 
comprises 30 videos of three different types of laparoscopic colorectal 
surgeries, corresponding sensor data from medical devices in the OR and 
pixel-wise semantic segmentation of surgical instruments (Maier-Hein 
et al., 2021). The successful use of the Heidelberg Colorectal dataset 
during the Endoscopic Vision (EndoVis) challenges 2017 (https://endov 
issub2017-workflow.grand-challenge.org/) and 2019 (https://robust 
mis2019.grand-challenge.org/) is an example for the comparative vali-
dation of ML algorithms to explore an optimal solution for surgical 
problems. Apart from laparoscopy, surgical workflow has been investi-
gated in ophthalmology. The CATARACTS Challenge presented suc-
cessful results on instrument presence detection during cataract surgery 
using computer vision algorithms (Al Hajj et al., 2019). Though all three 
datasets used clinical patient videos as the basis for their annotations, 
they are limited in their transferability, because they do not sufficiently 
reflect the diversity of clinical data in a multicenter setting. Further-
more, they focus on a limited variety of annotated features. 

In contrast, the preclinical JIGSAWS dataset for gesture and skill 
analysis contains kinematic and video data of surgical tasks with 
detailed action and skill annotation (Ahmidi et al., 2017). However, 
JIGSAWS does not contain real patient data. Due to their achievements, 
EndoVis (https://endovis.grand-challenge.org/) (28%), Cholec80 
(21%), and JIGSAWS (17%) were mentioned as the most useful publicly 
available datasets for surgical data science (Maier-Hein et al., 2022), but 
there is still an urgent demand in the scientific community and medical 
device industry for high-quality datasets from laparoscopic surgery that 
allow a comparison of ML algorithms (Maier-Hein et al., 2022). 

Apart from this, it is generally important to view medical recognition 
challenges with caution due to the lack of standardized and evidence- 
based quality control. For example, it is possible for later participating 
teams to boost their performance if the test data has been published 
(Maier-Hein et al., 2018). Moreover, standardized phase definitions are 
missing in the existing datasets, especially for laparoscopic cholecys-
tectomy (Garrow et al., 2020; Meireles et al., 2021). Since the repro-
ducibility of research results is an important element of science, a 
standardized benchmark for comparing such results is of great 
importance. 

In this study we aim to counteract this deficiency and propose an 
open benchmark for surgical workflow and skill analysis by providing a 
state of the art comparison of ML algorithms on a novel and publicly 
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accessible clinical multicenter dataset. Specifically, our study aimed at 
answering the following research questions: 

(1) Can the previously reported performance in recognition of sur-
gical phase and surgical instrument be reproduced on this dataset 
by independent researchers?  

(2) What performance can be achieved for recognition tasks more 
difficult than phase recognition such as surgical action (often 
brief and subtle) and surgical skill (holistic assessment of the 
whole video)? 

2. Dataset 

The structure of this paper follows the BIAS statement for transparent 
reporting of biomedical image analysis challenges (Maier-Hein et al., 
2020) and includes the structured challenge design in Appendix B. The 
creation of the challenge dataset is described including annotations for 
surgical phase, action, instrument and skill. Then, the challenge design 
and a description of the competing ML algorithms are described. 

2.1. Data collection 

The dataset contains n = 33 videos of laparoscopic cholecystectomies 
from three surgical centers in Germany with a total video length of 22 h. 
The total number of cases was chosen based on annotation capacity. The 
operation videos at Heidelberg University Hospital (n = 15) were 
recorded with a laparoscopic 2D camera (Karl Storz SE & Co KG, Tut-
tlingen Germany) with 30◦ optics, a resolution of 960 × 540 pixels and 
25 frames per second. The operation videos at Salem Hospital (n = 15) 
and the GRN-hospital Sinsheim (n = 3) were recorded with the laparo-
scopic 2D camera ENDOCAM Logic HD (Richard Wolf GmbH, Knit-
tlingen, Germany) with 30◦ optics, a resolution of 1920 × 1080 pixels 
and for the greater part 50 frames per second. Three operations at Salem 
Hospital were recorded with a resolution of 720 × 576 pixels and 25 
frames per second. Every video starts at the first insertion of the lapa-
roscopic camera into the patient’s abdomen and ends with the last 
removal of the laparoscopic camera. 

The videos were split into the training (n = 24) and test (n = 9) 
dataset. In the training dataset, videos from Heidelberg University 
Hospital and Salem Hospital are equally represented (n = 12 each). In 
the test dataset, all three centers are equally represented (n = 3 each). 
Assignment to training or test dataset was performed randomly with 
stratification by center. The total number of test cases was chosen to 
maximize the ability to generalize and evaluate while maintaining a 
large enough training set. 

To comply with ethical standards and the general data protection 
regulation of the European Union, routinely collected data was used and 
anonymized. To this end, scenes outside the abdominal cavity, for 
example when the camera was pulled out for cleaning purposes, were 
manually censored (frames were replaced with white frames) and files 
were renamed anonymously (HeiChole-1, HeiChole-2 etc.). 

2.2. Data annotation 

The anonymized video data were annotated with surgical knowledge 
by specifically instructed medical students following annotation rules in 
Appendix A. Annotation, i.e. labeling of each video frame with infor-
mation about what is depicted in this frame, was performed using the 
video annotation research tool Anvil (Kipp, 2014). The annotation 
included framewise annotation of surgical phases, actions and in-
struments as well as skill and difficulty classification for procedures and 
selected phases. Thus, different perspectives of the surgical activity were 
annotated. According to Neumuth et al. a surgical activity consists of 
five components (Neumuth et al., 2009), which are the functional, 
organizational, operational, spatial and behavioral perspectives. In this 
study, all perspectives ecxemt the spatial were annotated. The 

performed action describes what is done (functional, e.g. “grasp”, see 
paragraph “Action”) and is defined as a sequence of related gestures. The 
performer of the action (organizational, e.g. “left hand of the surgeon”) 
and the surgical instrument used (operational, e.g. “atraumatic grasper”, 
see paragraph “Instrument”) were annotated in relation to the exact time 
(behavioral, framewise annotation of the video). An example of a 
comprehensive annotation would be “the left hand of the surgeon per-
forms the grasping and holding action with the atraumatic grasper at 10 
min and 15 s after start of the operation”. Whereas the hand is not visible 
in the image, in the standardized procedure of laparoscopic cholecys-
tectomy the performing hand can be deducted from the position of the 
instrument. 

To ensure standardization and reproducibility of annotation as well 
as to minimize sources of error, explicit rules were formulated for phase, 
action and instrument annotation. An identical procedure was followed 
for both training and test cases. The annotation rules are enclosed in 
Appendix A. Surgical phase (see Section 2.2.1. Phase) was annotated 
analogous to the Cholec80 dataset (Twinanda et al., 2017), surgical skill 
and difficulty (see Section 2.2.4. Skill) were annotated using modified 
Global Operative Assessment of Laparoscopic Skills (GOALS) score 
(Vassiliou et al., 2005) as extended by Chang et al. (Chang et al., 2007). 
In order to increase the reliability of the annotation, the phases were 
annotated independently by three specifically instructed medical stu-
dents and the surgical skill and difficulty by two specifically instructed 
medical students. Possible error sources occurred with disagreement on 
the beginning or end of a phase or the skill level. Deviations were dis-
cussed and resolved by consensus between the same students. Final 
consensus annotations as well as raw annotations for phases before 
consensus can be downloaded from the challenge website on Synapse 
(see Section 4.3. HeiChole benchmark & online leaderboard). 

According to the BIAS statement, a case in our dataset encompassed 
all data for which the algorithm(s) participating in a specific challenge 
task produced one result. One case comprises three videos, a full lapa-
roscopic cholecystectomy, all frames of the phase calot triangle dissec-
tion (P1) and all frames of the phase gallbladder dissection (P3), 
respectively. Annotations for surgical phase were one value per frame. 
Annotations for action were a 4D binary vector per frame indicating if 
the corresponding action is being performed (1) or not (0)). Annotations 
for instrument category were a 21D binary vector per frame, consisting 
of 7 instrument categories used during the EndoVis challenge, one un-
defined instrument shaft plus 14 unused categories reserved for future 
additions like further grasping instruments, with each entry indicating if 
the corresponding instrument category is visible (1) or not (0)). Anno-
tations for instruments were a 31D binary vector per frame, consisting of 
21 instruments used during the EndoVis challenge, one undefined in-
strument shaft plus 9 unused instruments reserved for future additions, 
with each entry indicating if the corresponding instrument category is 
visible (1) or not (0)). Surgical skill was annotated in five different di-
mensions, each ranked with integer values between 1 and 5, for each of 
the three videos full operation, P1 and P3. 

2.2.1. Phase 
For the surgical phases, one of seven surgical phases was assigned to 

each individual frame, analogous to the Cholec80 dataset (Twinanda 
et al., 2017) following the annotation protocol in Appendix A. The seven 
phases were preparation (P0), calot triangle dissection (P1), clipping 
and cutting (P2), gallbladder dissection (P3), gallbladder packaging 
(P4), cleaning and coagulation (P5) and gallbladder retraction (P6). The 
phases did not necessarily occur in a fixed order. 

2.2.2. Action 
The surgical action is the functional component of the activity a 

surgeon performs within a phase. Action was annotated as performed 
following the annotation protocol in the appendix, if any of the four 
actions grasp (A0), hold (A1), cut (A2) or clip (A3) occurred. Addi-
tionally, the performer of the action (organizational component) was 
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annotated as the left hand of the surgeon, right hand of the surgeon or 
hand of the assistant. 

2.2.3. Instrument 
Instrument presence detection is important for surgical workflow 

analysis because it correlates with the current surgical phase. A total of 
21 instruments (plus “undefined instrument shaft”) of different types 
were annotated and additionally grouped into the seven categories 
grasper (IC0), clipper (IC1), coagulation instruments (IC2), scissors 
(IC3), suction-irrigation (IC4), specimen bag (IC5), and stapler (IC6). 
Because more than one instrument may be present at the same time, 
annotation of instrument visibility was performed separately for each of 
the 21 instrument types and for the challenge metrics were computed 
separately per instrument category. Furthermore, in different surgical 
centers, instruments by different vendors were used, which increases the 
representativeness of this dataset. The stapler was not present in the test 
dataset. For instrument presence, an instrument was annotated visible as 
soon as its characteristic instrument tip appeared in the image. The 
annotation continued when the tip disappeared later and only the shaft 
of the instrument remained visible. If the instrument shaft entered the 
field of view of the camera without its tip having been visible before, it 
was referred to as the "undefined instrument shaft", because even a 
human annotator would not be able to recognize a particular instrument 
due to the identically looking shafts. Three exceptions to this rule were 
the suction-irrigation, stapler and the clipper categories, as these in-
struments have characteristic shafts. Fig. 1 shows sample images of the 
instruments from the dataset. 

2.2.4. Skill 
To assess the surgical skill, the videos were scored using the modified 

Global Operative Assessment of Laparoscopic Skills (GOALS). It has been 

validated for video assessment of laparoscopic skills, including the five 
domains depth perception (S1), bimanual dexterity (S2), efficiency (S3), 
tissue handling (S4) and autonomy (Vassiliou et al., 2005). The item 
"autonomy" was omitted in our study, because a valid assessment based 
solely on intraabdominal video alone is not possible without informa-
tion about what was spoken during the operation or how much assis-
tance was provided by a senior surgeon. The difficulty of the operation 
(S5) was additionally annotated based on Chang’s adaptation of the 
GOALS-score (Chang et al., 2007) . Here, parameters such as inflam-
matory signs, adhesions and individual anatomical conditions were used 
to objectify the assessment of the skill. Thus, the skill assessment in this 
study included five ranking components. Skill was annotated for the 
complete operation and additionally for phases calot triangle dissection 
(P1) and gallbladder dissection (P3). 

3. Methods 

3.1. EndoVis challenge 2019 

Based on our dataset, 12 international teams trained and evaluated 
their algorithms during the EndoVis challenge 2019 within the sub- 
challenge for “Surgical Workflow and Skill Analysis” hosted in 
conjunction with the Medical Image Computing and Computer Assisted 
Intervention conference (MICCAI, https://endovissub-workflowandskill 
.grand-challenge.org/). The aim of this sub-challenge was to investigate 
the current state of the art on surgical workflow analysis and skill 
assessment in laparoscopic cholecystectomy on one comprehensive 
dataset. Specifically, the aims were (1) surgical phase recognition with 
high precision and recall, (2) surgical action recognition with high 
precision and recall, (3) surgical instrument presence detection with 
high precision and recall as well as (4) surgical skill assessment with a 

Fig. 1. Instruments in the HeiChole benchmark. Examples of all 21 surgical instruments plus undefined instrument shaft present in the HeiChole benchmark 
arranged according to the eight categories grasper (IC0), clipper (IC1), coagulation instruments (IC2), scissors (IC3), suction-irrigation (IC4), specimen bag (IC5), 
staper (IC6), undefined instrument shaft (IC20). 
Instruments are curved atraumatic grasper (I0), toothed grasper (I1), fenestrated toothed grasper (I2), atraumatic grasper (I3), overholt (I4), LigaSure (I5), electric 
hook (I6), scissors (I7), clip-applier metal (I8), clip-applier Hem-O-Lok (I9), swab grasper (I10), Argon beamer (I11), suction-irrigation (I12), specimen bag (I13), 
tiger mouth forceps (I14), claw forceps (I15), atraumatic grasper short (I16), crocodile grasper (I17), flat grasper (I18), pointed grasper (I19), stapler (I20) and 
undefined instrument shaft (I30). Numbers I21 to I29 have been reserved for future additions. 
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low mean absolute error. Before acceptance as a MICCAI challenge, the 
challenge protocol underwent a peer review process. 

Participants were invited to submit a Docker image and a description 
of the used method(s). For the submission process, participants had to 
register for the challenge on Synapse (HeiChole Benchmark Website, 
2022), upload their Docker container(s) to that project and then submit 
the appropriate version(s) to the challenge. The container(s) had to 
implement an interface that took a video as input, preprocessed it if 
necessary, computed the appropriate challenge results, and output these 
in CSV file(s). Only full submissions, i.e. with no results missing, for each 
task were considered. 

The Docker images were not and will not be shared with any third 
party by the organizers. Each team could choose to provide their source 
code, though they were not required to. Only automatic methods, i.e. 
not needing any human input during runtime, were accepted. Partici-
pants were encouraged to provide results for recognition of surgical 
phase, action and instrument as well as skill assessment, but it was not 
required to submit in all categories and participants were free to provide 
results for a subset. To reduce the complexity of the challenge, not every 
annotation of the dataset described above was used for the challenge. 
The action recognition did not include the recognition of the performer 
of an action. The instrument presence detection did not include the 
category undefined instrument shaft (IC20). 

Participants were free to use third party public data to augment the 
provided training data. Submissions were “online analysis only”, i.e. 
methods were not allowed to use information from future frames. We 
chose “online analysis only” because from a clinical perspective our aim 
with this work was to develop methods usable for context-aware intra-
operative assistance and cognitive robotics. These intraoperative assis-
tance systems only have information about current and past video, but 
not the whole procedure. In contrast, this is not necessary for skill 
assessment, because this will not generate an intraoperative assistance 
but feedback after surgery. However, “online analysis only” was not 
specifically enforced, because it would have placed many restrictions 
onto the interfaces to the model and would have complicated the eval-
uation process greatly. Thus, it was trusted that the participants would 
adhere to the code of honor. In the case of skill assessment, an entire 
video could be used as input, because the skill was also annotated for 
video as a whole. 

The challenge committee members were M. Wagner, S. Bodenstedt, 
A. Kisilenko, H. Kenngott, L. Maier-Hein, S. Speidel and B. Müller-Stich 
with affiliations as stated in the authors list. The award policy was to 
award a prize to each winner of one of the four tasks, if at least three 
participants entered a submission. Members of the organizing institutes 
were allowed to participate, but were not eligible for awards. 

All participants agreed for their results and method description to be 
published in the challenge paper before participating in the challenge by 
sending a signed agreement form before access to the challenge data was 
granted. Apart from that all members of all participating teams were 
offered coauthorship to this manuscript according to the challenge 
protocol. For the one participant that did not respond to approve the 
manuscript, coauthorship was removed, but the person was mentioned 
in acknowledgements according to standard publication ethics. 

On May 31st 2019, the first part of the training dataset consisting of 
12 videos was published, followed by the second part, also consisting of 
12 videos, on August 15th 2019. With the second part, the organisers’ 
evaluation software scripts for computing metrics and rankings were 
provided. The evaluation and submission period of the Docker con-
tainers was between October 1st and 7th 2019. The challenge day was 
on October 13th 2019. On this day, the results of all teams were pre-
sented during the EndoVis challenge meeting at the MICCAI in Shenz-
hen, China. Before publication of the joined paper, no results were 
allowed to be published. 

3.2. Participating teams 

The following sections provide a detailed description of the algo-
rithms of the participating teams in alphabetical order. In addition, 
Table 1 gives an overview of the different methods sorted by teams, 
because we encouraged the teams to submit multi-task approaches, i.e. 
methods that produce a solution for more than one problem from the 
given input, e.g. a deep learning model that has two outputs, one for 
phase and one for instrument recognition. To allow for easier compar-
ison between different methods for one task, we provide three separate 
tables Tables C1, C2, C3 Table for phase, action and instrument recog-
nition in Appendix C. 

3.2.1. Team CAMI-SIAT (Phase) 
The CAMI-SIAT team proposed a method for determining surgical 

phases based on Pseudo-3D residual networks (ResNet) (Qiu et al., 
2017). Through the usage of a 3D convolutional network, temporal in-
formation from previous frames in an operation could be utilized 
directly to determine the current surgical phase. Further, they hypoth-
esized that fusing the predictions of the Pseudo-3D residual network 
with prior knowledge would improve performance. For this, they 
determined the probability of occurrence of each phase at a given time 
point in the operations from the training data and applied them to the 
output of the network for the final prediction. No additional data was 
used for pre-training. 

3.2.2. Team CAMMA (Phase & action) 
For the phase recognition, the CAMMA team utilized two different 

methods for image feature extraction in parallel: Inflated-3D (I3D) 
(Carreira and Zisserman, 2017), a 3D, and an Inception-ResNet (Szeg-
edy et al., 2016), a 2D convolutional network. The aim of mixing 3D and 
2D convolutions was to capture fine-grained temporal dynamics from 
the data. The convolutional networks were followed by 3 
long-short-term memory (LSTM) units, one for each preceding feature 
extractor and one for the combined features. The predictions of the 3 
LSTMs were then merged via majority-voting. During training, the bi-
nary instrument data was also used as an additional task for enhancing 
the results of the workflow recognition. ImageNet and Kinetics were 
used for pre-training. CAMMA submitted two models for phase recog-
nition, one with and one without pre-training. Both models were 
analyzed separately. 

For the action recognition, team CAMMA built on a ResNet (He et al., 
2015) for feature extraction, which was extended with a convolutional 
LSTM to take temporal information into account (Nwoye et al., 2019). 
Following the LSTM, a combination of a convolutional layer and a 
fully-connected layer were utilized for higher-level reasoning on the 
spatio-temporal features for surgical action recognition. ResNet was 
pretrained on ImageNet. 

3.2.3. Team CareSyntax (Instrument & skill) 
For the instrument presence detection, team CareSyntax utilized the 

approach outlined in (Vardazaryan et al., 2018) , which combined a 
ResNet (He et al., 2015) with additional convolutional layers, so called 
localization maps, that helped to map features corresponding to a clas-
sification to their spatial coordinates. A spatial pooling was then utilized 
to determine which instrument classes were currently in use. ImageNet 
and Cholec80 were used for pre-training. 

For the skill assessment team CareSyntax utilized a method based on 
(Funke et al., 2019) . The method relied on a 3D-ResNet (Wang et al., 
2016) for feature extraction. The method divided a given video into 
multiple segments, each segment was then fed into the 3D-ResNet. To 
concatenate the results of the segments, team CareSyntax used a 
fully-connected layer. The final scores were then computed by rounding 
the output of the network to the nearest integer. Kinetics was used for 
pre-training. 
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Table 1 
Overview of algorithms. The submissions of the teams participating in the EndoVis challenge are presented with components of their machine learning methods for the specific tasks. 3.3. Statistical Analysis.  

Team Task(s) Multi-Task Basic architecture (Additional) 
temporal 
component 

Output component Post-processing Pretraining Data 
augmentation 

Loss function 
(s) 

Optimizer 

CAMI-SIAT Phase No Pseudo-3D Residual Network 
(Qiu et al., 2017) 

None (3D 
architecture) 

Output of the 
network is fused 
with the prior 
probability of each 
surgical phase 

None None RGB shift, 
brightness and 
contrast changes, 
drop-out of frames 

Binary cross- 
entropy loss 

Adam ( 
Kingma and 
Ba, 2017) 

CAMMA Phase Yes (Instrument 
recognition was 
used as an 
auxiliary task) 

Parallel I3D(Carreira and 
Zisserman, 2017) and 
Inception- ResNet (Szegedy 
et al., 2016) 

3 LSTMs (192 , 
512 and 512 
units) 

Majority voting to 
aggregate the 
outputs of the three 
LSTMs 

None Inception-ResNet 
pretrained on 
ImageNet ( 
Russakovsky et al., 
2015) and i3D 
pretrained on 
Kinetics (Kay et al., 
2017) 

None Binary cross- 
entropy loss 

RMSProp ( 
Hinton et al., 
2012)  

Action No ResNet-50 (He et al., 2015) Convolutional 
LSTM (512 
units) 

A combination of 
convolutional layer 
and fully-connected 
layer connected to 
the LSTM 

None ResNet pretrained on 
ImageNet 

None Binary cross- 
entropy loss 

Momentum 
Optimizer 

CareSyntax Instrument No ResNet-18 (He et al., 2015) None Convolutional 
layers, spatial 
pooling, fully 
connected layer 

None ImageNet and 
Cholec80 (Twinanda 
et al., 2017) 

Rotation and 
horizontal flip 

Weighted 
cross-entropy 
loss 

SGD (Kiefer 
and 
Wolfowitz, 
1952)  

Skill No 3D ResNet-18 None (3D 
architecture) 

Concatenation of 
results using fully- 
connected layer 

None Kinetics Resizing with 
central cropping, 
random 
horizontal flip 

Mean squared 
error 

SGD (Kiefer 
and 
Wolfowitz, 
1952) 

CUHK Phase Yes ResNet-50 () LSTM (512 
units), elapsed 
time as input 

Fully-connected 
layers connected to 
LSTM and 
instrument output      

Phase & 
Action: 
Fully- 
connected 
layers 
connected to 
LSTM 

Median filter on 
preceding 
frames, Prior 
Knowledge 
Inference (Jin 
et al., 2018) 

ResNet 
pretrained on 
ImageNet, all 
pretrained with 
Cholec80 

Cropping, flipping, 
mirroring and color jitter 

Categorical 
cross-entropy 
loss 

SGD (Kiefer and 
Wolfowitz, 1952)       

Instrument   None Fully-connected 
layer    

Binary cross- 
entropy loss  

HIKVision Phase Yes ResNet-50 () LSTM Fully-connected 
layer per task, 
connected to the 
LSTM 

Prior Knowledge 
Inference (Jin 
et al., 2018) 

ResNet pretrained on 
ImageNet 

Random crop, 
rotation and flip 

Categorical 
cross-entropy 
loss 

SGD (Kiefer 
and 
Wolfowitz, 
1952)  

Instrument        Binary cross- 
entropy loss  

IGITech Phase No ResNet-50 () None Support Vector 
Machine 

None ResNet pretrained on 
ImageNet 

Random 
translation, 
rotation, flip 

Binary cross- 
entropy loss 

SGD (Kiefer 
and 
Wolfowitz, 
1952)  

Instrument    Fully-connected 
layer      

Action Yes None None 

(continued on next page) 
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Table 1 (continued ) 

Team Task(s) Multi-Task Basic architecture (Additional) 
temporal 
component 

Output component Post-processing Pretraining Data 
augmentation 

Loss function 
(s) 

Optimizer 

Konica 
Minolta 

ResNeXt-101 (Xie et al., 
2017) with 
Squeeze-and-Excitation 
block (Hu et al., 2018) 

Fully-connected 
layer per task 

ResNeXt pretrained 
on ImageNet 

Random 
translation, 
rotation, resizing, 
horizontal flip and 
contrast changes 

Binary cross- 
entropy loss 

SGD (Kiefer 
and 
Wolfowitz, 
1952)  

Instrument          
MEVIS Phase Yes ResNet-50 () LSTM (512 

units) 
Fully-connected 
layer per task, 
connected to the 
LSTM 

None ResNet pretrained on 
ImageNet and 
Cholec80 

Random crop and 
horizontal flip 

Categorical 
cross-entropy 
loss, Binary 
cross-entropy 
loss 

Adam ( 
Kingma and 
Ba, 2017) 

NCT Phase Yes ResNet-50 LSTM (512 
units) 

Fully-connected 
layer per task, 
connected to the 
LSTM 

None ResNet pretrained on 
ImageNet, all 
pretrained with 
Cholec80 

None Categorical 
cross-entropy 
loss 

Adam ( 
Kingma and 
Ba, 2017)  

Action        Dice loss   
Instrument          

VIE-PKU Phase Yes Parallel ResNet-101 () and 
I3D (Carreira and Zisserman, 
2017) 

None (3D 
architecture) 

Fully-connected 
layer connected to 
features 

Prior Knowledge 
Inference (Jin 
et al., 2018), 
Inter- and 
intra-task 
correlation 

ResNet and I3D 
pretrained on 
ImageNet, I3D 
pretrained on 
Kinetics 

None Binary cross- 
entropy loss 

Adam ( 
Kingma and 
Ba, 2017)  

Action        Weighted 
Binary cross- 
entropy loss   

Instrument          
Wintegral Phase Yes (Single and 

multi-task 
models) 

ResNet-50 () None Results from 
different models are 
aggregated, one 
regressor per task 

None ResNet pretrained on 
ImageNet 

Contrast changes, 
color jitter, center 
crop 

Categorical 
cross-entropy 
loss 

Adam ( 
Kingma and 
Ba, 2017)  

Action        Binary cross- 
entropy loss   

Instrument           
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3.2.4. Team CUHK (Phase & instrument) 
To recognize phase and instrument, team CUHK implemented a 

multi-task approach. A ResNet (Qiu et al., 2017) was used to extract 
visual features from a given laparoscopic image. The features were used 
to a) determine which laparoscopic instruments were currently visible 
via a fully-connected layer and b) to determine the current surgical 
phase via a LSTM. For the phase recognition task, the elapsed time, 
normalized via the average duration of all surgeries in the training 
dataset, was concatenated to the feature representation. The output of 
the network was then post-processed: a median filter was applied to 
phase predictions with low probability and the PKI strategy (Jin et al., 
2018), which takes phase order and consistency into account, was uti-
lized to detect and correct impossible changes in phases. ResNet was 
pretrained on ImageNet, all networks were pretrained with Cholec80. 

3.2.5. Team HIKVision (Phase & instrument) 
Team HIKVision utilized a ResNet (Qiu et al., 2017) for feature 

extraction. The ResNet was first trained for multi-task recognition of 
phase and instruments. The fully-connected layers for these two tasks 
were then replaced by a LSTM and again two output layers for phase and 
instrument recognition. To take phase order and consistency into 
consideration, PKI (Jin et al., 2018) was used to post-process the output. 
ResNet was pretrained on ImageNet. 

3.2.6. Team IGITech (Phase & instrument) 
A ResNet (Qiu et al., 2017) was used by team IGITech to extract visual 

features from a given laparoscopic frame. A fully-connected layer was 
used to determine which laparoscopic instruments were located in a 
video frame and a support vector machine was used to recognize the 
current phase. ResNet was pretrained on ImageNet. 

3.2.7. Team Konica Minolta (Action & instrument) 
Team Konica Minolta used a 101-layer ResNeXt (Xie et al., 2017) with 

Squeeze-and-Excitation block (Hu et al., 2018) as their base network. 
They attached a fully-connected layer for the instrument presence 
detection and one for the action recognition to the network. Further-
more, a third layer was added for detecting instrument super-classes. 
Here, one super-class generally consisted of a combination of in-
struments that regularly occur together, e.g. grasper and scissors. 
ResNeXt was pretrained on ImageNet. 

3.2.8. Team MEVIS (Phase) 
Team MEVIS used a ResNet (Qiu et al., 2017) for extracting visual 

features from the laparoscopic video frames. A LSTM was used to 
incorporate information from past frames. For each task, a 
fully-connected layer was added to the LSTM. During training, frames at 
the beginning of a video clip were given a weight of zero to allow the 
network a “warm-up phase”. ResNet was pretrained on ImageNet and 
Cholec80. In addition, video-clips from 16 Cholec80 videos were added 
during training to increase the dataset and video-clips were sampled 
stratified based on the phase-labels. 

3.2.9. Team NCT (Phase, action & instrument) 
Team NCT used a multi-task approach for determining from a lapa-

roscopic video the phase, which instruments were visible and what ac-
tions were being performed. The approach used a ResNet (Qiu et al., 
2017) for feature extraction, a LSTM was used to propagate information 
from past frames along the temporal axis and used the information for 
predicting current frames. For each task, i.e. phase, action and instru-
ment presence detection) a fully-connected layer was added to the 
LSTM. ResNet was pretrained on ImageNet, all networks were pre-
trained with Cholec80. 

3.2.10. Team VIE-PKU (Phase, action & instrument) 
The approach of team VIE-PKU combined two approaches for feature 

extraction. A 2D architecture, ResNet (Qiu et al., 2017), and a 3D 

architecture, 3D (Carreira and Zisserman, 2017), were run in parallel to 
capture both spatial and temporal features. Starting from the features, 
three separate branches emerged, one branch built upon the features to 
predict the current surgical action, a second branch predicted which 
surgical instruments were currently visible. A third branch combined the 
features with the action and instrument predictions to finally determine 
the current surgical phase. The phase results were then post-processed 
using PKI (Jin et al., 2018) and also using learned intra- and 
inter-class probabilities. ResNet and I3D were pretrained on ImageNet, 
I3D was also pretrained on Kinetics. 

3.2.11. Team Wintegral (Phase, action & instrument). Team Wintegral 
combined several different types of models. They trained single-task 
models for each task, three multi-task models that combined phase 
recognition with instrument type detection, instrument category pres-
ence detection and action recognition respectively, as well as binary 
one-vs-all models that focused on a single class. For all models, a ResNet 
(Qiu et al., 2017) was used as a basis. The results of the different models 
were then aggregated and one predictor for each task was used to 
compute the final result. All models were pretrained on ImageNet. 

The properties of the dataset were analyzed with descriptive statis-
tics mean and standard deviation (SD). For the phases, inter-rater- 
agreement before consensus was calculated using Fleiss’ kappa 
(Fleiss, 1971), where values of kappa between 0.81 and 1.00 can be 
considered almost perfect. To calculate results of the EndoVis challenge 
for the tasks of phase, action and instrument recognition, the F1-score 
F1 = 2⋅ precision ⋅ recall

precision + recall over all classes was computed. The final ranking 
was calculated by averaging the F1-scores per video. We selected the 
F1-score as it takes both false positives and negatives into account. We 
decided to average over all classes and all videos so that each class and 
video would have the same weight in the final score regardless of 
occurrence rate and length. 

For skill assessment, the mean absolute error 
MAE = 1

n
∑n

i=1|Ŷi − Yi| over all criteria was evaluated and ranked with 
n being the total number of samples, which is 9 in our case. We decided 
to use the MAE for skill assessment, as it gives a good impression on how 
far predictions are on average from the reference. 

To analyze the ranking stability, bootstrapping methods were 
applied as suggested in (Maier-Hein et al., 2018). The rankings were 
recalculated over 1000 bootstrap datasets drawn from the test set 
together with a 95% confidence interval to assess the variability in ranks 
against small perturbations. This means, in all three tasks, 9 videos were 
used for testing. For every task and video, different phases, instruments 
and actions were defined which are counted as one case each. For 
example, seven phases were defined for which the metric values per 
video were calculated. Therefore, this resulted in 63 cases for the phase 
task, 54 cases for the instrument task and 36 cases for the action task. For 
every task, new bootstrap datasets were created with the same number 
of cases (63, 54 or 36 cases, depending on the task) by sampling with 
replacement without taking correlations into account. With this pro-
cedure, a case may disappear from the newly created bootstrap dataset 
or appear multiple times. This way small perturbations were simulated 
in the datasets to check how the rankings changed with those “new” 
datasets. This was done completely random and repeated until 1000 
bootstrap datasets have been produced per task without specific strati-
fication by hospital. We computed 95% bootstrap confidence intervals 
across bootstrap samples, which ranged from the 2.5% to the 97.5% 
quantile of the bootstrap distribution. 

Kendall’s tau (Kendall, 1938) correlation coefficient was used to 
quantify the changes between the original and the bootstrap rankings for 
all three tasks. It is ranged between − 1 and 1, where a value of 1 in-
dicates an unchanged ranking and − 1 a reversed ranking. 

Finally, pairwise Wilcoxon signed rank tests with a 5% alpha level 
and adjustment according to Holm for multiple testing were computed 
between each algorithm pair. The tests were used to check for 
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algorithms that were significantly superior in terms of performance 
compared to their competitors. The results of this analysis are inde-
pendent from the bootstrap analysis. 

The statistical analysis described above was performed using the 
challengeR toolkit, version 1.0.1, that was presented in (Wiesenfarth 
et al., 2021). 

For the performance analysis across methods, the relationships be-
tween specific design components of the algorithms and their overall 
performance were investigated univariately. Accordingly, we analyzed 
the components multitask, Basic architecture, temporal component, 
post-processing, data augmentation, loss function(s), and optimizer. 
These components were chosen based on our structured algorithm 
overview in Table 1 that we designed according to what in our opinion 
were the most influential components of the algorithm. Furthermore, 
only those components were analyzed that were different between the 
teams. These relationships were investigated visually for each possible 
phase (P0-P6), instrument (IC0-IC6), and action (A0-A3) by plotting 
scatterplots of F1-scores against each variable, with the points of the 
scatterplot coloured to show the corresponding algorithm/team. For the 
phases and instrument tasks, the R package brms (Bürkner, 2017) was 
used to fit 9 two-part zero-inflated beta mixed models analyzing the 
influence of each component on the F1-score. This method is based on a 
mixture distribution and simultaneously fits two models with the same 
predictors, i.e. a logistic model evaluating the proportion of zero 
F1-scores and a beta model for the non-zero F1-scores. Each component 
was included as a fixed effect alongside a random algorithm/team effect 
and another random effect for phase or instrument. No possible in-
teractions between the design features were investigated because the 
data is not fully factorial, i.e., not all 192 possible combinations of 
features (6 binary variables and one with three options) were repre-
sented in the data. Only 14 combinations were observed and 7 of these 
occurred only once, i.e. in a single algorithm/team. Statistical code (R 
session information) can be found in the R markdown files in 
Appendix E. 

4. Results 

In this section we will give a quantitative overview of the dataset 
including the annotations, followed by the results of the EndoVis chal-
lenge 2019. Together they build the foundation for the HeiChole 
benchmark that will serve as a validated reference benchmark. 

4.1. Dataset for surgical workflow and skill analysis 

We introduced a novel dataset with 33 laparoscopic cholecystectomy 
videos comprising a publicly available training dataset of 24 videos and 
an unpublished test dataset of 9 videos. Together all 33 videos had a 
total operation time of 22 h (40.04 min ± 18.06 min per video) from 
three surgical centers including annotation of 250 transitions between 
seven surgical phases, 5514 occurrences of four surgical actions, 6980 
occurrences of 21 surgical instruments from seven categories and 495 
skill classifications in five dimensions. 

4.1.1. Phase 
There was a high variability of the individual phase lengths and 

occurrences as visualized by Fig. 2 for the training dataset only. Taking 
training and test dataset together, in 28 videos (84.8%), all seven phases 
occurred. Each operation began with phase preparation (P0) and ended 
with phase gallbladder retraction (P6, 84.8%) or cleaning and coagu-
lation (P5, 15.2%). Fig. 3 gives an overview of transition probabilities 
between phases for the whole dataset. Phase cleaning and coagulation 
(P5) was omitted in five videos (15.1%). The average number of phase 
transitions per video was 7.6 (± 1.8 SD). The mean phase length in the 
whole dataset ranged from 1.4 min ± 1.2 min (gallbladder retraction, 
P6) to 17.2 min ± 9.6 min (calot triangle dissection, P3). Inter-rater 
agreement before consensus as calculated with Fleiss’ kappa per video 
was 0.92 ± 0.06 for the training dataset and 0.95 ± 0.04 for the test 
dataset. Here, video 1 was an outlier with 0.71 and all other videos had 
0.86 or higher. 

4.1.2. Action 
For the whole dataset a total of 5514 actions were annotated, with an 

average of 167.1 (± 93.6 SD) actions per operation. Grasp (A0) was by 
number of occurrences the most common action (n = 2830 in total, n =
28.6 ± 34.6 per operation, mean total action length per operation 9.9 s 
± 11.3 s), followed by hold (A1) less often, but much longer in total (n =
2124 in total, n = 21.5 ± 25.9 per operation, mean total action length 
per operation 974.2 s ± 879.0 s). Less common as well as shorter in time 
were cut (A2, n = 315 in total, n = 9.6 ± 9.1 per operation, mean total 
action length per operation 7.7 s ± 10.6 s) and clip (A3, n = 245 in total, 
n = 7.4 ± 3.3 per operation, mean total action length per operation 9.6 s 
± 5.4 s). Whereas the actions grasp (A0) and hold (A1) occurred 
throughout the complete operation, the actions clip (A3) and cut (A2) 
were mainly conducted during phase clipping and cutting (P2). The left 
hand of the surgeon, as well as the assistant hand performed only grasp 

Fig. 2. Phase distribution in the training dataset. Operation duration is normalized to 100% and phase annotations are displayed in increments of 1%. Phases 
displayed are: preparation (P0), calot triangle dissection (P1), clipping and cutting (P2), gallbladder dissection (P3), gallbladder packaging (P4), cleaning and 
coagulation (P5) and gallbladder retraction (P6). 
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(A0) and hold (A1). Cut (A2) and clip (A3) were performed by the sur-
geon’s right hand only. Mean total action length per procedure of hold 
(A1) was 1497.8 s ± 620.6 s (left hand of the surgeon), 68.6 s ± 56.6 s 
(right hand of the surgeon) and 1356.3 s ± 830.1 s (assistant hand). 

4.1.3. Instrument 
We found a total of 6980 instrument occurrences in the whole 

dataset, with an average of 211.5 (± 134.0 SD) instrument occurrences 
per operation. The average instrument category presence per operation 
was highest for the grasper category (IC0) with 25.1 min ± 12.3 min, 
followed by the coagulation instruments category (IC2) with 18.1 min ±
8.4 min, specimen bag (IC5) with 4.2 min ± 3.4 min, the suction- 
irrigation category (IC4) with 3.8 min ± 6.7 min, the clipper category 
(IC1) with 1.5 min ± 0.9 min, scissors category (IC3) with 1.1 min ± 1.4 
min and stapler category (IC6) with 0.03 min ± 0.16 min. Fig. 9 illus-
trates the variation in instrument category presence depending on the 
progress of the operation for the test dataset. For example, the grasper 
category (IC0) is almost continuously present in the test dataset, fol-
lowed by the coagulation instruments category (IC2). The categories of 
clipper (IC1) and scissors (IC3) are with a small proportion in the middle 
third of the surgeries, which corresponds with the phase clipping and 
cutting (P2). In contrast, the category specimen bag (IC5) has a high 
presence in the last third of each operation, which corresponds to the 
phase gallbladder packaging (P4). In the beginning of the operation, no 
instruments are visible, which corresponds with the preparation phase 
(P0), as this only includes trocar insertion and visual inspection of the 
abdomen. Furthermore, according to the annotation rules, the appear-
ance of the first instrument marks the beginning of the next phase. 

4.1.4. Skill 
The skill assessment based on the ranking components ranged be-

tween the medium grade 3 and the best grade 5 (Fig. 4 for the training 
dataset only). The grades 1 and 2 have never been given. The dataset 
contains surgeries of each level of difficulty. 

4.1.5. Differences between centers 
For the reference annotation all phases and actions occurred in all 

the centers. The instrument presence differed per phase depending on 
the center, in which the operation was performed. For example, the 
argon beamer (I11, average instrument presence per operation 29.83 s 
± 61.05 s SD) was used exclusively at Heidelberg University Hospital, 
whereas the crocodile forceps (I17, average instrument presence per 
surgery 29.72 s ± 43.85 s) was used only at Salem Hospital and GRN- 
hospital Sinsheim. 

The cases analyzed at Heidelberg University Hospital were rated to 
be more difficult than the cases at the smaller hospitals. There were 2 of 
15 cases at Heidelberg University Hospital rated with the highest diffi-
culty grade 5, another 2 cases with a grade 4. Only 3 cases were rated 
with the easiest difficulty 1. In contrast, grade 5 was not assigned to 
cases from either Salem Hospital or GRN-hospital Sinsheim. 8 of Salem’s 
15 cases were given a grade 1, as were all 3 cases from Sinsheim. Only 
one case from Salem was rated 4. 

4.2. EndoVis challenge 2019 

A comparison of the performance of the algorithms in the individual 
recognition tasks is presented in Fig. 5. A ranking of the algorithms 
together with ranking uncertainty is presented in Fig. 6. Appendix D 
gives a detailed overview of the challenge results per team per video of 

Fig. 3. Graph representation of the phases and their possible transitions. Phase transition probabilities were calculated based on the whole dataset (training and 
test dataset together). 

Fig. 4. Distribution of annotated grades for surgical skill and operation difficulty in training dataset. The histograms present the annotated reference dis-
tribution of surgical skill grades within the training dataset of the HeiChole benchmark. Displayed are the skill components depth perception (S1), bimanual dexterity 
(S2), efficiency (S3), tissue handling (S4) as well as the degree of difficulty (S5) of the operation. 
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the test dataset. However, only results that do not reveal too much in-
formation about the test dataset were performed, thereby preventing 
boost of algorithm performance by tailoring to the test data in future 
submissions (Maier-Hein et al., 2018). Thus, no metrics are published 
from which original annotations could be derieved (e.g. predicted 
probabilities). Fig. 10 presents an overview of algorithms performance 
across methods grouped by algorithm components. Figures include re-
sults for two results for team CAMMA (with and without pre-training), 
which were submitted after the challenge deadline and were thus not 
considered for the challenge awards. 

4.2.1. Phase 
The results achieved in the task of phase recognition are depicted in 

Fig. 5. For phase recognition the algorithms of HIKVision and CUHK, the 
winning teams participating in the EndoVis challenge, achieved a F1- 

score up to 65.4% and 65.0%. Since the difference between the two 
best methods of HIKVision and CUHK was so small and the second best 
team achieved superior detection results in most of the videos, both were 
declared the winner of the challenge and received the prize. As an 
example, Fig. 7 shows a confusion matrix of the different phases for 
HIKVision and all participants. The highest recognition rates were 
achieved for phase preparation (P0, 79.4%) and calot triangle dissection 
(P1, 82.8%). The lowest recognition rates were achieved for phases of 
gallbladder packaging (P4, 50.2%) and cleaning and coagulation (P5, 
54.8%). 

When including submissions that were received after the challenge 
deadline (CAMMA with and without pre-training), the best performing 
team CAMMA (with pre-training) and the runner-up HIKVision achieved 
significantly superior results to the algorithms from rank 5 to 10. No 
significant superiority was found for them compared to algorithms 

Fig. 5. Visualization of raw metric values. Violin plots representing the F1-scores for each algorithm for the phase, instrument and action task. The scores are 
shown separately for each hospital from which the videos were taken. Salem Hospital is blue, Heidelberg University Hospital (UKHD) is red, GRN-hospital Sinsheim 
is yellow. 

M. Wagner et al.                                                                                                                                                                                                                                



Medical Image Analysis 86 (2023) 102770

12

CUHK (rank 3) and CAMMA without pre-training (rank 4). This is also 
reflected by the ranking uncertainty analysis performed by using boot-
strapping strategies. The frequency of ranks for each algorithm achieved 
across 1000 bootstrap samples together with the 95% confidence in-
terval is illustrated in Fig. 6. It can be seen that the ranking is relatively 

stable, with the second and third algorithm being very close together. 
This is further supported by the mean Kendall’s tau value for all boot-
strap samples of 0.93 (median: 0.91, interquartile range (IQR): 
(0.91,0.96)). 

Fig. 6. Ranking uncertainty. Blob plots visualizing ranking uncertainty for (a) the phase, (b) the instrument and (c) the action task. The radius of the blobs 
represents the frequency of a rank achieved by an algorithm for 1000 bootstrap samples. The median rank is displayed by a black cross. The 95% confidence intervals 
of these 1000 bootstrap samples are shown by a black line and are whole-numbered quantiles of the whole-numbered ranks. 

Fig. 7. Phase recognition results. Left: Phase recognition results for one of the challenge winners, HIKVision, for all test videos. Right: Results of all algorithms for 
all test videos. Due to rounding errors values in a row may not exactly add up to 100% per row as they should. 
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4.2.2. Action 
The task of action recognition was completed with the lowest 

recognition rates (Fig. 5). An F1 score of only 23.3% was reached by the 
best team Wintegral. The action grasp (A0) occurred during 1.2% (mean 
of all operations) of an operation, whereas the participants recognized it 
during 1.1% (mean recognition of all teams) of the operation. In com-
parison, the action hold (A1) occurred during 73.3% of an operation, 
whereas the participants recognized it during 83.2% of the operation. 
The actions cut (A2) and clip (A3) occurred least frequently, each during 
0.4% of an operation. Cut (A2) was recognized during 1.0% and clip 
(A3) during 0.3% of the operation. It is apparent that all challenge al-
gorithms almost exclusively recognize hold (A1), whether it occurred or 
not. Fig. 8 shows the exemplary results for the recognition of the action 
hold (A1) of all teams frame by frame. 

None of the algorithms showed significant differences in the per-
formance metric scores. Analyzing the ranking uncertainty revealed that 
the rankings were not as clearly separable as for the phase task (Fig. 6). 
The first three algorithms were closely together, therefore often 
exchanging their ranks. This is also reflected in a lower mean Kendall’s 
tau of 0.66 (median: 0.60, IQR: (0.60,0.80)). 

4.2.3. Instrument 
Konica Minolta, the best team in the instrument presence detection 

task, achieved a F1-score of 63.8%. Their algorithm recognized 51,872 
instrument occurrences in the test dataset, with an average of 5763.56 
± 4310.01 instrument occurences per operation. Compared to the 
reference, the algorithm detected a similar relative instrument presence 
within the operation progress, except for minor differences. For 
example, noticeable differences are within 10–35% of the operation 
progress, where the scissors (IC3) and specimen bag (IC5) were detected 
less frequently (Fig. 9). The mean results of all participants also showed 
considerable differences, especially in the presence detection of scissors 
(IC3) and specimen bag (IC5). Specimen bag (IC5) was detected 
continuously during the operation progress, whereas scissors (IC3) were 
detected less frequently than in the reference. 

For the instrument task, the rankings were very stable across all 
bootstrap samples (Fig. 6). Ranks 6 and 7 were often interchanged and 
the first two algorithms were close together. Besides this, the ranking 
was quite clear with a mean Kendall’s tau of 0.93 (median: 0.93, IQR: 
(0.93,1.00)). This was further shown by the statistical analysis. The 
winning team (Konica Minolta) and the runner-up (CUHK) both were 
superior over all other algorithms. The same trend could be seen for the 
other algorithms, most of them showing significant effects for their 
following ranks. 

4.2.4. Skill 
The average absolute error for skill assessment of the only partici-

pating team CareSyntax was 0.78 (n = 1 team). For each surgical video, 
a score of 4 was given for the ranking components depth perception (S1), 
bimanual dexterity (S2) and efficiency, and a score of 3 for tissue 
handling (S4). The difficulty (S5) was rated with a score of 2 for each 
video. 

4.2.5. Performance analysis across methods 
Fig. 10 gives an overview of the performance analysis across methods 

for the algorithm components multitask, basic architecture, temporal 
component, post processing, data augmentation, loss function, and 
optimizer as of Table 1, separated for phase recognition and instrument 
presence detection. The algorithm component pre-training is not 
depicted, because the only team not using it was CAMI-SIAT for phase 
recognition and therefore the influence of this variable cannot be eval-
uated. Furthermore, team CAMMA submitted results of the same algo-
rithm for phase recognition with and without pretraining (Figs. 5 and 6) 
that allow for evaluating the effect of this component while keeping all 
other factors constant. 

When interpreting Fig. 10, it is, however, important to note, that the 
plots from the descriptive analysis seem to suggest an effect as there are 
clear differences in median values. However, the results of the fitted 
models do not provide sufficient or conclusive evidence for this hy-
pothesis. This is the case for phase recognition and instrument presence 
detection for all algorithm components with the exception of using a 
temporal component for phase recognition. Here, the results of the two- 
part models shows that including the temporal component improves the 
F1-score in the cases when F1-score is not zero (odd’s ratio: 3.46 95% 
confidence interval CI [1.73,6.75]). This result is slightly difficult to 
interpret because the estimate for the logistic part of the model suggests 
that this feature also increases the probability of having an F1 score of 
zero (odd’s ratio 6.62, 95%-CI [0.28, 188.67]. However, given that the 
estimate for the second part has a very large 95%-confidence interval, 
there is insufficient evidence for this part of the model and we cannot 
conclude that a temporal component can improve phase recognition. 

The plots for action recognition are available in Appendix E only and 
were omitted from the manuscript as little insights could be drawn 
because of the low overall performance and action grasp being 
constantly predicted better than the others. Furthermore, Appendix E 
includes the underlying code, as well as separate figures for all algorithm 
components for phases, instruments, and actions. 

4.3. HeiChole benchmark & online leaderboard 

The results of the EndoVis challenge demonstrate a comparative 
validation of algorithms based on our comprehensive multi task dataset. 
New methods can be compared to these results by testing their algo-
rithms with our dataset to allow for a validated reference benchmark. 
The online leaderboard is available on the challenge website on Synapse 
(HeiChole Benchmark Website, 2022). The training dataset will be 
published on Synapse simultaneously with this publication. However, 
we decided not to publish the test dataset to avoid boost of algorithm 
performance by tailoring to the test data (Maier-Hein et al., 2018). To 
use the dataset for future testing of novel algorithms against this 
benchmark, the following approach was implemented. To have their 
algorithm tested, a team must:   

a Register on Synapse to register for the challenge on www.synapse. 
org/heichole (HeiChole Benchmark Website, 2022). As an option, 
a team can be created or an existing team can be joined.  

b Access the training data.  
c Train their algorithm on the provided training dataset.  
d Submit the trained algorithm to HeiCholeOrganizers@synapse. 

org. 

Fig. 8. Action recognition results. Comparison of all challenge algorithm 
results for recognition of action hold (A1) for test video HeiChole-25. The x-axis 
represents the relative time progress in the operation. 
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We will then evaluate the algorithm using the test dataset, report the 
results to the team, and publish the results in our online leaderboard 
available on the challenge website on Synapse upon request of the 
submitting team. To compute a performance rank the entries will be 
sorted, as each task consists of a scalar metric. The current leaderboard 
as of the publication of this study is shown in Table 2. 

Furthermore, researchers are encouraged to not only submit novel 
algorithms, but also scripts for alternative metrics for evaluating the 
algorithms. We will then decide, whether this metric discloses too much 
information about the test data. If it doesn’t, we will calculate the metric 
and report the results on the challenge website where appropriate. 

5. Discussion 

5.1. HeiChole benchmark 

Our study introduces the HeiChole benchmark by presenting a novel 
open dataset for surgical workflow and skill analysis together with the 
results of the EndoVis challenge 2019, sub-challenge for surgical 
workflow and skill analysis, and its comparative validation of ML al-
gorithms for automatic phase, instrument, action and skill recognition in 
laparoscopic cholecystectomy. In the following sections we will discuss 
achievements and limitations of the dataset and the performance of the 
algorithms for each task. Finally, we will outline future research di-
rections for surgical workflow and skill analysis. 

5.2. Dataset quality 

One achievement of the dataset is a reliable reference annotation 
reflecting the variability of surgical video data in different hospitals for 
the commonly performed operation laparoscopic cholecystectomy. The 
varying resolutions and frame rates of the recorded videos illustrate the 
high variability of the recording of even a standard operation within 
different centers. Moreover, as described earlier, even the instruments 
used in the dataset vary between centers and to a certain extent even 
within one of the centers. This underlines the necessity to train recog-
nition algorithms on datasets of various hospitals in order to increase the 
performance and thus the applicability and generalizability. The phase 
annotation was based on the established Cholec80 dataset (Twinanda 
et al., 2017). This addresses the problem of high heterogeneity of phase 
definitions reported by different groups (Garrow et al., 2020). Further-
more, we present the first dataset with surgical action annotated 
frame-by-frame in a clinical setup. Previously, for example in the JIG-
SAWS dataset, gestures were annotated only in an experimental setup 
(Ahmidi et al., 2017). In addition, the dataset is supplemented by a skill 
assessment based on the established GOALS score (Vassiliou et al., 
2005). The reliability of phase and skill annotation is enhanced by 
multiple raters who annotated according to precise rules in an 

annotation protocol and resolved disagreement by consensus. Finally, 
the dataset is published to make it transparent, open and reusable for the 
scientific community. 

Despite these accomplishments, there are also some limitations to 
the dataset. First of all, a limitation of reference annotation is the dif-
ficulty in sufficiently addressing interindividual differences in patient 
anatomy by annotation rules. Within the HeiChole benchmark the phase 
clipping and cutting (P2) was annotated for only one specific artery and 
one cystic duct, but not for additional vessels such as small veins. 
Consequently, the HeiChole benchmark does not reflect the potential 
diversity of the vascular anatomy as previously described (Andall et al., 
2016) in order to limit the complexity of the recognition tasks. 
Furthermore, consistent action and instrument annotation was difficult 
when the performing instrument was pivoted out of the camera’s view 
for example by repeatedly disappearing from camera view during the 
action hold (A1) or the instrument was no longer visible due to smoke 
generated by coagulation. To address this, the reliability of annotations, 
for example of instrument presence or electric coagulation, could be 
improved by the additional acquisition of medical device sensor data 
(Maier-Hein et al., 2021). 

The effects of different resolutions and framerates on the perfor-
mance of ML algorithms are difficult to foresee. While a higher fram-
erate could probably be beneficial, increased resolution could introduce 
more noise to the processed image, thereby decreasing the algorithms’ 
performance. Furthermore resolution differences can also act as con-
founders. In contrast to this, it is also possible that the image data added 
at a higher resolution is beneficial. Further research is needed to assess 
these effects accurately. Consequently, algorithm performance should 
not be directly compared using datasets with different parameters such 
as resolution and frame rate without further reflection on the effects of 
the parameters (Roß et al., 2021). 

5.3. Surgical phase recognition 

In comparison to the previously achieved average precision of 91% 
for automatic phase recognition on the Cholec80 dataset (Twinanda 
et al., 2017), the best participating team in this EndoVis challenge 
reached a F1-score of 65%. One possible reason for the lower results is 
that Cholec80 had a higher rigidity in the phase order with being linear 
from P1 to P7 except for variability in the order of P5 and P6 after 
completion of P4 as well as mutual transitions between P5 and P6 before 
start of P7. The added variability in our dataset, as reflected by the 
visualization of phase transitions probabilities in Fig. 3, may have 
rendered the phase recognition more complex. Furthermore, phases 
such as clipping and cutting (P2) and gallbladder packaging (P4) proved 
to be more challenging to recognize than others, because instruments 
typical for these phases, such as scissors for P2 or the specimen bag for 
P4, were also briefly used in previous or subsequent phases. In surgical 

Fig. 9. Instrument presence detection results. For the test dataset this figure compares reference annotation, averaged results of all challenge algorithms and the 
best challenge algorithm (Konica Minolta) for the different instrument categories IC0 to IC5 (IC6 was not present in the test dataset). The horizontal axis of the graphs 
represent the relative time progress in the operation. 
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reality, there are many variations in the workflow, especially for the 
more difficult cases that at the same time could benefit more from the 
help of computer assistance. Thus, the reflection of variations is 
important for the future clinical translation of the results. Another 
important factor in improving the results is increasing the size of the 
open dataset to enhance the training of ML algorithms. For example, 
phase recognition by ML on a dataset of 1243 laparoscopic cholecys-
tectomies was published, but only hyperparameters, not the training 
data were made publicly available (Bar et al., 2020). 

From a technical aspect, it is interesting to note that the top three 
teams (CAMMA, CUHK and HIKVision) all used a combination of CNNs 
with a recurrent network, here in all cases a LSTM. While it can be ex-
pected that these methods outperform approaches that do not take 
temporal information into consideration (e.g. Wintegral), it is of interest 

to note that the recurrent approaches also generally outperform methods 
based on 3D convolutions. This could be explained by the fact that, at 
least in theory, the approaches utilizing a recurrent architecture can 
recall information from any previously seen frame, while the hindsight 
of the 3D convolution-based networks is limited by the size of the con-
volutional kernels used and the amount of layers to more of a local 
scope. The top-performing team, CAMMA, actually utilizes and merges 
these global and local scopes, showing that both have their merit in 
phase recognition. In the performance analysis across methods the 
descriptive analysis (Fig. 10) gives the impression of highly improved 
results when using multitask learning, temporal component, and 
RMSProp as an optimizer, whereas ResNet (He et al., 2015), post pro-
cessing, and choosing categorical cross-entropy loss (instead of binary) 
result in only little improvement. On the other hand, data augmentation 

Fig. 10. Performance analysis across methods. This plotmatrix gives an overview of results for phase recognition and instrument presence detection depending on 
algorithm components as describe in detail in Section 3.2 and Table 1. Dots represent F1-values per team and phase (P0-P6) or instrument category (IC0 – IC6). Plots 
for action recognition are displayed in Appendix E only, because results are contorted by difference in performance between action grasp and the other actions (see 
4.2.2. Action). Importantly, univariate analysis could not confirm visual differences. 
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seems to actually reduce performance for phase recognition. However, 
univariate analysis confirmed a difference only for the use of a temporal 
component and only if the result was not zero. This is also true for the 
use of pre-training that we compared based on both submissions of team 
CAMMA (Figs. 5 and 6). 

For multicenter comparison it can be observed that the top methods 
performed best on the data collected from Salem and worst on the data 
collected from UKHD. The results on the data from Sinsheim, which was 
not included in the training data, are generally between those for the 
other two centers. This can be explained by the fact that the cases from 
UKHD tended to be the more complicated of a university hospital and 
thus have a higher variance in surgical progression. This generally 
makes recognizing the correct phase more complicated, while the other 
two centers tended to treat more standard cases. This observation leads 
us to conclude that, while it is important to include data from different 
centers in datasets, because tools and surgical guidelines tend to vary, it 
is at least equally important that the data should reflect the variance in 
patient anatomy and case difficulty. 

5.4. Surgical action recognition 

The algorithm of the leading team Wintegral has almost exclusively 
detected the action hold (A1), which is the most common action in the 
dataset and led to a class imbalance. Detailed analysis of the perfor-
mance within the HeiChole-25 video demonstrates that this action was 
assigned to frames that were annotated as such in the reference, but also 
to frames that were assigned to other actions or where no action at all 
had taken place. This observation is consistent with the percentual 
average of the recognized actions over the entire test dataset. 

Thus, the comparably high performance of phase recognition could 
not be reproduced for the more difficult recognition task of surgical 
actions. This may have different reasons. In this study, surgical actions 
during a cholecystectomy were annotated and recognized for the first 
time in the literature. Neither we nor the challenge teams could utilize 
reference results or training datasets of other research groups and thus 
broke new ground. Additionally, analogous to the instrument presence, 
several, mostly brief and subtle, actions may occur during the same 
frame. This complicates the recognition process. The results may surely 
be optimized by further research and larger datasets for algorithm 
training. 

While the participating teams all used varying methods for the action 
detection, ranging from vanilla feed-forward neural networks to 3D 
convolutional network and to recurrent networks, the resulting perfor-
mances were quite similar. The submitted methods were all able to 
similarly well detect the action “Hold” (F1 scores ranging from 0.84 to 

0.91), but could not reliably detect any other action. The average F1 
scores for each action apart from “Hold” for each method was well below 
0.03. Since “Hold” was the most common action in the dataset, we 
conclude that the current training dataset did not adequately mirror the 
variance in the other actions. For this reason we did not perform a 
univariate analysis of performance across methods for action 
recognition. 

5.5. Instrument presence detection 

Overall, the task of instrument presence detection can be as chal-
lenging as phase recognition. In addition, several instrument categories 
can be used within a single frame. Also the detection of the small in-
strument tips is impeded by the non-static camera, quickly changing 
perspectives and the resulting motion blur, whereas phase recognition 
can utilize information from the whole surgical scene including the 
patient anatomy. 

Furthermore, the analysis of the instrument presence distribution in 
the phases within the reference test dataset highlights that certain in-
strument categories were used more frequently during certain phases 
according to their functionality leading to a class imbalance. This 
conclusion can serve as a reference point for further research on auto-
matic workflow recognition, but should be supported by other sources of 
information, such as real-time sensor data, as variations may occur. The 
instrument category grasper (IC0) is the only instrument used in phases 
P1 through P6 with a high proportional presence. This is little surprising, 
since the instruments of this category are universally applicable for 
trivial grasping as well as for blunt dissection. The other instruments 
also fit, according to their function, into the phases in which their 
highest proportional presence was detected. For example, the category 
scissors (IC3) are mainly used during clipping and cutting (P2), when 
they are required to cut the vessels, and to a lesser extent during calot 
triangle dissection (P1), for the dissection of highly adherent tissues. 
Similarly, the instruments from the category clipper (IC1) were mainly 
used during clipping and cutting (P2), with small variations to the 
previous and subsequent phases, for example, for clipping varying 
vascular supply to the gallbladder. 

The performance analysis across methods showed that for instru-
ment presence detection, the temporal component does not seem to be 
as important as for tasks such as phase recognition. The highest per-
forming method (Konica Minolta) for example did not include any 
temporal information at all, instead opting to explicitly learn the co- 
occurrences of different types of surgical instruments. Data augmenta-
tion also seems to help increase accuracy on the given task, as it can be 
noted that the top 5 methods all used some form of data augmentation, 

Table 2 
Leaderboard: Rankings for the phase, instrument and action task. The table shows the ranking as of the publication of this study for the submissions of all 
participants according to the task. Participants marked with * have entered after the submission deadline of the EndoVis challenge.  

Phase recognition 
task 

Action recognition task  

Instrument presence detection task 

Rank Participant average f1-score 
[%] 

Rank Participant average f1-score 
[%] 

Rank Participant average f1-score 
[%] 

1 CAMMA (pre-training) 
* 

68.78 1 Wintegral 23.28 1 Konica Minolta 63.82 

2 HIKVision 65.38 2 Konica Minolta 22.83 2 CUHK 62.95 
3 CUHK 64.98 3 NCT Dresden 22.62 3 HIKVision 58.20 
4 CAMMA (no pre- 

training)* 
63.60 4 CAMMA (pre- 

training)* 
22.10 4 Caresyntax 50.13 

5 MEVIS 57.30 5 VIE-PKU 21.75 5 Wintegral 41.59 
6 NCT Dresden 49.00    6 IGI Medical 

Technologies 
38.86 

7 Wintegral 42.47    7 VIE-PKU 38.47 
8 CAMI-SIAT 38.65    8 NCT Dresden 27.45 
9 VIE-PKU 33.29       
10 IGI Medical 

Technologies 
23.93        
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while the bottom 3 methods did not. The direct comparison (Fig. 10) 
furthermore gives the impression that SGD as an optimizer (instead of 
Adam), binary cross-entropy loss (instead of categorical or a combina-
tion), and post-processing are correlated with higher performance. 
However, for none of the algorithm components there was a difference 
in the univariate analysis that can be explained by the choice of that 
component. 

Regarding multicenter comparison, it is interesting to note that most 
submitted methods actually performed best on data from Sinsheim, 
which was not represented in the training data, and very closely fol-
lowed by Salem. The make of the tools used in Sinsheim are identical to 
the ones in Salem, meaning that models that perform well on Salem data 
should generalize to Sinsheim. In the videos from UKHD, a much larger 
variety of instruments from a different vendor are used, increasing the 
difficulty of determining the right class. 

5.6. Skill assessment 

The results of the challenge algorithm for skill assessment do not 
sufficiently reflect the reference, because every video was repeatedly 
rated with the same score for each skill component. However, these 
results are not representative as only one team participated in this task. 
Here, the difficulty in skill assessment is to provide a holistic evaluation 
considering many aspects of the video. For this reason, the reference 
annotation was also performed by two independent raters in order to 
achieve more objective results. The raters did not use the full range of 
the scores in the final grading. The lack of exploitation of the lower 
grade scores was already noted in earlier works on surgical skill rating 
(Doyle et al., 2007). It can be attributed either to the best possible effort 
of the surgeons and thus the selection of the data, or an error of central 
tendency, in which the raters distribute average ratings regardless of 
performance. 

5.7. Multitask learning 

As an important characteristic of our challenge we provided multiple 
recognition tasks on the same dataset. We did this based on the 
assumption that the tasks may interact, e.g. the phase recognition could 
be improved by the joint action or instrument recognition. Together, 
they will form a more comprehensive surgical scene understanding. 
Indeed, most of the teams (except IGITech and CAMI-Siat) used a multi- 
task approach, i.e. learned tasks simultaneously. Our visual analysis of 
the algorithms components (Fig. 10) gives the impression of a better 
performance with multi-task learning. However, from the univariate 
analysis we could not show that multitask actually makes a difference. 
Thus, it is unclear whether the difference in the descriptive statistics is a 
mere selection bias confounded by the teams. Whereas the lack of a 
comparative validation on the level of algorithm components and design 
choices is a limitation of our study, the investigation of e.g. the similar 
algorithms with and without multitask learning would have made the 
design of this challenge probably too confusing. Thus, this can be a 
matter of future of investigation on our benchmark when researchers 
decide to investigate this matter with our open dataset and the online- 
leaderboard. Furthermore, this is an interesting idea for future 
challenges. 

5.8. Reducing bias in the challenge 

The introduction and validation of the HeiChole benchmark suc-
ceeded by means of the challenge design of the EndoVis challenge. This 
allowed the comparison of the results of several different algorithms 
submitted by international teams, demonstrating the usability of the 
HeiChole benchmark as a validation tool for phase, instrument, action, 
and skill recognition. As biomedical challenges become increasingly 
important for the evaluation and validation of methods for surgical data 
science, quality control is of utmost relevance to ensure reproducibility 

and comparability of the results (Maier-Hein et al., 2018). For example, 
this was addressed in the EndoVis challenge by providing detailed in-
formation about the data collection and processing in response to the 
challenge design questionnaire required by MICCAI 2019 for submis-
sion. In order to avoid possible boost of algorithm performance by 
tailoring to the test data, the test dataset and the corresponding refer-
ence annotation was not published. This prevents any manipulation of 
the algorithm performance, so that all (future) teams participate under 
equal conditions. 

Furthermore, there are some technical parameters to consider, which 
affect the challenge performance of the teams. Thus, the effects of 
different resolutions and framerates on the performance of ML algo-
rithms are difficult to foresee. While a higher framerate could probably 
be beneficial, increased resolution could introduce more noise to the 
processed image, thereby decreasing the algorithms’ performance. In 
contrast to this, it is also possible that the image data added at a higher 
resolution is beneficial. Further research is needed to assess these effects 
accurately. Consequently, challenge algorithm performance should not 
be directly compared using datasets with different parameters such as 
resolution and frame rate without further reflection on the effects of the 
parameters. 

Finally, it is important to acknowledge that the plots shown in this 
paper should only be considered as an approximate representation of the 
data shown. Comparing videos with different numbers of frames makes 
it necessary to evaluate the progress of the operations in relative values, 
so rounding is necessary to achieve an integer number of frames in a 
given percentage range. Therefore, at the end of each operation, a 
number of frames is being omitted in the visualization. This number of 
frames is always less than one percent. These problems are inevitable 
when trying to visualize large and inhomogeneous datasets, however, 
they should be considered when interpreting the challenge results. 

5.9. Future research directions 

In future studies, the applicability of automatic phase and action 
recognition, instrument presence detection and skill assessment should 
be investigated for more complex surgical procedures, such as esopha-
geal or pancreatic surgery for cancer. Larger datasets are essential to 
improve the performance of the algorithms, ideally with addition of 
medical device sensor data and anesthesiological data from vital sign 
monitoring and drug administration to complement manual reference 
annotation. Also, to speed up annotation processes the development of 
time and cost effective annotation tools should be realized. The ML al-
gorithms should incorporate surgical knowledge, such as correlation of 
certain instruments and phases. 

Regarding the challenge design, future challenges may already 
integrate performance analysis across methods a priori, for example by 
asking teams to submit two algorithms with a specific component being 
changed that is a current matter of scientific investigation. 

6. Conclusion 

Surgical workflow and skill analysis are promising technologies to 
support the surgical team, but there is still room for improvement, as 
shown by our state of the art comparison of ML algorithms on the novel 
HeiChole benchmark. The continued creation of open, high-quality 
datasets is of utmost importance in order to allow the development of 
accurate and robust ML algorithms as a foundation for artificial intelli-
gence and cognitive robots in surgery. 

User notes 

The dataset was published under a Creative Commons Attribution- 
NonCommercial-ShareAlike (CC BY-NC-SA) license on Synapse (HeiC-
hole Benchmark Website, 2022), which means that it will be publicly 
available for non-commercial usage. Should you wish to use or refer to 
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this dataset, you must cite this paper. The licensing of new creations 
must use the exact same terms as in the current version of the dataset. 

CRediT authorship contribution statement 

M. Wagner, A. Kisilenko: Conceptualization, Methodology, Vali-
dation, Writing - Original Draft, Writing - Review & Editing, Formal 
analysis, Data Curation, Investigation, Resources, Project administra-
tion. S. Bodenstedt: Conceptualization, Methodology, Validation, 
Writing - Original Draft, Writing - Review & Editing, Formal analysis, 
Data Curation, Visualization, Data Analysis, Software, Resources, Proj-
ect administration. D. Tran, P. Heger, L. Mündermann, F. Nickel, M. 
von Frankenberg, F. Mathis-Ullrich: Resources, Writing - Review & 
Editing, Data Curation. D.M. Lubotsky, A. Reinke, C. Reid, A. Kopp- 
Schneider: Visualization, Formal analysis, Resources, Writing - Review 
& Editing. B. Müller, T. Davitashvili, M. Capek: Data Curation, 
Writing - Review & Editing. T. Yu, A. Vardazaryan, C.I. Nwoye, N. 
Padoy, X. Liu, E.J. Lee, C. Disch, H. Meine, T. Xia, F. Jia, S. Kondo, 
W. Reiter, Y. Jin, Y. Long, M. Jiang, Q. Dou, P. A. Heng, I. Twick, K. 
Kirtac, E. Hosgor, J.L. Bolmgren, M. Stenzel, B. von Siemens, Long 
Zhao MSc, Zhenxiao Ge Msc, Haiming Sun MD, Di Xie PhD, Mengqi 
Guo, Daochang Liu: Data Analysis, Software, Writing - Review & 
Editing. H.G. Kenngott, L. Maier-Hein, S. Speidel, B.P. Müller-Stich: 
Conceptualization, Writing - Review & Editing, Supervision, Resources, 
Funding acquisition. 

Declaration of Competing Interest 

M. Wagner, B.-P. Müller-Stich, S. Speidel and S. Bodenstedt worked 
with medical device manufacturer KARL STORZ SE & Co. KG in the 
projects “InnOPlan”, funded by the German Federal Ministry of Eco-
nomic Affairs and Energy (grant number BMWI 01MD15002E) and 
“Surgomics”, funded by the German Federal Ministry of Health (grant 
number BMG 2520DAT82D and BMG 2520DAT82A). Lars Mündermann 
is an employee of KARL STORZ SE & Co. KG. A. Reinke works with the 
Helmholtz Imaging Platform (HIP), a platform of the Helmholtz Incu-
bator on Information and Data Science. S. Kondo was an employee of 
Konica Minolta Inc. when this work was done. Wolfgang Reiter is an 
employee of Wintegral GmbH, a subsidiary of medical device manu-
facturer Richard Wolf GmbH. I. Twick, K. Kirtac, E. Hosgor, J. Lindström 
Bolmgren, M. Stenzel and B. von Siemens are employees of Caresyntax 
GmbH. Felix Nickel received travel support for conference participation 
as well as equipment provided for laparoscopic surgery courses by KARL 
STORZ SE & Co. KG, Johnson & Johnson, Intuitive Surgical, Cambridge 
Medical Robotics, and Medtronic. The other authors have no conflicts of 
interest. 

Data availability 

Data is published on www.synapse.org/heichole. 

Acknowledgements 

We thank T. Nguyen (team IGITech) for participation in the chal-
lenge. This person was not listed as a coauthor, because of not 
responding to the requested authors’ confirmation, but signed an 
agreement to publish the results when participating in the challenge. 

Funding 

This work was supported by the National Center for Tumor Diseases 
(NCT) Heidelberg within the Cancer-Therapy-Program „Surgical 
Oncology“, by the German Federal Ministry of Economic Affairs and 
Energy within project “InnOPlan” (grant number BMWI 01MD15002E), 
by the German Federal Ministry of Health within project “Surgomics” 

(grant number BMG 2520DAT82D), by the German Research Founda-
tion DFG within the Cluster of Excellence EXC 2050: “Center for Tactile 
Internet with Human-in-the-Loop (CeTI)” (project number 390696704), 
by the German Academic Exchange Service (DAAD) with a scholarship 
for T. Davitashvili for studying medicine in Germany (Scholarship pro-
gram ID: deutsche Auslandsschulen, 2017 (57314589)), by the Helm-
holtz Imaging Platform (HIP), a platform of the Helmholtz Incubator on 
Information and Data Science, by Agence Nationale pour la Recherche 
(ANR-16-CE33-0009, ANR-10-IAHU-02) and Banque Publique d’Inves-
tissement (BPI CONDOR), by the Richard und Annemarie Wolf-Stiftung, 
by the Guangdong Key Area Research and Development Program 
(2020B010165004), by the Shenzhen Key Basic Science Program 
(JCYJ20180507182437217), by the Hong Kong RGC TRS Project No. 
T42-409/18-R, and by the Clinical Medicine Plus X-Young Scholars 
Project of Peking University 

None of the funding sources had influence on study design, the 
collection, analysis and interpretation of data, the writing of the report 
or the decision to submit the article for publication. 

Supplementary materials 

Supplementary material associated with this article can be found, in 
the online version, at doi:10.1016/j.media.2023.102770. 

Appendices 

Appendix A 

Annotation rules 
In the following, additional details on the annotation protocol for 

phase, action, instrument, and skill annotation as described in the 
“materials & methods” section of the main article is presented. The 
annotations are at least two frames long, as the video annotation 
research tool Anvil does not allow the independent annotation of a 
single frame. 

Phase annotation rules 
The phase annotation includes seven phases: preparation (P0), calot 

triangle dissection (P1), clipping and cutting (P2), gallbladder dissection 
(P3), gallbladder packaging (P4), cleaning and coagulation (P5) and 
gallbladder retraction (P6). The phases do not necessarily occur in a 
fixed order. 

The preparation phase (P0) begins as soon as the camera is inserted 
into the abdomen for the first time and the optical trocar is no longer 
visible in the image. This phase includes orientation in the patient’s 
abdomen and placement of additional trocars for instrument insertion. 

Calot triangle dissection (P1) begins as soon as an instrument ap-
pears in the image. The phase includes the dissection of connective tis-
sue and fat around the gallbladder and the nearby abdominal cavity to 
reach the calot triangle and the preparation of the cystic artery and the 
cystic duct. One main cystic artery and one cystic duct were assumed for 
each video to reduce complexity, so that clipping and cutting (P2) was 
annotated for only one specific artery and one cystic duct, but not for 
additional vessels. 

The phase clipping and cutting (P2) begins with the appearance of a 
clipper, which clips the cystic artery or the cystic duct before cutting. 
The phase does not begin when a clipper appears to stop bleeding or to 
clip other vessels. This phase may switch with the previous phase (P1). 
The change is defined by the appearance of a preparation instrument, for 
example the electric hook or the overholt, which actually dissects. The 
change does not take place if an instrument that is not dissecting appears 
in the image. In case that the electric hook or scissors start dissecting 
immediately after cutting the vessels, the phase P1 begins as soon as 
tissue is cut or cauterized. 

Gallbladder dissection (P3) begins after the clipping and cutting (P2) 
as soon as the preparation scissors or the electric hook touches the 
gallbladder. The phase also begins with accidental contact, without 
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cutting intention. It includes the clipping of accidentally injured vessels 
and accessory biliary arteries which are not defined as the main cystic 
vessels. 

The gallbladder packaging phase (P4) begins as soon as the specimen 
bag enters the picture. This phase includes the recovery of the gall-
bladder as well as any gallstones. In the case of collecting spilled gall-
stones after the gallbladder has been packed in the specimen bag, the 
phase is maintained as long as the stones are placed in the bag and it is 
not closed. This phase ends with the complete closure of the bag or if the 
focus is diverted from the specimen bag to start the following phase. 

Cleaning and coagulation (P5) begins as soon as the focus of the 
camera is averted from the specimen bag to check for tissue damage, 
coagulation begins using electricity, or drainage enters the picture. If the 
surgical site is checked and no cleaning or coagulation takes place, the 
phase does not begin. If the retraction of the gallbladder takes place 
before cleaning and coagulation, the phase begins as soon as the liver 
falls into the camera focus. 

The gallbladder retraction phase (P6) begins when the specimen bag 
is last grasped to remove it from the abdomen. 

The end of the operation is defined by the optical trocar taking 50 or 
more percent of the image as the camera is pulled out of the abdomen for 
the last time. 

Action annotation rules 
The action annotation includes the four actions grasp (A0), hold 

(A1), cut (A2) and clip (A3). In connection with this, the performer of 
the action was annotated as the left hand of the surgeon, right hand of 
the surgeon or hand of the assistant. 

The annotation of the action grasp (A0) started as soon as the grasper 
began to close the instrument and ended with its complete closure. It did 
not matter whether the grasper grasped tissue or closed without 
grasping tissue, for example, when the surgeon missed the tissue. Thus, 
the angle of closure of the instrument at the end of the action varied 
depending on the thickness of the grasped tissue between the two tips of 
the grasper. This action is only performed by instruments with the name 
grasper (I0–3, I10, I16, I18, I19) or forceps (I14, I15, I17). This action is 
not performed by the overholt (I4), since its primary function in lapa-
roscopic cholecystectomy is to separate tissue bluntly by spreading. 

The annotation of the action hold (A1) started after the action grasp, 
if the grasper successfully grasped tissue. It ended as soon as the grasper 
began to release its grip or when tissue started to slip out of the grip. In 
this context the end of the action hold is not always apparent, for 
example when the instrument releases gripped tissue outside of the 
camera view, is concealed by smoke or is pulled out of the abdomen 
while holding, as is often the case with the retraction of the specimen 
bag in the final phase. For this reason, the started action is annotated, 
even if the performing instrument is no longer visible. To recognize the 
end of the action correctly, the tension of the tissue must be considered. 
For example, if the assistant lifts the gallbladder until the performed 
instrument can no longer be seen, it is necessary to look for a decrease in 
tension due to the gallbladder tissue slipping out of the grip and to 
recognize the associated need for regrasp. In case of pulling the instru-
ment out of the abdominal cavity while holding something, for example 
the specimen bag, gallstones or misplaced clips, the action hold is an-
notated until the held object disappears from the camera view and is 
pulled out of the abdomen. 

The annotation of the action cut (A2) started as soon as the cutting 
instrument began to close around tissue and ended with the complete 
closure of the cutting instrument. In contrast to action grasp (A0), 
closing a cutting instrument without tissue was not annotated as cutting. 
This action also includes the tearing of the tissue by the scissors. 

The annotation of the action clip (A3) started as soon as the clipper 
beganto close around tissue and ended with the clipper beginning to 
release its grip after the application of a clip. 

Instrument annotation rules 
21 performing instruments were annotated and additionally divided 

into the seven categories grasper (IC0), clipper (IC1), coagulation 

instruments (IC2), scissors (IC3), suction-irrigation (IC4), specimen bag 
(IC5) and stapler (IC6). 

For instrument presence, an instrument was considered visible as 
soon as its characteristic instrument tip appeared in the image. The 
annotation continues when the tip disappears later and only the shaft of 
the instrument remains visible. An example is the disappearance of the 
instrument tip of the electric hook behind tissue during dissection. Most 
importantly, the shaft should be clearly associated with an instrument 
tip. 

If the instrument shaft enters the picture without its tip having been 
visible before, it is referred to as the undefined instrument shaft (I30), 
because even a human annotator would have difficulties recognizing a 
particular instrument due to the identical looking shaft. Three excep-
tions are the suction-irrigation (I12), stapler (I20) and the clippers (I8, 
I9), as these instruments have characteristic shafts. 

One special case for the annotation of instrument presence is the 
concealment of an instrument by smoke resulting from coagulation. If 
the instrument tip and shaft are completely or partially obscured for a 
short time, the instrument is annotated as long as it was not removed 
from the camera view in the meantime. 

Skill annotation rules 
As outlined in the methods section, the skill assessment was con-

ducted using a modified GOALS score. It has been validated for video 
assessment of laparoscopic skills, including the five domains depth 
perception (S1), bimanual dexterity (S2), efficiency (S3), tissue handling 
(S4) and autonomy (Vassiliou et al., 2005). The item "autonomy" was 
omitted in our study, because a valid assessment based solely on intra-
abdominal video alone is not possible without information about what 
was spoken during the operation or how much assistance was provided 
by a senior surgeon. The difficulty of the operation (S5) was additionally 
annotated based on Chang’s adaptation of the GOALS-score (Chang 
et al., 2007). Here, parameters such as inflammatory signs, adhesions 
and individual anatomical conditions were used to objectify the 
assessment of the skill. Thus, the skill assessment in this study included 
five ranking components. Skill was annotated for the complete operation 
and additionally for phases calot triangle dissection (P1) and gallbladder 
dissection (P3). 

Appendix B. Challenge design protocol 

The challenge design protocol as submitted before the challenge to 
MICCAI is attached as a separate pdf document in the supplementary 
material. 

Appendix C. Machine Learning Methods of participating teams 

Tables displaying machine learning methods of participating teams 
sorted by task are available in the supplementary material. PDF can be 
found in the supplementary material. 

Appendix D. Detailed challenge results 

Detailed challenge results include precision, recall, f1 score, and 
specificity per teams and per video and per phase, action, and instru-
ment category, respectively. Thus, data is provided in separate spread-
sheet files. The phase spreadsheet furthermore includes Fleiss’ kappa for 
inter-rater agreement before consensus. Spreadsheets can be found in 
the supplementary material 

Appendix E. Performance analysis across methods 

Code of statistical analysis, as well as separate figures for all algo-
rithm components for phases, instruments, and actions are included as 
separate html-documents in the supplementary material. 

M. Wagner et al.                                                                                                                                                                                                                                



Medical Image Analysis 86 (2023) 102770

20

References 

Ahmidi, N., Tao, L., Sefati, S., Gao, Y., Lea, C., Haro, B.B., Zappella, L., Khudanpur, S., 
Vidal, R., Hager, G.D., 2017. A dataset and benchmarks for segmentation and 
recognition of gestures in robotic surgery. IEEE Trans. Biomed. Eng. 64, 2025–2041. 
https://doi.org/10.1109/TBME.2016.2647680. 

Aksamentov, I., Twinanda, A.P., Mutter, D., Marescaux, J., Padoy, N., 2017. Deep Neural 
Networks Predict Remaining Surgery Duration from Cholecystectomy Videos. In: 
Descoteaux, M., Maier-Hein, L., Franz, A., Jannin, P., Collins, D.L., Duchesne, S. 
(Eds.), Medical Image Computing and Computer-Assisted Intervention − MICCAI 
2017, Lecture Notes in Computer Science. Springer International Publishing, Cham, 
pp. 586–593. https://doi.org/10.1007/978-3-319-66185-8_66. 

Al Hajj, H., Lamard, M., Conze, P.-H., Roychowdhury, S., Hu, X., Maršalkaitė, G., 
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Katić, D., Wekerle, A.-L., Görtler, J., Spengler, P., Bodenstedt, S., Röhl, S., Suwelack, S., 
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