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Abstract

This paper deals with the modeling and simulation of the in-host
dynamics of a virus. The modeling approach is developed according
to the idea that mathematical models should go beyond determinis-
tic single-scale population dynamics by taking into account the multi-
scale, heterogeneous features of the complex system under considera-
tion. Here we consider modeling the competition between the virus,
the epithelial cells it infects, and the heterogeneous immune system
with evolving activation states that induce a range of different effects
on virus particles and infected cells. The subsequent numerical sim-
ulations show different types of model outcomes: from virus elimina-
tion, to virus persistance and periodic relapse, and virus uncontrolled
growth that triggers a blow-up in the fully-activated immune response.
The simulations also show the existence of a threshold in the immune
response that separates the regimes of higher re-infections from lower
re-infections (compared to the magnitude of the first viral infection).
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1 Motivations and plan of the paper

The emergence of the SARS–CoV–2 virus, responsible for the initial COVID-
19 outbreak and the subsequent pandemic [2], has affected our minds,
health, and well-being to the point of visibly altering the way we think
and organize our lives, including our individual feelings, work organization,
economics, and all expressions of collective behavior in our societies. These
enormous problems have affected all countries of the world.

On the positive side, however, there has been a growing awareness that
science is a primary asset to be respected and preserved. In addition, hu-
man societies are now aware that we live in a complex and interconnected
world. Accordingly, science has generated an enormous amount of research
activity, not only in the various branches of biology and medicine, such as
virology, immunology, medical care, but also in parallel fields such as eco-
nomics [18, 32], psychology and social sciences [25]. Thus, a new vision of
social organization and a greater attention to welfare problems is develop-
ing in our societies. A dialog within the scientific community was quickly
opened, see [36], and brought to the attention of society the fragility of our
planet [4].

The mathematical sciences have followed this activity, as can be seen
in [6] and in the contents of various special issues on this topic [7, 58]. Most
of the published studies focus on various modifications of the SIR model,
to incorporate specific aspects that could impact viral transmission; see [13,
26, 50]. Some applications refer specifically to regional areas [12, 24]. The
structural simplicity of these models is discussed, for example, in [16, 30].
An important problem addressed by compartmental models of SIR-type is
the calibration of the models with empirical data focusing on regional or
national areas. These studies have to deal with the difficulty of collecting
reliable empirical data [31], somewhat related to contagion problems related
to transport dynamics [19].

On the other hand, some innovative ideas have been proposed by var-
ious authors to account for the different types of heterogeneity of human
societies and their aggregations. For example, in [6] the authors proposed
a multiscale vision related to a systems approach that goes far beyond de-
terministic population dynamics. Indeed, individual responses to infection
and pandemic events are heterogeneously distributed throughout the pop-
ulation. In addition to biological heterogeneity, there are other types of
heterogeneity: physical, related to age, social heterogeneity that can include
also the level of education, which leads to a greater or lesser ability to reach
an advanced level of awareness regarding the risk of contagion [1, 35]. In
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particular, contagion awareness also plays an important role in open areas
and has led to various studies of crowd dynamics with internal behavioral
variables [11, 34].

One of the key issues to be developed is the modeling of the multiscale
intra-host dynamics that occur after viral infection, which ends with im-
mediate recovery or hospitalization, and in some cases, death of patients.
In fact, there are currently only a few publications that focus on modeling
the multiscale heterogeneous aspects of in-host infections with SARS-CoV-
2 [29, 62]. For example, we mention the multiscale modeling study in [62],
which considered the heterogeneous cells with different numbers of surface
receptors (thus at the microscale level). The multiscale modeling study
in [29] used an agent-based model to describe the heterogeneous cell pop-
ulation (where cells have different internal concentrations of an antiviral
drug) and the heterogeneous cytokine concentrations secreted by the cells.
These published models focused on discrete aspects of the variable that gives
the heterogeneity of a population, and thus they were mainly described by
ordinary differential equations.

This paper is devoted to modeling the multiscale in-host dynamics that
develop within each individual immediately after viral infection. The mul-
tiscale aspect is related to the heterogeneity of the immune response to the
viral infection (i.e., to viruses and infected epithelial cells), which determines
the outcome of the infection. In contrast to previous studies that focus on
discrete states of cells, here we assume a continuous activity variable that
describes the immune response. This assumption is based on experimen-
tal studies that show a continuum of immune cell activation states, that
results from various cell integration of cytokine signals that drive their ac-
tivation [21, 27]. Throughout this theoretical study, we consider the com-
petition between the virus and the heterogeneous immune responses that
appear immediately after the viral infection of the upper respiratory tract,
before the virus moves to the lungs and causes further tissue damage.

The paper is structured as follows:

Section 2 presents the biological assumptions regarding the dynamics of the
virus versus the immune system, where the initial competition involves the
innate immunity, while the adaptive immunity acts after a lapse of time
necessary to learn the presence of the pathogen. The key feature of the
dynamics is to quantify the outcome of the competition, i.e. to understand
whether the innate immunity succeeds in preventing the virus from reaching
the lungs, while the activation of the adaptive immunity by vaccines can
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avoid this event.

Section 3 presents the general multiscale modeling framework that uses the
so-called kinetic theory of active particles [8]. Then, this general framework
is applied to a specific case of in-host viral infections of epithelial cells,
which trigger heterogeneous immune anti-viral responses, where immune
cells evolve different levels of activation. The details of the model (and the
biological mechanisms behind different virus-cell and cell-cell interactions)
are also specified in this Section.

Section 4 presents some numerical simulations that illustrate the range of
model dynamics: from virus elimination, to virus re-infection, and virus
persistence and immune blow-up. Different parameters are varied to explore
the predictive ability of the model: the mechanisms behind short-term or
long-term infections, the impact of different initial viral loads, the impact
of persistant immunity.

Finally, Section 5 looks ahead to new research perspectives by focusing on
the potential of this multiscale modeling framework to understand the com-
plex dynamics of heterogeneous immune responses.

2 Phenomenology of the in-host dynamics

This section presents a phenomenological interpretation of the specific bio-
logical features of the in-host competition between the virus and the immune
system, where the dynamics take place after contagion. As will be shown in
the next section, this framework is intended to contribute to the derivation
of mathematical models that can describe the aforementioned competition in
terms of a differential system. We refer the reader to [6, 39, 42, 54] for more
details regarding the description of the in-host virus-immune competition.

Here we focus on the early stages of infection, when the virus succeeds in
bypassing the mucosal barrier of the upper respiratory tract and begins to
infect the epithelial cells, where it is confronted by various immune reaction
mechanisms. While innate responses play a very important role in block-
ing the initial stages of invasion and in initiating antiviral immunity, the
adaptive immune response stops viral replication, leading to recovery from
COVID-19 and the induction of persistent immune memory [39]. Unfortu-
nately, sometimes the immune mechanisms fail to contain the invasion and
the viral particles are able to reach the lung tissue, a critical factor in deter-
mining the evolution of the disease and the fate of the patient [42]. This can
happen because the number of infectious virus particles is so high that they
overcome the resistance of the immune mechanisms [61]. Indeed, the cumu-
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lative number of virus particles infecting a patient is not easy to estimate.
It could range from a minimum number of virus particles needed to estab-
lish infection (i.e., infectious dose) to higher numbers that can be acquired
in hospitals, crowded environments, or from super spreading events [?, ?].
Alternatively, virus spread could be promoted by individual genetic vari-
ants [3], immunodeficiencies, even those that would otherwise have gone
unnoticed [43], senescence [37], or comorbidities that impair the function of
the immune system.

Referring to the study in [6], we remark that the investigation of viral
infections in general requires a multiscale approach, where the macroscale
corresponds to individuals that may be infected or uninfected, while the
microscale corresponds to in-host entities within infected individuals. The
link between the two scales is provided by the dynamics of contagion, which
depends on the multiple parameters mentioned above. Keeping this general
framework in mind, the content of our paper focuses on the in-host dynamics
evolving from the viral load as an input data. Also related to input data, we
remark that since SARS-CoV-2 is a new virus [42], the antibodies induced
by other coronaviruses, such as SARS-CoV and MERS, in most of cases do
not recognize and neutralize this new virus.

The specific features to be considered in the modeling approach of the
dynamics of the biological system under consideration are described by the
following points, which are preliminary to modeling. We do not naively claim
that the description is exhaustive, as it is limited to the specific assumptions
that will be actually included in the modeling approach.

1. Modeling Framework: The modeling approach is developed at the
micro scale, within an infected individual, and focuses on the dynamics
of the in-host entities, i.e., cells within the tissue, virus particles and
immune agents. After a viral infection, there is a competition between
the virus and the immune system within each infected individual. The
infection may progress (or regress) due to a superiority (or inferiority)
of the virus over the immune defense, and may end with a full recovery
of the patient, with the so-called long COVID-19, or with the death
of the patient. These outcomes are based on a complex dynamic by
which antiviral immune mechanisms prevent or not the passage of the
virus from the upper respiratory tract to the lungs, as well as on the
time needed for the activation of adaptive immunity to eliminate the
virus.

2. Multiple characteristics: As noted above, the macroscopic scale
corresponds to individuals and the microscopic scale corresponds to
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in-host (i.e., within an individual) entities such as epithelial cells, virus
particles, and immune agents.

3. Contagion: The likelihood of infection depends on the number of
viral copies (viral load) that can reach the respiratory tract of a sus-
ceptible person. The arrival of an infectious viral load depends mostly
on the dynamics at the macroscopic scale, i.e. the interaction between
a person spreading the virus and other susceptible individuals and the
social distance between them. The risk of contagion is also influenced
by the characteristics of the area where the infection occurs (tempera-
ture, humidity...) and on the time during which susceptible individuals
are exposed to the virus. The result of these dynamics modulates the
number of infectious virus copies, a modulation that critically influ-
ences the initial in-host dynamics of the virus-immune system within
each susceptible individual.

4. Viral Load: Viral load is the number of virus particles simultaneously
penetrating a person. The total number of SARS-CoV-2 virions was
estimated in a recent experimental study [55]. The minimum infectious
dose of SARS-CoV-2 that can cause COVID-19 in humans is still an
open question, although some modeling studies and some experimental
animal studies have estimated the minimum infectious dose of SARS-
CoV-2 to be of the order of hundreds of virions [33, 59]. In a recent
experimental study, the total number of SARS-CoV-2 present in an
infected individual has been estimated to be in the billions [55]. The
highest number of virus particles is produced just before the onset of
symptoms [33].

5. Affinity: Another important factor to consider is the affinity of the
virus for human epithelial cells. Affinity is a specific property of each
variant of the virus.

6. Dynamics of the virus: Through spike proteins, the virus interacts
with and enters human epithelial cells, where thousands of new copies
of the virus are produced. These then invade additional epithelial cells.

7. Virus Variants - Copying Errors: During the rapid production of
new viruses within the infected cell, many mistakes are made in the
copying (transcription) of the viral RNA. Most of these errors (muta-
tions) are inconsequential or result in the production of less effective
virus particles. In a few cases, new variants with more invasive prop-
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erties may appear. Although the likelihood of the emergence of more
infectious variants is very low, Darwinian competition among virus
particles may favor their spread.

8. Dynamics of the immune system: On the cell membrane as well
as in the cytoplasm, human cells have several sensors (e.g., pattern
recognition receptors) that detect the presence of viral RNA. These
sensors trigger a variety of reactions that lead to the destruction of
viral RNA and the release of alarm signals. Among the early signals
released by infected cells, a large family of interferons triggers cell
antiviral activities and prevents the spread of viral infection to neigh-
boring cells [47]. The virus-infected cell assembles the inflammasome
and releases multiple pro-inflammatory cytokines. This triggers an
initial localized inflammatory response. The infected cell may also un-
dergo apoptosis before becoming a factory of new viral particles. On
the other hand, several proteins encoded by the viruses can sabotage
and dampen immune cell responses. The dynamics of the immune
system’s reaction to viral invasion are markedly affected by individual
genetic variants that regulate the speed and intensity of each of the
above-mentioned reaction mechanisms.

9. Activation of adaptive immunity: In most cases, adaptive immu-
nity is not activated during these early stages unless primed by simi-
lar previous infections or by vaccines. However, at a slower pace, the
presence of viral particles and viral proteins is perceived by adaptive
immunity lymphocytes, alerted by the alarm signals released by both
the infected epithelial cells and the innate immunity cells recruited
into the initial local inflammatory response. Antibodies of different
types (classes) are produced, progressively increasing in number and
precision (affinity) towards the viral proteins.

The above biological model provides a basic scheme on which to derive
the mathematical model. Some additional details will have to be added when
a more precise definition of the biological events becomes important, as it
will modulate the interpretation of the virus-immune system relationship.
In Figure 1 the sequential steps of this biological model are shown: the dark
red arrows show the progression of viral invasion, while the circles show
the virus (V 1-4) and the immune defense activities (D1-7) that interfere
with this progression. These interferences can be so important as to block
infection and lead to viral clearance. Conversely, such perturbations can
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make viral progression unstoppable and catastrophic. The specific features
of these events can be formalized by deriving a mathematical model.

Figure 1: Representation of the in-host dynamics of the virus and of the
immune response.

3 Derivation of in-host mathematical models

This section is devoted to the derivation of mathematical models responsible
for representing the in-host dynamics by transferring the biological descrip-
tion presented in Section 2 into a system of differential equations consistent
with the mathematical kinetic theory of active particles (KTAP). The model
derivation considers the following three steps:

1. Subdivision of the system into populations, called functional subsys-
tems, shortly FSs, which play an effective role in the game. The state
of each FS is defined by distribution function over the microscale state,
called activity, which is expressed by the individual entities, called ac-
tive particles, shortly a-particles, that belong to each FS.

2. Derivation of a general mathematical structure suitable to define the
dynamics of the distribution function which acts as the dependent
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variable of the dynamical system. As it is shown in [8], this struc-
ture should also capture, as far as it is possible, the main features of
living systems. The derivation of the mathematical structure should
also include the dynamics of learning (i.e., cells can learn from their
interactions with other cells/particles and can change their activity
state).

3. Modeling interactions involving active particles and inserting them
into the said mathematical structure to obtain specific mathematical
models. According to [8], these interactions can be nonlocal, nonlin-
early additive, and can generate proliferative and destructive events.

These steps will be treated in more detail in the next subsections, where
a multiscale mathematical model for the interactions between infected ep-
ithelial cells, virus particles and immune cells with different activity levels
will be proposed and further investigated numerically.

3.1 Functional subsystems, activity, and representation

Figure 2: Caricature description of the variables that form the functional subsys-
tems considered in this study. The virus particles and the infected epithelial cells
are described by densities, while the immune cells are described by a distribution
over the activity variable.
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The state of each FS is given by a time-dependent distribution function
over the activity variable u, for instance fi = fi(t, u), i = 1, ..., N̄f (where
N̄f is the number of FSs). If the activity is not modified by interactions,
then the activity has a constant value u ∼= u0 and the system behaves as a
deterministic population. In this case we use the notation ni = ni(t;u0), to
distinguish the deterministic FSs from the stochastic FSs.

The following notation uses lowercase Roman letters for activities that
can be modified by interactions and Greek letters for parameters that may
be heterogeneously distributed but are not modified by interactions. The
modeling approach also takes into account two reference quantities, the crit-
ical number of virus particles that can occupy the upper respiratory tract
before entering the lungs (NM ) and the maximum number of host cells in
the upper respiratory tract (NH) that can be infected, which are used to
normalize certain parameters involved in the dynamics to ensure appropriate
units; see Section 4.

Let us now consider, with reference to Figure 2, the deterministic and
stochastic FSs that play the game. A simple approach is to identify the
following FSs and the activities expressed by each of them:

i = 1: Viral particles express the ability to infect epithelial cells, where
replication occurs. Since there is no progression of virus particles through
an “activity-variable”, the virus population can be considered deterministic,
and the state of this 1-FS can be described by the density n1 = n1(t).

i = 2: Infected epithelial cells are the result of viral infection spreading
through the epithelial cell population. Here we focus only on the infected
cells (in the upper respiratory tract) which are less than the maximum num-
ber of host cells in the upper respiratory tract (NH) mentioned above. Again,
since there is no progression of infected epithelial cells through an “activity-
variable space”, we can consider this cell population as deterministic and
thus, the density of infected cells in this 2-FS is given by n2 = n2(t).

i = 3: Immune cells learn the presence of the virus and try to control the
infection via anti-viral and pro-inflammatory molecules, such as the inter-
ferons (IFN) [51]. For simplicity, here we average both innate and adaptive
immune responses into a single variable that describes a general antiviral
immune response. The state of this functional subsystem (3-FS) is given by
the distribution f3 = f3(t;u). Here, u ≥ 0 describes the activation level of
these immune cells (which is the result of different types and intensities of
antigen exposure [46, 28]), with u = 0 denoting the non-activated state, and
u = 1 describing the fully activated cells.
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3.2 Derivation of a kinetic theory mathematical structure

The derivation of mathematical models is based, as mentioned, on the ki-
netic theory of active particles. This statement can be made more precise
by deriving a mathematical structure suitable to provide the framework to
describe specific models. We consider the case of spatial homogeneity of
models describing the time dynamics of the distribution functions:

fi = fi(t, u) : [0, T ]× [0, 1] → R+, i = 1, 2, 3, (1)

where u is the microscale activity variable. The mathematical structure can
be applied to all distribution functions, although some of the FSs correspond
to a deterministic population. In fact, this case can be seen as a particular
case of the most general one, where all dependent variables are stochastic.

The structure must include both conservative interactions, which modify
the activity but not the number of active particles, and proliferative/destructive
events, which also modify the number of particles. Guidelines for deriving
such a structure are given in [8]. Accordingly, the said structure is as follows:

∂

∂t
fi(t, u) =

4∑
j=1

ηij [f ]A(u∗ → u|u∗, u∗, f)fi(t, u∗)fj(t, u
∗) du∗ du

∗

+fi(t, u)Gi[f ]− fi(t, u)Li[f ], (2)

where f = {f1, f2, f3}, where each component of f corresponds to a spe-
cific population. Accordingly, f1 corresponds to viral particles (IP), f2
corresponds to infected cells (FI), f3 to immune cells (CI). The prolifer-
ative/destructive interaction functionals Gi[f ] and Li[f ] could be local or
non-local, constant or density-dependent, as we will see for a specific case
in the next section.

Remark 3.1 In the case of deterministic populations one has fi(t;u0) =
ni(t)δ(u − u0), where δ denotes the delta function and ni(t) denotes the
density of the deterministic population i. The structure (2) can be rapidly
modified to include one or more deterministic populations as shown by the
model derived in the next subsection.

Remark 3.2 The density of deterministic population i is obtained by the
zero order moments of the distribution function as follows:

ni = ni(t) =

∫ 1

0
fi(t, u) du. (3)
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Remark 3.3 Since the innate immunity goes into action within minutes-
hours of pathogen infection [40], we incorporate the effect of this innate
immunity into the initial conditions of the model. Thus, f3(t, u) will de-
scribe mainly the effect of adaptive immunity (with different activity levels
u). However, we need to be aware of this simplifying assumption (given
that there is actually an overlap between the effects of innate and adaptive
immunity).

3.3 From interactions to derivation of models

The derivation of the mathematical model follows the assumptions on the
phenomenological interpretation, in Section 2, of the biological system and
of the description of the functional subsystems in Sub-section 3.1. The vari-
ables and parameters that appear in the equations below are dimensional:
variables are described in terms of cell densities and cell distributions (i.e.,
cell numbers/densities distributed over a range taken by the activity vari-
able), as well as number of viral RNA copies (RNAs/ml [5]), while parame-
ters are described in terms of rates (e.g., proliferation rates associated with
doubling times, death rates associated with half lives) and carrying capaci-
ties (e.g., maximum number of cells in the upper respiratory tract).

• Dynamics of free viral particles (n1): Since the virus particles do not
undergo conservative interactions to change their activity status, in Eq. (2)
we have η1j = 0, ∀j ∈ {1, 2, 3}. Regarding the proliferative interactions,
we note that the viral particles are produced by the infected epithelial cells,
and therefore in Eq. (2) we have G1 = γNc. Regarding the destructive
interactions we note that the decay in the virion numbers is due to the
action of immune cells which kill these viruses at a rate µ (either directly
through phagocytosis or indirectly through the secretion of cytokines such
as IFN [51]). Thus, in Eq. (2) we have:

L1 = −µ
∫ 1

0
K(u)f3(t, u) du, (4)

where the kernel K(u) gives the activity action for the anti-viral effect of
immune cells starting from the innate immunity corresponding to K = 1
to the increasing action of adaptative immunity. The following equation
summarizes these biological assumptions:

d

dt
n1(t) = γNcn2(t)︸ ︷︷ ︸

production

−µn1(t)
∫ 1

0
K(u) f3(t, u)du︸ ︷︷ ︸

elimination

. (5)
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Remark 3.4 K = K(u) is required to be an increasing function of u. A
simple model is as follows:

K(u) ∼= (1 + ν u), with ν > 0. (6)

The heuristic model describes the growth of immune defence, where u = 0
denotes the the action of innate immunity only, while ν u ↑⇒ K ↑ models
the activation of the adaptative immunity.

Remark 3.5 Parameter γ is multiplied by the maximum viral load per cell
Nc[5]. When infected cells burst open, all these viral particles are released
into the micro-environment (and contribute to the population of free virions).
In [5] the authors estimated this burst size to be about 103 virions, and thus
we may take Nc = 103 virions/cell.

• Dynamics of infected epithelial cells (n2): Since the progression of
infected epithelial cells is not modified by interactions with other cells or
viral particles, in Eq. (2) we have η2j = 0, ∀j ∈ {1, 2, 3}. In regard to the
proliferative interactions, we note that the number of infected cells increases,
as in Eq. (4) (at rate α) due to viral particles interacting with the uninfected
cells (NH − n2(t)) and entering these cells. The destructive interactions are
the result of the anti-viral effect of immune cells [56, 17], as well as due
to virus-induced cell death at rate γ following viral proliferation (i.e., cells
burst open and die). Thus, in Eq. (2) we have

G2 = αn1(t)(NH − n2(t)), L2 = γ − µ
∫ 1

0
K(u)f3(t, u)du, (7)

with K(u) a kernel defining the activity space for the anti-viral immune
immune responses. These biological assumptions are summarized by the
following equation:

d

dt
n2(t) = αn1(t) (NH − n2(t))︸ ︷︷ ︸

virus−induced infection

− γn2(t)︸ ︷︷ ︸
dvp

−µn2(t)
∫ 1

0
K(u) f3(t, u)du︸ ︷︷ ︸

elimination by immune cells

, (8)

where the abbreviation dvp denote cell death due to virus proliferation.

• Dynamics of immune cells (f3): As already mentioned, the distribu-
tion function f3 include both innate and adaptative immunity, where the
activation of innate immunity corresponds to u = 0, while interactions with
virus particles activate cells of adaptative immunity from u = 0 to u = 1.
This dynamics is described by the probability density A(u∗ → u) corre-
sponding to the interaction rate β between immune cells and viral particles.
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In addition, these interactions induce a proliferation of immune cells (with
rate κ, which depends on the activation status u). These assumptions lead
to the following equation:

∂

∂t
f3(t, u) = κ(u) f3(t, u)n1(t)︸ ︷︷ ︸

proliferation

−λf3(t, u)︸ ︷︷ ︸
decay

+βn1(t)

∫ 1

0
A(u∗ → u)f3(t, u∗)du∗︸ ︷︷ ︸

viral−induced activation

(9)

Therefore, the mathematical model consists in the following system of
mixed ODEs and PDEs:

d

dt
n1(t) = γNcn2(t)− µn1(t)

∫ 1

0
K(u)f3(t, u)du,

d

dt
n2(t) = αn1(t) (NH − n2(t))− γn2(t)

−µn2(t)
∫ 1

0
K(u)f3(t, u)du,

∂

∂t
f3(t, u) = κ(u) f3(t, u)n1(t)− λf3(t, u)

+βn1(t)

∫ 1

0
A(u∗ → u)f3(t, u∗)du∗

(10)

Remark 4.1 The progression probability A could have different shapes, as
long as it is approximately one when u, u∗ ≈ 0, it is zero when u = 1, and it

is defined for u∗ ≥ u. Examples are: (a) 1−u
1+(u−u∗)+ ; (b) (1− u)e−a

(u−u∗)+
1−u .

4 Numerical simulations

This section reports some sample simulations for the model (10) with the
purpose of developing an understanding of the predictive ability of the
model. The dimensional initial conditions for these simulations are listed
in Table 1. Note that the initial number of immune cells accounts also for
the impact of a fast innate immune response (which can be activated within
minutes-hours of the pathogen infection [40]).

For the numerical simulations (implemented in C), we discretised the
integrals in equations (10) using Simpson’s rule. For the progression prob-
ability we used A(u∗ → u) = 1−u

1+(u−u∗) . Then, time was discretised using a
Runge-Kutta method.
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Table 1: Initial conditions (t = 0) for numerical simulations of model (10)

.

Description Initial value Simulation Range

Viral load n1(t = 0) = N0 = 103 [102; 106]
Infected cells n2(t = 0) = 1 [1; 102]
Immune cells fm(t = 0, u) = F0(u) =

101e−100u
[e−100u; 102e−100u]

As the numerical simulations presented below will focus on the impact of
various model parameters on the spread of viral infection through the ep-
ithelial cells, in the next sub-section we discuss briefly the estimated values
of these parameters (and the ranges over which they are varied).

4.1 Estimating parameter values

The parameter values used for the numerical simulations in this study have
been estimated as follows:

• In regard to the host cells (per person), in [5] the authors noted that
there are approx. 109 mucous cells in the nasal cavity. Throughout
this theoretical study we choose a baseline value NH = 105 much lower
than the maximum number of host cells in the upper respiratory tract,
since it makes sense to assume that not all cells will be infected before
the virus invades the lung. We also run simulations for NH ∈ [103, 109].

• In regard to the critical number of virus particles that occupy the
upper respiratory tract before invading the lung, we note that the
number of SARS-CoV-2 genomic copies in nasopharyngeal swabs is
more than 106 viral RNAs copies/ml when the symptoms appear [52],
and persists for approximately 5 days before declining [52]. In [5] the
authors noted that there are between 106 − 1011RNAs/ml in sputum,
106 − 109RNAs/swab in nasopharynx and 104 − 108RNAs/swab in
throat. Here we choose a baseline value NM = 109, but we also run
simulations for NM ∈ [106, 1011].

• In regard to the replication timescale of SARS-CoV-2, in [5] the au-
thors noted that the time for a virion to enter a the cell is approxi-
mately 10min, which translates into an infection rate≈ 144/day. How-
ever, since the units for α are 1/(day×RNAs/ml) we need to rescale
the infection rate by virion levels. To this end we choose α ≈ 144/NM .
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As a baseline value we thus choose α = 1.44× 10−6, but we vary this
parameter within the range α ∈ [1.44× 10−9, 1.44× 10−4].

• In [49] the authors show experimentally that infected human cells re-
duce their viability by a half within 24 hours. From here we estimate
a death rate of γ = ln(2)/1 day=0.693/day.

• The burst size (i.e., number of virions released by one infected cell) is
approximately 103 [5], and thus we choose Nc = 103.

• Innate immune responses are observed within hours. Anti-viral adap-
tive T cell immune responses are observed within 7 days of symp-
toms [44]. In fact, the study in [57] showed the presence of T cell
responses around days 3-5 from symptom onset in mild COVID-19 pa-
tients, and around day 10 in moderate/severe patients. Earlier quanti-
tative studies on the kinetics of murine T cells in response to different
viral infections [15] calculated the doubling time of T cells during the
initial expansion phase to be between 8-11hr, which translates into a
murine proliferation rate between 1.5 − 2.0/day. In healthy humans,
this proliferation rate is much slower [38] and was shown to differ be-
tween the naive T cells (0.0005 − 0.002/day), stem cell memory T
cells (0.0007 − 0.007/day), effector-memory (0.042/day) and central
memory (0.01/day) T cells. It is expected that human viral infections
lead to a faster immune proliferation rate. Due to the units for the
immune proliferation rates (i.e., ml/(day × RNAs); see Table 2) we
rescale the above values by NM and choose average proliferation rates
κ(u) = (10−9 + u× 10−9)ml/(day×RNAs), with u ∈ [0, 1]. However,
we vary κ ∈ [10−11, 10−6] ml/(day × RNAs) to account also for the
variability in the proliferation of T cells depending on the viruses used.

• In [48] the authors mentioned that following their expansion in re-
sponse to viral particles, the T cell population then decays with a
half-life of approximately 200 days, which translates into a death rate
λ = 0.0035/day. However, this includes also the memory response
that persists much longer after the death of effector cells. An earlier
study [14] (not focused on SARS-CoV-2) estimated that effector mem-
ory T cells can have a life span from 6 days to 6 weeks. Another very
early study [15] calculated the half-life of murine T cells during the
contraction phase following the peak of the response between 41 hr and
3 days, which translates into a cell death rate λ ∈ (0.23, 0.4). Since
different viruses can trigger different immune responses with different
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cell kinetics (for either murine or human cells), throughout this study
we consider a baseline value λ = 10−2, but we vary this rate within
a range λ ∈ (10−3, 101). This large parameter range is the result of
the fact that in this study we do not distinguish between the differ-
ent types of immune cells (e.g., effector or effector-memory T cells, or
the new concept of memory macrophages [60]) which have completely
different lifespans described by different λ.

• Since the COVID-19 patients usually recover within 10-14 days, we
can assume that within 10 days the virus is eliminated by the immune
cells. Due to the units of µ (i.e. 1/(day× cell)), we rescale by NH and
thus we take an average baseline value µ ≈ 10−6. Note that experi-
mental studies to quantify the efficiency of human CD8 T cells against
specific viruses (thus also against SARS-CoV-2) are non-trivial [23],
and previous estimates of this killing rate were performed on animal
cells infected with different viruses, which led to killing rates between
0.3−0.8/day [23]. Using all this information, in this study we consider
the following range for the killing rate of viruses and infected cells by
the immune cells: µ ∈ (10−10, 10−4)

4.2 Model dynamics

In the following we illustrate numerically some of the dynamics of kinetic
(multiscale) model (10).

• Baseline dynamics. We start our numerical investigation into the
behavior of model (10) by showing in Figure 3 the baseline dynamics
of this model. The simulations are performed with the baseline pa-
rameter values from Table 2 and the initial conditions from Table 1.
We see that for these parameter values the virus particles and the in-
fected epithelial cells are eliminated after the first two days following
the infection. The elimination is the result of an increase in the level
of immune cells.

However, this viral elimination is not permanent and the infection can
relapse in the very long term. In Figure 4(a) we show that for the
baseline parameter values the infection returns after approximately
600 days. However, the second time there are less viral particles,
less infected cells, and even a weaker immune response. This time
period between the infection/re-infection depends on the persistance

17



Table 2: Summary of parameters that appear in model (10), together with
their dimensional units (“cells”, “days”, ”RNA/ml”). The brackets in the
3rd column show the range over which the parameters are varied during the
simulations. For the estimation of these values (and their scaling to ensure
appropriate units), see the discussion in the main text.

Par. Units Baseline
value;
[range]

Description

α ml
day×RNA 1.44 × 10−6;

1.44 ×
[10−9, 10−4]

rate at which virus infects epithelial
cells [5]

γ 1
day 0.69315;

[0.1, 1]
death rate of infected epithelial cells,
associated with the production rate of
new viral particles by these cells [49].

µ 1
day×cell 10−6;

[10−4, 10−10]
killing rate of virus particles and
infected cells by anti-viral immune
cells [23].

κ(u) ml
day×RNA 10−9+u10−9

[10−11, 10−6]
proliferation rate of immune cells in
the presence of virus particles; we as-
sume that cells with different activity
level u ∈ [0, 1] have different prolifera-
tion rates [15, 57].

λ 1
day 0.01

[10−3, 1]
natural death rate of immune cells [14,
15, 48]

β 1
day 0.01

[10−3, 1]
impact rate of virus particles on the
activation status of immune cells.

Nc
RNA

ml×cell 103

[102, 104]
the viral burst size, i.e., the number of
virus particles released by an infected
cell [5]

ν − 0.1 [0, 1] coefficient describing the change in
kernel K(u) with respect to the activ-
ity variable u (see eq. (6))

NM
RNA
ml 109

[106, 1011]
critical number of virus particles that
can occupy the upper respiratory tract
before invading the lung

NH cell 105

[103, 109]
critical number of host cells in the
upper respiratory tract that are in-
fected [5]
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Figure 3: Baseline dynamics of continuum model (10). (a) density of virus par-
ticles: n1(t); (b) density of infected cells: n2(t); (c) distribution of immune cells
across the activity space: f3(t, u). All parameters are as in Table 2. In (a),(b), the
sub-panels (i) show the 2D plots n1,2(t) vs. time, while the sub-panels (ii) show
the 3D plots n1,2 vs. u vs. time. The inset (right) sub-figure in (c) shows the same
graph as in the left main figure, but for time t ∈ [0, 0.8], so that we see more clearly
how the immune cells start to become activated (i.e., larger f3(u, t) as u → 1 and
t→ 0.8).

of functional immune cells that can recognise the virus and eliminate
it (so model (10) incorporates implicitly an anti-viral memory immune
response). In Figure 4(b) we investigate what happens when we reduce
the persistence of functional immune cells (with different activation
levels) by increasing their death rate λ to λ = 0.05. We see that in
this case the second infection is slightly stronger than the first one (i.e.,
higher numbers of virus particles and infected cells, and higher levels of
immune responses), while the third infection is slightly stronger than
the second one. Moreover, for larger λ the time between the first and
second infection is larger than the time between the second and third
infection.

• Increasing immune cell death. To have a better understanding of
the impact of parameter λ (that incorporates implicitly also memory
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Figure 4: (a) Long-term baseline dynamics of model (10); the parameters are
as in Figure 3. (b) Long-term dynamics obtained when we increase the death
rate of immune cells to λ = 0.05.; all other parameters are as in Table 2.
In sub-panels we show: (i) 2D plot of the density of virus particles n1(t);
(ii) 2D plot of the density of infected cells; (iii) 3D plot of the distribution
of immune cells f3(u, t). We see that for (a) the second infection is weaker
than the first one, while for (b) the second infection is stronger than the
first one.

immune responses to the virus), in Figure 5 we compare the charac-
teristics of the model dynamics as we vary λ ∈ [0.01, 1]. In panel (a)
we see that the time between the original infection and the first re-
infection decreases exponentially as we increase λ: very fast for small
λ (when there are enough immune cells in the system), and then much
slower for large λ (when the immune cells are eliminated). Since in
Figure 4 we have seen that the second viral load could be higher or
smaller than the first viral load, in panel (b) we show how the differ-
ence in the maximum viral load between the first and second infections
vary with respect to λ. The threshold between positive and negative
values occurs at λ = 0.0275, and this corresponds to a delay between
the 1st and 2nd infection of approximately 400 days (see the inset
sub-figure in Figure 5(a)). This result suggests that if the immune
response is strong enough and persists for a very long time (i.e., when
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λ < 0.0275) then the second wave of re-infection will be smaller than
the first wave. However, if the immune response is weak and does not
last long (i.e., λ > 0.0275), the second wave of re-infection is higher
than the first wave; but this difference between the first and second
wave does not increase as λ increases significantly towards λ = 1 or
past this value.

Figure 5: (a) Time between the 1st and 2nd viral infections, as we vary
λ. (b) Difference in the maximum viral load during the 1st and 2nd viral
infections: the threshold between positive values (i.e., 1st wave higher than
the 2nd wave) and negative values (i.e., 1st wave lower than the 2nd wave) is
at λ ≈ 0.0275. The inset sub-figures are the same as the main figures, but
with the horizontal axis on a logscale. All other model parameters are as in
Table 2.

• No anti-viral immune response. We also investigate numerically
what happens if there is almost no immune response against the virus
or infected cells (and thus we take µ = 0). In Figure 6 we see that
in this case there is an over-activation of the immune response, which
leads to blow-up in the solution (i.e., the blow-up is in the immune
response). This corresponds to the case of systemic inflammation and
severe disease observed in COVID-19 infections [17].

• Varying virus initial condition n1(0), NH and NM . Since exper-

21



Figure 6: Model dynamics when we assume that the immune cells cannot
eliminate the virus and the virus-infected epithelial cells: here µ = 0. All
other parameters are as in Table 2. The inset sub-figures in panel (c) show
the immune response characterised by different activation states immedi-
ately after viral infection, i.e., t ∈ (0, 0.8), and for t ∈ (2.9, 3) just before the
blow up that occurs on the fourth day – not shown here.

imental studies [22] suggested that initial viral load could predict the
severity of illness, in Figure 7(a) we show the time-evolution of n1(t)
as we increase its initial value to n1(0) = 104. We see that for the
parameter values in Table 2, the virus is eliminated faster (due to a
faster activation of the immune cells, in response to the higher initial
viral load – not shown here).
These results depend significantly on two important parameters which
could not be estimated from the available literature: NM (critical
number of virus particles that can occupy the upper respiratory tract)
and NH (critical number of host cells in the upper respiratory tract).
In Figure 7 we show one example of the effect of these parameters on
viral evolution: for NH = 104 and NM = 1010 the amount of virus
in the system is much lower (max(n1(t))=3000, obtained at t = 5.5),
but the infection lasts longer (until t = 8). For a more comprehen-
sive investigation of the effect of these two parameters on viral per-
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sistence, in Figure 7(c) we show a colormap for the time when n1(t)
reaches its maximum (during the first infection) vs. NM ∈ [108, 1011]
vs. NH ∈ [103, 106]. In the inset (i) we show the same time when
n1 reaches its maximum, as we fix NH = 104 (as in sub-panel (b))
and we vary NM ∈ [108, 1011]. First, we note that increasing NM

delays the time when n1(t) reaches its maximum value. Second, we
see that for NM = 1010 max(n1) is obtained for t = 5.5, while for
NM = 1011 max(n1) is obtained for t = 5. To clarify this aspect, in
sub-panels (ii) we show two 3D plots n1(t) vs. t vs. immune activity
‘u′ for: NM = 1010 (top) and NM = 1011 (bottom). It is clear that for
NM = 1010 the n1 peak is higher and is reached later, but the infection
is eliminated faster (due to the immune response – not shown here).
In contracts, for NM = 1011 the n1 peak is lower, it is reached sooner,
but the infection continues to persist a bit longer.

5 Summary and Conclusion

This paper deals with the modeling and simulation of the in-host dynamics
of the COVID-19 viral infections in the upper respiratory tract. The topic
aims to shed new light on the complexity of heterogeneous immune-virus
interactions, that has an impact on the safety of patients. In fact, if the
invasion of viral particles succeeds to moving to the lungs, a patient needs
intensive care and the risk of death is greatly increased. Because of this
motivation, the British Royal Society has decided to promote, right from
the beginning of the pandemics, a voluntary team, coordinated by Mark
Chaplain, to study this specific topic [53].

The plan of this paper was first to define the key features of the biological
dynamics, and then to develop models and show simulations. We began this
study by proposing a general multiscale kinetic framework that can be used
to investigate the infection of healthy cells by a viral population. This
framework, based on the kinetic theory of active particles (KATP) [6, 7, 8],
can account for the heterogeneous nature of the antiviral immune responses
with a continuous of activation states [27]. The resulting model is a mixture
of equations for changes in the density of cells and viruses (which do not
depend on the internal “activity” variable) and equations for changes in
the distribution of immune cells with different activity levels described by a
continuous “activity” variable.

This KATP theoretical framework (which can be applied to all viral in-
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Figure 7: (a) Dynamics of n1(t) when we increase the initial viral load: from
n1(0) = 103 to n1(0) = 104. All other parameters are as in Table 2. (b)
Dynamics of n1(t) when we decrease NH (from baseline NH = 105) and
increase NM (from baseline NM = 109). For a more thorough investigation
of the effect of varying NH and NM on viral load, in panel (c) we show a
colormap of the time when n1 reaches a maximum value, as we vary NM ∈
[108, 1011] and NH ∈ [103, 106]. The inset sub-figures in panel (c) show: (i)
a change in the time when n1(t) reaches its maximum value for NH = 104

and NM ∈ [108, 1011]; (ii) the 3D plots of n1(t) vs. time(t) vs. activity (u)
for 2 specific cases: NM = 1010 (top) where max(n1) is reached at t ≈ 5.5
but the virus is eliminated after t = 8; NM = 1011 (bottom) where max(n1)
is reached at t ≈ 5 but the virus is eliminated after t = 9.5.

fections and antiviral immune responses) was then applied in detail to the
case of SARS-CoV-2 infections. To this end, we identified possible cell-
cell and cell-virus interactions based on published experimental studies of
COVID-19 antiviral responses. We also estimated the model parameters
based on the published literature. Nevertheless, the estimated values incor-
porated lots of uncertainty, and to address this issue we performed a series
of numerical simulations where we varied the parameters one at a time (a
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local sensitivity analysis). Section 4 shows the possible outcomes of the
model dynamics: from virus elimination in the short/medium time (Fig-
ure 3), to virus relapse in the long time (Figure 4), and even blow-up in the
immune response due to an over-activation in response to virus accumula-
tion (Figure 6). We also investigated the impact on model dynamics when
we changed the initial levels of viral particles (Figure 7(a)), or we change
different model parameters: λ, NH and NM (Figure 7(b),(c)). The simula-
tions showed the possibility of having lower/higher secondary infections, as
well as shorter/longer durations for these infections, all depending on the
values of these model parameters (not easily estimated).

The role of numerical simulations is very important, as it can support
medical care by describing the dynamics of the pathology in response to
specific medical actions. Additional studies can further develop the results
of our paper: for instance, by introducing the dynamics of virus variants and
vaccination programs, see [9, 10, 41]. However, the key problem that remains
is the calibration of the multiscale model with empirical data [20]. This is
not an easy task, as immune defences are heterogeneously distributed in the
population, but also as the dynamics depend on the initial (unknown) viral
load, which can have an important influence on the quantitative behavior
of the dynamics inside the various tissues of the body in the upper and
lower respiratory tracts. However, further studies should explore this data
calibration problem for such kinetic multiscale models, as these models are
sufficiently flexible to take into account all the aforementioned features of
the biological systems.
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