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Abstract. Adaptive optics (AO) corrected image restoration is particularly difficult, as it suffers from the lack of
knowledge on the point spread function (PSF) in addition to usual difficulties. An efficient approach is to marginalize
the object out of the problem and to estimate the PSF and (object and noise) hyperparameters only, before deconvolving
the image using these estimates. Recent works have applied this marginal myopic deconvolution method, based
on the Maximum A Posterior (MAP) estimator, combined with a parametric model of the PSF, to a series of AO-
corrected astronomical and satellite images. However, this method does not enable one to infer global uncertainties
on the parameters. In this paper, we propose a new PSF estimation method, which consists in choosing the Minimum
Mean Square Error (MMSE) estimator and computing the latter as well as the associated uncertainties thanks to
a Markov chain Monte Carlo (MCMC) algorithm. We validate our method by means of realistic simulations, in
both astronomical and satellite observation contexts. Finally, we present results on experimental images for both
applications: an astronomical observation on VLT/SPHERE with the Zimpol instrument and a ground-based LEO
satellite observation at OCA’s 1.52m telescope with ONERA’s ODISSEE AO bench.
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1 Introduction

Ground-based high angular resolution imaging in the visible has numerous applications, such as as-
tronomy and satellite observation. The observations are limited by atmospheric turbulence, which
can be corrected in real time by adaptive optics (AO). However, the correction is partial and resid-
ual blurring remains, impacting high spatial frequencies of the observed object. Therefore, the
observation system includes post-processing to restore the high frequencies.1

The residual blurring is described by the system point-spread function (PSF), which is not
entirely known, so both the observed object and the PSF are estimated. The historical way to
proceed is to estimate them jointly,2 which leads to a degenerate solution3, 4 in the absence of strong
constraints, leading to the sharpest PSF thus the smoothest object. Another way to proceed is to
first estimate the PSF by “marginalizing” over the object, i.e. by integrating the joint probability
density function over all possible objects with a given prior probability density function, and then
to deconvolve the image with the estimated PSF.3 In our case, the PSF has a physical parametric
model and the object is described by a Gaussian prior with a parametric model for its power
spectral density (PSD), whose parameters are also estimated along with PSF parameters. The
method we have been using so far, AMIRAL (standing for Automatic Myopic Image Restoration
ALgorithm), combines PSF and PSD parametrization as well as a marginal maximum a posteriori
(MAP) estimator.5

The method we propose in the present paper uses another Bayesian estimator, which mini-
mizes the mean square error on the sought parameters, corresponding to the mean of the marginal
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posterior distribution. From this method, we also infer uncertainties on PSF and PSD parame-
ters.6, 7 To do so, we include prior distributions for PSF and PSD parameters and we compute the
marginal posterior distribution by stochastic sampling. We first introduce a Markov chain Monte
Carlo (MCMC) algorithm to sample this posterior distribution.8, 9 Then, we validate our method
on simulated data and we finally apply our method to experimental data, for both astronomical and
satellite observation contexts, corresponding to different instruments and turbulence conditions.

2 Imaging model and MMSE estimator

2.1 Imaging equation

We consider that the image i results from the 2D discrete convolution of the object o with the
PSF h, to which noise n (mostly photon noise and detector readout noise) is added, giving the
following imaging model:10

i = h ∗ o+ n. (1)

This can also be written in the matrix form as i = Ho + n, with H the convolution matrix
corresponding to the convolution of the object by h. In this study, we simulate and restore both
astronomical and satellite AO-corrected images, implying two different contexts: astronomical
images taken on a VLT/SPHERE-like instrument11 with the Zimpol imaging polarimeter,5 and
ground-based satellite observation at the Côte d’Azur Observatory (OCA) with the ODISSEE AO
system.12

2.2 PSF model

Throughout this work, we will consider having long-exposure PSFs, meaning that the exposure
time is greater than the typical variation time of turbulence. For the PSF, we use the PSFAO19
model,13 which has been designed specifically for describing an AO-corrected PSF with few phys-
ical parameters. Roddier14 shows that the long-exposure PSF h re-writes as the convolution of
three PSFs:

h = hstat ∗ hdet ∗ hatm. (2)

The first one is called the “static” PSF hstat and corresponds to the static aberrations, the second
one hdet is the “detector” PSF describing the integration of the image on the detector’s pixels, and
the last one is the “atmospheric” PSF hatm corresponding to the impact of atmospheric turbulence.
Conan15 shows that this description is still valid in the case of an AO-corrected PSF. Both static PSF
and detector contributions are supposed well-known (and static) compared to the highly variable
atmospheric PSF. hatm can then be described by the phase PSD Wϕ:

hatm = FT−1(exp(−σ2
ϕ)× exp(FT−1(Wϕ))), (3)

with ϕ the turbulence-induced phase, coming from the residual aberrations (not corrected by adap-
tive optics) in the pupil of the telescope, and σ2

ϕ = FT−1(Wϕ(0)) the phase variance, so that∑
hatm = 1. The two main parameters of Wϕ, thus of the PSFAO19 model, are the Fried param-

eter r0 taken at the imaging wavelength (850 nm), describing the turbulence’s strength, and the
variance of the residual turbulent phase vϕ, describing the quality of AO correction. Indeed, the
residual phase PSD Wϕ can be separated in two different spatial frequency zones, depending on
the AO cutoff frequency fAO.
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Wϕ =

{
ANα,β(1 + f 2/α2)−β + C if f ≤ fAO

0.023r
−5/3
0 f−11/3 else.

For the corrected spatial frequencies, a Moffat model is used to describe the core of the PSD.
The main parameter is the amplitude A, which is very close to the residual phase variance: vϕ ≈
A + CAAO, with AAO the AO-corrected area in the spatial frequency domain (for a circular AO-
corrected area, AAO = πf 2

AO). C is a constant giving the AO-corrected phase PSD background,
useful to model the AO-corrected PSD near AO cutoff frequency (where the Moffat function is
close to zero). The parameters α (giving the width of the Moffat function) and β (Moffat’s power
law) do not impact the computation of the residual phase variance, thus they have a less important
impact on the PSF. Throughout this work, α, β and C will be considered as known parameters,
and their value will be fixed to the values in Table 1. Finally, Nα,β is a normalization factor which

Parameter Value
Moffat width α (m−1) 0.05
Moffat power law β 1.5
AO area constant C(rad2m2) 10−10

Table 1 Moffat fixed parameters

is used to normalize the integral of the Moffat function over the corrected spatial frequencies:

Nα,β ≜
β − 1

πα2

[
1−

(
1 +

f 2
AO

α2

)1−β]−1

, (4)

which requires that β > 1. For the high spatial frequencies, the theoretical Kolmogorov model
of turbulence is used, the main parameter being the Fried parameter r0 describing the turbulence’s
strength, at the imaging wavelength. This model has been validated on several AO systems and on
different telescopes.12, 13

2.3 Prior distributions

Noise is taken independently from the object, and is approximated as zero-mean, additive, white
and Gaussian, which is a fine description given the flux levels in typical images. Moreover, in this
paper, we approximate the noise precision (inverse variance) as homogeneous, and we denote it by
γn. Therefore the noise covariance matrix is Rn = 1/γnI , with I the identity matrix and the noise
PSD is Sn = 1/γn.

An example of simulated astronomical observation is given in Figure 1, with the true object on
the left and the simulated image on the right. The image is simulated using the PSFAO19 model,
and with uniform zero-mean additive white Gaussian noise.

As a prior for the object, we consider a Gaussian model described by its mean mo and its
PSD So. Given that we have little information on the the mean object mo, it is taken uniform on
all pixels, estimated at the average value of the image considering that

∑
h = 1, supposing flux

conservation. For the object PSD, we use the following parametric model:

So(f) =
1

γo
S̄o(f), with S̄o(f) = 1/(k + fp), (5)
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Fig 1 Left: synthetic view of Vesta (true object o), of size 512× 512. Right: simulated image i, with true parameters
r0 = 0.15m, vϕ = 1.3 rad2 and γn = 2.62× 10−4 ph−2.

and f = |f | the radial frequency. This circularly-symmetric model is a slightly modified writing
of Matérn’s model.16, 17 In this model, γo sets the global PSD level, p is the PSD decrease rate at
high frequencies, and k gives the breakpoint between the two regimes of the model. In previous
works,5 attempts to estimate hyperparameter p jointly with the other parameters has been shown to
strongly decrease PSF parameter estimation accuracy. Therefore, we choose to work in a “mostly
unsupervised” mode, where p is fixed to a standard value. In the case of astronomical observations
of asteroids, a well-fitting empirical value is around p = 3, whereas for satellite observation a
standard value for p would be around 2.5–2.6.

Let P = N2 the image size in pixels. Given previous assumptions and the matrix form of the
imaging model of Eq. (6) where we consider i and o as vectors and H as a P × P matrix, the
likelihood writes:

p(i|o, γn, r0, vϕ) = det(2πRn(γn))
−1/2

× exp(−1

2
(i−H(r0, vϕ)o)

tR−1
n (γn)(i−H(r0, vϕ)o)) (6)

In Eq. (1), we consider o and h as arrays of the same size, and approximate them as periodic. Thus,
the likelihood in Eq. (6) can also be written in the Fourier domain given previous approximations:

p(i|o, γn, r0, vϕ) =
(γn
2π

)P/2∏
f

exp(−γn
2
|̃i(f)− h̃(f)õ(f)|2), (7)

where .̃ denotes the discrete Fourier transform (DFT) and the product on f is on all pixels in the
spatial frequency domain. For the object and the image, the DFT is normalized so as to comply
with Parseval’s theorem. For the PSF, the DFT is normalized so that h̃(0) equals the sum of the
PSF on the numerical array. Moreover, as said previously, this value is set to 1 by convention, to
express flux conservation. h̃ is also called the (discretized) optical transfer function (OTF).

Given the previous approximations, the object covariance matrix is circulant-block-circulant
and we can write the object prior distribution as follows:

p(o|γo, k) = det(2πRo(γo, k))
−1/2 exp(−1

2
(o−mo)

tR−1
o (γo, k)(o−mo)). (8)
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Similarly to the likelihood, the object prior in Eq. (8) can also be written in the Fourier domain.
Indeed, given the structure of the object covariance matrix Ro, the latter is diagonalized in the
discrete Fourier domain, with So as written in Eq. (5) on its diagonal, so that:

p(o|γo, k) =
( γo
2π

)P/2∏
f

(
S̄o(f)

−1/2 exp
[
− γo

2
S̄o(f)

−1|õ(f)− m̃o(f)|2
])

. (9)

Thus, given that the mean object is taken uniform in the spatial domain, it corresponds to a
delta function in the Fourier domain. Regarding PSF parameters as well as noise and object PSD
parameters, hereafter called parameters, we consider that each parameter γn, γo, k, r0 and vϕ can
take any value in a given range. Therefore, following the Laplace rule (or principle of insufficient
reason), we use uniform priors for each of them.18 The prior interval is taken large enough: from
0.1 to 10 times the usual value of the considered parameter for γn, γo and k, given knowledge on
these parameters. The prior intervals taken for PSF parameters are the following: for r0 we take
[5 cm; 30 cm] and for vϕ we take [0.5 rad2; 3.0 rad2], which correspond to a large range of values
taking into account the global knowledge on the AO system and the turbulence. These values are
summarized in Table 2.

o

γo k

r0 vϕ γn

i

Fig 2 Hierarchical model summing up the inter-dependency between the object, the image and all parameters.

In Figure 2 we provide the chosen hierarchical model which sums up the variable interdepend-
ency. [19, chap. 8] Each upper node (parent) is connected with an edge to a node below (child)
and the model says that a child’s distribution, given all nodes above, is only a function of its par-
ents. In our model, it means for example that p(i|o, γn, γo, k, r0, vϕ) = p(i|o, γn, r0, vϕ). Therefore
p(i, γo, k|o, γn, r0, vϕ) = p(i|o, γn, r0, vϕ)p(γo)p(k), which means that the image i and object PSD
parameters γo and k are independent conditionally to the object and the other parameters. Addi-
tionally, the object, the noise variance and the PSF parameters are independent conditionally to
object PSD parameters meaning p(o|γn, γo, k, r0, vϕ) = p(o|γo, k). Moreover, as the hierarchical
model reads, all parameters (γo, k, r0, vϕ and γn) are modeled as a priori independent.

2.4 Marginal estimator

The joint distribution is, following the conditioning rule, the multiplication of the likelihood by the
prior distributions. Given the hierarchical model of Figure 2 and as explained previously:

p(i,o, γn, γo, k, r0, vϕ) = p(i|o, γn, r0, vϕ)p(o|γo, k)p(γn)p(γo)p(k)p(r0)p(vϕ). (10)

From it, we can derive the expression of any target distribution. As explained above, a way to
estimate the object and the parameters is to first estimate the parameters by computing the so called
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marginalized posterior probability, meaning integrating the posterior density over the object:

p(γn, γo, k, r0, vϕ|i) =
∫

p(o, γn, γo, k, r0, vϕ|i)do (11)

=
1

p(i)

∫
p(i,o, γn, γo, k, r0, vϕ)do. (12)

In practice, we write the marginal posterior distribution following the Bayes rule, from the marginal
likelihood and the priors taken as uniform and independent, as mentioned in section 2.3:

p(γn, γo, k, r0, vϕ|i) =
p(γn)p(γo)p(k)p(r0)p(vϕ)

p(i)
p(i|γn, γo, k, r0, vϕ). (13)

Given that the noise is taken Gaussian, white, homogeneous and a priori independent from the
object considered Gaussian, the image being a linear combination of both is also Gaussian. There-
fore, the marginal likelihood writes1:

p(i|γn, γo,k, r0, vϕ) = (2π)−P/2
∏
f

(
Si(f)

−1/2 exp
[
− 1

2
|̃i(f)− m̃i(f)|2/Si(f)

])
, (14)

with image PSD Si and mean image mi:

Si(f) = So(f)|h̃(f)|2 + Sn (15)

m̃i(f) = h̃(f)m̃o(f).

The marginal posterior distribution for the parameters can then easily be written using Eqs. (13)–
(15):

p(γn, γo, k, r0, vϕ|i) =
p(γn)p(γo)p(k)p(r0)p(vϕ)

p(i)
p(i|γn, γo, k, r0, vϕ)

=
1

p(i)
Uγn(γn)Uγo(γo)Uk(k)Ur0(r0)Uvϕ(vϕ)

× (2π)−N/2
∏
f

( 1

γo

1

k + fp
|h̃(f ; r0, vϕ)|2 +

1

γn

)−1/2

× exp
[
− 1

2

|̃i(f)− h̃(f ; r0, vϕ)m̃o(f)|2

γ−1
o (k + fp)−1|h̃(f ; r0, vϕ)|2 + γ−1

n

]
, (16)

with Ux(x) the uniform probability distribution for parameter x, in the range defined for x. In our
case, these minimum and maximum values are given in Table 2.

2.5 MMSE estimator and sampling

The MMSE estimator is known to be the mean of the posterior distribution, whereas the MAP
estimator, computed by AMIRAL, is its mode.20 Given the complexity of the posterior, there

1Given Eq. (14), maximizing the marginal likelihood, as in the previous method,3, 5 can be interpreted as finding
the parameters for the image PSD model Si of Eq. (15) that best fit the empirical PSD |̃i(f)− m̃i(f)|2.
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is no known analytical way to calculate it. A way to compute it is to draw samples under the
posterior distribution using a MCMC method for instance, and compute the sample mean. The
posterior distribution being complex, it is not possible to sample it directly, therefore we use a
Metropolis-Hastings algorithm to bypass the problem.21 It consists, for each iteration, in drawing
samples under a chosen proposal distribution q(θ|θ′) and accepting the samples (else, duplicating
the previous value) with a prescribed probability α. For the k-th iteration, α writes:

α =
p(θprop|i)
p(θ(k−1)|i)

q(θ(k−1)|θprop)

q(θprop|θ(k−1))
, (17)

with θprop a sample drawn from the proposal distribution.
Several versions are possible: in particular, we can either draw all the parameters simultane-

ously (standard Metropolis-Hastings) or separately (Metropolis-Hastings-within-Gibbs). Drawing
the parameters together can make the acceptance probability fall (except if we use more advanced,
e.g. gradient-based algorithms such as MALA or HMC methods),21–23 whereas drawing parame-
ters individually can slow down the algorithm as it changes parameters one by one and requires
more likelihood computations.

For simplicity, we use here the second version. In a standard Gibbs algorithm, each parameter
is drawn under its own conditional posterior distribution, which is proportional to the prior of
the considered parameter times the marginal likelihood of Eq. (14). The conditional posterior
distribution for each parameter writes:

p(θn|i,θm̸=n) =
p(θn)p(i|θ)

p(i)
, (18)

where θn is the considered parameter and θm ̸=n the four other parameters. Note that p(i) is not
needed due to the fact that it cancels out in the acceptance ratio α computed in Eq. (17).

As mentioned above, because drawing the parameters under their conditional posterior dis-
tribution is difficult, we use a Metropolis-Hastings-within-Gibbs algorithm instead of the standard
Gibbs. Asymptotically, the samples are under the marginal posterior distribution for all parameters,
and the sample mean tends towards the mean of the distribution.21

In our case, we use a Random Walk Metropolis-Hastings algorithm: the proposed sample
for each parameter is drawn under a symmetric (Gaussian) distribution q(θn|θ′n) around the current
value of the parameter. The proposal distribution being symmetric, q(θ(k−1)

n |θprop
n ) = q(θprop

n |θ
(k−1)
n )

thus
q(θ

(k−1)
n |θprop

n )

q(θprop
n |θ(k−1)

n )
in α (in Eq. (17)) simplifies. The standard deviation of the Gaussian proposal

distribution σθn is chosen to be 0.01 times the allowed range of the prior. Precisely, the tuning for
each parameter is given in Table 2. This choice is based on the empirical sensitivity of the PSF or
the noise and object PSD to the parameters, and only impacts the convergence time, which is an
issue we do not tackle in this paper. A typical number of iterations needed to reach convergence
(including the boiling time) would be around 30 000 iterations, corresponding to an hour (on an
ordinary laptop).

The Random Walk Metropolis-Hastings-within-Gibbs algorithm we use in this paper is pro-
vided in Algorithm 1.
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Parameter Prior min - max Step tuning
γn (ph−2) 2.62×10−5 - 2.62×10−3 2.62×10−6

r0 (m) 0.05 - 0.5 0.001
vϕ(rad

2) 0.5 - 3.0 0.01
γo (ph−2) 2.62×10−15 - 2.62×10−11 2.62×10−14

k 0.01 - 10 0.1
Table 2 Prior intervals and tuning of the Gaussian standard deviation for γn, r0, vϕ, γo and k.

Algorithm 1 Metropolis-Hastings-within-Gibbs algorithm
Define initial θ(0)

for each iteration k do
for each parameter θn do

Propose θprop
n ∼ N (θ

(k−1)
n , σθn)

Acceptance rate α← min
(
1,

p(θprop
n )p(i|θ(k)

m<n, θ
prop
n ,θ

(k−1)
m>n )

p(θ
(k−1)
n )p(i|θ(k)

m<n,θ
(k−1)
m≥n )

)
▷ Eq. (17) and 18

Random acceptance u ∼ U([0; 1])
if u < α then

Accept the proposal θ(k)n ← θprop
n

else
Duplicate previous sample θ

(k)
n ← θ

(k−1)
n

end if
end for

end for

3 Results on simulated astronomical data

3.1 Simulation conditions

The obtained results are shown for the simulated image displayed in Figure 1, using as the true
object the synthetic view of asteroid Vesta, built by the OASIS software,24 on a dark background
of size 512 × 512 pixels. True PSF parameters are r0 = 0.15m and vϕ = 1.3 rad2 at the imaging
wavelength λ = 550 nm, which correspond to realistic turbulence and correction conditions. The
AO system is a “SPHERE-like” AO system, and its parameters are taken identical to those used
with the previous method,5 for comparison purposes. Noise is taken zero-mean, additive, white and
Gaussian with a variance equal to the empirical mean value of the object as a first approximation
of the photon noise. The total flux of the object is set to Fo = 109 ph (photons), typical from
VLT/SPHERE/Zimpol asteroid observations (ESO Large Program ID 199.C-0074), therefore γn =
P/Fo = 2.62× 10−4 ph−2.

The PSF and PSD parameters are estimated following the proposed method, except the mean
object mo, which is estimated to the average value of the image, and the object PSD power which
is fixed to p = 3, which corresponds to a reasonable default value of p for asteroids. The Gibbs
sampler is run for 100 000 iterations, which corresponds to a few hours, to verify the convergence.
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3.2 Results on the estimated parameters and derived uncertainties

In Figure 3, we plot the samples chains and the corresponding histograms for γn, r0 and vϕ. The
inspection of Figure 3 suggests that chains have a short burn-in period, followed by a stationary
state. As expected from Markov chains, for each parameter the samples are correlated. Moreover,
the samples are concentrated in a small interval relatively to their prior interval.

Fig 3 From top to bottom: γn, r0, vϕ, γo, k. Left: chain of samples for simulated astronomical image. Right:
corresponding histogram. True values in dashed line.

Parameter m± σ True
γn (ph−2) 2.620×10−4 ± 0.008 ×10−4 2.621×10−4

r0 (m) 0.142 ± 0.007 0.15
vϕ(rad

2) 1.17 ± 0.03 1.30
γo (ph−2) 2.37×10−13 ± 5.41×10−14 -
k 0.768 ± 0.594 -

Table 3 Mean value, associated standard deviation and true value, for γn, r0, vϕ, γo and k for simulated astronomical
image (stationary Gaussian noise), with p = 3 and mo = mi.

The sample mean values m, corresponding to our estimates, and standard deviations σ, corre-
sponding to our predicted uncertainties, for each parameter are displayed in Table 3. Firstly, we
can note that the error on the parameters is small: the noise precision is very precisely estimated,
with an error smaller than 0.2%, and PSF parameters are also well estimated, with a 5% error on r0
and a 10% error on vϕ. Additionally, the estimated r0 and vϕ are very close to the previous results
obtained with AMIRAL: for similar conditions,5 the estimated PSF parameters were r0 = 0.142m
and vϕ = 1.13 rad2 (compared to r0 = 0.142m and vϕ = 1.17 rad2 in Table 3).

3.3 Results on the OTF, on object and image PSD

We also compare the resulting OTF to the true OTF in Figure 4. The slight underestimation of r0
leads to the lowering of the global OTF level and its impact can mainly be seen at low frequencies.
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Fig 4 True (in green) and estimated (in blue) OTF for simulated astronomical image, including computed uncertainties
(in blue, + and - for upper and lower uncertainty bounds).

Concerning vϕ, its mild underestimation leads to a slower decrease of the OTF and impacts the
slope of the latter at medium-high frequencies.5 Thus, we notice that the errors on both parameters

partially compensate. As a result, the normalized RMSE for the OTF, computed as
√∑

|mh̃−h̃|2∑
|mh̃|2

with true OTF h̃ and estimated OTF mh̃, is quite small (around 7%).
Concerning the uncertainties derived from our method, we notice in Table 3 that the true value

for parameter r0 is in the range [mr0±2σr0 ], and the true vϕ is in the interval [mvϕ±5σvϕ ], therefore
the uncertainties on PSF parameters seem under-estimated. We can also compute uncertainties di-
rectly on the sought OTF: for each sample (r0, vϕ), we compute the corresponding OTF in order
to compute its sample mean mh̃ and standard deviation σh̃, meaning the mean and standard de-
viation for each frequency of the OTF. As shown in Figure 4, the true OTF is within the interval
[mh̃ ± 2σh̃], for all frequencies. Therefore, even though the uncertainties on PSF parameters are
somewhat under-estimated, our method gives a very satisfactory uncertainty estimation on the OTF
itself.

Fig 5 PSDs for simulated astronomical image. Model in solid line, and empirical PSD averaged azimuthally in dashed
line. Left: Image PSD. Right: Object PSD.
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In Figure 5 (left), we perform an important sanity check of the method to verify that our model
for the image PSD of Eq. (15), which combines object PSD, PSF and noise PSD, accurately fits
the empirical image PSD averaged azimuthally (cf. Eq. (14)). Moreover, given the fact that the true
object is not the realization of a Gaussian random field following our PSD model, a way to check
γo and k’s estimation accuracy is to look at the fitting of our model to the object empirical PSD,
averaged azimuthally. As displayed in Figure 5 (right), the object PSD model visually fits correctly
the empirical object PSD, the slight overestimation being consistent with the slight underestimation
of the OTF.

3.4 Results on the restored image

After having estimated the PSF and hyperparameters, the object is restored by maximizing the
joint distribution, given the PSF and hyperparameters, as in a classical non-myopic deconvolution
framework. Given the expression of the joint distribution in Eq. (10), maximizing it with respect
to the object is equivalent to maximize the product of the likelihood in Eq. (7) and the object prior
(corresponding to a quadratic regularization) in Eq. (9).

ô = argmax
o

p(i,o, γn, r0, vϕ, γo, k)

= argmax
o

p(i|o, γn, r0, vϕ)p(o|γo, k)

= argmin
o
− ln(p(i|o, γn, r0, vϕ)p(o|γo, k))

= argmin
o

∑
f

(1
2
|̃i(f)− h̃(f)õ(f)|2/Sn +

1

2
|õ(f)− m̃o(f)|2/So(f)

)
(19)

Without any specific constraint on the object, the solution of Eq. (19) corresponds to the Wiener
filtering [1, chap. 4] with a non-null prior mean mo:

ô(f) =
h̃∗(f )̃i(f) + Sn

So(f)
m̃o(f)

|h̃(f)|2 + Sn

So(f)

. (20)

However, it is also possible to minimize the criterion in Eq. (19) under some constraints such as
positivity (on the pixels value), which is a natural constraint given the context. It is also possible
to use not solely a quadratic regularization but a L1-L2 regularization as an “edge-preserving”
regularization.

Figure 6 shows the image in Figure 1 restored with the estimated OTF, using a quadratic regu-
larization (which hyperparameters are the ones estimated by the method) with positivity constraint.
Many details of the Vesta surface can be seen, that were not visible on the data. Particularly, with
our method we retrieve sharp edges of the asteroid from which one can estimate the object volume
and sphericity, as well as main crater and albedo features.

3.5 Posterior coupling between parameters

Sampling the whole posterior distribution, instead of computing a single point of it (for example,
the maximum), enables us to study the a posteriori coupling of the parameters. In Figures 7
and 8, we display the scatter graph of the samples, after boiling time, for two different couples
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Fig 6 Left and center: true object and image for simulated asteroid observation, 256 × 256 cropped from Figure 1.
Right: restored object from the estimated PSF and PSD parameters using a L2-norm regularization, with positivity
constraint, also cropped.

of parameters: (r0, vϕ) and (r0, γo). Most couples of parameters have a scatter graph similar
to Figure 7, where the 2D-histogram is rather Gaussian and along the axis suggesting that most
parameters are not correlated a posteriori.

Fig 7 Marginal posterior scatter graph of the samples for (r0, vϕ) after boiling time.

The only couple of parameters which does not have an elliptical-like scatter graph, but instead
show a strong a posteriori correlation, is r0 and γo. We explain this correlation by the fact that as
shown in,5 r0 impacts the global level of the OTF whereas γo gives the global level of the object
PSD. Therefore, given the expression of the image PSD in Eq. (15), both (r0, γo) have a similar
impact on the global level of the image PSD, which is fitted by our method, that explains their
strong correlation.

3.6 Test on several noise realizations

To test the robustness of our method to noise, we ran the algorithm for ten different noise realisa-
tions, in the simulation conditions described above. We compute the bias and standard deviation
of the estimated parameters on these ten noise realisations, as well as the maximum error. We
also compute the minimum and maximum predicted uncertainty (i.e. the standard deviation of the
posterior distribution). These values are summed up in Table 4.
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Fig 8 Marginal posterior scatter graph of the samples for (r0, γo) after boiling time.

Parameter True Max. error
Empirical
bias

Empirical
std. dev.

Predicted uncertainty

γn (ph−2) 2.621×10−4 2.3×10−6 9.5×10−8 9.0×10−7 ∈ [7.8×10−7, 8.0×10−7]
r0 (m) 0.150 0.012 0.006 0.005 ∈ [0.006, 0.009]

vϕ(rad
2) 1.30 0.14 0.12 0.01 ∈ [0.02, 0.03]

γo (ph−2) - - - 4.1×10−14 ∈ [4.5×10−14, 8.9×10−14]
k - - - 0.1 ∈ [0.4, 0.7]

Table 4 Summary of results on ten noise realisations: true value, maximum error and bias (if available), standard
deviation of estimates for γn, r0, vϕ, γo and k, and minimum/maximum predicted uncertainty.

In these ten cases, we notice very little variations on the estimates: the computed standard
deviations (fifth column in Table 4) are small with respect to the true values (second column).
Moreover, the estimates are satisfactory: first, the errors on the estimated parameters are quite small
(third column), particularly on the noise precision (error is less than 1%). Moreover, the predicted
uncertainties for γn are close to the empirical average error made on the noise precision. For the
PSF parameters, the error is smaller than 11%. Concerning parameter r0, the predicted uncertainty
is very satisfactory: the true value is always within the interval [mr0 ± 2σr0 ]. For parameter vϕ, we
notice that the error is here dominated by the bias, which is more than ten times greater than the
standard deviation (which is not the case for the other parameters). Our interpretation is that this
bias is due to the choice of p, which will be further discussed in 3.7.

Finally, even though the uncertainties are under-estimated for vϕ with the default p, concerning
the OTF itself the uncertainties are always well estimated: for all ten cases, the true OTF is within
the interval [mh̃ ± 2σh̃], as shown in Figure 9. Moreover, the root mean squared error on the OTF
is smaller than 1.3 times the posterior standard deviation on OTF (averaged on noise realisations),
for all frequencies.

3.7 Impact of hyperparameter p

In Ref. 25, we have tested our method in the exact same conditions, for another value for hyperpa-
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Fig 9 Results on OTF uncertainties for ten realisations of a noisy simulated astronomical image: true OTF (in black)
and predicted range [mh̃ ± 2σh̃] (+ and - for upper and lower uncertainty bounds, each color corresponds to a noise
realisation).

rameter p, tuned slightly differently, towards the “best” value5 in the supervised mode p = 2.91.
(Both p = 2.9 and p = 2.91 were tested with our method, giving the same results.) The results on
estimated parameters and derived uncertainties are summed up in Table 5. With a value of p = 2.9

Parameter m± σ True
γn (ph−2) 2.620×10−4 ± 0.008×10−4 2.621×10−4

r0 (m) 0.141 ± 0.006 0.15
vϕ(rad

2) 1.33 ± 0.02 1.30
γo (ph−2) 2.65×10−13 ± 5.39×10−14 -
k 0.619 ± 0.469 -

Table 5 Mean value, associated standard deviation and true value, for γn, r0, vϕ, γo and k for simulated astronomical
image (stationary Gaussian noise), with p = 2.9 and mo = mi.

instead of 3.0, the error on vϕ becomes smaller and the estimated uncertainties are then satisfactory
(the true vϕ is then in the interval [mvϕ ± 2σvϕ ]). Similarly to the correlation between r0 and γo
showed in 3.5, we interpret these results as another strong correlation between vϕ and the fixed
hyperparameter p, due to the similar impact they have on the image PSD. Indeed, vϕ impacts the
slope of the OTF in medium-high frequencies5 whereas p corresponds to the slope of the object
PSD in medium-high frequencies. Therefore, both vϕ and p tune the decrease of the image PSD in
medium-high frequencies, which can explain their strong posterior correlation.

However the differences on the restored image, as displayed in Figures 10 and 11, are quite
small, at most around ten times smaller than the global image level.

3.8 Results with a more realistic noise

We now simulate the observation of Vesta using the same conditions than in 3.1, except that we
now simulate a more realistic noise, using a Poisson distribution to mimic the photon noise with
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Fig 10 Left: restored image, fixing p = 3. Center: restored image, fixing p = 2.9. Right: Ten times the absolute
difference between the two first images.

Fig 11 Horizontal sectional plot of the restored images (at N/2), fixing p = 3 and p = 2.9, and their difference.

the same total flux as previously, namely 109 ph, and an additive stationary Gaussian noise for
the read-out noise with a standard deviation of 20 photo-electrons. The results are summed up in
Table 6.

Parameter m± σ True
γn (ph−2) 2.569×10−4 ± 0.008×10−4 -
r0 (m) 0.145 ± 0.007 0.15
vϕ(rad

2) 1.20 ± 0.03 1.30
γo (ph−2) 2.49×10−13 ± 5.57×10−14 -
k 0.717 ± 0.524 -

Table 6 Mean value, associated standard deviation and true value, for γn, r0, vϕ, γo and k for simulated astronomical
image with a more realistic noise (Poisson + Gaussian noise), with p = 3 and mo = mi.

Even if the simulated noise does not exactly match the stationary Gaussian noise model, all
estimated parameters are still very close to the previous estimations, with a difference between the
two estimations smaller than the derived uncertainties σθ, except for γn, which does not have a true
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value because of the inhomogeneous simulated noise. The PSF parameters are still well estimated,
with an error around 3% for r0 and around 8% for vϕ. Their associated uncertainties are also
still satisfactory for r0 and, similarly, slightly underestimated for vϕ as discussed previously. Thus
deviating from the stationary Gaussian noise model does not impair the results with our method,
given our simulation conditions. The small impact of deviating from the stationary Gaussian noise
model was also shown by Fétick,5 using the marginal MAP estimator.

The prior mean object chosen in this work can also be questioned: indeed, taking a uniform
prior mean object equal to the mean image makes sense as we have little information on it, but
this choice is somewhat arbitrary and above all, it depends on the data. In order to check that this
choice has little impact on the solution, we perform another reconstruction with again a Poisson +
Gaussian noise, but changing this time the prior mean object value which is estimated to zero (and
not the image mean value). The results are given in Table 7.

Parameter m± σ True
γn (ph−2) 2.352×10−4 ± 0.007×10−4 -
r0 (m) 0.148 ± 0.008 0.15
vϕ(rad

2) 1.18 ± 0.03 1.30
γo (ph−2) 2.86×10−13 ± 7.32×10−14 -
k 0.522 ± 0.408 -

Table 7 Mean value, associated standard deviation and true value, for γn, r0, vϕ, γo and k for simulated astronomical
image with a more realistic noise (Poisson + Gaussian noise), with p = 3 and mo = 0.

The results for all parameters do not change much, as previously the estimates for each param-
eter change less than a standard deviation σ, except for γn. We thus conclude that this uniform
prior on the mean object does not impact much the results on the estimated parameters.

4 Results on simulated satellite image

4.1 Simulation conditions

We now show results for a simulated satellite image, using as the true object a synthetic view of the
SPOT satellite on a dark background of size 512× 512 pixels.26 We simulate its observation using
the ODISSEE AO system at OCA,12 and with true PSF parameters r0 = 0.10m and vϕ = 1.85 rad2,
at the imaging wavelength λ = 850 nm, corresponding to a stronger turbulence, and to a more
modest correction than for the astronomical simulation because of a less complex AO system. The
noise is taken as zero-mean, additive, white and Gaussian, and its variance is taken equal to the
mean value of the object. Here, the mean flux is 104 photons per image pixel, corresponding to
a somewhat optimistic value. The pixel sampling is close to the Shannon-Nyquist criterion, with
slightly more than 2 pixels per λ/D.

The object PSD power p is fixed to an empirical standard value for satellites p = 2.6, to fit the
empirical object PSD. The Gibbs sampler is run for 100 000 iterations.

4.2 Results on the estimated parameters and derived uncertainties

In Figure 13, we plot the sample chains and the corresponding histograms for γn, r0 and vϕ.
Similarly to the previous simulations, the sample mean values m and standard deviations σ of

the posterior distribution for each parameter are displayed in Table 8. The noise precision γn as
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Fig 12 Left: Synthetic view of SPOT (true object), of size 512 × 512. Right: simulated image, with true parameters
r0 = 0.10m, vϕ = 1.85 rad2 and γn = 1.00 10−4 ph−2.

Fig 13 From top to bottom: γn, r0, vϕ, γo, k. Left: chains of samples for simulated satellite image. Right: corre-
sponding histogram. True values in dashed line.

well as PSF parameters r0 and vϕ are relatively well estimated, with an error of respectively 2%,
14% and 17%. These results are very close to those obtained with AMIRAL: for similar conditions,
the estimated PSF parameters are r0 = 0.112m and vϕ = 2.16 rad2. We notice that the error
on PSF parameters is greater for the satellite observation than for the astronomical observation.
Our interpretation of these results, checked by complementary simulations, is that it is due to the

Parameter m± σ True
γn (ph−2) 1.02 ×10−4 ± 3.63×10−7 1.00 ×10−4

r0 (m) 0.114 ± 0.008 0.10
vϕ(rad

2) 2.16 ± 0.01 1.85
γo (ph−2) 1.90 ×10−14 ± 2.37 ×10−15 -
k 3.14 ± 1.45 -

Table 8 Mean value, associated standard deviation and true value, for γn, r0, vϕ, γo and k, for simulated satellite
image (stationary Gaussian noise).

17



spectrum of the satellite object which is less isotropic than Vesta, and therefore does not fit our
isotropic power spectral density model as well.

Concerning uncertainties, similarly to previous asteroid case, the posterior standard deviation
for r0 seems to be a good uncertainty prediction for this parameter as the true value is within the
interval [mr0 ± 2σr0 ]. On the contrary, σvϕ seems small, giving an under-estimated uncertainty.
The reasons for this under-estimation are being investigated, though it should be linked to the
more difficult observation conditions simulated here. Additionally, the previous discussion about
the correlation between parameters p and vϕ

25 is still valid and further work on tuning hyper-
parameter p for satellite observation should be done.

Fig 14 True (in green) and estimated (in blue) OTF for simulated satellite image, including computed uncertainties (in
blue, + and - for upper and lower uncertainty bounds).

We also compare the resulting estimated OTF to the true OTF in Figure 14. Here again, as dis-
cussed previously, we notice that the errors on both parameters partially compensate, as a result the
normalized RMSE for the OTF is quite low (around 8%). Concerning the uncertainties, we notice
again that even though the uncertainties on PSF parameters are under-estimated, the uncertainties
on the OTF itself are quite satisfactory as the true OTF is within the interval [mh̃ ± 3σh̃].

Additionally, the estimations result in a good image PSD fitting, as shown in Figure 15. More-
over, as displayed in Figure 15, the object PSD model visually fits well the empirical object PSD.
Finally, Figure 16 shows results from the restoration of the image in Figure 12 (right) using the
estimated OTF. We notice that details of the satellite surface are restored.

5 Results on experimental astronomical data

After testing our method on both astronomical and satellite simulated data, therefore for different
turbulence conditions and AO systems, we apply it to experimental images. Here we process an
experimental image of Vesta27 taken by SPHERE/Zimpol in the same mostly unsupervised mode
as previously where p = 3, and run the Gibbs sampler for 100 000 iterations. Data and restored
object are shown in Figure 17. We recognize the same surface features as from the synthetic view
in Figure 1. In this experimental case, the bright edge corona starts to appear (on the left side),
and the image is slightly granular. This may be due to a slight over-deconvolution i.e. to a slight
under-estimation of the OTF, as to the quadratic regularization.
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Fig 15 PSDs for simulated satellite image. Model in solid line, and empirical PSD averaged azimuthally in dashed
line. Left: image PSD. Right: object PSD.

Fig 16 Left and center: True object and image for simulated satellite observation, 256× 256 cropped from 512× 512

(Figure 12). Right: restored object using a L2-norm regularization, with positivity constraint, also cropped.

Results obtained for the PSF parameters (mean±standard deviation) are the following: r0 =
0.26 ± 0.04m and vϕ = 2.62 ± 0.06 rad2. These values are close to the values obtained with
AMIRAL5 (r0 = 0.32m, vϕ = 2.78 rad2) for the same conditions, the newly estimated r0 being
more likely than the one estimated by AMIRAL according to the known statistics on r0.13 We also
look at the image PSD model and the empirical image PSD for Vesta in Figure 18. They fit well,
especially at low and medium frequencies, where signal dominates noise. For high frequencies,
where the noise is dominant, we see that the noise floor is not flat (whereas we model the noise as
white), and believe it may be due to the data reduction by SPHERE/Zimpol’s pipeline.
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Fig 17 Left: Vesta observed by SPHERE/Zimpol on the European Very Large Telescope (VLT) in Chile.27 Right:
restored object with the estimated PSF using a L2-norm regularization, with positivity constraint.

Fig 18 PSD model and Vesta empirical image PSD averaged azimuthally, in dashed line.

6 Results on an experimental satellite image

Finally, we test our method on an experimental image of Envisat, taken at the OCA with ONERA’s
ODISSEE AO system.12 We fix paramater p to a reasonable value for satellites (p = 2.5), and run
the Gibbs sampler for 500 000 iterations.

Our results on the estimated PSF parameters are the following: r0 = 0.08m and vϕ =
0.89 rad2, which can be compared to the results obtained with AMIRAL: r0 = 0.06m and vϕ =
1.13 rad2, for the same conditions. Concerning the restored image, as shown in Figure 19, we
retrieve some elements of the satellite, and we checked on a CAD model of Envisat that the bright
spots we obtain on the restored image indeed correspond to instruments and antennas on its surface.

Finally, concerning the image PSD model and the empirical image PSD for Envisat, as shown
in Figure 20, we have a globally good image PSD fitting. The oscillations of the empirical image
PSD are likely to come from oscillations of the OTF, which are consistent with the exposure time
(≈ 1 s) which is short with respect to turbulence residuals averaging, and constitutes a deviation
to the infinite exposure assumption of our AO-corrected PSF model. These oscillations might also
come partly from the spectrum of the object itself, which deserves further studies by means of
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Fig 19 Left: Envisat observed by ODISSEE at the OCA.12 Right: restored object using a L2-norm regularization, with
positivity constraint.

Fig 20 PSD model and Envisat empirical image PSD averaged azimuthally, in dashed line.

simulations.

7 Conclusion

We have presented a new marginal myopic deconvolution method extending previous works, using
a MCMC algorithm, more precisely a Random Walk Metropolis-Hastings-within-Gibbs algorithm.
In addition to PSF and hyperparameter estimation combined with image restoration, we now have
access to the whole posterior distribution. This enables us to compute the optimal estimator min-
imizing the mean square error. Additionally, with the posterior distribution, we can compute un-
certainties based on the posterior standard deviation. This method has been validated on simulated
images, giving accurate estimations of noise and object hyperparameters, as well as satisfactory
OTF estimations. Two different contexts were simulated: on the one hand, the observation of aster-
oid Vesta on the VLT, and on the other hand the observation of the SPOT satellite using ONERA’s
AO bench on the 1.52m-telescope at OCA. The satisfactory results obtained in both conditions
suggest the broad applicability of the method. Additionally, for the simulated asteroid images, we
have computed our estimations for several noise realisations, to check the robustness of our method
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to noise, both for estimated parameter values and predicted uncertainties. Finally, our method has
also been applied to experimental images, in both contexts.

In this work, hyperparameter p, which codes for the decrease of the object PSD, has been fixed
to a reasonable value according to the class of the object (either asteroids, or satellites). The PSF
estimation quality is sensitive to the choice of p, as we verified it by changing its value.25 Moreover,
jointly estimating p with the other parameters is difficult as mentioned in earlier studies.5 In the
near future, we plan to tackle the joint estimation of p. Beyond the choice of p, for objects that
are far from isotropic, which is the case for some satellites, it would be worth considering an
anisotropic prior model.

In order to enable the estimation of such a richer prior model, and to improve the PSF estima-
tion quality, we plan to add constraints on the object (namely, support and/or positivity contraints).
Indeed, such constraints should help separate the contributions of the object and of the PSF to the
image. This would then change the prior model on the object which can not be described by a
simple Gaussian distribution anymore.

Lastly, we currently sample each parameter individually, using a Metropolis-Hastings-within-
Gibbs algorithm and the convergence speed issue has not been investigated. To accelerate the
convergence, a possible development is to use a Metropolis-Hastings algorithm to sample all pa-
rameters jointly, thus without using the Gibbs sampler, and to use gradient-based methods such as
a Metropolis-adjusted Langevin algorithm.21–23

Code, Data, and Materials Availability

The raw SPHERE astronomical data presented in this article are publicly available in Ref. 28, and
the deconvolved images as well as the estimated PSF can be found in Ref. 29. The satellite data
that support the findings of this article are not publicly available due to privacy concerns. They can
be requested from the author at cyril.petit@onera.fr. Supporting code that can be used to generate
PSFs according to the PSFAO19 model is publicly available in Ref. 30.
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