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This paper deals with the modeling and simulation of the in-host dynamics of a virus. The modeling approach is developed according to the idea that mathematical models should go beyond deterministic single-scale population dynamics by taking into account the multiscale, heterogeneous features of the complex system under consideration. Here we consider modeling the competition between the virus, the epithelial cells it infects, and the heterogeneous immune system with evolving activation states that induce a range of different effects on virus particles and infected cells. The subsequent numerical simulations show different types of model outcomes: from virus elimination, to virus persistance and periodic relapse, and virus uncontrolled growth that triggers a blow-up in the fully-activated immune response. The simulations also show the existence of a threshold in the immune response that separates the regimes of higher re-infections from lower re-infections (compared to the magnitude of the first viral infection).

Motivations and plan of the paper

The emergence of the SARS-CoV-2 virus, responsible for the initial COVID-19 outbreak and the subsequent pandemic [START_REF] Andersen | The proximal origin of SARS-CoV-2[END_REF], has affected our minds, health, and well-being to the point of visibly altering the way we think and organize our lives, including our individual feelings, work organization, economics, and all expressions of collective behavior in our societies. These enormous problems have affected all countries of the world.

On the positive side, however, there has been a growing awareness that science is a primary asset to be respected and preserved. In addition, human societies are now aware that we live in a complex and interconnected world. Accordingly, science has generated an enormous amount of research activity, not only in the various branches of biology and medicine, such as virology, immunology, medical care, but also in parallel fields such as economics [START_REF] Diamond | Innate immunity: the first line of defense against SARS-CoV-2[END_REF][START_REF] Griette | What can we learn from COVID-19 data by using epidemic models with unidentified infectious cases?[END_REF], psychology and social sciences [START_REF] Flandoli | Individual-based Markov model of virus diffusion: Comparison with COVID-19 incubation period, serial interval and regional time series[END_REF]. Thus, a new vision of social organization and a greater attention to welfare problems is developing in our societies. A dialog within the scientific community was quickly opened, see [START_REF] Kissler | Projecting the transmission dynamics of SARS-CoV-2 through the postpandemic period[END_REF], and brought to the attention of society the fragility of our planet [START_REF] Avishai | The pandemic isn't a black swan but a portent of a more fragile global system[END_REF].

The mathematical sciences have followed this activity, as can be seen in [START_REF] Bellomo | A multi-scale model of virus pandemic: Heterogeneous interactive entities in a globally connected world[END_REF] and in the contents of various special issues on this topic [START_REF] Bellomo | Modelling Virus pandemics in a globally connected world, a challenge towards a mathematics for living lystems[END_REF][START_REF] Sette | Adaptive immunity to SARS-CoV-2 and COVID-19[END_REF]. Most of the published studies focus on various modifications of the SIR model, to incorporate specific aspects that could impact viral transmission; see [START_REF] Bertozzi | The challenges of modeling and forecasting the spread of COVID-19[END_REF][START_REF] Fontanari | A stochastic model for the influence of social distancing on loneliness[END_REF][START_REF] Paolini | Cell death in coronavirus infections: uncovering its role during COVID-19[END_REF]. Some applications refer specifically to regional areas [START_REF] Bertaglia | Hyperbolic compartmental models for epidemic spread on networks with uncertain data: application to the emergence of Covid-19 in Italy[END_REF][START_REF] Elemans | The efficiency of the human CD8+ T cell response: how should we quantify it, what determines it, and does it matter[END_REF]. The structural simplicity of these models is discussed, for example, in [START_REF] Demongeot | Vaccine efficacy for COVID-19 outbreak in New York City[END_REF][START_REF] Ferrari Gianlupi | Multiscale model of antiviral timing, potency, and heterogeneity effects on an epithelial tissue patch infected by SARS-CoV-2[END_REF]. An important problem addressed by compartmental models of SIR-type is the calibration of the models with empirical data focusing on regional or national areas. These studies have to deal with the difficulty of collecting reliable empirical data [START_REF] Griette | A robust phenomenological approach to investigate COVID-19 data for France[END_REF], somewhat related to contagion problems related to transport dynamics [START_REF] Dosi | Unequal societies in usual times, unjust societies in pandemic ones[END_REF].

On the other hand, some innovative ideas have been proposed by various authors to account for the different types of heterogeneity of human societies and their aggregations. For example, in [START_REF] Bellomo | A multi-scale model of virus pandemic: Heterogeneous interactive entities in a globally connected world[END_REF] the authors proposed a multiscale vision related to a systems approach that goes far beyond deterministic population dynamics. Indeed, individual responses to infection and pandemic events are heterogeneously distributed throughout the population. In addition to biological heterogeneity, there are other types of heterogeneity: physical, related to age, social heterogeneity that can include also the level of education, which leads to a greater or lesser ability to reach an advanced level of awareness regarding the risk of contagion [START_REF] Aguiar | A multiscale network-based model of contagion dynamics: heterogeneity, spatial distancing and vaccination[END_REF][START_REF] Kim | Coupling kinetic theory approaches for pedestrian dynamics and disease contagion in a confined environment[END_REF]. In particular, contagion awareness also plays an important role in open areas and has led to various studies of crowd dynamics with internal behavioral variables [START_REF] Bellomo | On the interplay between behavioral dynamics and social interactions in human crowds[END_REF][START_REF] Karimzadeh | Review of infective dose, routes of transmission and outcome of COVID-19 caused by the SARS-CoV-2: comparison with other respiratory viruses[END_REF].

One of the key issues to be developed is the modeling of the multiscale intra-host dynamics that occur after viral infection, which ends with immediate recovery or hospitalization, and in some cases, death of patients. In fact, there are currently only a few publications that focus on modeling the multiscale heterogeneous aspects of in-host infections with SARS-CoV-2 [START_REF] Franceschi | Immunobiography and the heterogeneity of immune responses in the elderly: a focus on inflammaging and trained immunity[END_REF][START_REF] Van Belleghem | Macrophages and innate immune memory against Staphylococcus skin infections[END_REF]. For example, we mention the multiscale modeling study in [START_REF] Van Belleghem | Macrophages and innate immune memory against Staphylococcus skin infections[END_REF], which considered the heterogeneous cells with different numbers of surface receptors (thus at the microscale level). The multiscale modeling study in [START_REF] Franceschi | Immunobiography and the heterogeneity of immune responses in the elderly: a focus on inflammaging and trained immunity[END_REF] used an agent-based model to describe the heterogeneous cell population (where cells have different internal concentrations of an antiviral drug) and the heterogeneous cytokine concentrations secreted by the cells. These published models focused on discrete aspects of the variable that gives the heterogeneity of a population, and thus they were mainly described by ordinary differential equations.

This paper is devoted to modeling the multiscale in-host dynamics that develop within each individual immediately after viral infection. The multiscale aspect is related to the heterogeneity of the immune response to the viral infection (i.e., to viruses and infected epithelial cells), which determines the outcome of the infection. In contrast to previous studies that focus on discrete states of cells, here we assume a continuous activity variable that describes the immune response. This assumption is based on experimental studies that show a continuum of immune cell activation states, that results from various cell integration of cytokine signals that drive their activation [START_REF] Eftimie | Grand challenges in mathematical biology: Integrating multi-scale modeling and data[END_REF][START_REF] Gatto | Spread and dynamics of the COVID-19 epidemic in Italy: Effects of emergency containment measures[END_REF]. Throughout this theoretical study, we consider the competition between the virus and the heterogeneous immune responses that appear immediately after the viral infection of the upper respiratory tract, before the virus moves to the lungs and causes further tissue damage.

The paper is structured as follows:

Section 2 presents the biological assumptions regarding the dynamics of the virus versus the immune system, where the initial competition involves the innate immunity, while the adaptive immunity acts after a lapse of time necessary to learn the presence of the pathogen. The key feature of the dynamics is to quantify the outcome of the competition, i.e. to understand whether the innate immunity succeeds in preventing the virus from reaching the lungs, while the activation of the adaptive immunity by vaccines can avoid this event.

Section 3 presents the general multiscale modeling framework that uses the so-called kinetic theory of active particles [START_REF] Bellomo | What is life? A perspective of the mathematical kinetic theory of active particles[END_REF]. Then, this general framework is applied to a specific case of in-host viral infections of epithelial cells, which trigger heterogeneous immune anti-viral responses, where immune cells evolve different levels of activation. The details of the model (and the biological mechanisms behind different virus-cell and cell-cell interactions) are also specified in this Section. Section 4 presents some numerical simulations that illustrate the range of model dynamics: from virus elimination, to virus re-infection, and virus persistence and immune blow-up. Different parameters are varied to explore the predictive ability of the model: the mechanisms behind short-term or long-term infections, the impact of different initial viral loads, the impact of persistant immunity.

Finally, Section 5 looks ahead to new research perspectives by focusing on the potential of this multiscale modeling framework to understand the complex dynamics of heterogeneous immune responses.

Phenomenology of the in-host dynamics

This section presents a phenomenological interpretation of the specific biological features of the in-host competition between the virus and the immune system, where the dynamics take place after contagion. As will be shown in the next section, this framework is intended to contribute to the derivation of mathematical models that can describe the aforementioned competition in terms of a differential system. We refer the reader to [START_REF] Bellomo | A multi-scale model of virus pandemic: Heterogeneous interactive entities in a globally connected world[END_REF][START_REF] Macallan | Current estimates of T cell kinetics in humans[END_REF][START_REF] Massard | A multi-strain epidemic model for COVID-19 with infected and asymptomatic cases: application to French data[END_REF][START_REF]RAMP: A call for assistance, addressed to the scientific modelling community In-host modeling[END_REF] for more details regarding the description of the in-host virus-immune competition.

Here we focus on the early stages of infection, when the virus succeeds in bypassing the mucosal barrier of the upper respiratory tract and begins to infect the epithelial cells, where it is confronted by various immune reaction mechanisms. While innate responses play a very important role in blocking the initial stages of invasion and in initiating antiviral immunity, the adaptive immune response stops viral replication, leading to recovery from COVID-19 and the induction of persistent immune memory [START_REF] Macallan | Current estimates of T cell kinetics in humans[END_REF]. Unfortunately, sometimes the immune mechanisms fail to contain the invasion and the viral particles are able to reach the lung tissue, a critical factor in determining the evolution of the disease and the fate of the patient [START_REF] Massard | A multi-strain epidemic model for COVID-19 with infected and asymptomatic cases: application to French data[END_REF]. This can happen because the number of infectious virus particles is so high that they overcome the resistance of the immune mechanisms [START_REF]Review: what is the infectious dose of SARS-CoV-2?[END_REF]. Indeed, the cumu-lative number of virus particles infecting a patient is not easy to estimate. It could range from a minimum number of virus particles needed to establish infection (i.e., infectious dose) to higher numbers that can be acquired in hospitals, crowded environments, or from super spreading events [?, ?]. Alternatively, virus spread could be promoted by individual genetic variants [START_REF] Asgari | Human genetic variants identified that affect COVID susceptibility and severity[END_REF], immunodeficiencies, even those that would otherwise have gone unnoticed [START_REF] Matricardi | The first, holistic immunological model of COVID-19: Implications for prevention, diagnosis, and public health measures[END_REF], senescence [START_REF] Liu | A model to predict COVID-19 epidemics with applications to South Korea, Italy, and Spain[END_REF], or comorbidities that impair the function of the immune system.

Referring to the study in [START_REF] Bellomo | A multi-scale model of virus pandemic: Heterogeneous interactive entities in a globally connected world[END_REF], we remark that the investigation of viral infections in general requires a multiscale approach, where the macroscale corresponds to individuals that may be infected or uninfected, while the microscale corresponds to in-host entities within infected individuals. The link between the two scales is provided by the dynamics of contagion, which depends on the multiple parameters mentioned above. Keeping this general framework in mind, the content of our paper focuses on the in-host dynamics evolving from the viral load as an input data. Also related to input data, we remark that since SARS-CoV-2 is a new virus [START_REF] Massard | A multi-strain epidemic model for COVID-19 with infected and asymptomatic cases: application to French data[END_REF], the antibodies induced by other coronaviruses, such as SARS-CoV and MERS, in most of cases do not recognize and neutralize this new virus.

The specific features to be considered in the modeling approach of the dynamics of the biological system under consideration are described by the following points, which are preliminary to modeling. We do not naively claim that the description is exhaustive, as it is limited to the specific assumptions that will be actually included in the modeling approach.

1. Modeling Framework: The modeling approach is developed at the micro scale, within an infected individual, and focuses on the dynamics of the in-host entities, i.e., cells within the tissue, virus particles and immune agents. After a viral infection, there is a competition between the virus and the immune system within each infected individual. The infection may progress (or regress) due to a superiority (or inferiority) of the virus over the immune defense, and may end with a full recovery of the patient, with the so-called long COVID-19, or with the death of the patient. These outcomes are based on a complex dynamic by which antiviral immune mechanisms prevent or not the passage of the virus from the upper respiratory tract to the lungs, as well as on the time needed for the activation of adaptive immunity to eliminate the virus.

Multiple characteristics:

As noted above, the macroscopic scale corresponds to individuals and the microscopic scale corresponds to in-host (i.e., within an individual) entities such as epithelial cells, virus particles, and immune agents.

Contagion:

The likelihood of infection depends on the number of viral copies (viral load) that can reach the respiratory tract of a susceptible person. The arrival of an infectious viral load depends mostly on the dynamics at the macroscopic scale, i.e. the interaction between a person spreading the virus and other susceptible individuals and the social distance between them. The risk of contagion is also influenced by the characteristics of the area where the infection occurs (temperature, humidity...) and on the time during which susceptible individuals are exposed to the virus. The result of these dynamics modulates the number of infectious virus copies, a modulation that critically influences the initial in-host dynamics of the virus-immune system within each susceptible individual.

4. Viral Load: Viral load is the number of virus particles simultaneously penetrating a person. The total number of SARS-CoV-2 virions was estimated in a recent experimental study [START_REF] Seminara | Biological fluid dynamics of airborne COVID.19 infection[END_REF]. The minimum infectious dose of SARS-CoV-2 that can cause COVID-19 in humans is still an open question, although some modeling studies and some experimental animal studies have estimated the minimum infectious dose of SARS-CoV-2 to be of the order of hundreds of virions [START_REF] Hardy | The paradox of productivity during quarantine: an agent-based simulation[END_REF][START_REF] Tan | Early induction of functional SARS-CoV-2-specific T cells associates with rapid viral clearance and mild disease in COVID-19 patients[END_REF]. In a recent experimental study, the total number of SARS-CoV-2 present in an infected individual has been estimated to be in the billions [START_REF] Seminara | Biological fluid dynamics of airborne COVID.19 infection[END_REF]. The highest number of virus particles is produced just before the onset of symptoms [START_REF] Hardy | The paradox of productivity during quarantine: an agent-based simulation[END_REF].

5. Affinity: Another important factor to consider is the affinity of the virus for human epithelial cells. Affinity is a specific property of each variant of the virus.

6. Dynamics of the virus: Through spike proteins, the virus interacts with and enters human epithelial cells, where thousands of new copies of the virus are produced. These then invade additional epithelial cells. The above biological model provides a basic scheme on which to derive the mathematical model. Some additional details will have to be added when a more precise definition of the biological events becomes important, as it will modulate the interpretation of the virus-immune system relationship. In Figure 1 the sequential steps of this biological model are shown: the dark red arrows show the progression of viral invasion, while the circles show the virus (V 1-4) and the immune defense activities (D1-7) that interfere with this progression. These interferences can be so important as to block infection and lead to viral clearance. Conversely, such perturbations can make viral progression unstoppable and catastrophic. The specific features of these events can be formalized by deriving a mathematical model. 

Derivation of in-host mathematical models

This section is devoted to the derivation of mathematical models responsible for representing the in-host dynamics by transferring the biological description presented in Section 2 into a system of differential equations consistent with the mathematical kinetic theory of active particles (KTAP). The model derivation considers the following three steps:

1. Subdivision of the system into populations, called functional subsystems, shortly FSs, which play an effective role in the game. The state of each FS is defined by distribution function over the microscale state, called activity, which is expressed by the individual entities, called active particles, shortly a-particles, that belong to each FS.

2. Derivation of a general mathematical structure suitable to define the dynamics of the distribution function which acts as the dependent variable of the dynamical system. As it is shown in [START_REF] Bellomo | What is life? A perspective of the mathematical kinetic theory of active particles[END_REF], this structure should also capture, as far as it is possible, the main features of living systems. The derivation of the mathematical structure should also include the dynamics of learning (i.e., cells can learn from their interactions with other cells/particles and can change their activity state).

3. Modeling interactions involving active particles and inserting them into the said mathematical structure to obtain specific mathematical models. According to [START_REF] Bellomo | What is life? A perspective of the mathematical kinetic theory of active particles[END_REF], these interactions can be nonlocal, nonlinearly additive, and can generate proliferative and destructive events. These steps will be treated in more detail in the next subsections, where a multiscale mathematical model for the interactions between infected epithelial cells, virus particles and immune cells with different activity levels will be proposed and further investigated numerically. The state of each FS is given by a time-dependent distribution function over the activity variable u, for instance f i = f i (t, u), i = 1, ..., Nf (where Nf is the number of FSs). If the activity is not modified by interactions, then the activity has a constant value u ∼ = u 0 and the system behaves as a deterministic population. In this case we use the notation n i = n i (t; u 0 ), to distinguish the deterministic FSs from the stochastic FSs.

Functional subsystems, activity, and representation

The following notation uses lowercase Roman letters for activities that can be modified by interactions and Greek letters for parameters that may be heterogeneously distributed but are not modified by interactions. The modeling approach also takes into account two reference quantities, the critical number of virus particles that can occupy the upper respiratory tract before entering the lungs (N M ) and the maximum number of host cells in the upper respiratory tract (N H ) that can be infected, which are used to normalize certain parameters involved in the dynamics to ensure appropriate units; see Section 4.

Let us now consider, with reference to Figure 2, the deterministic and stochastic FSs that play the game. A simple approach is to identify the following FSs and the activities expressed by each of them: i = 1: Viral particles express the ability to infect epithelial cells, where replication occurs. Since there is no progression of virus particles through an "activity-variable", the virus population can be considered deterministic, and the state of this 1-FS can be described by the density n 1 = n 1 (t). i = 2: Infected epithelial cells are the result of viral infection spreading through the epithelial cell population. Here we focus only on the infected cells (in the upper respiratory tract) which are less than the maximum number of host cells in the upper respiratory tract (N H ) mentioned above. Again, since there is no progression of infected epithelial cells through an "activityvariable space", we can consider this cell population as deterministic and thus, the density of infected cells in this 2-FS is given by n 2 = n 2 (t). i = 3: Immune cells learn the presence of the virus and try to control the infection via anti-viral and pro-inflammatory molecules, such as the interferons (IFN) [START_REF] Perthame | Transport Equations in Biology[END_REF]. For simplicity, here we average both innate and adaptive immune responses into a single variable that describes a general antiviral immune response. The state of this functional subsystem (3-FS) is given by the distribution f 3 = f 3 (t; u). Here, u ≥ 0 describes the activation level of these immune cells (which is the result of different types and intensities of antigen exposure [START_REF] Musiani | Basic Immunology[END_REF][START_REF] Gessain | Non-genetic heterogeneity of macrophages in diseases -a medical perspective[END_REF]), with u = 0 denoting the non-activated state, and u = 1 describing the fully activated cells.

Derivation of a kinetic theory mathematical structure

The derivation of mathematical models is based, as mentioned, on the kinetic theory of active particles. This statement can be made more precise by deriving a mathematical structure suitable to provide the framework to describe specific models. We consider the case of spatial homogeneity of models describing the time dynamics of the distribution functions:

f i = f i (t, u) : [0, T ] × [0, 1] → R + , i = 1, 2, 3, ( 1 
)
where u is the microscale activity variable. The mathematical structure can be applied to all distribution functions, although some of the FSs correspond to a deterministic population. In fact, this case can be seen as a particular case of the most general one, where all dependent variables are stochastic.

The structure must include both conservative interactions, which modify the activity but not the number of active particles, and proliferative/destructive events, which also modify the number of particles. Guidelines for deriving such a structure are given in [START_REF] Bellomo | What is life? A perspective of the mathematical kinetic theory of active particles[END_REF]. Accordingly, the said structure is as follows:

∂ ∂t f i (t, u) = 4 j=1 η ij [f ]A(u * → u|u * , u * , f )f i (t, u * )f j (t, u * ) du * du * +f i (t, u)G i [f ] -f i (t, u)L i [f ], (2) 
where f = {f 1 , f 2 , f 3 }, where each component of f corresponds to a specific population. Accordingly, f 1 corresponds to viral particles (IP), f 2 corresponds to infected cells (FI), f 3 to immune cells (CI). The proliferative/destructive interaction functionals G i [f ] and L i [f ] could be local or non-local, constant or density-dependent, as we will see for a specific case in the next section. Remark 3.1 In the case of deterministic populations one has f i (t; u 0 ) = n i (t)δ(u -u 0 ), where δ denotes the delta function and n i (t) denotes the density of the deterministic population i. The structure (2) can be rapidly modified to include one or more deterministic populations as shown by the model derived in the next subsection. Remark 3.2 The density of deterministic population i is obtained by the zero order moments of the distribution function as follows:

n i = n i (t) = 1 0 f i (t, u) du. (3) 
Remark 3.3 Since the innate immunity goes into action within minuteshours of pathogen infection [START_REF] Mantovani | COVID-19 vaccines and a perspective on Africa[END_REF], we incorporate the effect of this innate immunity into the initial conditions of the model. Thus, f 3 (t, u) will describe mainly the effect of adaptive immunity (with different activity levels u). However, we need to be aware of this simplifying assumption (given that there is actually an overlap between the effects of innate and adaptive immunity).

From interactions to derivation of models

The derivation of the mathematical model follows the assumptions on the phenomenological interpretation, in Section 2, of the biological system and of the description of the functional subsystems in Sub-section 3.1. The variables and parameters that appear in the equations below are dimensional: variables are described in terms of cell densities and cell distributions (i.e., cell numbers/densities distributed over a range taken by the activity variable), as well as number of viral RNA copies (RNAs/ml [START_REF] Bar-On | SARS-CoV-2 (COVID-19) by the numbers[END_REF]), while parameters are described in terms of rates (e.g., proliferation rates associated with doubling times, death rates associated with half lives) and carrying capacities (e.g., maximum number of cells in the upper respiratory tract).

• Dynamics of free viral particles (n 1 ): Since the virus particles do not undergo conservative interactions to change their activity status, in Eq. ( 2) we have η 1j = 0, ∀j ∈ {1, 2, 3}. Regarding the proliferative interactions, we note that the viral particles are produced by the infected epithelial cells, and therefore in Eq. ( 2) we have G 1 = γN c . Regarding the destructive interactions we note that the decay in the virion numbers is due to the action of immune cells which kill these viruses at a rate µ (either directly through phagocytosis or indirectly through the secretion of cytokines such as IFN [START_REF] Perthame | Transport Equations in Biology[END_REF]). Thus, in Eq. ( 2) we have:

L 1 = -µ 1 0 K(u)f 3 (t, u) du, (4) 
where the kernel K(u) gives the activity action for the anti-viral effect of immune cells starting from the innate immunity corresponding to K = 1 to the increasing action of adaptative immunity. The following equation summarizes these biological assumptions:

d dt n 1 (t) = γN c n 2 (t) production -µn 1 (t) 1 0 K(u) f 3 (t, u)du elimination . (5) 
Remark 3.4 K = K(u) is required to be an increasing function of u. A simple model is as follows:

K(u) ∼ = (1 + ν u), with ν > 0. ( 6 
)
The heuristic model describes the growth of immune defence, where u = 0 denotes the the action of innate immunity only, while ν u ↑⇒ K ↑ models the activation of the adaptative immunity. Remark 3.5 Parameter γ is multiplied by the maximum viral load per cell N c [START_REF] Bar-On | SARS-CoV-2 (COVID-19) by the numbers[END_REF]. When infected cells burst open, all these viral particles are released into the micro-environment (and contribute to the population of free virions).

In [START_REF] Bar-On | SARS-CoV-2 (COVID-19) by the numbers[END_REF] the authors estimated this burst size to be about 10 3 virions, and thus we may take N c = 10 3 virions/cell.

• Dynamics of infected epithelial cells (n 2 ): Since the progression of infected epithelial cells is not modified by interactions with other cells or viral particles, in Eq. ( 2) we have η 2j = 0, ∀j ∈ {1, 2, 3}. In regard to the proliferative interactions, we note that the number of infected cells increases, as in Eq. ( 4) (at rate α) due to viral particles interacting with the uninfected cells (N H -n 2 (t)) and entering these cells. The destructive interactions are the result of the anti-viral effect of immune cells [START_REF] Senatore | Indoor versus outdoor transmission of SARS-CoV-2: environmental factors in virus spread and underestimated sources of risk, EuroMediterr[END_REF][START_REF] Deslandes | Superspreading events of SARS-CoV-2 in Paris: a retrospective analysis of data from the first wave of COVID-19 in 2020[END_REF], as well as due to virus-induced cell death at rate γ following viral proliferation (i.e., cells burst open and die). Thus, in Eq. ( 2) we have

G 2 = αn 1 (t)(N H -n 2 (t)), L 2 = γ -µ 1 0 K(u)f 3 (t, u)du, (7) 
with K(u) a kernel defining the activity space for the anti-viral immune immune responses. These biological assumptions are summarized by the following equation:

d dt n 2 (t) = αn 1 (t) (N H -n 2 (t)) virus-induced inf ection -γn 2 (t) dvp -µn 2 (t) 1 0 K(u) f 3 (t, u)du elimination by immune cells , (8) 
where the abbreviation dvp denote cell death due to virus proliferation.

• Dynamics of immune cells (f 3 ): As already mentioned, the distribution function f 3 include both innate and adaptative immunity, where the activation of innate immunity corresponds to u = 0, while interactions with virus particles activate cells of adaptative immunity from u = 0 to u = 1. This dynamics is described by the probability density A(u * → u) corresponding to the interaction rate β between immune cells and viral particles.

In addition, these interactions induce a proliferation of immune cells (with rate κ, which depends on the activation status u). These assumptions lead to the following equation:

∂ ∂t f 3 (t, u) = κ(u) f 3 (t, u)n 1 (t) prolif eration -λf 3 (t, u) decay + βn 1 (t) 1 0 A(u * → u)f 3 (t, u * )du * viral-induced activation (9) 
Therefore, the mathematical model consists in the following system of mixed ODEs and PDEs:

                             d dt n 1 (t) = γN c n 2 (t) -µn 1 (t) 1 0 K(u)f 3 (t, u)du, d dt n 2 (t) = αn 1 (t) (N H -n 2 (t)) -γn 2 (t)
-µn 2 (t) 

1 0 K(u)f 3 (t, u)du, ∂ ∂t f 3 (t, u) = κ(u) f 3 (t, u)n 1 (t) -λf 3 (t, u) +βn 1 (t) 1 0 A(u * → u)f 3 (t, u * )du * (10) 

Numerical simulations

This section reports some sample simulations for the model [START_REF] Bellomo | Pandemics of Mutating Virus and Society: A multi-scale active particles approach[END_REF] with the purpose of developing an understanding of the predictive ability of the model. The dimensional initial conditions for these simulations are listed in Table 1. Note that the initial number of immune cells accounts also for the impact of a fast innate immune response (which can be activated within minutes-hours of the pathogen infection [START_REF] Mantovani | COVID-19 vaccines and a perspective on Africa[END_REF]).

For the numerical simulations (implemented in C), we discretised the integrals in equations ( 10) using Simpson's rule. For the progression probability we used A(u * → u) = 1-u 1+(u-u * ) . Then, time was discretised using a Runge-Kutta method.

Table 1: Initial conditions (t = 0) for numerical simulations of model [START_REF] Bellomo | Pandemics of Mutating Virus and Society: A multi-scale active particles approach[END_REF] .

Description

Initial value Simulation Range Viral load

n 1 (t = 0) = N 0 = 10 3 [10 2 ; 10 6 ] Infected cells n 2 (t = 0) = 1 [1; 10 2 ] Immune cells f m (t = 0, u) = F 0 (u) = 10 1 e -100u
[e -100u ; 10 2 e -100u ]

As the numerical simulations presented below will focus on the impact of various model parameters on the spread of viral infection through the epithelial cells, in the next sub-section we discuss briefly the estimated values of these parameters (and the ranges over which they are varied).

Estimating parameter values

The parameter values used for the numerical simulations in this study have been estimated as follows:

• In regard to the host cells (per person), in [START_REF] Bar-On | SARS-CoV-2 (COVID-19) by the numbers[END_REF] the authors noted that there are approx. 10 9 mucous cells in the nasal cavity. Throughout this theoretical study we choose a baseline value N H = 10 5 much lower than the maximum number of host cells in the upper respiratory tract, since it makes sense to assume that not all cells will be infected before the virus invades the lung. We also run simulations for N H ∈ [10 3 , 10 9 ].

• In regard to the critical number of virus particles that occupy the upper respiratory tract before invading the lung, we note that the number of SARS-CoV-2 genomic copies in nasopharyngeal swabs is more than 10 6 viral RNAs copies/ml when the symptoms appear [START_REF] Ricci | Innate immune response to SARS-CoV-2 infection: from cells to soluble mediators[END_REF], and persists for approximately 5 days before declining [START_REF] Ricci | Innate immune response to SARS-CoV-2 infection: from cells to soluble mediators[END_REF]. In [START_REF] Bar-On | SARS-CoV-2 (COVID-19) by the numbers[END_REF] the authors noted that there are between 10 6 -10 11 RNAs/ml in sputum, 10 6 -10 9 RNAs/swab in nasopharynx and 10 4 -10 8 RNAs/swab in throat. Here we choose a baseline value N M = 10 9 , but we also run simulations for N M ∈ [10 6 , 10 11 ].

• In regard to the replication timescale of SARS-CoV-2, in [START_REF] Bar-On | SARS-CoV-2 (COVID-19) by the numbers[END_REF] the authors noted that the time for a virion to enter a the cell is approximately 10min, which translates into an infection rate ≈ 144/day. However, since the units for α are 1/(day × RN As/ml) we need to rescale the infection rate by virion levels. To this end we choose α ≈ 144/N M .

As a baseline value we thus choose α = 1.44 × 10 -6 , but we vary this parameter within the range α ∈ [1.44 × 10 -9 , 1.44 × 10 -4 ].

• In [START_REF] Niessl | T cell immunity to SARS-CoV-2[END_REF] the authors show experimentally that infected human cells reduce their viability by a half within 24 hours. From here we estimate a death rate of γ = ln(2)/1 day=0.693/day.

• The burst size (i.e., number of virions released by one infected cell) is approximately 10 3 [START_REF] Bar-On | SARS-CoV-2 (COVID-19) by the numbers[END_REF], and thus we choose N c = 10 3 .

• Innate immune responses are observed within hours. Anti-viral adaptive T cell immune responses are observed within 7 days of symptoms [START_REF] Meffre | Interferon deficiency can lead to severe COVID[END_REF]. In fact, the study in [START_REF] Sender | The total number and mass of SARS-CoV-2 virions[END_REF] showed the presence of T cell responses around days 3-5 from symptom onset in mild COVID-19 patients, and around day 10 in moderate/severe patients. Earlier quantitative studies on the kinetics of murine T cells in response to different viral infections [START_REF] De Boer | Different dynamics of CD4 + and CD8 + T cell responses during and after acute lymphocytic choriomeningitis virus infection[END_REF] calculated the doubling time of T cells during the initial expansion phase to be between 8-11hr, which translates into a murine proliferation rate between 1.5 -2.0/day. In healthy humans, this proliferation rate is much slower [START_REF] Lynch | Role of Senescence and Aging in SARS-CoV-2 Infection and COVID-19 Disease[END_REF] and was shown to differ between the naive T cells (0.0005 -0.002/day), stem cell memory T cells (0.0007 -0.007/day), effector-memory (0.042/day) and central memory (0.01/day) T cells. It is expected that human viral infections lead to a faster immune proliferation rate. Due to the units for the immune proliferation rates (i.e., ml/(day × RN As); see Table 2) we rescale the above values by N M and choose average proliferation rates κ(u) = (10 -9 + u × 10 -9 )ml/(day × RN As), with u ∈ [0, 1]. However, we vary κ ∈ [10 -11 , 10 -6 ] ml/(day × RN As) to account also for the variability in the proliferation of T cells depending on the viruses used.

• In [START_REF] Newton | The host immune response in respiratory virus infection: balancing virus clearance and immunopathology[END_REF] the authors mentioned that following their expansion in response to viral particles, the T cell population then decays with a half-life of approximately 200 days, which translates into a death rate λ = 0.0035/day. However, this includes also the memory response that persists much longer after the death of effector cells. An earlier study [START_REF] Borghans | The maths of memory[END_REF] (not focused on SARS-CoV-2) estimated that effector memory T cells can have a life span from 6 days to 6 weeks. Another very early study [START_REF] De Boer | Different dynamics of CD4 + and CD8 + T cell responses during and after acute lymphocytic choriomeningitis virus infection[END_REF] calculated the half-life of murine T cells during the contraction phase following the peak of the response between 41 hr and 3 days, which translates into a cell death rate λ ∈ (0.23, 0.4). Since different viruses can trigger different immune responses with different cell kinetics (for either murine or human cells), throughout this study we consider a baseline value λ = 10 -2 , but we vary this rate within a range λ ∈ (10 -3 , 10 1 ). This large parameter range is the result of the fact that in this study we do not distinguish between the different types of immune cells (e.g., effector or effector-memory T cells, or the new concept of memory macrophages [START_REF] Toscani | Kinetic exchange models of societies and economies[END_REF]) which have completely different lifespans described by different λ.

• Since the COVID-19 patients usually recover within 10-14 days, we can assume that within 10 days the virus is eliminated by the immune cells. Due to the units of µ (i.e. 1/(day × cell)), we rescale by N H and thus we take an average baseline value µ ≈ 10 -6 . Note that experimental studies to quantify the efficiency of human CD8 T cells against specific viruses (thus also against SARS-CoV-2) are non-trivial [START_REF] Zein | SARS-CoV-2 infection: Initial viral load (iVL) predicts severity of illness/outcome, and declining trend of iVL in hospitalized patients corresponds with slowing of the pandemic[END_REF], and previous estimates of this killing rate were performed on animal cells infected with different viruses, which led to killing rates between 0.3-0.8/day [START_REF] Zein | SARS-CoV-2 infection: Initial viral load (iVL) predicts severity of illness/outcome, and declining trend of iVL in hospitalized patients corresponds with slowing of the pandemic[END_REF]. Using all this information, in this study we consider the following range for the killing rate of viruses and infected cells by the immune cells: µ ∈ (10 -10 , 10 -4 )

Model dynamics

In the following we illustrate numerically some of the dynamics of kinetic (multiscale) model [START_REF] Bellomo | Pandemics of Mutating Virus and Society: A multi-scale active particles approach[END_REF].

• Baseline dynamics. We start our numerical investigation into the behavior of model [START_REF] Bellomo | Pandemics of Mutating Virus and Society: A multi-scale active particles approach[END_REF] by showing in Figure 3 the baseline dynamics of this model. The simulations are performed with the baseline parameter values from Table 2 and the initial conditions from Table 1.

We see that for these parameter values the virus particles and the infected epithelial cells are eliminated after the first two days following the infection. The elimination is the result of an increase in the level of immune cells.

However, this viral elimination is not permanent and the infection can relapse in the very long term. In Figure 4(a) we show that for the baseline parameter values the infection returns after approximately 600 days. However, the second time there are less viral particles, less infected cells, and even a weaker immune response. This time period between the infection/re-infection depends on the persistance Table 2: Summary of parameters that appear in model ( 10), together with their dimensional units ("cells", "days", "RNA/ml"). The brackets in the 3rd column show the range over which the parameters are varied during the simulations. For the estimation of these values (and their scaling to ensure appropriate units), see the discussion in the main text.

Par. Units Baseline value;

[range] Description

α ml day×RN A 1.44 × 10 -6 ; 1.44 × [10 -9 , 10 -4 ]
rate at which virus infects epithelial cells [START_REF] Bar-On | SARS-CoV-2 (COVID-19) by the numbers[END_REF] γ

1 day 0.69315; [0.1, 1]
death rate of infected epithelial cells, associated with the production rate of new viral particles by these cells [START_REF] Niessl | T cell immunity to SARS-CoV-2[END_REF]. µ

1 day×cell 10 -6 ; [10 -4 , 10 -10 ]
killing rate of virus particles and infected cells by anti-viral immune cells [START_REF] Zein | SARS-CoV-2 infection: Initial viral load (iVL) predicts severity of illness/outcome, and declining trend of iVL in hospitalized patients corresponds with slowing of the pandemic[END_REF]. κ(u) ml day×RN A 10 -9 +u10 -9

[10 -11 , 10

proliferation rate of immune cells in the presence of virus particles; we assume that cells with different activity level u ∈ [0, 1] have different proliferation rates [START_REF] De Boer | Different dynamics of CD4 + and CD8 + T cell responses during and after acute lymphocytic choriomeningitis virus infection[END_REF][START_REF] Sender | The total number and mass of SARS-CoV-2 virions[END_REF]. λ of functional immune cells that can recognise the virus and eliminate it (so model [START_REF] Bellomo | Pandemics of Mutating Virus and Society: A multi-scale active particles approach[END_REF] incorporates implicitly an anti-viral memory immune response). In Figure 4(b) we investigate what happens when we reduce the persistence of functional immune cells (with different activation levels) by increasing their death rate λ to λ = 0.05. We see that in this case the second infection is slightly stronger than the first one (i.e., higher numbers of virus particles and infected cells, and higher levels of immune responses), while the third infection is slightly stronger than the second one. Moreover, for larger λ the time between the first and second infection is larger than the time between the second and third infection.

• Increasing immune cell death. To have a better understanding of the impact of parameter λ (that incorporates implicitly also memory 2.

In sub-panels we show: (i) 2D plot of the density of virus particles n 1 (t);

(ii) 2D plot of the density of infected cells; (iii) 3D plot of the distribution of immune cells f 3 (u, t). We see that for (a) the second infection is weaker than the first one, while for (b) the second infection is stronger than the first one.

immune responses to the virus), in Figure 5 we compare the characteristics of the model dynamics as we vary λ ∈ [0.01, 1]. In panel (a) we see that the time between the original infection and the first reinfection decreases exponentially as we increase λ: very fast for small λ (when there are enough immune cells in the system), and then much slower for large λ (when the immune cells are eliminated). Since in Figure 4 we have seen that the second viral load could be higher or smaller than the first viral load, in panel (b) we show how the difference in the maximum viral load between the first and second infections vary with respect to λ. The threshold between positive and negative values occurs at λ = 0.0275, and this corresponds to a delay between the 1st and 2nd infection of approximately 400 days (see the inset sub-figure in Figure 5(a)). This result suggests that if the immune response is strong enough and persists for a very long time (i.e., when λ < 0.0275) then the second wave of re-infection will be smaller than the first wave. However, if the immune response is weak and does not last long (i.e., λ > 0.0275), the second wave of re-infection is higher than the first wave; but this difference between the first and second wave does not increase as λ increases significantly towards λ = 1 or past this value. 2.

• No anti-viral immune response. We also investigate numerically what happens if there is almost no immune response against the virus or infected cells (and thus we take µ = 0). In Figure 6 we see that in this case there is an over-activation of the immune response, which leads to blow-up in the solution (i.e., the blow-up is in the immune response). This corresponds to the case of systemic inflammation and severe disease observed in COVID-19 infections [START_REF] Deslandes | Superspreading events of SARS-CoV-2 in Paris: a retrospective analysis of data from the first wave of COVID-19 in 2020[END_REF].

• Varying virus initial condition n 1 (0), N H and N M . Since exper-Figure 6: Model dynamics when we assume that the immune cells cannot eliminate the virus and the virus-infected epithelial cells: here µ = 0. All other parameters are as in Table 2. The inset sub-figures in panel (c) show the immune response characterised by different activation states immediately after viral infection, i.e., t ∈ (0, 0.8), and for t ∈ (2.9, 3) just before the blow up that occurs on the fourth day -not shown here.

imental studies [START_REF] Eizenberg-Magar | Diverse continuum of CD4 + T-cell states is determined by hierarchical additive integration of cytokine signals[END_REF] suggested that initial viral load could predict the severity of illness, in Figure 7(a) we show the time-evolution of n 1 (t) as we increase its initial value to n 1 (0) = 10 4 . We see that for the parameter values in Table 2, the virus is eliminated faster (due to a faster activation of the immune cells, in response to the higher initial viral load -not shown here). These results depend significantly on two important parameters which could not be estimated from the available literature: N M (critical number of virus particles that can occupy the upper respiratory tract) and N H (critical number of host cells in the upper respiratory tract). In Figure 7 we show one example of the effect of these parameters on viral evolution: for N H = 10 4 and N M = 10 10 the amount of virus in the system is much lower (max(n 1 (t))=3000, obtained at t = 5.5), but the infection lasts longer (until t = 8). For a more comprehensive investigation of the effect of these two parameters on viral per-sistence, in Figure 7(c) we show a colormap for the time when n 1 (t) reaches its maximum (during the first infection) vs. N M ∈ [10 the n 1 peak is higher and is reached later, but the infection is eliminated faster (due to the immune response -not shown here).

In contracts, for N M = 10 11 the n 1 peak is lower, it is reached sooner, but the infection continues to persist a bit longer.

Summary and Conclusion

This paper deals with the modeling and simulation of the in-host dynamics of the COVID-19 viral infections in the upper respiratory tract. The topic aims to shed new light on the complexity of heterogeneous immune-virus interactions, that has an impact on the safety of patients. In fact, if the invasion of viral particles succeeds to moving to the lungs, a patient needs intensive care and the risk of death is greatly increased. Because of this motivation, the British Royal Society has decided to promote, right from the beginning of the pandemics, a voluntary team, coordinated by Mark Chaplain, to study this specific topic [START_REF] Robinot | SARS-CoV-2 infection induces the dedifferentiation of multiciliated cells and impairs mucociliary clearance[END_REF]. The plan of this paper was first to define the key features of the biological dynamics, and then to develop models and show simulations. We began this study by proposing a general multiscale kinetic framework that can be used to investigate the infection of healthy cells by a viral population. This framework, based on the kinetic theory of active particles (KATP) [START_REF] Bellomo | A multi-scale model of virus pandemic: Heterogeneous interactive entities in a globally connected world[END_REF][START_REF] Bellomo | Modelling Virus pandemics in a globally connected world, a challenge towards a mathematics for living lystems[END_REF][START_REF] Bellomo | What is life? A perspective of the mathematical kinetic theory of active particles[END_REF], can account for the heterogeneous nature of the antiviral immune responses with a continuous of activation states [START_REF] Gatto | Spread and dynamics of the COVID-19 epidemic in Italy: Effects of emergency containment measures[END_REF]. The resulting model is a mixture of equations for changes in the density of cells and viruses (which do not depend on the internal "activity" variable) and equations for changes in the distribution of immune cells with different activity levels described by a continuous "activity" variable. This KATP theoretical framework (which can be applied to all viral in- fections and antiviral immune responses) was then applied in detail to the case of SARS-CoV-2 infections. To this end, we identified possible cellcell and cell-virus interactions based on published experimental studies of COVID-19 antiviral responses. We also estimated the model parameters based on the published literature. Nevertheless, the estimated values incorporated lots of uncertainty, and to address this issue we performed a series of numerical simulations where we varied the parameters one at a time (a local sensitivity analysis). Section 4 shows the possible outcomes of the model dynamics: from virus elimination in the short/medium time (Figure 3), to virus relapse in the long time (Figure 4), and even blow-up in the immune response due to an over-activation in response to virus accumulation (Figure 6). We also investigated the impact on model dynamics when we changed the initial levels of viral particles (Figure 7(a)), or we change different model parameters: λ, N H and N M (Figure 7(b),(c)). The simulations showed the possibility of having lower/higher secondary infections, as well as shorter/longer durations for these infections, all depending on the values of these model parameters (not easily estimated). The role of numerical simulations is very important, as it can support medical care by describing the dynamics of the pathology in response to specific medical actions. Additional studies can further develop the results of our paper: for instance, by introducing the dynamics of virus variants and vaccination programs, see [START_REF] Bellomo | Multiscale models of Covid-19 with mutations and variants[END_REF][START_REF] Bellomo | Pandemics of Mutating Virus and Society: A multi-scale active particles approach[END_REF][START_REF] Marshall | An introduction to immunology and immunopathology[END_REF]. However, the key problem that remains is the calibration of the multiscale model with empirical data [START_REF] Ducrot | Return-to-home model for short-range human travel[END_REF]. This is not an easy task, as immune defences are heterogeneously distributed in the population, but also as the dynamics depend on the initial (unknown) viral load, which can have an important influence on the quantitative behavior of the dynamics inside the various tissues of the body in the upper and lower respiratory tracts. However, further studies should explore this data calibration problem for such kinetic multiscale models, as these models are sufficiently flexible to take into account all the aforementioned features of the biological systems.
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 789 Virus Variants -Copying Errors: During the rapid production of new viruses within the infected cell, many mistakes are made in the copying (transcription) of the viral RNA. Most of these errors (mutations) are inconsequential or result in the production of less effective virus particles. In a few cases, new variants with more invasive prop-erties may appear. Although the likelihood of the emergence of more infectious variants is very low, Darwinian competition among virus particles may favor their spread. Dynamics of the immune system: On the cell membrane as well as in the cytoplasm, human cells have several sensors (e.g., pattern recognition receptors) that detect the presence of viral RNA. These sensors trigger a variety of reactions that lead to the destruction of viral RNA and the release of alarm signals. Among the early signals released by infected cells, a large family of interferons triggers cell antiviral activities and prevents the spread of viral infection to neighboring cells[START_REF] Netea | Defining trained immunity and its role in health and disease[END_REF]. The virus-infected cell assembles the inflammasome and releases multiple pro-inflammatory cytokines. This triggers an initial localized inflammatory response. The infected cell may also undergo apoptosis before becoming a factory of new viral particles. On the other hand, several proteins encoded by the viruses can sabotage and dampen immune cell responses. The dynamics of the immune system's reaction to viral invasion are markedly affected by individual genetic variants that regulate the speed and intensity of each of the above-mentioned reaction mechanisms. Activation of adaptive immunity: In most cases, adaptive immunity is not activated during these early stages unless primed by similar previous infections or by vaccines. However, at a slower pace, the presence of viral particles and viral proteins is perceived by adaptive immunity lymphocytes, alerted by the alarm signals released by both the infected epithelial cells and the innate immunity cells recruited into the initial local inflammatory response. Antibodies of different types (classes) are produced, progressively increasing in number and precision (affinity) towards the viral proteins.
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 1 Figure 1: Representation of the in-host dynamics of the virus and of the immune response.

Figure 2 :

 2 Figure 2: Caricature description of the variables that form the functional subsystems considered in this study. The virus particles and the infected epithelial cells are described by densities, while the immune cells are described by a distribution over the activity variable.
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 41 The progression probability A could have different shapes, as long as it is approximately one when u, u * ≈ 0, it is zero when u = 1, and it is defined for u * ≥ u. Examples are: (a) 1-u 1+(u-u * ) + ; (b) (1 -u)e -a (u-u * ) + 1-u .
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 65353 Figure 3: Baseline dynamics of continuum model (10). (a) density of virus particles: n 1 (t); (b) density of infected cells: n 2 (t); (c) distribution of immune cells across the activity space: f 3 (t, u). All parameters are as in Table 2. In (a),(b), the sub-panels (i) show the 2D plots n 1,2 (t) vs. time, while the sub-panels (ii) show the 3D plots n 1,2 vs. u vs. time. The inset (right) sub-figure in (c) shows the same graph as in the left main figure, but for time t ∈ [0, 0.8], so that we see more clearly how the immune cells start to become activated (i.e., larger f 3 (u, t) as u → 1 and t → 0.8).

Figure 4 :

 4 Figure 4: (a) Long-term baseline dynamics of model[START_REF] Bellomo | Pandemics of Mutating Virus and Society: A multi-scale active particles approach[END_REF]; the parameters are as in Figure3. (b) Long-term dynamics obtained when we increase the death rate of immune cells to λ = 0.05.; all other parameters are as in Table2.In sub-panels we show: (i) 2D plot of the density of virus particles n 1 (t); (ii) 2D plot of the density of infected cells; (iii) 3D plot of the distribution of immune cells f 3 (u, t). We see that for (a) the second infection is weaker than the first one, while for (b) the second infection is stronger than the first one.

Figure 5 :

 5 Figure 5: (a) Time between the 1 st and 2 nd viral infections, as we vary λ. (b) Difference in the maximum viral load during the 1 st and 2 nd viral infections: the threshold between positive values (i.e., 1 st wave higher than the 2 nd wave) and negative values (i.e., 1 st wave lower than the 2 nd wave) is at λ ≈ 0.0275. The inset sub-figures are the same as the main figures, but with the horizontal axis on a logscale. All other model parameters are as in Table2.

Figure 7 :

 7 Figure 7: (a) Dynamics of n 1 (t) when we increase the initial viral load: from n 1 (0) = 10 3 to n 1 (0) = 10 4 . All other parameters are as in Table 2. (b) Dynamics of n 1 (t) when we decrease N H (from baseline N H = 10 5 ) and increase N M (from baseline N M = 10 9 ). For a more thorough investigation of the effect of varying N H and N M on viral load, in panel (c) we show a colormap of the time when n 1 reaches a maximum value, as we vary N M ∈ [10 8 , 10 11 ] and N H ∈ [10 3 , 10 6 ]. The inset sub-figures in panel (c) show: (i) a change in the time when n 1 (t) reaches its maximum value for N H = 10 4 and N M ∈ [10 8 , 10 11 ]; (ii) the 3D plots of n 1 (t) vs. time(t) vs. activity (u) for 2 specific cases: N M = 10 10 (top) where max(n 1 ) is reached at t ≈ 5.5 but the virus is eliminated after t = 8; N M = 10 11 (bottom) where max(n 1 ) is reached at t ≈ 5 but the virus is eliminated after t = 9.5.

  

  

  8 , 10 11 ] vs. N H ∈ [10 3 , 10 6 ]. In the inset (i) we show the same time when n 1 reaches its maximum, as we fix N H = 10 4 (as in sub-panel (b)) and we vary N M ∈ [10 8 , 10 11 ]. First, we note that increasing N M delays the time when n 1 (t) reaches its maximum value. Second, we see that for N M = 10 10 max(n 1 ) is obtained for t = 5.5, while for N M = 10 11 max(n 1 ) is obtained for t = 5. To clarify this aspect, in sub-panels (ii) we show two 3D plots n 1 (t) vs. t vs. immune activity 'u for: N M = 10 10 (top) and N M = 10 11 (bottom). It is clear that for N M = 10
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