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Abstract

When learning 3D shapes we are usually interested in

their intrinsic geometry rather than in their orientation. To

deal with the orientation variations the usual trick consists

in augmenting the data to exhibit all possible variability,

and thus let the model learn both the geometry as well as

the rotations. In this paper we introduce a new autoen-

coder model for encoding and synthesis of 3D shapes. To

get rid of undesirable input variability our model learns a

manifold in a quotient space of the input space. Typically,

we propose to quotient the space of 3D models by the ac-

tion of rotations. Thus, our quotient autoencoder allows to

directly learn in the space of interest, ignoring side infor-

mation. This is reflected in better performances on recon-

struction and interpolation tasks, as our experiments show

that our model outperforms a vanilla autoencoder on the

well-known Shapenet dataset. Moreover, our model learns

a rotation-invariant representation, leading to interesting

results in shapes co-alignment. Finally, we extend our quo-

tient autoencoder to quotient by non-rigid transformations.

1. Introduction

Manifold learning and generative models are major re-

search topics to learn from a dataset a latent space repre-

senting the input space [4, 21]. They are useful tools, not

only to grasp the hidden structure of the data, but also to

generate new plausible data, either by sampling or by non-

linear interpolation, or to complete missing information by

inferring unobserved variables.

In this work we focus on manifold learning of 3D shapes.

Such data is often represented in a high-dimensional real

vector space X . Manifold learning aims at representing

the data by learning an embedding in a low-dimensional

space. However, explicit representations of 3D shapes
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Figure 1: Misaligned dataset is learned in the space of 3D shapes

quotiented by rotations, thus the quotient autoencoder focuses on

the intrinsic geometry only. As a result it reconstructs better than

a vanilla autoencoder, and is also able to co-align the shapes.

(point clouds, voxels, meshes, CAD1 models) are given

through coordinates and therefore in a given pose. These

natural representations carry two pieces of information: the

“intrinsic geometry” of the shape, i.e. its geometry up to

rigid transformations, together with the pose information

itself. While mathematically clear, intrinsic geometries

are the quotient of X by the action of the group of rigid

transformations, following Kendall’s shape spaces [18], the

quest for simple and parsimonious explicit representations

of them remains elusive. To “disentangle” both pieces of

information, and learn an explicit representation of intrin-

sic geometry, one possibility consists in seeing the shape

as a metric space, either through heat kernel (or Laplacian)

based signatures [23, 29] or, in the case of a point cloud,

by giving Euclidean distances between each pair of points.

While interesting for some applications, these representa-

tions are not parsimonious. One could also suggest rotation-

invariant spherical harmonics [17], but getting rid of pose

information in them makes us lose most geometric infor-

mation.

In this paper we propose a strategy to bridge the gap be-

tween pre-processing of 3D datasets using co-analysis tech-

1Computer assisted design.
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niques and 3D manifold learning. We introduce a quotient

model that allows to directly learn the manifold in the space

of the geometry, independently of the pose of the input 3D

shape in the dataset (see Figure 1). To produce this par-

simonious intrinsic geometry representation, we design a

variant of the autoencoder [14,33], called quotient autoen-

coder (abbreviated QAE), based on a dedicated loss func-

tion working in the quotient space X/G, where G is a group,

typically the group of rotations. Our method, by some econ-

omy principle, allows a shared pose to emerge by implicitly

constraining the decoder to select a pose at the reconstruc-

tion stage. To further support this behavior, we introduce

a specific orbit pooling in our encoder. We also derive a

training scheme adapted for both discrete and continuous

transformation groups.

We provide empirical results to demonstrate that our

QAE is more efficient than a vanilla autoencoder trained

with data augmentation. We also provide several experi-

ments to highlight the ability of our QAE to automatically

co-align shapes, and we illustrate realistic interpolations of

misaligned shapes. Additionally, we show that our frame-

work can be extended to non-rigid transformations with

other applications, such as feature matching.

2. Background

Autoencoders. Given a dataset representing samples

from a same class, e.g. a dataset of cars, autoencoders

[14, 33] aim at learning a mapping, modeled as a feedfor-

ward deep neural network, between the original input space

and a low-dimensional space. Moreover, autoencoders also

learn a reverse mapping from the latent space to the original

input space. They can notably be used to perform realistic

non-linear interpolation, extract meaningful features in the

data, compress the data into a compact representation, com-

plete a partial shape, or sample new shapes (see [3] and also

[20, 27] for extensions to a variational framework).

Co-alignment of shapes. Co-alignment consists in

aligning a dataset of 3D models in a common frame. Many

drawbacks are inherent to the existing methods. Some re-

quire manual supervision such as [34]. Others like [2, 7]

are based on symmetries and correlations analysis, or try

to minimize a continuous energy as reviewed in [30]. These

methods are not adapted to shapes exhibiting high geometri-

cal or topological variability. Some methods also need very

clean meshes to be able to compute accurate features, as in

[2]. Moreover, most of the approaches compute the align-

ment by a pairwise matching of each sample in the dataset

with respect to a reference mesh, but are not able to leverage

the whole dataset at once to compute a consistent frame.

3D generative learning. Several recent works in unsu-

pervised learning have been dedicated to 3D shapes. [36]

presents a convolutional deep belief network, which is used

for shape completion and recognition tasks. Autoencoers

have also been used, for instance in [12], where additionally

to a 3D autoencoder a CNN is learned to predict the latent

vector from an image. [35] extends this idea by replacing

the autoencoder with a generative adversarial network (see

[13]), and adds a variational regularization term to the 2D

prediction CNN. [31] learns a CNN which predicts an ar-

rangement of cuboids which fits the input voxelic model.

These works exploit voxelic models, with a resolution lim-

ited to 323. Other works have tried to extend 3D learn-

ing to more intrinsic representations, such as point clouds.

[15] learns a probabilistic graphical model, based on point

clouds in correspondence. However, all described methods

assume the shapes of the input dataset to be co-aligned, or

augment the dataset to learn this variability.

Invariance in deep learning. Our work is also closely

related to the study of invariance in deep neural networks,

an important topic in deep learning. Usual pooling units in

CNNs allow local translation invariance, but deeper work

has been done since to achieve better invariance proper-

ties. [16] proposes to learn a CNN locally invariant to

scale changes, by applying the same convolution at differ-

ent scales and aggregating the results with a max pooling

unit. [11] extends this idea by introducing deep symme-

try networks. This work generalizes the invariance property

of pooling units to any symmetry group, but still needs to

discretize the generating set of the group. Global invari-

ance can be achieved using a global aggregation layer, as

explained in [9, 22]. All the considered transformations are

passed to the same network, and then aggregated using max

pooling. The same technique was already used in [28] to

learn rotation-invariant features for 3D recognition. [22]

points out that the global aggregation enjoins the network

to learn a canonical instance position of the inputs.

Our work generalizes the idea developed in [22] to man-

ifold learning, especially in the 3D context. It learns a

more representative embedding of the intrinsic geometry

than vanilla autoencoders when the shapes in the dataset are

not co-aligned. It also naturally leads to a co-alignment al-

gorithm able to leverage the whole dataset at once. Finally,

our framework is generic enough to handle a larger class of

invariance group than just translation and rotation groups,

or discrete symmetry groups.

3. Quotient autoencoder (QAE)

3.1. Autoencoder limitations

Let D = {xi ∈ X | i ∈ J1, nK} be a dataset of n shapes

representing objects of a same class. Each shape xi is rep-

resented as a vector in a m-dimensional vector space X . In

our work, X represents shapes as 3D binary occupancy vox-

els grids or 2D depth maps, but the idea is generic and could

be extended to point clouds for example following [10, 26].

We define the encoder fw : Rm → R
p and the decoder
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gw′ : Rp → R
m, parameterized by weights w and w′, where

p ≪ m is the dimension of the latent space. Encoder and

decoder are usually deep feedforward neural networks. The

vanilla autoencoder (AE) gw′ ◦ fw is classically trained by

optimizing a reconstruction error

Eae(w,w
′) =

n∑

i=1

d(xi, gw′ ◦ fw(xi)) , (1)

where d(x, y) is a loss function, comparing the input sample

and the sample reconstructed by the autoencoder, such as

the usual squared L2 loss ‖x− y‖
2

2
.

One of the main issues when applying AEs for learning

3D shape representations is that the shapes are not neces-

sarily co-aligned in a common frame. Shapes can have ar-

bitrary poses, as we do not make any assumption on the

frame of each shape in the dataset. An option consists in

pre-processing the dataset to align the 3D models. How-

ever, state-of-the-art automatic co-alignment algorithms are

prone to mistakes, as mentioned in section 2. Another op-

tion is to directly learn AEs on non-aligned models. To

model pose variability, vanilla AEs rely on brute force data

augmentation techniques, which consist in applying random

transformations to each input sample. The main drawback

with data augmentation is that it decreases the modeling

power of the network, leading to a decreased performance

in terms of reconstruction quality. Indeed, the latent space

is less expressive w.r.t. the geometry of the shapes when

they are not aligned, as the AE has to encode the orientation

variability in addition to the intrinsic shape variability.

3.2. QAE overview

To overcome these limitations, we introduce a new

model for unsupervised learning of 3D shapes denoted as

quotient autoencoder (QAE). The overall architecture of the

proposed QAE scheme is shown in Figure 2. The core

idea is to augment the autoencoder with a new quotient loss

bringing invariance w.r.t. to a group of transformations, e.g.

rotations (subsection 3.3). To fully learn in the quotient

space and be transformation-invariant we add an orbit pool-

ing layer to the encoder (subsection 3.4). Finally, we derive

a training scheme based on error backpropagation to learn

all network parameters, which is applicable to both discrete

and continuous transformations groups (subsection 3.5).

Formally, let G be a group, e.g. the group of rotations. G
is naturally acting on X by the group action (h, x) 7→ h.x,

with h ∈ G and x ∈ X , where h.x is the rotation h ap-

plied to the shape x. We learn an autoencoder in the quo-

tient space X/G, namely the manifold of the geometries of

shapes, independently of their orientation. Thus, the latent

space of the QAE is entirely dedicated to the embedding

of the intrinsic geometry, leading to a better reconstruction.

The intrinsic geometry of a shape x is exactly its orbit x

under the group action: x = {h.x | h ∈ G} (two identi-

cal shapes with different orientations have the same orbit,

the orbit loses the pose information but keeps all geomet-

ric information). Our QAE is able to learn on the quotient

dataset D = {xi ∈ X | i ∈ J1, nK} itself. We extend our

framework to non-rigid transformations in subsection 5.1.

3.3. Quotient loss

We modify the usual autoencoder model in order to di-

rectly learn in a quotient space, as described previously. The

main idea of the QAE is to replace the loss d of the Equa-

tion (1) with its induced quotient loss

d(x, y) = inf
h∈G

d(h.x, y) , (2)

which gives the new QAE reconstruction error

Eqae(w,w
′) =

n∑

i=1

inf
h∈G

d(h.xi, gw′ ◦ fw(xi)) . (3)

The infimum appearing in the reconstruction error in

Equation (3) allows the QAE to reconstruct the input up to

any transformation from G (training part in Figure 2), and

thus to focus only on the geometry unlike a vanilla AE. We

expect the decoder to be more efficient if it can align all the

outputs, since it can dedicate all its capacity to reconstruct

similar spatial features at the same place regardless of the

input’s orientation. Since the loss of the QAE is invariant

by any transformation of G applied to the input, the error

of the QAE does not take into account the orientation of

the output. Thus, the best way for the decoder to exploit

all its capacity is to specialize all its neurons to reconstruct

the shapes in a common frame. Let’s take the example of a

dataset of chairs. It is easier for the decoder to reconstruct

the legs of each chair in the same region of the output space,

and similarly for all other parts. Of course, the output frame

of the QAE has no reason to be a canonical frame (legs at

the bottom, back at the top). The co-alignment capacity of

the QAE is experimented in subsection 4.3.

In the case where the actions of G are isometries for a

distance d (like the action of rotations), d(x, y) is also equal

to infh∈G d(x, h.y) and then d defines a distance on X/G
(see Proposition 1 in the supplementary material for a proof

and [25] for an introduction to quotient topology).

3.4. Orbit pooling

In the QAE, the latent features fw(h.x) and fw(h
′.x) of

two inputs h.x and h′.x differing only by a transformation

of G are likely to be different (unless the QAE perfectly

learns such invariance by itself). We propose to explicitly

support the latent vector invariance w.r.t. G, in order to have

a full quotient architecture additionally to the quotient loss.

To this end, we add an aggregation layer, that we call

orbit pooling, at the end of the encoder f of our network
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Figure 2: The QAE takes as input a shape and samples its orbit in order to aggregate the latent vectors of each transformed input via the

orbit pooling. The encoders share their weights. The quotient loss is the infimum over the distances of the decoder output to each shape of

the input orbit. In the figure d3 achieves this minimum. This new architecture can still be trained with backpropagation.

(see Figure 2). That is, for each input x of the QAE,

we randomly sample several transformations hj ∈ G (or

all the transformations if G is finite), and we pass all the

transformed inputs hj .xi to the same shared encoders f
(blue networks in Figure 2), and for each latent vector

zj = f(hj .xi) we build the aggregated latent vector z by

taking the element-wise maximum2 along each dimension,

that is zl = maxj(zj)l.

This process, already studied in the context of supervised

learning in [22, 28], allows the latent vector to capture the

shape x modulo the transformation group G, and thus to

be much more robust. Indeed, fw(xi) now depends only

on xi and not the full input xi itself, that is it depends on

xi independently of the transformations of G, namely inde-

pendently of the original frame of xi. Thus, the energy can

now be elegantly rewritten wholly in the quotient space 3 as

Eqae(w,w
′) =

n∑

i=1

inf
y∈xi

d(y, gw′ ◦ fw(xi)) , (4)

which shows that it depends solely on xi and not xi. As

a result the QAE learns directly on the quotient dataset D
itself, namely in the quotient space X/G. Our orbit pool-

ing provides a global invariance w.r.t. to any group G, as it

travels the orbit of the shape to pool a global invariant fea-

ture, which is different from the usual max-pooling units in

CNNs that provide only local invariance for translations.

Although our QAE encoder now requires to sample the

orbit, the decoder only takes one aggregated latent vector

2An aggregation function of L latent vectors of dimension p is a func-

tion δ : (Rp)L → R
p whose main properties are that δ is invariant under

permutation, and δ(h, h, , h) = h for any h ∈ R
p.

3Notice that the loss in Equation (2) infh∈G d(h.xi, gw′ ◦ fw(xi))
can actually be rewritten infy∈xi

d(y, gw′ ◦ fw(xi)).

for the whole orbit from one input. Thus, our QAE is ef-

fectively twice faster than a vanilla AE to process all aug-

mented data. Overall, the QAE is not necessarily faster

to train (see subsection 4.2), because gradient updates are

more frequent with a vanilla AE, and the QAE loss land-

scape is different.

3.5. QAE training

As detailed in section 4, we rely on deep convolution-

nal neural networks (ConvNets) for implementing QAE en-

coder and decoder. Thus, we aim at deriving a continuous

optimization scheme based on error backpropagation for ef-

ficiently training all network parameters (w,w′). In this

context, the main challenge is to be able to compute the

gradient ∇w,w′ Eqae(w,w
′) in Equation (3).

The straightforward strategy we adopt in the first place

is to discretize G into a finite group G′ (which is a subgroup

of G), so that the infimum becomes actually a minimum. If

we replace G with the finite subgroup G′ = {h1, · · · , hk},

the loss becomes

min
h∈G′

d(h.xi, gw′ ◦ fw(xi)) . (5)

The minimum in Equation (5) is differentiable almost ev-

erywhere w.r.t. (w,w′), which leads to a direct application

of backpropagation for training this discrete QAE version.

In the more general continuous case, we assume that

G is a Lie group, parameterized by a continuous finite-

dimensional vector h. Under mild assumptions on the group

G (for instance if G is compact and the group action is con-

tinuous), the infimum in Equation (3) is actually a min-

imum, reached in ĥx(w,w
′), that we can compute with

gradient descent or Gauss-Newton (comparisons are made

in subsection 5.2). However, the computation of the gra-

dient of the quotient loss becomes more challenging. If
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we define Lx : ((w,w
′), h) 7→ d(h.x, gw′ ◦ fw(x)), and

L̂x : (w,w
′) 7→ Lx((w,w

′), ĥx(w,w
′)), then

∇w,w′ d(x, gw′ ◦ fw(x)) = ∇L̂x(w,w
′) . (6)

A priori it would require to compute the derivatives of

ĥx w.r.t. (w,w′). Indeed, unlike the discrete case, even an

infinitesimal change in (w,w′) modifies ĥx, whereas it is

constant almost everywhere in the discrete case.

Fortunately, we can take advantage of the envelope the-

orem [24] to simplify the gradient computation. Indeed, we

have ∇h Lx((w,w
′), ĥ(w,w′)) = 0 by definition of ĥ, so

∇L̂x(w,w
′) = ∇w,w′ Lx((w,w

′), ĥ(w,w′))

+ J
ĥx

(w,w′)T ∇h Lx((w,w
′), ĥ(w,w′))

= ∇w,w′ Lx((w,w
′), ĥ(w,w′)) . (7)

The intuition behind this simplification is that the

second-order terms which vanish in the gradient compu-

tation make it possible to consider ĥ constant during the

backpropagation, as in the discrete case.

3.6. Semisupervised learning

If a small subset of co-aligned shapes is available, we

can leverage it in order to reinforce the co-alignment ef-

fect of the QAE. We can also use this co-aligned dataset to

force the alignment in its orientation, instead of letting the

QAE co-align in an arbitrary (random) position. To achieve

this goal, we first pre-train the chosen architecture of the

QAE (including the orbit pooling layer) with a regular non-

quotient loss (i.e. the loss of a vanilla autoencoder in Equa-

tion (1)). Then, we fine-tune the QAE architecture on the

remaining misaligned dataset using the quotient loss. We

validate the significant boost in terms of co-alignment per-

formances of this strategy in subsection 4.3.

4. Experiments

4.1. Experimental setup

We evaluate our model on the ShapeNet dataset [6],

which contains a few thousands 3D models for several cat-

egories. We focus on chairs, planes, and cars, as these cate-

gories exhibit complex geometries and are of primary inter-

est for the CAD industry. Each 3D model is represented as

a mesh in the dataset, aligned in a common frame for each

category. For each mesh we compute a 2D depth map (in a

representative view) of size 64×64 and a 3D volumetric oc-

cupancy binary grid of size 323, following a standard proto-

col (e.g. [8,36]). We experiment the QAE on both 2D depth

maps and 3D voxels grids to illustrate its performances.

We explore the discrete QAE with the rotations (contin-

uous QAE is experimented in subsection 5.2). We train the

2D QAE with a discretized subgroup of SO(2) made of

36 rotations . Besides, CAD models are generally designed

such that their 3 main directions are aligned with the frame’s

axes, but we do not know which direction corresponds to x,

y, or z axis, as it depends on each 3D model and the conven-

tions used by the designer. So we decided to experiment the

3D QAE not on SO(3) but on the group of the 24 rotational

symmetries which leave the cube unchanged (the octahe-

dral group), in order to be representative of a practical use

case. Indeed, we also prove the relevance of the approach

with chairs extracted from the SketchUp 3D Warehouse [1].

These chairs are designed in different frames, but all these

frames can be aligned up to a transformation from the octa-

hedral group, showing that real datasets can be represen-

tative of our hypothesis. Both 2D and 3D datasets have

been misaligned, in order to compare with the vanilla au-

toencoder. To be consistent the misalignment in 3D is done

by applying a random rotation of the octahedral group.

We build a 2D and a 3D deep convolutional architecture

for the QAE, detailed in the supplementary material. We

compare with vanilla autoencoders with the same architec-

tures, except that there is no orbit pooling. As both groups

are finite, we can provide the full orbit of rotated shapes

to the orbit pooling layer instead of doing a random par-

tial orbit pooling. We adopt the usual squared L2 loss for

the distance d, and train all the autoencoders as denoising

autoencoders (with a classical independent Bernoulli noise

layer at the input of the encoder, see [32]). We split each

category into training, evaluation and test datasets contain-

ing respectively 80%, 15% and 5% of the samples. In all

experiments we use ADAM optimization [19].

4.2. Reconstruction and quantitative experiments

planes chairs cars

2D 3D 2D 3D 2D 3D

AE 1 0.14 0.48 0.32 2.2 0.56 0.67

AE 2 0.12 0.44 0.28 2.0 0.52 0.60

QAE 0.10 0.36 0.22 1.9 0.45 0.48

Table 1: Reconstruction errors on each 2D (depth maps) and 3D

(voxels) test dataset for the vanilla autoencoder without data aug-

mentation (AE 1), with data augmentation on rotations (AE 2), and

the QAE with the pooling of all rotated inputs (QAE).

The first experiment is dedicated to the comparison of

our QAE versus a vanilla autoencoder. We train the QAE

on the three misaligned datasets, both in 2D and 3D. We

also train two vanilla autoencoders with the same architec-

ture than the QAE, one with the same dataset as for the

QAE, and another with an augmented dataset including all

allowed rotations for each shape in order to let the vanilla

autoencoder learn by itself the rotation variability.

The results are summarized in Table 1. These results
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prove that the QAE achieves a lower reconstruction error

compared to a vanilla autoencoder, even with data augmen-

tation (AE2 in the table). Indeed, the latent space being

dedicated to model the intrinsic geometric variability of the

data, the capacity of the QAE is larger than the vanilla one.

Our QAE beats the vanilla autoencoder on all three datasets

both in 2D and 3D, mostly with a significant margin up to

a 20% decrease in the reconstruction error relative to AE2

(e.g. 3D cars, 3D planes, 2D chairs). The QAE is just

slightly better only on the 3D chairs dataset. We mainly

explain such a difference by the nature of the dataset, since

3D chairs have a very complex structure harder to learn, as

proved by the high reconstruction error for both the QAE

and the autoencoder.

Figure 3 evinces that the lower reconstruction error of

the QAE effectively corresponds to a visually better recon-

struction. Indeed, the reconstructions from the vanilla au-

toencoder do not exhibit a sharp geometry, such as wheels

or body, unlike the QAE which provides a more detailed

shape. Notice that the QAE does not reconstruct the shape

in its original frame, but co-aligns the shapes. This side

effect, raised in subsection 3.3, is studied in subsection 4.3.

Figure 3: The first row shows the original depth maps, the second

row the reconstruction with the vanilla autoencoder trained with

data augmentation, the third row the reconstruction with the QAE.

We also experiment the influence of the orbit pooling

on the learning performance. Figure 4 shows the differ-

ent training curves on the chairs depth maps, and validates

the introduction of the orbit pooling explained in subsec-

tion 3.4. Indeed, we observe that without the orbit pooling

layer (blue curves) the QAE does not beat the vanilla au-

toencoder (black curves). Nevertheless, with a full pooling

(red curves) the QAE reaches a much smaller reconstruction

error (0.21 vs 0.28 on the validation set after 200 epochs).

Moreover, the partial orbit pooling strategy, instead of pool-

ing over all the transformations of the discretized group, is

also validated by the plots (green curves, loss of 0.24 on the

validation set after 200 epochs). With this partial pooling

we achieve a substantial faster training than with the full

pooling (200 epochs take 2h01m in the first case vs 54m in

the latter) while still getting a reconstruction error far below

the vanilla autoencoder with data augmentation.

0 50 100 150 200

Number of epochs

0.20

0.30

0.40

0.50

0.60

L
o
ss

2771 seconds 5513 seconds

1240 seconds 2460 seconds

447 seconds 887 seconds

281 seconds 558 seconds

Figure 4: The dashed (resp. solid) curves represent the training

(resp. validation) loss. Black: vanilla autoencoder with data aug-

mentation in rotations. Red: QAE with full pooling of all 36 ro-

tated inputs. Green: QAE with partial pooling of 12 random ro-

tated inputs. Blue: QAE without orbit pooling. Vertical lines show

elapsed training times for each case.

4.3. Shapes coalignment

The QAE is also able to reconstruct most of the shapes

in a common frame, as illustrated in Figure 5 for the 2D

QAE and in Figure 6 for the 3D QAE, providing a new co-

alignment algorithm with several advantages. It can deal

with shapes exhibiting a large geometric variability, and

is able to automatically co-align any new data on the fly

in real-time once the QAE has been learned. For each

input x, we simply replace x with ĥx.x where ĥx =
argminh∈G d(h.x, g ◦ f(x)).

For the depth maps datasets, all chairs have been cor-

rectly co-aligned in the same frame by the QAE, just as

cars (see Table 2). In 3D the diversity of the shapes does

not allow the QAE to naturally co-align all the data in a sin-

gle orientation. Among the 24 possible rotations, two are

used by the QAE to reconstruct the input shape. The QAE

internally clusters the dataset in two parts, which leads to

two different orientations for each cluster (see Figure 6). It

is not easy to see a clear semantic meaning of each cluster

for the chairs, but very clearly the QAE has learned on the

planes dataset to separate the aircrafts with low aspect ratio4

from the aircraft with high aspect ratio (see second row in

Figure 6), without any error.

As explained in subsection 3.6, we can use a small

pre-processed dataset with aligned shapes in order to con-

strain the QAE and improve the co-alignment performance.

We pre-train the QAE with an aligned dataset containing

5% of the total number of shapes of the whole training

dataset, and we fine-tune with the remaining non-aligned

4The aspect ratio of a wing is the ratio of its span to its mean chord.
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Figure 5: The first row shows input chairs, the second row the

chairs reconstructed by the QAE, the third the original input chairs

with the orientation given by the QAE. Last two columns represent

specifically generated wider chairs, very different from the training

dataset, to illustrate the robustness of the QAE.

Figure 6: Orientations given by the QAE applied to chairs and

planes. The QAE automatically co-aligned on 2 orientations

among 24, depending on an internal clustering learned by the

QAE.

w/o supervision semi-supervised

chairs
2D 0.0% 0.0%

3D 20% 1.8%

cars
2D 0.0% 0.0%

3D 13% 2.8%

planes
2D 31% 0.0%

3D 28% 6.8%

Table 2: Co-alignment errors for the QAE trained on a completely

misaligned dataset, and the co-alignment results for the QAE pre-

trained on a small aligned dataset. The alignment error is given by

one minus the greatest number of co-aligned shapes over the total

number of shapes, on the misaligned test set.

95% shapes. Results are summarized in Table 2, we see that

the semi-supervised approach yields a great improvement in

co-alignment results. 3D chairs and cars are almost all per-

fectly co-aligned. Results are a bit inferior with planes, as

it is a smaller dataset with more geometric ambiguities, es-

pecially with a resolution of 323.

Besides, the experiment shown in Figure 5 also proves

that the QAE does more than a simple PCA alignment, since

it is able to co-align chairs which are wider than high (last

two columns), proving that the QAE has really learned a

hidden structure specific to the chairs. We point out that

these uncommon chairs have been specifically generated to

test the robustness of our approach, and thus are not repre-

sentative of the initial dataset. Although the QAE has never

seen wide chairs it is still able to co-align them.

Figure 7 demonstrates an application of our 3D co-

alignment to a practical case. The first row shows that dif-

ferent chairs from the 3D Warehouse of SketchUp are not

necessarily designed in a common frame, but they are all

designed so that their main axes are aligned with the x, y, z
axes. Thus, there are 24 possible design conventions. Our

algorithm allows to straighten all theses meshes in a com-

mon frame. To find the transformation needed to co-align

each mesh, we voxelize them and co-align the voxelizations

with the 3D QAE.

Figure 7: The first row shows meshes from SketchUp 3D Ware-

house in their original frame, the second row shows the same

meshes straightened with our 3D QAE.

An interesting application of the co-alignment provided

by our QAE is the possibility to interpolate the geometry of

two shapes which are originally misaligned, as illustrated

in Figure 8. Shapes interpolation is done by a linear inter-

polation of the corresponding latent vectors, and thus the

interpolation is done non-linearly in the original space.

The classical interpolation with a vanilla autoencoder,

despite having been trained with shapes with arbitrary ori-

entations, is not able to disentangle the pose from the ge-

ometry. Instead of rotating the chair and interpolating the

geometry, we see that the interpolation seems to perform a

kind of optimal transport of one depth map to the other. As

a result the interpolated chairs are not realistic. On the con-

trary, the interpolation in the latent space of the QAE inter-

polates the geometry independently of the orientation of the

initial shapes, leading to realistic interpolations of chairs.

5. Quotient by non-rigid deformations

5.1. Extension of the QAE

The QAE framework we described in section 3 can be

applied to a set of non-rigid transformations G, without any

modification. It is not even compulsory for G to be a group,

but then we may lose some important properties (for in-

stance X/G is not a quotient space anymore).

We can parametrize non-rigid transformations by RBF
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Figure 8: The first row shows several interpolations between two

chairs with a vanilla autoencoder trained with data augmentation.

The second row displays the same interpolation with the QAE.

(radial basis function) interpolation to warp images or vox-

els grids, in order to non-rigidly align the shapes. In

the 2D case we set 5 control points {c1, . . . , c5} at the

same fixed positions on each input image. Denoting φ
the RBF, our transformations set is made of the opera-

tors h(a), a ∈ R
10, such that (h(a).I)(x, y) = I(x +∑

5

i=1
aiφ(‖ci − (x, y)‖

2
, y +

∑
5

i=1
a2iφ(‖ci − (x, y)‖).

We use the thin plate spline for φ [5].

5.2. Experiment on feature matching

We aim to learn a reference space where all the shapes

share a common representation. Once the data is aligned

in the reconstructed space, we can match the input shapes

by morphing the reconstructed shapes to the original ones.

This allows to backpropagate features for instance, as ex-

perimented now on chairs depth maps.

We train the QAE on our RBF-based continuous set of

non-rigid transformations, with an orbit pooling of 12 ran-

dom transformed inputs. The optimization of the infimum

appearing in the Equation (2) is done with Gauss-Newton,

where the normal equation is solved with conjugate gradi-

ent. We compare it to a basic gradient descent in Figure 9,

showing that Gauss-Newton optimization is more efficient

(0.41 vs 0.60 for the validation loss). Since depth is less rel-

evant here, training was done on occupancy masks in order

to optimize the learning.

Figure 10 shows how we can match features across dif-

ferent shapes by retargeting common points on the learned

reference space. Reconstructed shapes (first row) do not

look like plausible chairs, as it is not an objective in this

experiment, the main goal being to match the shapes in a

common space. To perform feature matching we pick a set

of points (green marks in the bottom left chair) and warp

them in the corresponding reconstructed shape. We copy

these warped points across all the reconstructed shapes (red

marks of the first row, they all have the same coordinates

over the different shapes) and retarget them into the origi-

nal input shapes (blue marks of the second row).

0 50 100 150 200

Number of epochs

0.40

0.60

0.80

1.00

1.20

1.40

1.60

L
o
ss

13402 seconds 26673 seconds

16874 seconds 33620 seconds

34937 seconds 69922 seconds

Figure 9: The dashed (resp. solid) curves represent the training

(resp. validation) loss for the continuous QAE. The blue curves

display the QAE loss where ĥ(w) is obtained with a gradient de-

scent with 25 iterations, and the red (resp. green) curves display

the QAE loss where ĥ(w) is computed with 10 (resp. 15) itera-

tions of Gauss-Newton, each one being solved with 5 (resp. 10)

iterations of conjugate gradient.

Figure 10: All the red marks have the same coordinates. They are

retargeted on each original chair to match the green marks with

each blue mark on the second row. Retargeting of feature points is

shown on the original depth maps.

6. Conclusion

In this work we introduce a new deep autoencoder model

to learn a quotient manifold, in a fully unsupervised frame-

work. Our QAE encompasses a new quotient loss, and an

orbit pooling, in order to learn in the quotient space itself.

We also explain how this new architecture can be trained

for both discrete and continuous transformations. We show

that our autoencoder quotiented by rotations leads to a bet-

ter representation of the intrinsic geometry. Especially, we

provide quantitative results proving that the QAE is more

efficient than a vanilla autoencoder trained with data aug-

mentation. We also illustrate the ability of the QAE to

automatically co-align shapes, leading to other interesting

applications such as geometric interpolations of misaligned

shapes. We finally extend our model to non-rigid transfor-

mations, as illustrated by our feature matching experiment.
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