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The present article is devoted to the semi-parametric estimation of multivariate expectiles for extreme levels. The considered multivariate risk measures also include the possible conditioning with respect to a functional covariate, belonging to an infinite-dimensional space. By using the first order optimality condition, we interpret these expectiles as solutions of a multidimensional nonlinear optimum problem. Then the inference is based on a minimization algorithm of gradient descent type, coupled with consistent kernel estimations of our key statistical quantities such as conditional quantiles, conditional tail index and conditional tail dependence functions. The method is valid for equivalently heavy-tailed marginals and under a multivariate regular variation condition on the underlying unknown random vector with arbitrary dependence structure. Our main result establishes the consistency in probability of the optimum approximated solution vectors with a speed rate. This allows us to estimate the global computational cost of the whole procedure according to the data sample size.

Introduction

Risk measurement theory is an active branch of research with numerous applications in the fields of finance, insurance, economics and for the environment (hydrology, geology, . . . ). To study the extreme risk of a random phenomena, e.g. of a big loss on a financial position, the most popular way is to estimate quantiles, also known as Value-at-Risk (VaR), at high level. But it has been argued that it lacks of sub-additivity property [START_REF] Acerbi | Spectral measures of risk: A coherent representation of subjective risk aversion[END_REF], i.e. the quantile of the sum of two portfolios can exceed the sum of the quantiles of the two portfolios; which is contradiction with the principle of diversification. Consequently, the quantile is an incoherent risk measure in view of [START_REF] Artzner | Coherent measures of risk[END_REF]. Another drawback is that it relies on the frequency of tail events and not on their real magnitudes which is precisely what one would like to know. On the other hand, the second most famous risk measure, the expected shortfall, is not elicitable in the sense of [START_REF] Gneiting | Making and evaluating point forecasts[END_REF], meaning that it is not defined as the minimization of the expectation of some score function. This is though a desirable property since it allows backtesting procedure: one periodically compares the expected risk measure with the actual value of the variable of interest in order to evaluate the accuracy of the forecasting methodology, see [START_REF] Bellini | On elicitable risk measures[END_REF]. The univariate expectiles are then introduced by [START_REF] Newey | Asymmetric least squares estimation and testing[END_REF] and turn out to be the only law invariant risk measures which are elicitable by construction and coherent for a threshold level range, see [START_REF] Bellini | Generalized quantiles as risk measures[END_REF][START_REF] Ziegel | Coherence and elicitability[END_REF]. Concerning the univariate expectile, we also refer to [START_REF] Bellini | Risk management with expectiles[END_REF][START_REF] Daouia | Estimation of Tail Risk based on Extreme Expectiles[END_REF][START_REF] Daouia | Tail expectile process and risk assessment[END_REF]. Conversely to quantiles, they depend on both the realisations and probabilities of the underlying random variable. In economic terms, they may be interpreted as ratios of expected gain/loss which found to be recognized in portfolio management, see [START_REF] Bellini | Risk management with expectiles[END_REF], and represent the quantity of money to inject in a position to reach a prescribed ratio gain/loss. A fundamental question for potential practice is the statistical estimation in the extreme regime of the risk measures at our disposal. In this context, the extreme regime is modelled by a risk level tending towards zero or one, and an assumption of heavy-tails on the underlying distributions, typically of Pareto-type, which best captures rare phenomena. The proper mathematical framework is the regular variation notion. Besides, it often happens in practical applications that the observations are recorded along with auxiliary information represented by a random covariate. Then, one would preferably take advantage of the extra information by focusing on the conditional extremes. This line of research was carried by [START_REF] Girard | Nonparametric extreme conditional expectile estimation[END_REF][START_REF] Girard | Extreme Conditional Expectile Estimation in Heavy-Tailed Heteroscedastic Regression Models[END_REF] when the covariate is a random vector. A valuable improvement is [START_REF] Girard | Functional estimation of extreme conditional expectiles[END_REF] for univariate extreme expectiles when the covariate belongs to an infinite-dimensional or functional space. Furthermore, in several situations, one needs to simultaneously manage risks over different positions, requiring a multivariate version of risk measures which would take the underlying dependence structure into account. Recently, several possible multivariate extensions of expectiles emerged in the literature such as geometric expectiles in [START_REF] Herrmann | Multivariate geometric expectiles[END_REF] and L p -expectiles in [START_REF] Véronique Maume-Deschamps | Multivariate extensions of Expectiles Risk Measures[END_REF]. In the present work, we focus on the specific case of the multivariate L 1 -expectiles of [START_REF] Véronique Maume-Deschamps | Multivariate extensions of Expectiles Risk Measures[END_REF] in the extreme regime, which we abbreviate with the notation MEEs for Multivariate Extreme Expectiles. Herein, in [START_REF] Véronique Maume-Deschamps | Multivariate extensions of Expectiles Risk Measures[END_REF] the authors construct Σ-expectiles as another extension possibility based on correlation matrices Σ that reduces to the L 1 -version if Σ ≡ 1. To estimate multivariate expectiles, they exploit in [START_REF] Véronique Maume-Deschamps | Multivariate extensions of Expectiles Risk Measures[END_REF] the elicitibality by focusing on the first order optimality condition, namely MEEs are points in the d-dimensional Euclidean space for which the score gradient vanishes. The latter only involving tail expectations through positive and negative parts, the authors achieve the estimation by means of Robbins-Monro's stochastic approximation method for moderate levels of risk. Conversely, in the extreme regime, the same authors use in [START_REF] Véronique Maume-Deschamps | Extremes for multivariate expectiles[END_REF] classic regular variation tools to express MEEs ratios as solutions of a system of coupled nonlinear equations. In addition, an estimation procedure is given for L 1 -MEEs with equivalent regularly varying marginal tails, provided the tail dependence is either comonotonic or asymptotically independent. Then, the approach in [START_REF] Véronique Maume-Deschamps | Extremes for multivariate expectiles[END_REF] works well for specific dependence structures.

In this paper, we address the estimation of the L 1 -MEEs when a conditional covariate lying in a possibly infinitedimensional space is available. We assume the equivalent regularly varying marginal tails hypothesis and that the underlying dependence structure and the marginal distributions are unknown. Again, the first order optimality condition yields a system of equations for which functional MEEs ratios are solutions. Equivalently, functional MEEs may be seen as roots of a certain loss function which can be turned into an optimization problem. Crucial quantities are involved regarding the tail behaviour such as the conditional tail index and the conditional tail dependence function.

Inspired by [START_REF] Beck | Semi-parametric estimation of multivariate extreme expectiles[END_REF], plugging their empirical counterparts in the optimization problem results in the approximated loss function. Finally, we propose to apply a BFGS-gradient method. In our main result (see Theorem 5.1), we prove the consistency in probability with rate of the approximated loss function and of the associated optimum solution in this conditional functional setting. Contrarily to [START_REF] Beck | Semi-parametric estimation of multivariate extreme expectiles[END_REF], in the present work, a special attention is devoted to the rates of convergence in the approximation of the underlying optimization problem. It allows to link the loss function approximation quality with the steps of the used gradient descent algorithm. As a result, we explicitly provide the speed rate at which the approximated optimum converges to its theoretical value, which essentially quantifies the estimation quality according to the sample size.

The paper is organized as follows. In Section 2, we present some necessary notation and the setting of our model. We introduce in Section 3 the formal definition of functional multivariate L 1 -expectiles and how they can be theoretically related to an non-linear optimum problem. We subsequently develop in Section 4 the statistical tools of the present paper. After introducing the different estimators, we construct the associated approximated optimum problem. In Section 5 we present the required hypotheses and we state our main result (see Theorem 5.1) about the convergence with rate of the approximated optimum problem to the theoretical one. We outline the sketch of the proof of our main result and we give a crucial intermediate convergence result on the loss function and its gradient is also given (see Proposition 5.1). We devote the last part of Section 5 to a discussion about the required hypotheses. Section 6 is devoted to the proof of the main result. Auxiliary proofs and supplementary lemmas are postponed to Section 7. Further material about the second order regular variation condition is provided in Appendix A.

Notation and preliminaries

In this work, we consider a Polish space (E, ∥•∥ E ) endowed with its Borel σ-algebra and a probability space (Ω, A, P). Let 2 ≤ d < +∞ and a random pair (X, Y) ∈ R d × E, with X = (X j ) 1≤ j≤d , defined on Ω such that X ∈ (L 1 (Ω)) d . On account of [START_REF] Kallenberg | Foundations of Modern Probability[END_REF]Theorem 3.2], such topological features on E ensures the existence of regular conditional probabilities P y (•) := P (•|Y = y) on A for P Y -almost all y ∈ E, where P Y = P • Y -1 is the pushforward measure. As a result, we may denote the conditional cumulative distribution function (cdf) of X given Y = y by F X,y (x) := P y ({X ≤ x}) = P (X ≤ x|Y = y), for x ∈ R d and y ∈ E, where the inequality is to be understood component-wise on R d . We denote the conditional marginal distributions, which we suppose to be continuous, by

x j → F j,y (x j ) := F X,y (+∞, . . . , x j , +∞, . . .), 1 ≤ j ≤ d, and for 1 ≤ j < k ≤ d, the conditional bivariate marginal distributions by (x j , x k ) → F j,k,y (x j , x k ) := F X,y (+∞, . . . , x j , +∞, . . . , x k , +∞, . . .).

(

) 1 
We also introduce the conditional marginal quantile function of X j given Y = y and its conditional marginal quantile tail function by, respectively,

q j,y (α) := inf x > 0, F j,y (x) ≥ α , α ∈ (0, 1), (2) 
U j,y (x) := q j,y (1 -

x -1 ) = inf t ∈ R, F j,y (t) ≥ 1 -x -1 , x > 0.
Under the hypothesis of continuity of conditional marginal distributions and by Sklar's Theorem (1959) (see [START_REF] Sklar | Fonctions de répartition à n dimensions et leurs marges[END_REF]), there exists an unique copula C y such that, for u = (u 1 , . . . ,

u d ) ∈ [0, 1] d , C y (u) = F X,y F -1 1,y (u 1 ), . . . , F -1 d,y (u d ) = P d j=1 F j,y (X j ) ≤ u j Y = y ,
for which we assume the regularity condition from [START_REF] Gijbels | Multivariate and functional covariates and conditional copulas[END_REF][START_REF] Segers | Asymptotics of empirical copula processes under non-restrictive smoothness assumptions[END_REF]; namely, for each j = 1, . . . , d,

u → ∂C y ∂u j (u) exists and is continuous on the set {u ∈ [0, 1] d : 0 < u j < 1}. (3) 
For y ∈ E and x ∈ R d + , we define the conditional stable tail dependence function

L y (x) := lim t↓0 t -1 P d j=1 1 -F j,y (X j ) ≤ t x j Y = y = lim t↓0 t -1 1 -C y (1 -t x) . (4) 
For any y ∈ E and x ∈ [0, +∞] d \ {(+∞, . . . , +∞)}, the associated conditional upper tail dependence function is given by

λ y (x) = lim t↓0 t -1 P d j=1 1 -F j,y (X j ) ≤ tx j Y = y = ∥x∥ 1 -L y (x). ( 5 
) Let 1 ≤ j < k ≤ d, u = (u 1 , . . . , u d ) ∈ [0, 1] d and u j,k = 1 ℓ { j,k} + u ℓ 1 ℓ∈{ j,k} 1≤ℓ≤d
. By using (5) and for x ∈ R 2 + , we introduce the bivariate restrictions of the conditional copula and tail dependence functions as following

C j,k,y u j , u k := C y u j,k = P F j,y (X j ) ≤ u j , F k,y (X k ) ≤ u k Y = y , L j,k,y (x) := lim t↓0 t -1 1 -C j,k,y (1 -tx) , λ j,k,y (x) = ∥x∥ 1 -L j,k,y (x) = lim t↓0 t -1 C j,k,y (tx),
where C j,k,y is the survival copula defined by C j,k,y (u, v) = u+v-1+C j,k,y (1-u, 1-v) on [0, 1] 2 . In the subsequent paper, we suppose that each bivariate tail dependence function is continuous. Furthermore, we quantify the convergence rate in (4), akin to [START_REF] John | An M-estimator for tail dependence in arbitrary dimensions[END_REF][START_REF] Schmidt | Non-parametric estimation of tail dependence[END_REF], by assuming that for any 1 ≤ j k ≤ d, there exists µ j,k,y > 0 such that, as t ↓ 0, and for any

T > 0, sup x∈[0,T ] d t -1 1 -C j,k,y (1 -tx) -L j,k,y (x) = O(t µ j,k,y ).
In particular, defining µ y := max 1≤ j k≤d {µ j,k,y }, we may write max

1≤ j k≤d sup x∈[0,T ] d t -1 1 -C j,k,y (1 -tx) -L j,k,y (x) = O (t µ y ) . (6) 
We now state hypothesis on the considered random vector X given Y = y: it has equivalent regularly varying marginal tails. More precisely, as in [START_REF] Beck | Semi-parametric estimation of multivariate extreme expectiles[END_REF][START_REF] Véronique Maume-Deschamps | Extremes for multivariate expectiles[END_REF], we assume that each conditional marginal function behaves the same way in the extreme regime.

Definition 2.1 (Considered conditional marginal tails model). For any 1 ≤ j ≤ d and y ∈ E, there exists γ y > 0, ρ j,y ≤ 0, c j,y > 0, such that

(H1) F j,y (•) = P X j > •|Y = y ∈ 2RV -1 γy , ρ j,y γy (+∞), (H2) lim x→∞ F j,y (x) F 1,y (x) = c j,y < +∞.
Assumptions (H1) and (H2) are classical in the extreme value literature. For a discussion about Assumptions (H1) and (H2) the reader is referred to Appendix A.

Functional MEEs and optimum system

The multivariate risk measure studied in the present paper is introduced in the following definition.

Definition 3.1 (Multivariate L 1 -expectile with functional covariate). Let y ∈ E. We define the multivariate L 1 -expectile with functional covariate Y at risk level α ∈ (0, 1) as the random vector in R d , such that e α (X, y) := arg min

x∈R d E α ∥(X -x) + ∥ 2 1 + (1 -α) ∥(X -x) -∥ 2 1 |Y = y (7) 
= arg min

(x 1 ,...,x d ) ∈R d E         α d j=1 X j -x j + 2 + (1 -α) d j=1 X j -x j - 2 |Y = y         .
Definition 3.1 can be seen as a functional conditional extension of the multivariate L 1 -expectiles recently introduced in [START_REF] Beck | Semi-parametric estimation of multivariate extreme expectiles[END_REF] (for further details the interested reader is referred to Equation (2) and Conclusion section in [START_REF] Beck | Semi-parametric estimation of multivariate extreme expectiles[END_REF]). Observe that the equality in [START_REF] Bingham | Regular Variation. Encyclopedia of Mathematics and its Applications[END_REF] is assured by the strict convexity of

s α (t, x) = α ∥(t -x) + ∥ 2 1 + (1 -α) ∥(t -x) -∥ 2
1 in the variable x which transfers to E (s α (X, x)) as well by Jensen inequality. Obviously, the conditional L 1 -expectile in [START_REF] Bingham | Regular Variation. Encyclopedia of Mathematics and its Applications[END_REF] is a random vector in R d and we write e α (X, y) = (e j α (X, y)) 1≤ j≤d . Furthermore, concerning the endpoint, one has x F = sup{x, F(x) < 1} = +∞, so that e j α (X, y) → ∞, for α → 1 and 1 ≤ j ≤ d.

Definition in [START_REF] Bingham | Regular Variation. Encyclopedia of Mathematics and its Applications[END_REF] can be reformulated in terms of first order optimality condition, giving rise to a system in R d . As suggested in [START_REF] Beck | Semi-parametric estimation of multivariate extreme expectiles[END_REF], we quickly convert the work of [START_REF] Véronique Maume-Deschamps | Extremes for multivariate expectiles[END_REF] to the functional setting to provide an expression of the optimum system. This involves other quantities such as the conditional tail index in the heavy-tailed case and the conditional bivariate tail dependence function. One may without difficulty transpose Propositions 3.1, 3.3 and 5.1 in [START_REF] Véronique Maume-Deschamps | Extremes for multivariate expectiles[END_REF] to our functional setup. In particular, suppose that the random vector X given Y = y is regularly varying (MRV) (see Appendix A) of index 1/γ y with conditional marginal tails satisfying Conditions (H1) and (H2). Then, as α → 1, any limiting vector (η, β 2 , . . . , β d ) of

1-α F 1,y( e 1 α (X,y)) , e 2 
α (X,y) e 1 α (X,y) , . . . ,

e d α (X,y) e 1
α (X,y) , for y ∈ E, satisfies the system with k = 1, . . . , d,

1 1/γ y -1 -η β 1/γ y k c k,y = - j k         +∞ β j β k λ j,k,y c j,y c k,y t -1/γ y , 1 dt -η β 1/γ y -1 k c k,y β j         . (8) 
In the case where Θ := (η, β 2 , . . . , β d ) is unique, by using the quantile in (2), as α → 1, we have

e α (X, y) ∼ q 1,y (α)η γ y (1, β 2 , . . . , β d ) t .
For a comprehensive review of the different definitions available for the MRV property, we refer to [START_REF] Resnick | Heavy-Tail Phenomena: Probabilistic and Statistical Modeling[END_REF]. This assumption on X|Y mainly ensures the existence of the conditional bivariate upper tail dependence functions which we suppose continuous, see Section 2.3 in [START_REF] Véronique Maume-Deschamps | Extremes for multivariate expectiles[END_REF]. Notice the system (8) only displays pairwise interactions through the conditional bivariate tail dependence function. In view of ( 8), we introduce the associated optimum problem.

Definition 3.2 (Loss function for the optimum problem of e α (X, y)). Let y ∈ E. We consider Θ := (η, β 2 , . . . , β d ) > 0 as [START_REF] Daouia | On kernel smoothing for extremal quantile regression[END_REF]. Consider also

ξ y = (γ y , c 2,y , . . . , c d,y , λ y ) (9) 
with λ y as in (5), γ y as in Condition (H1) and c j,y as in Condition (H2). Define the vector φ y Θ,

ξ y = φ k,y (Θ, ξ y ) 1≤k≤d
where

φ k,y (Θ, ξ y ) := γ y γ y -1 -η β 1/γ y k c k,y         1 + j k β j β k         + j k +∞ β j β k λ j,k,y c j,y c k,y t -1/γ y , 1 dt. ( 10 
)
With these notations, one can formulate the system in (8) as φ y Θ, ξ y = 0 (the equality being understood in R d ). We introduce the loss function via the squared Euclidean norm

L ξ y (Θ) := 1 2 φ y Θ, ξ y 2 2 = 1 2 d k=1 φ k,y Θ, ξ y 2 , (11) 
and an optimal vector Θ ⋆ y obtained by minimizing the loss function L ξ y in [START_REF] Daouia | Tail expectile process and risk assessment[END_REF],

Θ ⋆ y ∈ arg min Θ L ξ y (Θ). (12) 
To minimize the optimum problem [START_REF] De Haan | Extreme value theory: an introduction[END_REF], we turn to the Broyden-Fletcher-Goldfarb-Shanno (BFGS) algorithm which belongs to the the family of quasi-Newton optimization methods. This choice is motivated by practicality while, from a rigorous point of view, its global convergence is denied due to the loss function lacking of convexity property. A particular interest comes from the fact that no second derivatives computations are needed. In fact, we will rather consider the L-BFGS-B method, a refinement of the classic BFGS that incorporates bound constraints.

Since the underlying distribution is not known in practice, direct application of any minimization algorithm on the optimization problem ( 11)-( 12) is not feasible. The next section is devoted to overcome this drawback.

Approximated optimum problem

Let (X i , Y i ) for 1 ≤ i ≤ n, with X i = (X i j ) 1≤ j≤d , be n independent copies of (X, Y) ∈ R d × E.
In the following the convergence in probability and in distribution, as n goes to infinity, are respectively denoted by

P -→ and d - →.
Relying on this data sample, we consider an approximated version of the loss function for the optimum problem of e α (X, y) previously introduced in Definition 3.2. Definition 4.1 (Approximated loss function of e α (X, y)). By using [START_REF] Daouia | Tail expectile process and risk assessment[END_REF] the approximated loss function can be written

as L ξn,y (Θ) = 1 2 φ y Θ, ξn,y 2 2 
, where ξn,y is an estimator vector of ξ y in [START_REF] Daouia | Kernel estimators of extreme level curves[END_REF]. Furthermore, we define the associated optimum problem as

Θ⋆ y ∈ arg min Θ L ξn,y (Θ). ( 13 
)
We now aim to consistently estimate the loss function L ξ y (Θ). To this purpose, we firstly build a consistent estimator vector ξn,y = (γ n,y , ĉ2,n,y , . . . , ĉd,n,y , λy ) of ξ y . According to [START_REF] Daouia | On kernel smoothing for extremal quantile regression[END_REF], we need to estimate λ j,k,y (see Section 4.1 below) and γ y , c y = c 2,y , . . . , c d,y (see Section 4.2). The interested reader is referred to the framework in [START_REF] Gijbels | Multivariate and functional covariates and conditional copulas[END_REF][START_REF] Girard | Functional estimation of extreme conditional expectiles[END_REF] (see also [START_REF] Gardes | Functional kernel estimators of large conditional quantiles[END_REF]).

Empirical counterpart for λ j,k,y

Let 1 ≤ j < k ≤ d. We consider the empirical counterpart of the bivariate conditional cdf F j,k,y in (1) (see, e.g., [START_REF] Daouia | On kernel smoothing for extremal quantile regression[END_REF][START_REF] Ferraty | Rate of uniform consistency for nonparametric estimates with functional variables[END_REF][START_REF] Girard | Functional estimation of extreme conditional expectiles[END_REF])

F j,k,n,y x j , x k := n i=1 w i,n 1 {X i j ≤x j ,X ik ≤x k } , for x j , x k ∈ R, (14) 
where the Nadaraya-Watson weights are given by

w i,n := w i,n (Y, y, h n ) = K ∥Y i -y∥ E h n n s=1 K ∥Y s -y∥ E h n , with n i=1 w i,n = 1, (15) 
with K : R → R + a kernel function, i.e. positive and measurable, having support in [0, 1]. We define the empirical estimator of the conditional copula and its bivariate restriction

Ĉn,y (u) := n i=1 w i,n 1 { d j=1 { F j,n,y (X i j )≤u j }} , Ĉ j,k,n,y (u j , u k ) := Ĉn,y (u j,k ) = n i=1 w i,n 1 { F j,n,y (X i j )≤u j , Fk,n,y (X ik )≤u k } , (16) 
where F j,n,y , Fk,n,y are the corresponding marginal distribution functions of F j,k,n,y in ( 14). Furthermore, for x ∈ R 2 + and k n a deterministic intermediate sequence, i.e. 1 ≪ k n ≪ n, we consider the empirical estimators of the bivariate conditional stable tail dependence function and of the associated upper tail dependence function:

L j,k,n,y (x) := n k n 1 -Ĉ j,k,n,y (1 - k n n x) , λ j,k,n,y (x) = ∥x∥ 1 -L j,k,n,y (x) 
.

Empirical counterparts for γ y and c y

Let y ∈ E. Assume h n ≪ 1 be a non-random positive sequence such that the small ball probability function is positive, i.e.,

ψ y (h n ) := P ∥Y -y∥ E ≤ h n > 0. ( 17 
)
The latter quantity has a major impact in the functional estimation framework as one can see for instance in our hypotheses in Section 5.1 below. Note that it heavily relies on the intrinsic metric on E.

Our plug-in estimation relies on functional estimators of the marginal quantile and tail index previously introduced by [START_REF] Gardes | Functional kernel estimators of large conditional quantiles[END_REF][START_REF] Girard | Functional estimation of extreme conditional expectiles[END_REF]. Let us then define q j,y,n (α

) := inf x > 0, F j,y,n (x) ≥ α , α ∈ [0, 1],
the natural empirical counterpart of the conditional quantile function in [START_REF] Artzner | Coherent measures of risk[END_REF], where F j,y,n , is the marginal distribution function associated to [START_REF] Ferraty | Nonparametric Functional Data Analysis: Theory and Practice[END_REF].

We pick an integer 1 ≤ J < +∞ and a subdivision 0

< τ J < τ J-1 < • • • < τ i < • • • τ 2 < τ 1 ≤ 1, e.
g. τ i = 1/i and J = 9 are motivated by the discussion after Corollary 2 in [START_REF] Daouia | Kernel estimators of extreme level curves[END_REF]. The tail index being the same over all margins, we restrict our attention to j = 1 and consider the so-called functional Hill estimator, first introduced by [START_REF] Gardes | Functional kernel estimators of large conditional quantiles[END_REF],

γn,y :=

J i=1 ln q1,n,y (1 -τ i α n ) -ln q1,n,y (α n ) -J i=1 ln(τ i ) . ( 18 
)
Concerning the tail ratio c j,y in Condition (H2), we simply extend in a functional framework the estimator proposed in [START_REF] Beck | Semi-parametric estimation of multivariate extreme expectiles[END_REF][START_REF] Véronique Maume-Deschamps | Extremes for multivariate expectiles[END_REF] ĉ j,n,y := q j,n,y

(α n ) q1,n,y (α n ) 1/γ n,y for j = 2, . . . , d. (19) 
By using the inference procedure presented in Sections 4.1 and 4.2, we now focus on the convergence of the approximated optimum problem in Equation ( 13).

Convergence of the approximated optimum problem for functional MEEs

In Section 5.1 below, we introduce conditions required in our main convergence result, i.e., Theorem 5.1. These conditions fall into porous categories. Because of the bias, the scaling sequence α n and the smoothing parameter h n are linked through different regimes involving in particular the small ball probability ψ y (h n ).

Required assumptions

We organize the presentation of our assumptions by separating them in three classes (I, II and III). The first class below is related to the bandwidth h n for the small ball probability in [START_REF] Gardes | Functional kernel estimators of large conditional quantiles[END_REF], the risk level α n and the marginal distribution function of X 1 .

(I.1) The bandwidth h := h n ≪ 1 satisfies the intermediate regime nα n ψ y (h n ) ≫ 1.

(I.2) For any 1 ≤ j ≤ d, there exists δ j > 0 such that for any y ∈ E,

nα n ψ y (h n ) ln(α n ) sup z≥(1-δ j )q j,y (αn ) y ′ ∈B(y,hn ) 1 ln z ln F 1,y ′ (z) F 1,y (z) -----→ n→+∞ 0. (I.3) For any y ∈ E, it holds that nα n ψ y (h n )A 1,y (α -1 n ) -----→ n→+∞ p 1 ∈ R, where A 1,y is the auxiliary function of X 1 from
Condition (H1) (see also Equation (A.1)).

(I.4) For any s ∈ [0, 1] and 0 < h n ≪ 1 deterministic, the following pointwise convergence holds

τ y,h n (s) := ψ y (h n s) ψ y (h n ) = P ∥Y -y∥ E < sh n ∥Y -y∥ E < h n -----→ h n →0 + τ y,0 (s). 
A second class of hypothesis involves the conditional bivariate distribution functions and the conditional bivariate upper tail dependence functions.

(II.1) For any 1 ≤ j < k ≤ d and y ∈ E, there exists η j,k,y > 0 such that, for n large enough, as t → 0, λ j,k,y (t, 1) = O (t η j,k,y ) , λ j,k,n,y (t, 1) = O P (t η j,k,y ) .

Furthermore, it holds that γ y < η y := min j k η j,k,y .

(II.2) For any 1 ≤ j < k ≤ d and y ∈ E, it holds that sup

y ′ ∈E, ∥y ′ ∥≤1 sup x∈R 2 F j,k,y+δy ′ (x) -F j,k,y (x) ----→ δ→0 + 0.
(II.3) For any 1 ≤ j < k ≤ d, analogously as in [START_REF] Ferraty | Nonparametric regression on functional data: Inference and practical aspects[END_REF] we consider

ϕ F j,k,x,y (s) := E Y F j,k,Y (x) -F j,k,y (x) ∥Y -y∥ E = s , for x = (x j , x k ), quantifying the expected difference F j,k,Y (x) -F j,k,y (x)
when Y is forced to be at a distance s from the point y ∈ E. Assume that there exists β > 0 such that the function s → ϕ F j,k,x,y (s) with x = (x j , x k ) satisfies, uniformly in x,

ϕ F j,k,x,y (s) = s β ν j,k (x) + o(s β ), s → 0 + , for some continuous function u → ν j,k (F -1 j,y (u j ), F -1 k,y (u k )) on [0, 1] 2 . Furthermore, the bandwidth h := h n ≪ 1 satisfies nψ y (h n )h 2β n = O(1).
A third class hypothesis focuses on the Kernel K in [START_REF] Ferraty | Rate of uniform consistency for nonparametric estimates with functional variables[END_REF].

(III.1) K has support [0, 1], is bounded in (0, 1), has a continuous derivative on [0, 1) with K ′ (s) ≤ 0 and

M 1 := K(1) - 1 0 K ′ (s)τ y,0 (s)ds > 0,
where τ y,0 is the pointwise limit as h → 0 + of τ y,h in ((I.4)).

A discussion on the previous required assumptions is postponed to Section 5.3. We are now ready to state and prove our main result.

Main result

We begin by enunciating the multiple hypotheses needed for our main result. It is then followed by the different speed rates associated to the estimation part of the optimum problem and to the actual minimization algorithm (BFGS family). These scaling sequences are expressed in terms of copula estimation, small ball probability and regular variation.

Let a covariate value y ∈ E. Regarding the inference, we require that:

• the random vector X = (X 1 , . . . , X d ) given Y = y is multivariate regularly varying with index 1/γ y (see Appendix A) and the conditional marginal tails satisfy Conditions (H1) and (H2).

• The condition in (3) and the first order copula condition in [START_REF] Bellini | Generalized quantiles as risk measures[END_REF].

• Assumptions of classes I, II and III in Section 5.1.

Next, denote by Θ(m) y the m th iteration step of the minimization algorithm applied to the approximated optimum problem [START_REF] John | An M-estimator for tail dependence in arbitrary dimensions[END_REF]. We make the following assumptions on the optimization procedure:

• for any y ∈ E, there exists a hyperrectangle K := d r=1 [ε r , M r ] ⊂ (0, +∞) d such that for any m ≥ 1 and n ≥ 1 large enough, Θ(m) y ∈ K. • The minimization algorithm solves for the global minimum of optimum problem [START_REF] De Haan | Extreme value theory: an introduction[END_REF] and has complexity O(δ (m) ), i.e., the computational cost of m steps of the algorithm is proportional to δ (m) .

Concerning the speed rates, for any 1 ≤ j ≤ d, any deterministic α n = 1 + o(1), 1 ≪ k n ≪ n and m n ≫ 1, we define the following deterministic sequences, with µ y > 0 as in (

= n k n µ y , δ0,n,y := nα n ψ y (h), δ j,n,y := A -1 j,y α -1 n . 6), δ-1,n,y : 
Next, we introduce the speed rate δ n,y as a scaling sequence such that 1 ≪ δ n,y ≪ min -1≤ j≤d δ j,n,y .

We may now state our main result under the previous assumptions.

Theorem 5.1 (Approximated optimum convergence with rate). Let y ∈ E. Let Θ ⋆ y the optimum of (12) and Θ(m n ) y the m th n iteration step in the minimization algorithm applied to [START_REF] John | An M-estimator for tail dependence in arbitrary dimensions[END_REF] where m n ≫ 1 is deterministic. Let also two scaling sequences δ n,y and δ (m n ) . Then, under the previous hypotheses,

min δ n,y , δ (m n ) Θ(m n ) y -Θ ⋆ y 1 P -----→ n→+∞ 0.
The proof of Theorem 5.1 is postponed below. In order to estimate functional MEEs, we draw our attention on [START_REF] Daouia | On kernel smoothing for extremal quantile regression[END_REF]. A direct consequence is that, if unique, the limit

Θ = (η, β 2 , . . . , β d ) of ( 1-α F 1,y (e 1 α (X,y)) , e 2 α (X,y) e 1
α (X,y) , . . . ,

e d α (X,y) e 1
α (X,y) ), as α → 1, satisfies the optimum problem ( 12) and

e α (X, y) ∼ F -1 1,y (α)η γ y (1, β 2 , . . . , β d ) t , α → 1.
Notice that the optimum convergence in [START_REF] Beck | Semi-parametric estimation of multivariate extreme expectiles[END_REF] is given via a non-interchangeable two limits result. The first concerns the convergence of the statistical approximation of the loss function, the second the convergence of the descent gradient algorithm. The interested reader is referred to Algorithm 2 and Corollary 3 in [START_REF] Beck | Semi-parametric estimation of multivariate extreme expectiles[END_REF]. Conversely, our result unifies both limits n, m → +∞ into a single limit, i.e.,

Θ(m n ) y P -----→ n→+∞ Θ ⋆ y . (22) 
The speed rate δ n,y in Theorem 5.1, is associated to the statistical approximation of the loss function. The second rate δ (m) is inherited of the used minimization algorithm. Considering the double limit m := m n ≫ 1, the global speed rate of [START_REF] Girard | Functional estimation of extreme conditional expectiles[END_REF] naturally involves a compromise between the two scaling sequences. For sake of clarity, in Remark 5.2 below, we present some more practical expressions on the speed rate δ n,y .

Remark 5.2 (About the rate δ n,y ). Under Assumption (I.3), the condition on the scaling sequence δ n,y in (21) becomes

1 ≪ δ n,y ≪ min -1≤ j≤d j -1 δ j,n,y . (23) 
Notice that explicit expressions for the auxiliary functions A k,y are available (e.g., [START_REF] Mao | Second-order properties of the Haezendonck-Goovaerts risk measure for extreme risks[END_REF]) for particular distributions. For instance, one can consider the Lomax (or Pareto II) conditional marginal distributions, which we generically denote by X j |Y = y ∼ Lomax(1/γ y , s j ) where γ y , s j > 0 for y ∈ E and 1 ≤ j ≤ d. For this model, the survival conditional distribution function is F j,y (x) = (1 + x/s j ) -1/γ y ∈ 2RV -1/γ y ,-1 , or equivalently, the conditional tail quantile function is U j,y (t) = s j (t γ y -1) ∈ 2RV γ y ,-γ y with auxiliary function A y (t) = γ y t -γ y . In this case, the speed rate in (23) has a simpler expression

1 ≪ δ n,y ≪ min δ -1,n,y , δ 0,n,y , γ y (1 -α n ) -γ y .
Further, if one considers k n = nψ y (h n ) which satisfies 1 ≪ k n ≪ n, one may write min(δ 0,n,y , δ -1,n,y ) = (nψ y (h n )) min( 12 , µ y )

and the relation

1 ≪ δ n,y ≪ min γ y (1 -α n ) -γ y , (nψ y (h n )) min( 1 2 , µ y ) .
Another possibility is to suppress the auxiliary functions dependence by considering δ 0,n,y = δ -1,n,y (1 + o(1)) as n → +∞, or equivalently k n ∼ n(nψ y (h n )) -1/(2µ y ) . This particular choice of k n gives under the condition 1 ≪ k n ≪ n the new regime ψ y (h n ) 1/(2µ y ) ≪ n 1-1/(2µ y ) .

Remark 5.3 (About the minimization algorithm and rate δ (m n ) ). At the moment, we are essentially facing two possibilities for quasi-Newton methods (which have less complexity than the classic Newton ones). The first one is the classic BFGS method as described by Algorithm 6.1 in [START_REF] Nocedal | Numerical Optimization[END_REF] or Algorithm 1 in [START_REF] Beck | Semi-parametric estimation of multivariate extreme expectiles[END_REF]. For such algorithm, each iteration costs O(d 2 ) arithmetic operations. Hence, the whole computational cost is O(d 2 m) where m is the number of iterations, and we set δ (m) = d 2 m. On the other hand, one may preferably use the L-BFGS-B version, which is designed for bound constrained optimization with limited memory storage. The motivations for this particular algorithm are threefold. First, it seems reasonable to consider MEEs only in a certain range. Second, no informations about the Hessian matrix or about the structure of the loss function are required. Besides, when m := m n ≫ 1 and n is the number of observations, the upcoming proof of Theorem 5.1 requires uniform convergence results. The computational cost of one iteration in the L-BFGS-B algorithm is linear in d, namely O(p 2 d) with 3 ≤ p ≤ 20 controlling the amount of storage (see [START_REF] Zhu | Algorithm 778: L-bfgs-b: Fortran subroutines for large-scale boundconstrained optimization[END_REF]). Thus, we associate the speed rate δ (m) = p 2 dm to this case.

To prove Theorem 5.1, we proceed in a two-step demonstration.

i) Firstly, we build the approximated minimization problem in (13) by considering an estimator vector ξn,y = (γ n,y , ĉ2,n,y , . . . , ĉd,n,y , λy ). Once the consistency of ξn,y is assured, we prove uniform convergence with associated speed rate of the approximated loss function in Definition 4.1 and its gradient function to their theoretical counterparts.

ii) Then we link the minimization algorithm with the estimation procedure by inducing a dependency of the iteration steps on the data sample size n. Namely, we allow m to depend on n so that m = m n ≫ 1. This translates the fact that we are simultaneously consistently approximating the optimum problem [START_REF] De Haan | Extreme value theory: an introduction[END_REF] and solving the resulting approximated optimum problem (13) using the BFGS minimization algorithm.

Proof of Theorem 5.1. The proof of Theorem 5.1 heavily relies on the convergence of the loss function and its gradient Moreover, the validity of step ii) can be proved if the gradient convergence is uniform. These results are gathered in the following intermediate proposition. The proof of Proposition 5.1 is postponed to Section 6.

Proposition 5.1 (Approximated loss function convergence with rate). Assume that assumptions of Theorem 5.1 hold true. Then,

δ n,y L ξ y (Θ) -L ξn,y (Θ) P -----→ n→+∞ 0, (24) 
δ n,y ∇L ξ y (Θ) -∇L ξn,y (Θ)

1 P -----→ n→+∞ 0. ( 25 
)
Furthermore if we restrict Θ ∈ d j=1 [ε j , M j ] with 0 < ε j < M j < +∞ for any 1 ≤ j ≤ d, we get δ n,y sup

Θ∈ d j=1 [ε j ,M j ] L ξ y (Θ) -L ξn,y (Θ) P -----→ n→+∞ 0, (26) 
δ n,y sup

Θ∈ d j=1 [ε j ,M j ] ∇L ξ y (Θ) -∇L ξn,y (Θ) 1 P -----→ n→+∞ 0. ( 27 
)
Morever, in Theorem 5.1, we assume that the minimization algorithm solves for the global minimum of [START_REF] De Haan | Extreme value theory: an introduction[END_REF]. Once ( 26) and ( 27) are established (see also Equation ( 32)), one may decompose with the triangular inequality

Θ(m n ) y -Θ ⋆ y 1 ≤ Θ(m n ) y -Θ (m n ) y 1 + Θ (m n ) y -Θ ⋆ y 1
The first quantity translates the cost of estimating the m th n step of the minimization algorithm, while the second quantity is purely inherent to the nature of the used minimization algorithm. Concerning the minimization algorithm, we may consider any suitable gradient descent algorithm with complexity δ (m) , so the whole cost is

Θ (m n ) y -Θ ⋆ y 1 = O(δ -1 (m n ) ).
By using the classical steps in the BFGS quasi-Newton optimization algorithm (see, e.g., Algorithm 1 in [START_REF] Beck | Semi-parametric estimation of multivariate extreme expectiles[END_REF]), once the uniform convergence ( 27) holds, it immediately follows that, independently of m n ,

Θ(m n ) y -Θ (m n ) y 1 = O P δ -1 n,y .
Hence the desired result.

Hypothesis discussion

Quantiles are the building blocks of the estimation procedure as they play a crucial role in the estimation of the tail index and ratios. If Conditions (H1), (III.1), (I.1), (I.2) are satisfied, one can prove the following asymptotic normality of the extreme conditional quantile estimator (see for instance Proposition 1 in [START_REF] Girard | Functional estimation of extreme conditional expectiles[END_REF] and Theorem 2 in [START_REF] Gardes | Functional kernel estimators of large conditional quantiles[END_REF]), δ0,n,y qk,n,y (α n )

q k,y (α n ) -1 d -----→ n→+∞ N(0, 1), 1 ≤ k ≤ d, (28) 
where δ0,n,y is as in [START_REF] Girard | Nonparametric extreme conditional expectile estimation[END_REF]. If in addition (I.3) is fulfilled, [START_REF] Girard | Functional estimation of extreme conditional expectiles[END_REF]Theorem 7] extends the Gaussian fluctuations for the functional tail index (see also Theorem 4 in [START_REF] Gardes | Functional kernel estimators of large conditional quantiles[END_REF]), δ0,n,y γn,y -

γ y d -----→ n→+∞ N p 1 ln(J!) J j=2 j ρ 1,y -1 ρ 1,y , J(J -1)(2J -1) 6 log(J!) γ 2 (y) , (29) 
with δ0,n,y as in [START_REF] Girard | Nonparametric extreme conditional expectile estimation[END_REF], γ y as in Condition (H1) with associated estimator γn,y as in [START_REF] Geluk | Second-order regular variation, convolution and the central limit theorem[END_REF], ρ 1,y the second order tail index from Condition (H1), p 1 ∈ R as in Condition (I.3) and J a positive integer (e.g., J = 9). Concerning the fluctuations of the empirical copula in this functional setting, one may invoke [START_REF] Gijbels | Multivariate and functional covariates and conditional copulas[END_REF]Theorem 3]. When each marginal F j,y is continuous and Assumptions (3), (I.1), (I.4), (II.2), (II.3), (III.1) are satisfied, it yields

nψ y (h n ) sup u∈[0,1] 2 Ĉ j,k,n,y (u) -C j,k,y (u) = O P (1), (30) 
where ψ y (h n ) is the small probability in [START_REF] Gardes | Functional kernel estimators of large conditional quantiles[END_REF], C j,k,y the conditional bivariate copula (of the margins j, k) with associated estimator Ĉ j,k,n,y defined in [START_REF] Ferraty | Nonparametric regression on functional data: Inference and practical aspects[END_REF].

We devote the rest of this section to illustrate the role of the required hypothesis in our Theorem 5.1, in particular in order to guarantee the crucial convergences in ( 28)-( 29)- [START_REF] Newey | Asymmetric least squares estimation and testing[END_REF].

• In view of [START_REF] Gardes | Functional kernel estimators of large conditional quantiles[END_REF]Lemma 4], the regime in (I.1) is a necessary and sufficient condition for the almost sure presence of at least one sample point in the region B(y, h n ) × (q j,y (α n ), +∞) for any 1 ≤ j ≤ d, that is, q j,y (α n ) is within the sample. Therefore, it makes sure that, as the number of data sample points increases, the number of observations larger than the conditional quantile increases.

• The hypothesis (III.1) gathers conditions on the kernel for the simultaneous application of convergences in ( 28)-( 29)- [START_REF] Newey | Asymmetric least squares estimation and testing[END_REF]. It is hence a combination of Type I kernel, according to [14, Definition 4.1], required for ( 28)-( 29), and of continuous kernel versions.

• Concerning univariate quantiles and tail index, we require Conditions (I.2) and (I.3) for applying ( 28)-( 29) and proving Proposition 6.1 and Lemma 6.2, 7.2, 7.3. The first Condition (I.2) allows to control the oscillations of the survival distribution function when the covariate is varying. For a deeper discussion, we refer to the end of Section 2 in [START_REF] Girard | Functional estimation of extreme conditional expectiles[END_REF]. On the other hand, as well-known in the extreme literature, the Hill type estimators require a second order regular variation condition (see also Condition (H2)) in order to determine their rate convergence and fluctuations. The estimator in [START_REF] Geluk | Second-order regular variation, convolution and the central limit theorem[END_REF] of the tail index is built upon the first marginal empirical quantile without any second order related object involved. This lacking in the tail approximation generates a bias that we should assume via (I.3) to be negligible in the scale δn,y,0 . Inherited from Theorem 7 in [START_REF] Girard | Functional estimation of extreme conditional expectiles[END_REF], Condition (I.3) links the asymptotic of the first marginal auxiliary function A 1,y with the small ball probability regime.

• Condition (II.1) is an integrability requirement, used in Proposition 6.1, for manipulating conditional stable tail dependence functions and their estimators as they appear through integrals in the loss function [START_REF] Daouia | Tail expectile process and risk assessment[END_REF].

• Assumptions (I.4), (II.2), (II.3) are technical requirements for (30) related to the functional aspect and appearing in Proposition 6.1 and Lemma 7.3. For instance, the authors of [START_REF] Gijbels | Multivariate and functional covariates and conditional copulas[END_REF] used Condition (II.2) for tightness and equicontinuity in the considered empirical processes. In particular, the object τ y,h in Assumption (I.4) was first introduced in [START_REF] Ferraty | Nonparametric regression on functional data: Inference and practical aspects[END_REF] with the same condition on the limiting function τ y,0 . The connection with assumption on M 1 in Condition (III.1) comes down from the fact that kernel expectations are key objects (see [START_REF] Gardes | Functional kernel estimators of large conditional quantiles[END_REF][START_REF] Girard | Functional estimation of extreme conditional expectiles[END_REF]) in functional kernel methods and may be written as [START_REF] Ferraty | Nonparametric regression on functional data: Inference and practical aspects[END_REF]Lemma 2]). The identification of τ y,0 is driven by the asymptotic behaviour of s → ψ y (s) := P ∥Y -y∥ E ≤ s . As stated in [START_REF] Ferraty | Nonparametric Functional Data Analysis: Theory and Practice[END_REF], the class of fractal (infinite-dimensional) processes is the one for which the small ball probabilities behave as ψ y (s) ∼ C y s a , for s → 0 and C y , a > 0. For such processes, we have τ y,0 (s) = s a . This includes the multivariate Euclidean case E = R p , with a = p. On the other hand, for the class of processes such that ψ y (s) ∼ C y s a exp -C/s b , for s → 0 and some C y , C, a, b > 0, one has τ y,0 (s) = δ 1 (s) with δ 1 being the Dirac delta function at point 1 (see [START_REF] Ferraty | Nonparametric regression on functional data: Inference and practical aspects[END_REF]). As noted in [START_REF] Gijbels | Multivariate and functional covariates and conditional copulas[END_REF], for those processes, 1 0 K ′ (s)τ y,0 (s) ds is zero so that one usually assumes K(1) > 0 in this case. In the general case, the condition K ′ (•) ≤ 0 is asked. For more details about τ y,h and β in Condition (II.3), the interested reader is referred to Section 2.3, especially Proposition 1 and Section 4, in [START_REF] Ferraty | Nonparametric regression on functional data: Inference and practical aspects[END_REF], and Section 3.2 in [START_REF] Gijbels | Multivariate and functional covariates and conditional copulas[END_REF].

E Y [K(h -1 n ∥Y -y∥ E )] = K(1)ψ y (h n ) - 1 0 K ′ (s)ψ y (sh n )ds (see

Proof of Proposition 5.1

Soliciting ∆-method (see, e.g., Theorem 3.8 in [START_REF] Van Der | Asymptotic Statistics. Cambridge Series in Statistical and Probabilistic Mathematics[END_REF]), the proof of ( 24) and ( 25) is reduced to the establishment of the building block

δ n,y max 1≤k≤d φ k,y (Θ, ξ y ) -φ k,n,y (Θ, ξn,y ) P -----→ n→+∞ 0. ( 31 
)
The proof of ( 26) and ( 27) relies upon, for 0

< ε r < M r < +∞, 1 ≤ r ≤ d, δ n,y max 1≤k≤d sup Θ∈ d r=1 [ε r ,M r ] φ k,y (Θ, ξ y ) -φ k,n,y (Θ, ξn,y ) P -----→ n→+∞ 0. ( 32 
)
In view of [START_REF] Daouia | Estimation of Tail Risk based on Extreme Expectiles[END_REF], the proof of ( 31) and ( 32) comes down by proving the following convergence δ n,y max ∆ (1) n,y , ∆ (2) k,n,y (Θ) , ∆ (3) j,k,n,y (Θ)

P -----→ n→+∞ 0, 1 ≤ j k ≤ d, y ∈ E, (33) 
and its uniform counterpart

δ n,y sup Θ∈ d r=1 [ε r ,M r ] max ∆ (1) n,y , ∆ (2) k,n,y (Θ) , ∆ (3) j,k,n,y (Θ) P -----→ n→+∞ 0, (34) 
where Θ = (η, β 2 , . . . , β d ) ∈ (0, +∞) d , β 1 = 1 and

∆ (1) n,y := γ y γ y -1 - γn,y γn,y -1 , ∆ (2) k,n,y (Θ) = η         1 + j k β j β k                 β 1/γ y k c k,y - β 1/γ n,y k ĉk,n,y         , ∆ (3) j,k,n,y (Θ) = j k         +∞ β j β k λ j,k,n,y ĉ j,n,y ĉk,n,y t -1/γ n,y , 1 -λ j,k,y c j,y c k,y t -1/γ y , 1 dt         . (35) 
A straightforward application of the ∆-method and (29) implies that for any deterministic 1 ≪ δ 0,n,y ≪ δ0,n,y and independently on Θ ∈ (0, +∞) d , δ 0,n,y ∆ (1) n,y

P -----→ n→+∞ 0.
This readily provides ( 33) and (34) for ∆ (1) n,y . The quantities ∆ (2) k,n,y and ∆ (3) j,k,n,y are respectively tackled in the upcoming Lemma 6.2 and Proposition 6.1. One can obtain the identities for the gradient loss function by adapting the setting in Appendix A.3. in [START_REF] Beck | Semi-parametric estimation of multivariate extreme expectiles[END_REF] to our functional covariate case. By using these gradient expressions we can show the gradient convergence in ( 26)- [START_REF] Mao | Second-order properties of the Haezendonck-Goovaerts risk measure for extreme risks[END_REF]. Indeed, the random quantities γy and ĉk,y appear through algebraic expressions in the gradient loss function in the same form as in [START_REF] Daouia | Estimation of Tail Risk based on Extreme Expectiles[END_REF]. The Karamata's results, Theorem B.1.4 -B.1.5, Equation (B.1.14), Remark B.1.7 in [START_REF] De Haan | Extreme value theory: an introduction[END_REF], see also Theorem 1.3.1 in [START_REF] Bingham | Regular Variation. Encyclopedia of Mathematics and its Applications[END_REF], allow us to write ℓ U j,y (x) := ℓ j,y (x) = κ j (y)b j,y (x) exp

x x 0 b j,y (t) -1 t dt , (36) 
for some arbitrary x 0 > 0, some constant κ j (y) ∈ (0, +∞) and b j,y (x) = xℓ j,y (x)

x x 0 ℓ j,y (t)dt . ( 37 
)
Studying the Karamata representation (36) of the slowly varying part ℓ j,y through the point of view of Π-Class (see Definition 7.1), we may show in the following Lemma 6.1 an asymptotic expansion on ℓ j,y .

Notice that Lemma 6.1 in the case ρ j,y < 0 is a straightforward generalization to the conditional setting of Lemma 1 in [START_REF] Hua | Second order regular variation and conditional tail expectation of multiple risks[END_REF]. The proof in the specific case where ρ j,y = 0 is postponed to Section 7.1. For examples of distributions satisfying the second order regular variation condition with ρ j,y = 0 we interested reader is referred to Remark A.4.

Lemma 6.1. Assume that for any y ∈ E, for any 1 ≤ j ≤ d, U j,y ∈ 2RV -γ y ,ρ j,y (+∞), γ y > 0, ρ j,y ≤ 0, with auxiliary function A j,y ∈ RV ρ j,y (+∞) or equivalently Condition (H1). Then, for some constant κ j (y) ∈ (0, +∞) independent of x,

ℓ j,y (x) = κ j (y) 1 + O A j,y (x) , x → +∞.
Once the slowly varying part of the tail quantile function is determined, we may derive, under the second order regular variation property (see Assumption (H2)), the speed rate in the consistency of the tail ratios.

Lemma 6.2. Let Θ = (η, β 2 , . . . , β d ) > 0, y ∈ E, α n = 1 + o(1), h n ≪ 1 deterministic such that the intermediate regime nα n ψ y (h n ) ≫ 1 holds true. For each marginal 2 ≤ k ≤ d, let δ k,n
,y be a scaling sequence such that 1 ≪ δ k,n,y ≪ min s∈{0,1,k} δs,n,y , where δs,n,y is defined in Equation ( 20).

Then, as n → +∞, under Assumptions (H1), (H2), (III.1), (I.1), (I.2), (I.3),

δ k,n,y c k,y -ĉk,y P -----→ n→+∞ 0. (39) 
Furthermore, it holds that, for 1

≤ k ≤ d, δ k,n,y ∆ (2) k,n,y (Θ) P -----→ n→+∞ 0, δ k,n,y sup Θ∈ d r=1 [ε r ,M r ] ∆ (2) k,n,y (Θ) P -----→ n→+∞ 0, for 0 < ε r < M r < +∞, 1 ≤ r ≤ d.
As defined in [START_REF] Ziegel | Coherence and elicitability[END_REF], the auxiliary marginal scaling sequences δ k,n,y may be combined to recover the global rate δ n,y defined in ( 21) by considering the minimum over δ-1,n,y and over every δ k,n,y for k ≥ 2. The proof of Lemma 6.2 is postponed to Section 7.1. Next, we consider the integral of stable tail dependence functions and prove the following convergences.

Proposition 6.1. Let δ n,y as in [START_REF] Girard | Extreme Conditional Expectile Estimation in Heavy-Tailed Heteroscedastic Regression Models[END_REF].

Let y ∈ E, 1 ≤ j k ≤ d, Θ = (η, β 2 , . . . , β d ) ∈ (0, +∞) d and β 1 = 1.
If Assumptions (H1), (H2), ( 3), ( 6) and Assumptions of classes I, II, III in Section 5.1 are satisfied, then

δ n,y ∆ (3) j,k,n,y (Θ) P -----→ n→+∞ 0,
and for any 0

< ε r < M r < +∞, 1 ≤ r ≤ d, δ n,y sup Θ∈ d r=1 [ε r ,M r ] ∆ (3) j,k,n,y (Θ) 
P -----→ n→+∞ 0.
The proof of Proposition 6.1 can be found in Section 7.1.

Auxiliary proofs and results

We gather in this section the proofs of the results needed for Proposition 5.1 as well as further auxiliary results required for the intermediate steps of the proof.

Proofs of lemmas of Section 6

We introduce a particular proxy version to the second order regular variation property to be connected to slowly varying functions when the second order tail index is zero. In this context, we constructively specify the auxiliary function and shall make use of an uniform Drees-type inequality. This is of importance in order to address in depth the Karamata representation applied to the slowly varying part of the conditional marginal quantile tail function.

Definition 7.1 (Class Π). [Definition B.2.4 in [START_REF] De Haan | Extreme value theory: an introduction[END_REF]] A measurable function f : R + → R belongs to the class Π(a) if there exists an auxiliary function a : R + → R + such that for x > 0,

lim t→+∞ f (tx) -f (t) a(t) = ln(x). ( 40 
)
Remark 7.1. The auxiliary function is slowly varying, namely a ∈ RV 0 (+∞), by Theorem B.2.7 in [START_REF] De Haan | Extreme value theory: an introduction[END_REF]. By Theorem B.2.12 in [START_REF] De Haan | Extreme value theory: an introduction[END_REF],

f ∈ Π(a) is equivalent to f ∈ Π(ã) with ã(t) = f (t) -1 t t 0 f (s)ds. Hence, if f ∈ Π(a)
for some auxiliary function a, we can always choose instead the alternative auxiliary function ã. More can be said, if in addition x γ f (x) ∈ 2RV γ,0 , γ > 0. In this case, the auxiliary function A in Definition A.2 can be chosen as A(t) = Ã(t) := ã(t) f (t) . According to Proposition B.2.17 in [START_REF] De Haan | Extreme value theory: an introduction[END_REF], if f ∈ Π(a), then for any ε, δ > 0, there exists x 0 = x 0 (ε, δ) ≥ 0, such that for any t and x with tx ≥ x 0 , the following uniform bound holds

ℓ(tx) -ℓ(x) ã(x) -ln(t) ≤ ε max t δ , t -δ , (41) 
with the relation Ãℓ = ã.

Proof of Lemma 6.1. Let 1 ≤ j ≤ d and y ∈ E. The case ρ j,y < 0 is a straightforward generalization to the conditional setting of Lemma 1 in [START_REF] Hua | Second order regular variation and conditional tail expectation of multiple risks[END_REF]. We may now assume the second order tail index of U j,y to be zero, i.e., ρ j,y = 0. According to the definition of the second order regular variation, there exists auxiliary functions A j,y := A U j,y ∈ RV 0 (+∞) for 1 ≤ j ≤ d with ultimately constant sign and lim t→+∞ A j,y (t) = 0 such that lim t→+∞ 1 A j,y (t)ℓ j,y (t) ℓ j,y (tx) -ℓ j,y (t) = ln(x), x > 0.

Since ℓ j,y is non-negative, we immediately deduce that ℓ j,y ∈ Π(a j,y ), a j,y (t) := sign A j,y (t) A j,y (t)ℓ j,y (t) ∈ RV 0 (+∞), a j,y ≥ 0.

By Remark 7.1, the definition of the second order regular variation and the relation U j,y (x) = x γ y ℓ j,y (x), we can modify the auxiliary functions so that ℓ j,y (•) ∈ Π(ã j,y ), ã j,y (t) := ℓ j,y (t) -1 t t 0 ℓ j,y (s) ds, and U j,y (•) ∈ 2RV -1/γ y ,0 (+∞), with auxiliary function

A j,y (t) = ã j,y (t) ℓ j,y (t) = 1 - 1 0 ℓ j,y (tu) ℓ j,y (t) du ∈ RV 0 (+∞).
Fix ε > 0 and δ ∈ (0, 1). Let x 0 (ε, δ) > 0 such that (41) holds. From Potter's Theorem B.1.9 in [START_REF] De Haan | Extreme value theory: an introduction[END_REF] with δ 1 = 1 and δ 2 = 1/2, let x 0 (δ 1 , δ 2 ) > 0 such that Potter's bounds hold as well. We finally set x 0 := max (x 0 (ε, δ), x 0 (δ 1 , δ 2 )). In the rest of the proof, we consider this particular choice of x 0 in [START_REF] Van Der | Asymptotic Statistics. Cambridge Series in Statistical and Probabilistic Mathematics[END_REF] and investigate [START_REF] Zhu | Algorithm 778: L-bfgs-b: Fortran subroutines for large-scale boundconstrained optimization[END_REF].

With the substitution u = t x in [START_REF] Zhu | Algorithm 778: L-bfgs-b: Fortran subroutines for large-scale boundconstrained optimization[END_REF], one can express b -1 j,y (x) =

1 x 0 x ℓ j,y (ux) 
ℓ j,y (x) du. Then, with A j,y ∈ RV 0 (+∞),

1 A j,y (x) b -1 j,y (x) -1 + x 0 x = 1 0 1 A j,y (x) ℓ j,y (ux) ℓ j,y (x) -1 1 [ x 0 x ,1] (u)du.
For u ∈ (0, 1) and x such that ux ≥ x 0 , the bound (41) yields 1 A j,y (x)

ℓ j,y (ux) ℓ j,y (x) -1 1 [ x 0 x ,1] (u) ≤ -ln(u) + εu -δ := f ε,δ (u).
The function u → f ε,δ (u) is integrable on (0, 1) as -1 < -δ < 0. Altogether with the pointwise convergence (40), the dominated convergence theorem gives

1 0 1 A j,y (x) ℓ j,y (ux) ℓ j,y (x) -1 1 [ x 0 x ,1] (u)du -----→ x→+∞ κ 0 := 1 0 ln(u)du = -1 < +∞.
The previous convergence holds with limiting constant -κ 0 instead of κ 0 by accordingly adjusting the sign of the auxiliary function A j,y . Opting for this convention, we subsequently set κ 0 = 1. One may then write b -1 j,y (x) = 1 + A j,y (x) -

x 0 x + o A j,y (x) .
Since x → 1 x ∈ RV -1 (+∞) and A j,y ∈ RV 0 (+∞), it follows that b j,y (x) = 1 + A j,y (x) + o A j,y (x) , x → +∞. Going back to [START_REF] Van Der | Asymptotic Statistics. Cambridge Series in Statistical and Probabilistic Mathematics[END_REF],

ℓ j,y (x) = κ j (y) 1 + A j,y (x) + o A j,y (x) exp         x x 0 A j,y (t) + o A j,y (x) t dt         .
Repeating the same argument of dominated convergence but in the first order regular variation context for the auxiliary function A j,y ∈ RV 0 (+∞) with Potter's Theorem B.1.9 in [START_REF] De Haan | Extreme value theory: an introduction[END_REF],

x x 0 A j,y (t) t dt = A j,y (x) + o A j,y (x) , x → +∞.
Therefore, a Taylor expansion as x → +∞ yields the asymptotic representation ℓ j,y (x) = κ j (y) 1 + O A j,y (x) , A j,y ∈ RV 0 (+∞), κ j (y) ∈ (0, +∞).

Proof of Lemma 6.2. Let y ∈ E and 2 ≤ k ≤ d. First, observe that straight consequences of (28) as well as ∆-method applied to (29) are qk,n,y (α n )

q k,y (α n ) = 1 + O P δ-1 0,n,y , γ-1 n,y -γ -1 y = O P δ-1 0,n,y . (42) 
One may write

ln qk,n,y (α n ) q1,n,y (α n ) = ln qk,n,y (α n ) q k,y (α n ) + ln q k,y (α n ) q 1,y (α n ) + ln q 1,y (α n ) q1,n,y (α n ) .
In view of (42) and after Taylor expanding, this becomes

ln qk,n,y (α n ) q1,n,y (α n ) = ln q k,y (α n ) q 1,y (α n ) + O P δ-1 0,n,y . (43) 
We investigate the logarithm term in the RHS of (43) and precise its asymptotic behaviour. Regarding the quantiles, it is clear that, for α n ≪ 1 and each 1 ≤ j ≤ d, we have q j,y (α n ) ≫ 1 and q j,y ∈ RV γ y (1). As a functional version of Lemma 3.2 in [START_REF] Véronique Maume-Deschamps | Extremes for multivariate expectiles[END_REF] which may be proved along the same steps, we have that, if t = O(s), for any 1 ≤ i, j ≤ d, F i,y (s)

F j,y (t) ∼ c i,y c j,y s t -1/γ y , t → +∞. It follows that 1 = F k,y (q k,y (α n )) F 1,y (q 1,y (α n )) = c k,y q 1,y (α n ) q k,y (α n ) 1/γ y + o(1), n → +∞. Hence, c k,y = q k,y (α n ) q 1,y (α n ) 1/γ y + o(1), i.e. q k,y (α n ) q 1,y (α n ) = c γ y k,y + o(1).
On the other hand, one may write the ratio in terms of slowly varying functions

q k,y (α n ) q 1,y (α n ) = U k,y (α -1 n ) U 1,y (α -1 n ) = ℓ k,y (α -1 n ) ℓ 1,y (α -1 n )
.

By Lemma 6.1, for 1 ≤ j k ≤ d and as x → +∞, the following asymptotic holds after a Taylor expansion

ℓ j,y (x) ℓ k,y (x) = κ j (y) κ k (y) 1 + O max A j,y (x), A k,y (x) .
We deduce the tail ratio representation c k,y = (κ k (y)/κ 1 (y)) 1/γ y and that for 1

≤ k ≤ d, 0 ≤ lim sup n→+∞ min( δ1,n,y , δk,n,y ) q k,y (α n ) q 1,y (α n ) -c γ y k,y < +∞. (44) 
We can state (44) in an alternative way c Limit in (39) is proved after an application of the ∆-method. We now consider the quantity

γ y k,y q 1,y (α n ) q k,y (α n ) = 1 + O max δ-1
β 1/γ n,y k ĉk,n,y         β 1/γ y k c k,y         -1 = exp -γ -1 n,y ln qk,n,y (α n ) q1,n,y (α n ) + γ-1 n,y -γ -1 y ln (β k ) + ln(c k,y ) . (45) 
Combining again ( 29), ( 42), ( 43) and (44), and Taylor expanding in (45), it yields

β 1/γ n,y k ĉk,n,y - β 1/γ y k c k,y = c γ y k,y γ y O P max δ-1 1,n,y , δ-1 k,n,y + O P δ-1 0,n,y .
The previous asymptotic equality is valid for any 1 ≤ k ≤ d . Moreover, the asymptotic holds uniformly over

β k ∈ [ε k , M k ] with 0 < ε k < M k < +∞.
Indeed, in view of the term ln(β k ) in (45), we discriminate two cases: when 0 < β k 1 and when β k = 1.

In the former case, it is clear that |ln β k | is positive and bounded by a constant depending on ε k , M k . In the second case, the speed rate δ0,n,y induced by the difference γ-1 n,y -γ -1 y apparently vanishes but is reintroduced by the term ln( q1,n,y (α n ) qk,n,y (α n ) ). Now, the term η(1+ j k β j /β k ) is positive and bounded when Θ = (η, β 2 , . . . , β d ) ∈ d k=1 [ε k , M k ] and β 1 = 1. Hence, the second part of Lemma 6.2 is proved.

Proof of Proposition 6.1. In the following, for the sake of readability, we drop the finite sum in [START_REF] Sklar | Fonctions de répartition à n dimensions et leurs marges[END_REF]. We start by decomposing ∆ (3) j,k,n,y defined in [START_REF] Sklar | Fonctions de répartition à n dimensions et leurs marges[END_REF] as

∆ (3) j,k,n,y = ∆ (3,1) j,k,n,y + ∆ (3,2) j,k,n,y with ∆ (3,1) j,k,n,y = +∞ β j β k λ j,k,y ĉ j,n,y ĉk,n,y t -1/γ n,y , 1 dt - +∞ β j β k λ j,k,y c j,y c k,y t -1/γ y , 1 dt, ∆ (3,2) j,k,n,y = +∞ β j β k λ j,k,n,y ĉ j,n,y ĉk,n,y t -1/γ n,y , 1 dt - +∞ β j β k λ j,k,y ĉ j,n,y ĉk,n,y t -1/γ n,y , 1 dt,
where γn,y and ĉ j,n,y , 1 ≤ j ≤ d, are defined in [START_REF] Geluk | Second-order regular variation, convolution and the central limit theorem[END_REF] and [START_REF] Gijbels | Multivariate and functional covariates and conditional copulas[END_REF]. Note that λ j,k,y (0, 1) = 1 -L j,k,y (0, 1) = 0. In view of Assumption (II.1), the mapping t → t -(γ y +1) λ j,k,y (t, 1) is integrable in the proximity of 0 so we may consider the change of variable

c j,y c k,y t -1/γ y = u ⇐⇒ t = c k,y c j,y u -γ y , dt = -γ y c k,y c j,y -γ y u -(γ y +1) du.
It yields the alternative form

∆ (3,1) j,k,n,y = -v y M y (Θ) 0 λ j,k,y ŝ j,k,n,y (t), 1 -λ j,k,y (t, 1) dt, ∆ (3,2) j,k,n,y = -v n,y
Mn,y (Θ) 0 λ j,k,n,y (t, 1) -λ j,k,y (t, 1) dt, with ŝ j,k,n,y (t) := ĉ j,n,y ĉk,n,y c k,y c j,y γ y /γ n,y

• t γ y /γ n,y := σn,y • t γ y /γ n,y ,

M y (Θ) := c j,y c k,y

β j β k -1/γ y , v y := γ y c k,y c j,y -γ y ,
Mn,y (Θ) := ĉ j,n,y ĉk,n,y

β j β k -1/γ n,y
, vn,y := γn,y ĉk,n,y ĉ j,n,y -γ n,y .

In the following lemma we provide the speed rate of convergence in Lemma 7.1.

Lemma 7.2. Let δ k,n,y be the scaling sequence for each margins 1 ≤ k ≤ d defined in [START_REF] Ziegel | Coherence and elicitability[END_REF]. Let y ∈ E and 0 < T < +∞.

Under Assumptions (H1), (H2) and (I.1), (I.2), (I.3), (III.1), for j k,

δ k,n,y sup t∈[0,T ] ŝ j,k,n,y (t) -t P -----→ n→+∞ 0.
Proof of Lemma 7.2. Recall σn,y := ĉ j,n,y ĉk,n,y c k,y c j,y γ y /γ n,y

. Define g j,k,n,y (t) := ŝ j,k,n,y (t)t for t ≥ 0 with ŝ j,k,n,y as in (46).

Consider t n,y := γ y γn,y σn,y γn,y γn,y -γy the solution of g ′ j,k,n,y (t) = σn,y γ y γn,y t γ y /γ n,y -1 -1 = 0, t ≥ 0.

This corresponds to the maximum value of g j,k,n,y when γ y < γn,y or its minimum value when γ y > γn,y . This is a consequence of the 2nd order optimality condition and g ′′ j,k,n,y (t) = σn,y γ y γn,y γ y /γ n,y -1 t γ y /γ n,y -2 , t ≥ 0.

Using ( 29) and (39), we easily see that For fixed ω ∈ Ω, 0 < T < +∞ and n large enough, may sup t∈[0,T ] g j,k,n,y (t) (ω) ≤ max g j,k,n,y (t n,y ) (ω), g j,k,n,y (T ) (ω) .

By Taylor expansion and multivariate ∆-method with (29) and (39), one readily shows that for 0 < T < +∞ fixed, g j,k,n,y (T ) = o P (1/δ k,n,y ). Now, we compute g j,k,n,y (t n,y ) = t n,y γn,y γ y -1 .

Then, using ( 29) and (39) once more yields g j,k,n,y (t n,y ) = o P (1/δ k,n,y ). Lastly, using the rate condition in (6), we have δ -1,n,y sup x∈[0,M] 2 L j,k,y (x) -L j,k,n,y (x) P -----→ n→+∞ 0.

Conclusion

In this paper, we present a semi-parametric method for estimating functional multivariate L 1 -expectiles at extreme risk levels (i.e., functional L 1 -MEEs). Going beyond [START_REF] Beck | Semi-parametric estimation of multivariate extreme expectiles[END_REF], we establish, in this functional setting, the consistency with rate of the approximated loss function by using empirical kernel-based estimators for the tail index, the tail ratio and the upper tail dependence function. Then, we couple the loss function estimation with a gradient descent algorithm (e.g., BFGS-family). As a result, we give the consistency with rate of the approximated optimum problem for solving functional L 1 -MEEs. An immediate line of work is the implementation of the MEEs estimation method and testing its finite-sample performance. Adopting the BFGS family method as gradient descent algorithm, one may proceed to the simulation study for Lomax marginals and survival Clayton as dependence structure. Such model is closely related to [START_REF] Beck | Semi-parametric estimation of multivariate extreme expectiles[END_REF][START_REF] Gardes | Functional kernel estimators of large conditional quantiles[END_REF][START_REF] Girard | Functional estimation of extreme conditional expectiles[END_REF] but taking into account that Pareto I is not second order regularly varying. Furthermore, one may raise the question of how to calibrate the parameters (especially from the kernel smoothing). A cross-validation procedure such as [START_REF] Girard | Functional estimation of extreme conditional expectiles[END_REF] is in consideration for the choice of the bandwidth associated to the small ball probability hypothesis of the considered functional space and the risk level of the MEEs. Another possible line of research would be to consider the L p -norm in Equation ( 7), i.e., to consider the L p -expectiles defined in [START_REF] Véronique Maume-Deschamps | Multivariate extensions of Expectiles Risk Measures[END_REF] in this functional setting. The question of their estimation may also be approached by the same semiparametric methodology although it would display more intricate algebra. Along the same lines, one may consider a possible extension of [START_REF] Véronique Maume-Deschamps | Extremes for multivariate expectiles[END_REF] to functional extreme Σ-expectiles for Σ 1. While the specific case of one dominant marginal is studied in [START_REF] Véronique Maume-Deschamps | Extremes for multivariate expectiles[END_REF], an interesting problem is to remove the multivariate regular variation hypothesis on the random vector X with equivalent marginals tails. Finally, a more ambitious future work would be to connect our inference method with the online optimization theory. Indeed, we propose in our work to simultaneously estimate and optimize the loss function associated to the considered functional L 1 -MEEs, which may essentially be seen as updating with new data-points a multidimensional optimization problem.

= 1 +

 1 o P (1) .
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 733 Let M ∈ (0, +∞). Let 1 ≤ j k ≤ d, y ∈ E and 1 ≪ k n ≪ n be an intermediate sequence. Under Assumptions (3), (6), (I.4), (II.2), (II.3), (III.1), we define1 ≪ δ 0,n,y ≪ δ0,n,y = nα n ψ y (h) and 1 ≪ δ -1,n,y ≪ δ-1,n,y = n k n µ yas in Equation (20) with µ y > 0 as in Condition[START_REF] Bellini | Generalized quantiles as risk measures[END_REF]. Then, it holds that min δ 0,n,y , δ -1,n,y sup x∈[0,M] 2 λ j,k,y (x) -λ j,k,n,y (x) By using Equation (5), we writesup x∈[0,M] 2 λ j,k,y (x) -λ j,k,n,y (x) = sup x∈[0,M] 2L j,k,y (x) -L j,k,n,y (x) .

For n large

  enough, one can get k n n M ≤ 1. Then, the triangular inequality allows us to bound the latter quantity bysup x∈[0,M] 2 L j,k,y (x) -L j,k,n,y (x) + sup x∈[0,M] 2 L j,k,n,y (x) -L j,k,n,y (x) ,where L j,k,n,y (x) := n k n 1 -C j,k,y (1 -k n n x) . Concerning the second term, since α n = o(1), it readily follows from (30) that for any deterministic 1 ≪ δ 0,n,y ≪ δ0,n,y ≪ nψ y (h n ), δ 0,n,y sup x∈[0,M] 2 L j,k,n,y (x) -L j,k,n,y (x)
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In order to prove Proposition 6.1, it is enough to show that, for s ∈ {1, 2}, δ n,y ∆ (3,s) j,k,n,y (Θ)

and the uniform counterparts, for 0 < ε r < M r < +∞, 1 ≤ r ≤ d, δ n,y sup Θ∈ d p=1 [ε r ,M r ] ∆ (3,s) j,k,n,y (Θ) P -----→ n→+∞ 0.

From [START_REF] Véronique Maume-Deschamps | Extremes for multivariate expectiles[END_REF] and (39), for any y ∈ E, 1 ≤ j ≤ d and t ≥ 0, we have γn,y P -----→ n→+∞ γ y , ĉ j,n,y P -----→ n→+∞ c j,y .

In particular, the continuous mapping theorem readily implies that ŝ j,k,n,y (t) P -----→ n→+∞ t and also Mn,y (Θ)

It is classic knowledge that the stable tail dependence function λ j,k,y is 1-Lipschitz, hence, the case ∆ (1) n,y in (47) follows from Lemma 7.2. On the other hand, the case ∆ (2) k,n,y in (47) is a mere consequence of the uniform boundedness over

for any j, of the quantities in (48) and the uniform convergence in probability of Lemma 7.3.

Auxiliary lemmas

In this section we introduce and prove three auxiliary results. Recall the scaling sequence δ k,n,y for each margins 1 ≤ k ≤ d defined in [START_REF] Ziegel | Coherence and elicitability[END_REF]. Firstly we may have a closer look to the previous convergence of ŝ j,k,n,y in (46). It follows from ( 29) and (39) that δ k,n,y σn,y -1

An application of the multivariate ∆-method yields the following pointwise convergence in probability

Leaning on the monotonocity of the mapping t → ŝ j,k,n,y (t), we improve the pointwise convergence in probability ŝ j,k,n,y (t)t = o P (1) to an uniform version by a probabilistic Dini-type argument.

Lemma 7.1. For any 0 < T < +∞ and

Proof of Lemma 7.1. Let T > 0 and ε > 0. Let also an integer N := N(ε) ≥ 1 such that T < εN. We consider a subdivision with step less than ε of the compact set [0

Fix ω ∈ Ω for the moment and assume that for any 0

Thus, sup t∈[0,T ] ŝ j,k,n,y (t) (ω)t < 2ε. As a consequence,

Taking the complementary, using union bound and the previous pointwise convergence in probability of ŝ j,k,n,y , as N, T, ε < +∞ are independent of n,

A. Regular variation framework

Definition A.1 (Multivariate Regular Variation). A random vector X ∈ R d is regularly varying with index α ≥ 0 if there exists a random vector Θ on the unit sphere S d-1 such that for any x ∈ (0, +∞), the following vague convergence holds:

Definition A.2 (Second order regular variation [START_REF] De Haan | Extreme value theory: an introduction[END_REF]). Let γ > 0 and ρ ≤ 0. We say that U ∈ 2RV -γ,ρ (+∞) if there exists an auxiliary function A with ultimately constant sign and lim t→+∞ A(t) = 0 such that lim

Note that for x > 0,

By Theorem 2.3.9 in [START_REF] De Haan | Extreme value theory: an introduction[END_REF], this is equivalent to

γ (+∞). Besides, on the auxiliary functions level, Theorem 2.3.3 in [START_REF] De Haan | Extreme value theory: an introduction[END_REF] provides

Remark A.3. Condition (H1) entails a second order regular variation behaviour. Note that c 1,y ≡ 1 for any y ∈ E.

For any 1 ≤ j ≤ d, since F j,y ∈ RV -1/γ y (+∞), there exists ℓ F j,y ∈ RV 0 (+∞), such that

Also, we have U j,y ∈ RV γ y (+∞) and thus, there also exists a slowly varying function ℓ U j,y := ℓ j,y such that U j,y (x) = x γ y ℓ j,y (x), for x > 0. Condition (H2) is inherited from [START_REF] Beck | Semi-parametric estimation of multivariate extreme expectiles[END_REF][START_REF] Véronique Maume-Deschamps | Extremes for multivariate expectiles[END_REF] and states that each marginal behaves the same way in the extreme regime. Moreover, since F j,y ∈ 2RV -1/γ y ,ρ j,y /γ y (+∞), it follows that U j,y ∈ 2RV γ y ,ρ j,y (+∞). According to Definition A.2, there exists auxiliary functions A j,y := A U j,y ∈ RV ρ j,y (+∞) satisfying Equation (A.1).

Remark A.4. Examples of distributions satisfying the second order regular variation condition are:

• Log-gamma distribution defined as the exponential of the sum of two independent standard exponential random variables: F(x) = 1 x 1 + log(x) ∈ 2RV -1,0 (+∞) with A(1/F(t)) = 1/ log(t) (see [START_REF] Geluk | Second-order regular variation, convolution and the central limit theorem[END_REF]).

• For x > e, F(x) = log x x e ∈ 2RV -1,0 (+∞), with A(1/F(t)) = 1/ log(t).

• Hall-Weiss class:

+∞) for α > 0 and ρ < 0 with A(1/F(t)) = ρt ρ (see [START_REF] Geluk | Second-order regular variation, convolution and the central limit theorem[END_REF]).

• Cauchy distribution: F(x) = 1 π tan -1 (1/x) + 1 2 (1sign(x)) ∈ 2RV -1,-2 (+∞) (see [START_REF] Gardes | Functional kernel estimators of large conditional quantiles[END_REF]).

• Fréchet distribution: F(x) = 1e -x -1 γ ∈ 2RV -γ,-γ (+∞), γ > 0 (see [START_REF] Gardes | Functional kernel estimators of large conditional quantiles[END_REF]).

• Burr distribution: F(x) = (1 + x τ ) -λ ∈ 2RV -1 τλ ,-τ (+∞), τ, λ > 0 (see [START_REF] Gardes | Functional kernel estimators of large conditional quantiles[END_REF]).

• Student t ν , ν > 1, distribution with density f (x) = Γ( ν+1

)

√ νπΓ( ν

2 . Then, F ∈ 2RV -ν,-2 (+∞).

The interested reader can find more 2RV type distributions in Section 5 of [START_REF] Mao | Second-order properties of the Haezendonck-Goovaerts risk measure for extreme risks[END_REF].